1
|
Ciocca M, Hosli S, Hadi Z, Mahmud M, Tai YF, Seemungal BM. Vestibular prepulse inhibition of the human blink reflex. Clin Neurophysiol 2024; 167:1-11. [PMID: 39232454 DOI: 10.1016/j.clinph.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
OBJECTIVE Auditory and somatosensory prepulses are commonly used to assess prepulse inhibition (PPI). The effect of a vestibular prepulse upon blink reflex excitability has not been hitherto assessed. METHODS Twenty-two healthy subjects and two patients with bilateral peripheral vestibular failure took part in the study. Whole body yaw rotation in the dark provided a vestibular inertial prepulse. Blink reflex was electrically evoked after the end of the rotation. The amplitude of R1 and the area-under-the-curve (area) of the blink reflex R2 and R2c responses were recorded and analysed. RESULTS A vestibular prepulse inhibited the R2 (p < 0.001) and R2c area (p < 0.05). Increasing the angular acceleration did not increase the R2 and R2c inhibition (p > 0.05). Voluntary suppression of the vestibulo-ocular reflex did not affect the magnitude of inhibition (p > 0.05). Patients with peripheral vestibular failure did not show any inhibition. CONCLUSIONS Our data support a vestibular gating mechanism in humans. SIGNIFICANCE The main brainstem nucleus mediating PPI - the pedunculopontine nucleus (PPN) - is heavily vestibular responsive, which is consistent with our findings of a vestibular-mediated PPI. Our technique may be used to interrogate the fidelity of brain circuits mediating vestibular-related PPN functions. Given the PPN's importance in human postural control, our technique may also provide a neurophysiological biomarker of balance.
Collapse
Affiliation(s)
- Matteo Ciocca
- Department of Brain Sciences, Imperial College London, W6 8RF, UK.
| | - Sarah Hosli
- Department of Brain Sciences, Imperial College London, W6 8RF, UK; Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Zaeem Hadi
- Department of Brain Sciences, Imperial College London, W6 8RF, UK
| | - Mohammad Mahmud
- Department of Brain Sciences, Imperial College London, W6 8RF, UK
| | - Yen F Tai
- Department of Brain Sciences, Imperial College London, W6 8RF, UK
| | | |
Collapse
|
2
|
Lin C, Ridder MC, Sah P. The PPN and motor control: Preclinical studies to deep brain stimulation for Parkinson's disease. Front Neural Circuits 2023; 17:1095441. [PMID: 36925563 PMCID: PMC10011138 DOI: 10.3389/fncir.2023.1095441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/31/2023] [Indexed: 03/04/2023] Open
Abstract
The pedunculopontine nucleus (PPN) is the major part of the mesencephalic locomotor region, involved in the control of gait and locomotion. The PPN contains glutamatergic, cholinergic, and GABAergic neurons that all make local connections, but also have long-range ascending and descending connections. While initially thought of as a region only involved in gait and locomotion, recent evidence is showing that this structure also participates in decision-making to initiate movement. Clinically, the PPN has been used as a target for deep brain stimulation to manage freezing of gait in late Parkinson's disease. In this review, we will discuss current thinking on the role of the PPN in locomotor control. We will focus on the cytoarchitecture and functional connectivity of the PPN in relationship to motor control.
Collapse
Affiliation(s)
- Caixia Lin
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.,Joint Centre for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Margreet C Ridder
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia
| | - Pankaj Sah
- Queensland Brain Institute, University of Queensland, St Lucia, QLD, Australia.,Joint Centre for Neuroscience and Neural Engineering, and Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
3
|
Tukker JJ, Beed P, Schmitz D, Larkum ME, Sachdev RNS. Up and Down States and Memory Consolidation Across Somatosensory, Entorhinal, and Hippocampal Cortices. Front Syst Neurosci 2020; 14:22. [PMID: 32457582 PMCID: PMC7227438 DOI: 10.3389/fnsys.2020.00022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/03/2020] [Indexed: 01/01/2023] Open
Abstract
In the course of a day, brain states fluctuate, from conscious awake information-acquiring states to sleep states, during which previously acquired information is further processed and stored as memories. One hypothesis is that memories are consolidated and stored during "offline" states such as sleep, a process thought to involve transfer of information from the hippocampus to other cortical areas. Up and Down states (UDS), patterns of activity that occur under anesthesia and sleep states, are likely to play a role in this process, although the nature of this role remains unclear. Here we review what is currently known about these mechanisms in three anatomically distinct but interconnected cortical areas: somatosensory cortex, entorhinal cortex, and the hippocampus. In doing so, we consider the role of this activity in the coordination of "replay" during sleep states, particularly during hippocampal sharp-wave ripples. We conclude that understanding the generation and propagation of UDS may provide key insights into the cortico-hippocampal dialogue linking archi- and neocortical areas during memory formation.
Collapse
Affiliation(s)
- John J Tukker
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Prateep Beed
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Neuroscience Research Center, Berlin, Germany.,German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Matthew E Larkum
- Cluster of Excellence NeuroCure, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany.,Institut für Biologie, Humboldt Universität, Berlin, Germany
| | | |
Collapse
|
4
|
Eser RA, Ehrenberg AJ, Petersen C, Dunlop S, Mejia MB, Suemoto CK, Walsh CM, Rajana H, Oh J, Theofilas P, Seeley WW, Miller BL, Neylan TC, Heinsen H, Grinberg LT. Selective Vulnerability of Brainstem Nuclei in Distinct Tauopathies: A Postmortem Study. J Neuropathol Exp Neurol 2019; 77:149-161. [PMID: 29304218 DOI: 10.1093/jnen/nlx113] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The brainstem nuclei of the reticular formation (RF) are critical for regulating homeostasis, behavior, and cognition. RF degenerates in tauopathies including Alzheimer disease (AD), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Although the burden of phopho-tau inclusion is high across these diseases, suggesting a similar vulnerability pattern, a distinct RF-associated clinical phenotype in these diseases indicates the opposite. To compare patterns of RF selective vulnerability to tauopathies, we analyzed 5 RF nuclei in tissue from 14 AD, 14 CBD, 10 PSP, and 3 control cases. Multidimensional quantitative analysis unraveled discernable differences on how these nuclei are vulnerable to AD, CBD, and PSP. For instance, PSP and CBD accrued more tau inclusions than AD in locus coeruleus, suggesting a lower vulnerability to AD. However, locus coeruleus neuronal loss in AD was so extreme that few neurons remained to develop aggregates. Likewise, tau burden in gigantocellular nucleus was low in AD and high in PSP, but few GABAergic neurons were present in AD. This challenges the hypothesis that gigantocellular nucleus neuronal loss underlies REM behavioral disorders because REM behavioral disorders rarely manifests in AD. This study provides foundation for characterizing the clinical consequences of RF degeneration in tauopathies and guiding customized treatment.
Collapse
Affiliation(s)
- Rana A Eser
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Alexander J Ehrenberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Cathrine Petersen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Sara Dunlop
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Maria B Mejia
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Claudia K Suemoto
- Brazilian Aging Brain Study Group, LIM-22, Department of Pathology.,Division of Geriatrics, Department of Clinical Medicine, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Christine M Walsh
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Hima Rajana
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Jun Oh
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Panos Theofilas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California.,Department of Pathology, University of California, San Francisco, San Francisco, California
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California
| | - Thomas C Neylan
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California.,Department of Psychiatry, University of California, San Francisco and San Francisco VA Medical Center, San Francisco, California
| | - Helmut Heinsen
- LIM-44, University of Sao Paulo Medical School, Sao Paulo, Brazil and Clinic of Psychiatry, University of Würzburg, Wurzburg, Germany
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, California.,Brazilian Aging Brain Study Group, LIM-22, Department of Pathology.,Department of Pathology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
5
|
Gut NK, Winn P. The pedunculopontine tegmental nucleus-A functional hypothesis from the comparative literature. Mov Disord 2016; 31:615-24. [PMID: 26880095 PMCID: PMC4949639 DOI: 10.1002/mds.26556] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
We present data from animal studies showing that the pedunculopontine tegmental nucleus-conserved through evolution, compartmentalized, and with a complex pattern of inputs and outputs-has functions that involve formation and updates of action-outcome associations, attention, and rapid decision making. This is in contrast to previous hypotheses about pedunculopontine function, which has served as a basis for clinical interest in the pedunculopontine in movement disorders. Current animal literature points to it being neither a specifically motor structure nor a master switch for sleep regulation. The pedunculopontine is connected to basal ganglia circuitry but also has primary sensory input across modalities and descending connections to pontomedullary, cerebellar, and spinal motor and autonomic control systems. Functional and anatomical studies in animals suggest strongly that, in addition to the pedunculopontine being an input and output station for the basal ganglia and key regulator of thalamic (and consequently cortical) activity, an additional major function is participation in the generation of actions on the basis of a first-pass analysis of incoming sensory data. Such a function-rapid decision making-has very high adaptive value for any vertebrate. We argue that in developing clinical strategies for treating basal ganglia disorders, it is necessary to take an account of the normal functions of the pedunculopontine. We believe that it is possible to use our hypothesis to explain why pedunculopontine deep brain stimulation used clinically has had variable outcomes in the treatment of parkinsonism motor symptoms and effects on cognitive processing. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nadine K Gut
- Biozentrum, University of Basel, Basel, Switzerland
| | - Philip Winn
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
6
|
Deep brain stimulation of different pedunculopontine targets in a novel rodent model of parkinsonism. J Neurosci 2015; 35:4792-803. [PMID: 25810510 DOI: 10.1523/jneurosci.3646-14.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pedunculopontine tegmental nucleus (PPTg) has been proposed as a target for deep brain stimulation (DBS) in parkinsonian patients, particularly for symptoms such as gait and postural difficulties refractory to dopaminergic treatments. Several patients have had electrodes implanted aimed at the PPTg, but outcomes have been disappointing, with little evidence that gait and posture are improved. The PPTg is a heterogeneous structure. Consequently, exact target sites in PPTg, possible DBS mechanisms, and potential benefits still need systematic investigation in good animal models. We have investigated the role of PPTg in gait, developed a refined model of parkinsonism including partial loss of the PPTg with bilateral destruction of nigrostriatal dopamine neurons that mimics human pathophysiology, and investigated the effect of DBS at different PPTg locations on gait and posture using a wireless device that lets rats move freely while receiving stimulation. Neither partial nor complete lesions of PPTg caused gait deficits, underlining questions raised previously about the status of PPTg as a motor control structure. The effect of DBS in the refined and standard model of parkinsonism were very different despite minimal behavioral differences in nonstimulation control conditions. Anterior PPTg DBS caused severe episodes of freezing and worsened gait, whereas specific gait parameters were mildly improved by stimulation of posterior PPTg. These results emphasize the critical importance of intra-PPTg DBS location and highlight the need to take PPTg degeneration into consideration when modeling parkinsonian symptoms. They also further implicate a role for PPTg in the pathophysiology of parkinsonism.
Collapse
|
7
|
MacLaren DAA, Wilson DIG, Winn P. Selective lesions of the cholinergic neurons within the posterior pedunculopontine do not alter operant learning or nicotine sensitization. Brain Struct Funct 2015; 221:1481-97. [PMID: 25586659 DOI: 10.1007/s00429-014-0985-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/30/2014] [Indexed: 02/02/2023]
Abstract
Cholinergic neurons within the pedunculopontine tegmental nucleus have been implicated in a range of functions, including behavioral state control, attention, and modulation of midbrain and basal ganglia systems. Previous experiments with excitotoxic lesions have found persistent learning impairment and altered response to nicotine following lesion of the posterior component of the PPTg (pPPTg). These effects have been attributed to disrupted input to midbrain dopamine systems, particularly the ventral tegmental area. The pPPTg contains a dense collection of cholinergic neurons and also large numbers of glutamatergic and GABAergic neurons. Because these interdigitated populations of neurons are all susceptible to excitotoxins, the effects of such lesions cannot be attributed to one neuronal population. We wished to assess whether the learning impairments and altered responses to nicotine in excitotoxic PPTg-lesioned rats were due to loss of cholinergic neurons within the pPPTg. Selective depletion of cholinergic pPPTg neurons is achievable with the fusion toxin Dtx-UII, which targets UII receptors expressed only by cholinergic neurons in this region. Rats bearing bilateral lesions of cholinergic pPPTg neurons (>90% ChAT+ neuronal loss) displayed no deficits in the learning or performance of fixed and variable ratio schedules of reinforcement for pellet reward. Separate rats with the same lesions had a normal locomotor response to nicotine and furthermore sensitized to repeated administration of nicotine at the same rate as sham controls. Previously seen changes in these behaviors following excitotoxic pPPTg lesions cannot be attributed solely to loss of cholinergic neurons. These findings indicate that non-cholinergic neurons within the pPPTg are responsible for the learning deficits and altered responses to nicotine seen after excitotoxic lesions. The functions of cholinergic neurons may be related to behavioral state control and attention rather than learning.
Collapse
Affiliation(s)
- Duncan A A MacLaren
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow, G4 0RE, UK. .,School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, KY16 9JP, UK.
| | - David I G Wilson
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, Fife, KY16 9JP, UK
| | - Philip Winn
- Strathclyde Institute of Pharmacy and Biomedical Sciences, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
8
|
Capozzo A, Vitale F, Mattei C, Mazzone P, Scarnati E. Continuous stimulation of the pedunculopontine tegmental nucleus at 40 Hz affects preparative and executive control in a delayed sensorimotor task and reduces rotational movements induced by apomorphine in the 6-OHDA parkinsonian rat. Behav Brain Res 2014; 271:333-42. [PMID: 24959863 DOI: 10.1016/j.bbr.2014.06.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/13/2014] [Accepted: 06/16/2014] [Indexed: 12/21/2022]
Abstract
The pedunculopontine tegmental nucleus (PPTg) relays basal ganglia signals to the thalamus, lower brainstem and spinal cord. Using the 6-hydroxydopamine (6-OHDA) rat model of parkinsonism, we investigated whether deep brain stimulation (DBS) of the PPTg (40 Hz, 60 μs, 200-400 μA) may influence the preparative and executive phases in a conditioned behavioural task, and the motor asymmetries induced by apomorphine. In the conditioned task, rats had to press two levers according to a fixed delay paradigm. The 6-OHDA lesion was placed in the right medial forebrain bundle, i.e. contralaterally to the preferred forepaw used by rats to press levers in the adopted task. The stimulating electrode was implanted in the right PPTg, i.e. contralateral to left side, which was expected to be most affected. The lesion significantly reduced correct responses from 63.4% to 16.6%. PPTg-DBS effects were episodic; however, when rats successfully performed in the task (18.9%), reaction time (468.8 ± 36.5 ms) was significantly increased (589.9 ± 45.9 ms), but not improved by PPTg-DBS (646.7 ± 33.8 ms). Movement time was significantly increased following the lesion (649.2 ± 42.6 ms vs. 810.9 ± 53.0 ms), but significantly reduced by PPTg-DBS (820.4 ± 39.4 ms) compared to sham PPTg-DBS (979.8 ± 47.6 ms). In a second group of lesioned rats, rotations induced by apomorphine were significantly reduced by PPTg-DBS compared to sham PPTg-DBS (12.2 ± 0.6 vs. 9.5 ± 0.4 mean turns/min). Thus, it appears that specific aspects of motor deficits in 6-OHDA-lesioned rats may be modulated by PPTg-DBS.
Collapse
Affiliation(s)
- Annamaria Capozzo
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, I-67100 L'Aquila, Italy
| | - Flora Vitale
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, I-67100 L'Aquila, Italy
| | - Claudia Mattei
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, I-67100 L'Aquila, Italy
| | - Paolo Mazzone
- Unit of Functional Neurosurgery, CTO Alesini Hospital ASL Rome C, Via San Nemesio 21, 00145 Rome, Italy
| | - Eugenio Scarnati
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, Via Vetoio, Coppito 2, I-67100 L'Aquila, Italy.
| |
Collapse
|
9
|
Marzo A, Totah NK, Neves RM, Logothetis NK, Eschenko O. Unilateral electrical stimulation of rat locus coeruleus elicits bilateral response of norepinephrine neurons and sustained activation of medial prefrontal cortex. J Neurophysiol 2014; 111:2570-88. [DOI: 10.1152/jn.00920.2013] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The brain stem nucleus locus coeruleus (LC) is thought to modulate cortical excitability by norepinephrine (NE) release in LC forebrain targets. The effects of LC burst discharge, typically evoked by a strong excitatory input, on cortical ongoing activity are poorly understood. To address this question, we combined direct electrical stimulation of LC (LC-DES) with extracellular recording in LC and medial prefrontal cortex (mPFC), an important cortical target of LC. LC-DES consisting of single pulses (0.1–0.5 ms, 0.01–0.05 mA) or pulse trains (20–50 Hz, 50–200 ms) evoked short-latency excitatory and inhibitory LC responses bilaterally as well as a delayed rebound excitation occurring ∼100 ms after stimulation offset. The pulse trains, but not single pulses, reliably elicited mPFC activity change, which was proportional to the stimulation strength. The firing rate of ∼50% of mPFC units was significantly modulated by the strongest LC-DES. Responses of mPFC putative pyramidal neurons included fast (∼100 ms), transient (∼100–200 ms) inhibition (10% of units) or excitation (13%) and delayed (∼500 ms), sustained (∼1 s) excitation (26%). The sustained spiking resembled NE-dependent mPFC activity during the delay period of working memory tasks. Concurrently, the low-frequency (0.1–8 Hz) power of the local field potential (LFP) decreased and high-frequency (>20 Hz) power increased. Overall, the DES-induced LC firing pattern resembled the naturalistic biphasic response of LC-NE neurons to alerting stimuli and was associated with a shift in cortical state that may optimize processing of behaviorally relevant events.
Collapse
Affiliation(s)
- Aude Marzo
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; and
| | - Nelson K. Totah
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; and
| | - Ricardo M. Neves
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; and
| | - Nikos K. Logothetis
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; and
- Centre for Imaging Sciences, Biomedical Imaging Institute, University of Manchester, Manchester, United Kingdom
| | - Oxana Eschenko
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany; and
| |
Collapse
|
10
|
Valencia M, Chavez M, Artieda J, Bolam JP, Mena-Segovia J. Abnormal functional connectivity between motor cortex and pedunculopontine nucleus following chronic dopamine depletion. J Neurophysiol 2013; 111:434-40. [PMID: 24174651 DOI: 10.1152/jn.00555.2013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of the basal ganglia is altered in Parkinson's disease (PD) as a consequence of the degeneration of dopamine neurons in the substantia nigra pars compacta. This results in aberrant discharge patterns and expression of exaggerated oscillatory activity across the basal ganglia circuit. Altered activity has also been reported in some of the targets of the basal ganglia, including the pedunculopontine nucleus (PPN), possibly due to its close interconnectivity with most regions of the basal ganglia. However, the nature of the involvement of the PPN in the pathophysiology of PD has not been fully elucidated. Here, we recorded local field potentials in the motor cortex and the PPN in the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD under urethane anesthesia. By means of linear and nonlinear statistics, we analyzed the synchrony between the motor cortex and the PPN and the delay in the interaction between these two structures. We observed the presence of coherent activity between the cortex and the PPN in low (5-15 Hz)- and high (25-35 Hz)-frequency bands during episodes of cortical activation. In each case, the cortex led the PPN. Dopamine depletion strengthened the interaction of the low-frequency activities by increasing the coherence specifically in the theta and alpha ranges and reduced the delay of the interaction in the gamma band. Our data show that cortical inputs play a determinant role in leading the coherent activity with the PPN and support the involvement of the PPN in the pathophysiology of PD.
Collapse
Affiliation(s)
- Miguel Valencia
- Neurophysiology Laboratory, Neuroscience Area, CIMA, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
11
|
Valencia M, Artieda J, Bolam JP, Mena-Segovia J. Dynamic interaction of spindles and gamma activity during cortical slow oscillations and its modulation by subcortical afferents. PLoS One 2013; 8:e67540. [PMID: 23844020 PMCID: PMC3699652 DOI: 10.1371/journal.pone.0067540] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/21/2013] [Indexed: 11/19/2022] Open
Abstract
Slow oscillations are a hallmark of slow wave sleep. They provide a temporal framework for a variety of phasic events to occur and interact during sleep, including the expression of high-frequency oscillations and the discharge of neurons across the entire brain. Evidence shows that the emergence of distinct high-frequency oscillations during slow oscillations facilitates the communication among brain regions whose activity was correlated during the preceding waking period. While the frequencies of oscillations involved in such interactions have been identified, their dynamics and the correlations between them require further investigation. Here we analyzed the structure and dynamics of these signals in anesthetized rats. We show that spindles and gamma oscillations coexist but have distinct temporal dynamics across the slow oscillation cycle. Furthermore, we observed that spindles and gamma are functionally coupled to the slow oscillations and between each other. Following the activation of ascending pathways from the brainstem by means of a carbachol injection in the pedunculopontine nucleus, we were able to modify the gain in the gamma oscillations that are independent of the spindles while the spindle amplitude was reduced. Furthermore, carbachol produced a decoupling of the gamma oscillations that are dependent on the spindles but with no effect on their amplitude. None of the changes in the high-frequency oscillations affected the onset or shape of the slow oscillations, suggesting that slow oscillations occur independently of the phasic events that coexist with them. Our results provide novel insights into the regulation, dynamics and homeostasis of cortical slow oscillations.
Collapse
Affiliation(s)
- Miguel Valencia
- Neurophysiology Laboratory, Neuroscience Area, Centro de Investigacion Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Julio Artieda
- Neurophysiology Laboratory, Neuroscience Area, Centro de Investigacion Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - J. Paul Bolam
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Juan Mena-Segovia
- Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Piantoni G, Astill RG, Raymann RJEM, Vis JC, Coppens JE, Van Someren EJW. Modulation of γ and spindle-range power by slow oscillations in scalp sleep EEG of children. Int J Psychophysiol 2013; 89:252-8. [PMID: 23403325 DOI: 10.1016/j.ijpsycho.2013.01.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 01/29/2013] [Accepted: 01/31/2013] [Indexed: 10/27/2022]
Abstract
Deep sleep is characterized by slow waves of electrical activity in the cerebral cortex. They represent alternating down states and up states of, respectively, hyperpolarization with accompanying neuronal silence and depolarization during which neuronal firing resumes. The up states give rise to faster oscillations, notably spindles and gamma activity which appear to be of major importance to the role of sleep in brain function and cognition. Unfortunately, while spindles are easily detectable, gamma oscillations are of very small amplitude. No previous sleep study has succeeded in demonstrating modulations of gamma power along the time course of slow waves in human scalp EEG. As a consequence, progress in our understanding of the functional role of gamma modulation during sleep has been limited to animal studies and exceptional human studies, notably those of intracranial recordings in epileptic patients. Because high synaptic density, which peaks some time before puberty depending on the brain region (Huttenlocher and Dabholkar, 1997), generates oscillations of larger amplitude, we considered that the best chance to demonstrate a modulation of gamma power by slow wave phase in regular scalp sleep EEG would be in school-aged children. Sleep EEG was recorded in 30 healthy children (aged 10.7 ± 0.8 years; mean ± s.d.). Time-frequency analysis was applied to evaluate the time course of spectral power along the development of a slow wave. Moreover, we attempted to modify sleep architecture and sleep characteristics through automated acoustic stimulation coupled to the occurrence of slow waves in one subset of the children. Gamma power increased on the rising slope and positive peak of the slow wave. Gamma and spindle activity is strongly suppressed during the negative peak. There were no differences between the groups who received and did not receive acoustic stimulation in the sleep parameters and slow wave-locked time-frequency analysis. Our findings show, for the first time in scalp EEG in humans, that gamma activity is associated with the up-going slope and peak of the slow wave. We propose that studies in children provide a uniquely feasible opportunity to conduct investigations into the role of gamma during sleep.
Collapse
Affiliation(s)
- Giovanni Piantoni
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Van Someren EJW, Van Der Werf YD, Roelfsema PR, Mansvelder HD, da Silva FHL. Slow brain oscillations of sleep, resting state, and vigilance. PROGRESS IN BRAIN RESEARCH 2011; 193:3-15. [PMID: 21854952 DOI: 10.1016/b978-0-444-53839-0.00001-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The most important quest of cognitive neuroscience may be to unravel the mechanisms by which the brain selects, links, consolidates, and integrates new information into its neuronal network, while preventing saturation to occur. During the past decade, neuroscientists working within several disciplines have observed an important involvement of the specific types of brain oscillations that occur during sleep--the cortical slow oscillations; during the resting state--the fMRI resting state networks including the default-mode network (DMN); and during task performance--the performance modulations that link as well to modulations in electroencephalography or magnetoencephalography frequency content. Understanding the role of these slow oscillations thus appears to be essential for our fundamental understanding of brain function. Brain activity is characterized by oscillations occurring in spike frequency, field potentials or blood oxygen level-dependent functional magnetic resonance imaging signals. Environmental stimuli, reaching the brain through our senses, activate or inactivate neuronal populations and modulate ongoing activity. The effect they sort is to a large extent determined by the momentary state of the slow endogenous oscillations of the brain. In the absence of sensory input, as is the case during rest or sleep, brain activity does not cease. Rather, its oscillations continue and change with respect to their dominant frequencies and coupling topography. This chapter briefly introduces the topics that will be addressed in this dedicated volume of Progress in Brain Research on slow oscillations and sets the stage for excellent papers discussing their molecular, cellular, network physiological and cognitive performance aspects. Getting to know about slow oscillations is essential for our understanding of plasticity, memory, brain structure from synapse to DMN, cognition, consciousness, and ultimately for our understanding of the mechanisms and functions of sleep and vigilance.
Collapse
|