1
|
Wu SW, Hsieh CY, Liu BH, Lin XJ, Yu FY. Novel antibody- and aptamer-based approaches for sensitive detection of mycotoxin fusaric acid in cereal. Food Chem 2025; 463:141245. [PMID: 39298849 DOI: 10.1016/j.foodchem.2024.141245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/28/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
This study presents the first successful generation of polyclonal antibodies (pAbs) and oligonucleotide aptamers specifically targeting fusaric acid (FA). Utilizing these pAbs and aptamers, three highly sensitive and specific assays were developed for the detection of FA in cereals with limits of detection (LOD) ranging from 5 to 50 ng/g: an antibody-based enzyme-linked immunosorbent assay (ELISA), an aptamer-based enzyme-linked aptamer-sorbent assay (ELASA), and a hybrid enzyme-linked aptamer-antibody sandwich assay (ELAAA). The recovery rates of FA in spiked cereal samples ranged from 87 % to 112 % across all assays. Analysis of 15 cereal feed samples revealed FA contamination levels of 459 to 1743 ng/g (ELISA), 427 to 1960 ng/g (ELASA), and 381 to 1987 ng/g (ELAAA). These results were further validated by HPLC analysis, confirming high consistency within developed assays. Overall, the ELISA, ELASA, and ELAAA are promising tools for the rapid detection of FA, significantly contributing to food safety monitoring.
Collapse
Affiliation(s)
- Shih-Wei Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Chia-Yu Hsieh
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, No.1, Sec. 1, Jen Ai Rd, Taipei 100, Taiwan
| | - Xin-Jie Lin
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec. 1, Chien Kuo N. Rd, Taichung 402, Taiwan.
| |
Collapse
|
2
|
Shi WT, Yao CP, Liu WH, Cao WY, Shao W, Liao SQ, Yu T, Zhu QF, Chen Z, Zang YJ, Farooq M, Wei WK, Zhang XA. An fusaric acid-based CRISPR library screen identifies MDH2 as a broad-spectrum regulator of Fusarium toxin-induced cell death. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135937. [PMID: 39342847 DOI: 10.1016/j.jhazmat.2024.135937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Fusarium mycotoxins are of great concern because they are the most common food-borne mycotoxins and environmental contaminants worldwide. Fusaric acid (FA), Deoxynivalenol (DON), Zearalenone (ZEA), T-2 toxin (T-2), and Fumonisin B1 (FB1) are important Fusarium toxins contaminating feeds and food and can cause serious health problems. FA can synergize with some other Fusarium toxins to enhance overall toxicity. However, the underlying molecular mechanism remains poorly understood. In this study, our CRISPR screening revealed Malate dehydrogenase 2 (MDH2) and Pyruvate dehydrogenase E1 subunit beta (PDHB) are the key genes for FA-induced cell death. Pathways associated with mitochondrial function, notably the TCA cycle, play a significant role in FA cytotoxicity. We found that MDH2 and PDHB depletion reduced FA-induced cell death, ROS accumulation, and the expression of caspase-3 and HIF-1α. The cell viability assays and flow cytometry demonstrated that MDH2 knockout but not PDHB decreased DON, ZEA, T-2, and FB1-induced cytotoxicity, apoptosis, and ROS accumulation. MDH2 inhibitor LW6 also decreased DON, ZEA, T-2, and FB1-induced toxicity. This suggested that MDH2, but not PDHB, is a common regulator of broad-spectrum Fusarium toxin (FA, DON, ZEA, T-2, and FB1)-induced cell death. Our work provides new avenues for the treatment of Fusarium toxin toxicity.
Collapse
Affiliation(s)
- Wei-Tao Shi
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China; Xinjiang Agricultural University, College of Animal Science, Urumqi 830052, PR China
| | - Chun-Peng Yao
- Vegetable Research Institute of Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory for New Technology Research of Vegetables, Guangzhou 510640, PR China
| | - Wen-Hua Liu
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Wan-Yi Cao
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Wei Shao
- Xinjiang Agricultural University, College of Animal Science, Urumqi 830052, PR China
| | - Shen-Quan Liao
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, 510640, PR China
| | - Ting Yu
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Qing-Feng Zhu
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Zhuang Chen
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Ying-Jie Zang
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Muhammad Farooq
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China
| | - Wen-Kang Wei
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| | - Xiao-Ai Zhang
- Agro-biological Gene Research Center of Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510640, PR China.
| |
Collapse
|
3
|
Staropoli A, Guastaferro VM, Vinale F, Turrà D, Di Costanzo L, Vitale S. Repression of autocrine pheromone signaling leads to fusaric acid over-production. Nat Prod Res 2024; 38:1967-1971. [PMID: 37395452 DOI: 10.1080/14786419.2023.2227992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/18/2023] [Indexed: 07/04/2023]
Abstract
Fusaric acid (FA), a picolinic acid derivative, is a natural substance produced by a wide variety of fungal plant pathogens belonging to the Fusarium genus. As a metabolite, fusaric acid exerts several biological activities including metal chelation, electrolyte leakage, repression of ATP synthesis, and direct toxicity on plants, animals and bacteria. Prior studies on the structure of fusaric acid revealed a co-crystal dimeric adduct between FA and 9,10-dehydrofusaric acid. During an ongoing search for signaling genes differentially regulating FA production in the fungal pathogen Fusarium oxysporum (Fo), we found that mutants lacking pheromone expression have an increased production of FA compared to the wild type strain. Noteworthy, crystallographic analysis of FA extracted from Fo culture supernatants showed that crystals are formed by a dimeric form of two FA molecules (1:1 molar stoichiometry). Overall, our results suggest that pheromone signaling in Fo is required to regulate the synthesis of fusaric acid.
Collapse
Affiliation(s)
- Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | | | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - David Turrà
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Luigi Di Costanzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania Vitale
- Institute for Sustainable Plant Protection, National Research Council, Portici, Italy
| |
Collapse
|
4
|
Das S, Chaudhari AK. Encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer for protection of stored rice against Fusarium verticillioides and fumonisins contamination. Heliyon 2024; 10:e29954. [PMID: 38694117 PMCID: PMC11061702 DOI: 10.1016/j.heliyon.2024.e29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The present investigation entails the encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer (AGEO-Ne) and assessment of its efficacy against Fusarium verticillioides contamination and fumonisins biosynthesis in stored rice (Oryza sativa L.) samples. The AGEO was encapsulated through ionic gelation process and characterized by scanning electron microscopy (SEM), Dynamic light scattering (DLS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The AGEO exhibited bi-phasic delivery pattern from chitosan matrix. The AGEO caused complete inhibition of F. verticillioides growth at 1.2 μL/mL, while fumonisin B1 (FB1) and B2 (FB2) biosynthesis at 1.2 and 1.0 μL/mL, respectively. On the other hand, nanoencapsulated AGEO (AGEO-Ne) exhibited improved efficacy, caused complete inhibition of fungal growth at 0.8 μL/mL, and FB1 and FB2 production at 0.8 and 0.6 μL/mL, respectively. AGEO-Ne caused 100 % inhibition of ergosterol synthesis at 0.8 μL/mL and exhibited greater efflux of Ca2+, Mg2+, K+ ions (18.99, 21.63, and 25.38 mg/L) as well as 260 and 280 nm absorbing materials from exposed fungal cells. The in silico interaction of granyl acetate and linalyl acetate with FUM 21 protein validated the molecular mechanism for inhibition of FB1 and FB2 biosynthesis. Further, improvement in antioxidant activity of AGEO-Ne was observed after encapsulation with IC50 values of 12.08 and 6.40 μL/mL against DPPH and ABTS radicals, respectively. During in situ investigation, AGEO caused 82.09 and 86.32 % protection of rice against F. verticillioides contamination in inoculated and uninoculated rice samples, respectively, while AGEO-Ne exhibited 100 % protection of fumigated rice samples against F. verticillioides proliferation as well as FB1 and FB2 contamination. The AGEO-Ne also caused better retardation of lipid peroxidation (41.35 and 37.52 μM/g FW malondialdehyde in inoculated and uninoculated treatment) and acceptable organoleptic properties in rice samples, which strengthen its application as plant based novel preservative in food and agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh, 233001, India
| |
Collapse
|
5
|
Kumar P, Sharma R, Kumar K. A perspective on varied fungal virulence factors causing infection in host plants. Mol Biol Rep 2024; 51:392. [PMID: 38446264 DOI: 10.1007/s11033-024-09314-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024]
Abstract
Pathogenic fungi and their spores are ubiquitously present and invade the tissues of higher living plants causing pathogenesis and inevitably death or retarded growth. A group of fungi kills its hosts and consume the dead tissues (necrotrophs), while others feed on living tissue (biotrophs) or combination of two (hemibiotrophs). A number of virulent factors is used by fungal pathogens to inhabit new hosts and cause illness. Fungal pathogens develop specialized structures for complete invasion into plant organs to regulate pathogenic growth. Virulence factors like effectors, mycotoxins, cell wall degrading enzymes and organic acids have varied roles depending on the infection strategy and assist the pathogens to possess control on living tissues of the plants. Infection strategies employed by fungi generally masks the plant defense mechanism, however necrotrophs are best known to harm plant tissues with their poisonous secretion. Interestingly, the effector chemicals released by Biotrophs reduce plant cell growth and regulate plant metabolism in their advantage causing no direct death. All these virulence tools cause huge loss to the agricultural product of pre- harvest crops and post-harvest yields causing low output leading to huge economic losses. This review focusses on comprehensive study of range of virulence factors of the pathogenic fungi responsible for their invasion inside the healthy tissues of plants. The compiled information would influence researchers to design antidote against all virulence factors of fungi relevant to their area of research which could pave way for protection against plant pathogenesis.
Collapse
Affiliation(s)
- Prince Kumar
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India
| | - Rajani Sharma
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India
| | - Kunal Kumar
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, 834004, India.
| |
Collapse
|
6
|
Badmos FO, Muhammad HL, Dabara A, Adefolalu F, Salubuyi S, Abdulkadir A, Oyetunji VT, Apeh DO, Muhammad HK, Mwanza M, Monjerezi M, Matumba L, Makun HA. Assessment of dietary exposure and levels of mycotoxins in sorghum from Niger State of Nigeria. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:74-90. [PMID: 38109413 DOI: 10.1080/19440049.2023.2293998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
This study reports levels of mycotoxins in sorghum from Niger State, Nigeria, and provides a comprehensive assessment of their potential health risks by combining mycotoxin levels and dietary exposure assessment. A total of 240 samples of red and white sorghum were collected from both stores and markets across four microclimatic zones. Fungal species were identified using a dilution plate method. Aflatoxins (AFs), deoxynivalenol, nivalenol, and ochratoxin (OTA) were quantified using HPLC, whereas cyclopiazonic acid, fumonisins (FUMs) and zearalenone were quantified using ELISA. A. flavus and A. fumigatus were dominant fungal species followed by F. verticilloides, A. oryzae and P. verrucosum. Aflatoxins (mean: 29.97 µg/kg) were detected in all samples, whereas OTA (mean: 37.5 µg/kg) and FUMs (mean: 3269.8 µg/kg) were detected in 72% and 50% of the samples, respectively. Mycotoxins frequently co-occurred in binary mixtures of AFs + OTA and AFs + FUMs. Dietary exposure estimates were highest for FUMs at 230% of TDI and margin of exposures (MOEs) for both AFs and OTA (<10,000) indicating a potential risk associated with combined exposure to AFs and OTA. The Risk of hepatocellular carcinoma cases (HCC/year) attributable to AFs and OTA exposure from sorghum was estimated to be 5.99 × 105 and 0.24 × 105 cases for HBsAg + individuals based on 13.6% HBV incidence. Similarly, the HCC/year for AFs and OTA were assessed to be 3.59 × 105 and 0.14 × 105 at an 8.1% prevalence rate. Therefore, the results of this study demonstrate the high prevalence and dietary exposure to mycotoxins through sorghum consumption, raising public health and trade concerns.
Collapse
Affiliation(s)
- Fatimah Omolola Badmos
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Hadiza Lami Muhammad
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Achi Dabara
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Funmilola Adefolalu
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Susan Salubuyi
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Abdullahi Abdulkadir
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Victor Tope Oyetunji
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Daniel Ojochenemi Apeh
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
- Department of Biological Sciences, Confluence University of Science and Technology, Osara, Nigeria
| | - Hadiza Kudu Muhammad
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| | - Mulunda Mwanza
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Animal Health, Northwest University, Mafikeng, South Africa
| | - Maurice Monjerezi
- Department of Animal Health, Northwest University, Mafikeng, South Africa
- Department of Chemistry and Chemical Engineering, University of Malawi, Zomba, Malawi
| | - Limbikani Matumba
- Centre for Resilient Agri-Food Systems (CRAFS), University of Malawi, Zomba, Malawi
- Food Technology and Nutrition Group-NRC, Lilongwe University of Agriculture and Natural Resources (LUANAR), Lilongwe, Malawi
| | - Hussaini Anthony Makun
- Africa Centre of Excellence for Mycotoxin and Food Safety, Federal University of Technology Minna, Nigeria
- Department of Biochemistry, Federal University of Technology Minna, Nigeria
| |
Collapse
|
7
|
Iqbal N, Czékus Z, Ördög A, Poór P. Fusaric acid-evoked oxidative stress affects plant defence system by inducing biochemical changes at subcellular level. PLANT CELL REPORTS 2023; 43:2. [PMID: 38108938 PMCID: PMC10728271 DOI: 10.1007/s00299-023-03084-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/05/2023] [Indexed: 12/19/2023]
Abstract
Fusaric acid (FA) is one of the most harmful phytotoxins produced in various plant-pathogen interactions. Fusarium species produce FA as a secondary metabolite, which can infect many agronomic crops at all stages of development from seed to fruit, and FA production can further compromise plant survival because of its phytotoxic effects. FA exposure in plant species adversely affects plant growth, development and crop yield. FA exposure in plants leads to the generation of reactive oxygen species (ROS), which cause cellular damage and ultimately cell death. Therefore, FA-induced ROS accumulation in plants has been a topic of interest for many researchers to understand the plant-pathogen interactions and plant defence responses. In this study, we reviewed the FA-mediated oxidative stress and ROS-induced defence responses of antioxidants, as well as hormonal signalling in plants. The effects of FA phytotoxicity on lipid peroxidation, physiological changes and ultrastructural changes at cellular and subcellular levels were reported. Additionally, DNA damage, cell death and adverse effects on photosynthesis have been explained. Some possible approaches to overcome the harmful effects of FA in plants were also discussed. It is concluded that FA-induced ROS affect the enzymatic and non-enzymatic antioxidant system regulated by phytohormones. The effects of FA are also associated with other photosynthetic, ultrastructural and genotoxic modifications in plants.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
- Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Attila Ördög
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary
| | - Péter Poór
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép Fasor 52, Szeged, 6726, Hungary.
| |
Collapse
|
8
|
Iqbal N, Czékus Z, Poór P, Ördög A. Ethylene-dependent regulation of oxidative stress in the leaves of fusaric acid-treated tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:841-849. [PMID: 36870159 DOI: 10.1016/j.plaphy.2023.02.047] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/24/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The mycotoxin fusaric acid (FA) induces rapid oxidative burst leading to cell death in plants. At the same time, plant defence reactions are mediated by several phytohormones for instance ethylene (ET). However, previously conducted studies leave research gaps on how ET plays a regulatory role under mycotoxin exposure. Therefore, this study aims to the time-dependent effects of two FA concentrations (0.1 mM and 1 mM) were explored on the regulation of reactive oxygen species (ROS) in leaves of wild-type (WT) and ET receptor mutant Never ripe (Nr) tomatoes. FA induced superoxide and H2O2 accumulation in both genotypes in a mycotoxin dose- and exposure time-dependent pattern. 1 mM FA activated NADPH oxidase (+34% compared to the control) and RBOH1 transcript levels in WT leaves. However, superoxide production was significantly higher in Nr with 62% which could contribute to higher lipid peroxidation in this genotype. In parallel, the antioxidative defence mechanisms were also activated. Both peroxidase and superoxide dismutase activities were lower in Nr but ascorbate peroxidase showed one-fold higher activity under 1 mM FA stress than in WT leaves. Interestingly, catalase (CAT) activity decreased upon FA in a time- and concentration-dependent manner and the encoding CAT genes were also downregulated, especially in Nr leaves at 20%. Ascorbate level was decreased and glutathione remained lower in Nr than WT plants under FA exposure. Conclusively, Nr genotype showed more sensitivity to FA-induced ROS suggesting that ET serves defence reactions of plants by activating several enzymatic and non-enzymatic antioxidants to detoxify excess ROS accumulation.
Collapse
Affiliation(s)
- Nadeem Iqbal
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary; Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Zalán Czékus
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary; Doctoral School of Biology, University of Szeged, Szeged, Hungary
| | - Péter Poór
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary.
| | - Attila Ördög
- Department of Plant Biology, Institute of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726, Szeged, Hungary
| |
Collapse
|
9
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|