1
|
Schmitt V, Masanetz RK, Weidenfeller M, Ebbinghaus LS, Süß P, Rosshart SP, von Hörsten S, Zunke F, Winkler J, Xiang W. Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators. Behav Brain Res 2023; 452:114574. [PMID: 37423320 DOI: 10.1016/j.bbr.2023.114574] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Synucleinopathies are a group of neurodegenerative disorders, classically characterized by the accumulation of aggregated alpha synuclein (aSyn) in the central nervous system. Parkinson's disease (PD) and multiple system atrophy (MSA) are the two prominent members of this family. Current treatment options mainly focus on the motor symptoms of these diseases. However, non-motor symptoms, including gastrointestinal (GI) symptoms, have recently gained particular attention, as they are frequently associated with synucleinopathies and often arise before motor symptoms. The gut-origin hypothesis has been proposed based on evidence of an ascending spreading pattern of aggregated aSyn from the gut to the brain, as well as the comorbidity of inflammatory bowel disease and synucleinopathies. Recent advances have shed light on the mechanisms underlying the progression of synucleinopathies along the gut-brain axis. Given the rapidly expanding pace of research in the field, this review presents a summary of the latest findings on the gut-to-brain spreading of pathology and potential pathology-reinforcing mediators in synucleinopathies. Here, we focus on 1) gut-to-brain communication pathways, including neuronal pathways and blood circulation, and 2) potential molecular signalling mediators, including bacterial amyloid proteins, microbiota dysbiosis-induced alterations in gut metabolites, as well as host-derived effectors, including gut-derived peptides and hormones. We highlight the clinical relevance and implications of these molecular mediators and their possible mechanisms in synucleinopathies. Moreover, we discuss their potential as diagnostic markers in distinguishing the subtypes of synucleinopathies and other neurodegenerative diseases, as well as for developing novel individualized therapeutic options for synucleinopathies.
Collapse
Affiliation(s)
- Verena Schmitt
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Rebecca Katharina Masanetz
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Martin Weidenfeller
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Lara Savannah Ebbinghaus
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Patrick Süß
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan P Rosshart
- Department of Microbiome Research, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Stephan von Hörsten
- Department for Experimental Therapy, University Hospital Erlangen, Preclinical Experimental Center, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany.
| |
Collapse
|
2
|
Gong J, Jin Z, Chen H, He J, Zhang Y, Yang X. Super-resolution fluorescence microscopic imaging in pathogenesis and drug treatment of neurological disease. Adv Drug Deliv Rev 2023; 196:114791. [PMID: 37004939 DOI: 10.1016/j.addr.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Since super-resolution fluorescence microscopic technology breaks the diffraction limit that has existed for a long time in optical imaging, it can observe the process of synapses formed between nerve cells and the protein aggregation related to neurological disease. Thus, super-resolution fluorescence microscopic imaging has significantly impacted several industries, including drug development and pathogenesis research, and it is anticipated that it will significantly alter the future of life science research. Here, we focus on several typical super-resolution fluorescence microscopic technologies, introducing their benefits and drawbacks, as well as applications in several common neurological diseases, in the hope that their services will be expanded and improved in the pathogenesis and drug treatment of neurological diseases.
Collapse
|
3
|
Zayed MA, Sultan S, Alsaab HO, Yousof SM, Alrefaei GI, Alsubhi NH, Alkarim S, Al Ghamdi KS, Bagabir SA, Jana A, Alghamdi BS, Atta HM, Ashraf GM. Stem-Cell-Based Therapy: The Celestial Weapon against Neurological Disorders. Cells 2022; 11:3476. [PMID: 36359871 PMCID: PMC9655836 DOI: 10.3390/cells11213476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/15/2022] [Accepted: 10/24/2022] [Indexed: 09/01/2023] Open
Abstract
Stem cells are a versatile source for cell therapy. Their use is particularly significant for the treatment of neurological disorders for which no definitive conventional medical treatment is available. Neurological disorders are of diverse etiology and pathogenesis. Alzheimer's disease (AD) is caused by abnormal protein deposits, leading to progressive dementia. Parkinson's disease (PD) is due to the specific degeneration of the dopaminergic neurons causing motor and sensory impairment. Huntington's disease (HD) includes a transmittable gene mutation, and any treatment should involve gene modulation of the transplanted cells. Multiple sclerosis (MS) is an autoimmune disorder affecting multiple neurons sporadically but induces progressive neuronal dysfunction. Amyotrophic lateral sclerosis (ALS) impacts upper and lower motor neurons, leading to progressive muscle degeneration. This shows the need to try to tailor different types of cells to repair the specific defect characteristic of each disease. In recent years, several types of stem cells were used in different animal models, including transgenic animals of various neurologic disorders. Based on some of the successful animal studies, some clinical trials were designed and approved. Some studies were successful, others were terminated and, still, a few are ongoing. In this manuscript, we aim to review the current information on both the experimental and clinical trials of stem cell therapy in neurological disorders of various disease mechanisms. The different types of cells used, their mode of transplantation and the molecular and physiologic effects are discussed. Recommendations for future use and hopes are highlighted.
Collapse
Affiliation(s)
- Mohamed A. Zayed
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Physiology Department, Faculty of Medicine, Menoufia University, Menoufia 32511, Egypt
| | - Samar Sultan
- Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Regenerative Medicine Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hashem O. Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Shimaa Mohammad Yousof
- Physiology Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ghadeer I. Alrefaei
- Department of Biology, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia
| | - Nouf H. Alsubhi
- Department of Biological Sciences, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Saleh Alkarim
- Embryonic and Cancer Stem Cell Research Group, King Fahad Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Embryonic Stem Cells Research Unit, Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Kholoud S. Al Ghamdi
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Sali Abubaker Bagabir
- Genetic Unit, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan 45142, Saudi Arabia
| | - Ankit Jana
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Campus-11, Patia, Bhubaneswar 751024, Odisha, India
| | - Badrah S. Alghamdi
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hazem M. Atta
- Clinical Biochemistry Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, University City, Sharjah 27272, United Arab Emirates
| |
Collapse
|
4
|
Henderson MX, Henrich MT, Geibl FF, Oertel WH, Brundin P, Surmeier DJ. The roles of connectivity and neuronal phenotype in determining the pattern of α-synuclein pathology in Parkinson's disease. Neurobiol Dis 2022; 168:105687. [PMID: 35283326 PMCID: PMC9610381 DOI: 10.1016/j.nbd.2022.105687] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, and motor dysfunction has been attributed to loss of dopaminergic neurons. However, motor dysfunction is only one of many symptoms experienced by patients. A neuropathological hallmark of PD is intraneuronal protein aggregates called Lewy pathology (LP). Neuropathological staging studies have shown that dopaminergic neurons are only one of the many cell types prone to manifest LP. Progressive appearance of LP in multiple brain regions, as well as peripheral nerves, has led to the popular hypothesis that LP and misfolded forms of one of its major components - α-synuclein (aSYN) - can spread through synaptically connected circuits. However, not all brain regions or neurons within connected circuits develop LP, suggesting that cell autonomous factors modulate the development of pathology. Here, we review studies about how LP develops and progressively engages additional brain regions. We focus on how connectivity constrains progression and discuss cell autonomous factors that drive pathology development. We propose a mixed model of cell autonomous factors and trans-synaptic spread as mediators of pathology progression and put forward this model as a framework for future experiments exploring PD pathophysiology.
Collapse
Affiliation(s)
- Michael X Henderson
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America.
| | - Martin T Henrich
- Department of Neurology, Philipps-University Marburg, Marburg 35043, Germany; Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg 35043, Germany; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Fanni F Geibl
- Department of Neurology, Philipps-University Marburg, Marburg 35043, Germany; Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg 35043, Germany; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-University Marburg, Marburg 35043, Germany
| | - Patrik Brundin
- Parkinson's Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, United States of America
| | - D James Surmeier
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America
| |
Collapse
|
5
|
Binh NT, Son NK, Phuong DT, Huong DT, Hoan NP, Hoa NT, Duc NM, Ha NM. Proliferation and Differentiation of Dopaminergic Neurons from Human Neuroepithelial Stem Cells Obtained from Embryo Reduction Following In Vitro Fertilization. Med Arch 2021; 75:280-285. [PMID: 34759448 PMCID: PMC8563046 DOI: 10.5455/medarh.2021.75.280-285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Background: Recent advances in stem cell technologies have rekindled an interest in the use of cell therapies to treat patients with Parkinson’s disease. Although the transplantation of dopaminergic mesencephalic human fetal brain tissue has previously been reported in the treatment of patients with Parkinson’s disease, this method is limited by the availability of tissue obtained from each human embryo. Objective: Our study aimed to isolate, culture, proliferate, and differentiate dopaminergic neurons from human neuroepithelial stem cells obtained from embryo reduction procedures performed in multifetal pregnancies following in vitro fertilization. Materials and Methods: A total of 201 human embryos were dissected for isolation and culture of neuroepithelial stem cells for proliferation and differentiation into dopaminergic neurons. All embryos were obtained from embryo reduction procedures performed in multifetal pregnancies after in vitro fertilization treatments. Results: Human neuroepithelial stem cells were isolated and cultured from embryos from 6.0 to 8.0 weeks. Neuroepithelial stem cells were successfully isolated, proliferated, and differentiated into dopaminergic neurons. The cells adhered to the surfaces of cell culture plates after 2 days and could be proliferated and differentiated into neurons within 4 days. Cultured cells expressed the dopaminergic marker tyrosine hydroxylase after 6 days, suggesting that these cells were successfully differentiated into dopaminergic neurons. Conclusion: The successful isolation, culture, proliferation, and differentiation of human dopaminergic neurons from embryo reductions performed for multifetal pregnancies after in vitro fertilization suggests that this pathway may serve as a potential source of cell therapy materials for use in the treatment of Parkinson’s disease.
Collapse
Affiliation(s)
- Nguyen Thi Binh
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Khang Son
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Dao Thuy Phuong
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Do Thuy Huong
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Phuc Hoan
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Thanh Hoa
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Minh Duc
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| | - Nguyen Manh Ha
- Department of Histology and Embryology, Hanoi Medical University, Hanoi, Vietnam.,IVF and Tissue Engineering Center, Hanoi Medical University Hospital, Hanoi, Vietnam
| |
Collapse
|
6
|
Liu Z, Cheung HH. Stem Cell-Based Therapies for Parkinson Disease. Int J Mol Sci 2020; 21:ijms21218060. [PMID: 33137927 PMCID: PMC7663462 DOI: 10.3390/ijms21218060] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson disease (PD) is a neurological movement disorder resulting primarily from damage to and degeneration of the nigrostriatal dopaminergic pathway. The pathway consists of neural populations in the substantia nigra that project to the striatum of the brain where they release dopamine. Diagnosis of PD is based on the presence of impaired motor features such as asymmetric or unilateral resting tremor, bradykinesia, and rigidity. Nonmotor features including cognitive impairment, sleep disorders, and autonomic dysfunction are also present. No cure for PD has been discovered, and treatment strategies focus on symptomatic management through restoration of dopaminergic activity. However, proposed cell replacement therapies are promising because midbrain dopaminergic neurons have been shown to restore dopaminergic neurotransmission and functionally rescue the dopamine-depleted striatum. In this review, we summarize our current understanding of the molecular pathogenesis of neurodegeneration in PD and discuss the development of new therapeutic strategies that have led to the initiation of exploratory clinical trials. We focus on the applications of stem cells for the treatment of PD and discuss how stem cell research has contributed to an understanding of PD, predicted the efficacy of novel neuroprotective therapeutics, and highlighted what we believe to be the critical areas for future research.
Collapse
Affiliation(s)
- Zhaohui Liu
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
| | - Hoi-Hung Cheung
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China;
- Key Laboratory for Regenerative Medicine, Ministry of Education (Shenzhen Base), Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China
- Correspondence:
| |
Collapse
|
7
|
Henchcliffe C, Sarva H. Restoring Function to Dopaminergic Neurons: Progress in the Development of Cell-Based Therapies for Parkinson's Disease. CNS Drugs 2020; 34:559-577. [PMID: 32472450 DOI: 10.1007/s40263-020-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is escalating interest in cell-based therapies to restore lost dopamine inputs in Parkinson's disease. This is based upon the rationale that implanting dopamine progenitors into the striatum can potentially improve dopamine-responsive motor symptoms. A rich body of data describing clinical trials of previous cell transplantation exists. These have included multiple cell sources for transplantation including allogeneic (human embryonic mesencephalic tissue, retinal pigment epithelial cells) and autologous (carotid body, adrenal medullary tissue) cells, as well as xenotransplantation. However, there are multiple limitations related to these cell sources, including availability of adequate numbers of cells for transplant, heterogeneity within cells transplanted, imprecisely defined mechanisms of action, and poor cell survival after transplantation in some cases. Nonetheless, evidence has accrued from a subset of trials to support the rationale for such a regenerative approach. Recent rapid advances in stem cell technology may now overcome these prior limitations. For example, dopamine neuron precursor cells for transplant can be generated from induced pluripotent cells and human embryonic stem cells. The benefits of these innovative approaches include: the possibility of scalability; a high degree of quality control; and improved understanding of mechanisms of action with rigorous preclinical testing. In this review, we focus on the potential for cell-based therapies in Parkinson's disease to restore the function of dopaminergic neurons, we critically review previous attempts to harness such strategies, we discuss potential benefits and predicted limitations, and we address how previous roadblocks may be overcome to bring a cell-based approach to the clinic.
Collapse
Affiliation(s)
- Claire Henchcliffe
- Department of Neurology, Weill Medical College of Cornell University, 428 East 72nd Street, Suite 400, New York, NY, 10021, USA.
| | - Harini Sarva
- Department of Neurology, Weill Medical College of Cornell University, 428 East 72nd Street, Suite 400, New York, NY, 10021, USA
| |
Collapse
|
8
|
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21:103-115. [DOI: 10.1038/s41583-019-0257-7] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 01/07/2023]
|
9
|
Zheng YQ, Zhang Y, Yau Y, Zeighami Y, Larcher K, Misic B, Dagher A. Local vulnerability and global connectivity jointly shape neurodegenerative disease propagation. PLoS Biol 2019; 17:e3000495. [PMID: 31751329 PMCID: PMC6894889 DOI: 10.1371/journal.pbio.3000495] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/05/2019] [Accepted: 10/31/2019] [Indexed: 01/06/2023] Open
Abstract
It is becoming increasingly clear that brain network organization shapes the course and expression of neurodegenerative diseases. Parkinson disease (PD) is marked by progressive spread of atrophy from the midbrain to subcortical structures and, eventually, to the cerebral cortex. Recent discoveries suggest that the neurodegenerative process involves the misfolding and prion-like propagation of endogenous α-synuclein via axonal projections. However, the mechanisms that translate local "synucleinopathy" to large-scale network dysfunction and atrophy remain unknown. Here, we use an agent-based epidemic spreading model to integrate structural connectivity, functional connectivity, and gene expression and to predict sequential volume loss due to neurodegeneration. The dynamic model replicates the spatial and temporal patterning of empirical atrophy in PD and implicates the substantia nigra as the disease epicenter. We reveal a significant role for both connectome topology and geometry in shaping the distribution of atrophy. The model also demonstrates that SNCA and GBA transcription influence α-synuclein concentration and local regional vulnerability. Functional coactivation further amplifies the course set by connectome architecture and gene expression. Altogether, these results support the theory that the progression of PD is a multifactorial process that depends on both cell-to-cell spreading of misfolded proteins and regional vulnerability.
Collapse
Affiliation(s)
- Ying-Qiu Zheng
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Yu Zhang
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Centre de Recherche de I'Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
| | - Yvonne Yau
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Yashar Zeighami
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Kevin Larcher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
- * E-mail: (BM); (AD)
| | - Alain Dagher
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
- * E-mail: (BM); (AD)
| |
Collapse
|
10
|
Brundin P, Coetzee GA. Genetically engineered stem cell-derived neurons can be rendered resistant to alpha-synuclein aggregate pathology. Eur J Neurosci 2019; 49:316-319. [PMID: 30614081 DOI: 10.1111/ejn.14333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Patrik Brundin
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| | - Gerhard A Coetzee
- Center for Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
11
|
Sonntag KC, Song B, Lee N, Jung JH, Cha Y, Leblanc P, Neff C, Kong SW, Carter BS, Schweitzer J, Kim KS. Pluripotent stem cell-based therapy for Parkinson's disease: Current status and future prospects. Prog Neurobiol 2018; 168:1-20. [PMID: 29653250 DOI: 10.1016/j.pneurobio.2018.04.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 03/13/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects about 0.3% of the general population. As the population in the developed world ages, this creates an escalating burden on society both in economic terms and in quality of life for these patients and for the families that support them. Although currently available pharmacological or surgical treatments may significantly improve the quality of life of many patients with PD, these are symptomatic treatments that do not slow or stop the progressive course of the disease. Because motor impairments in PD largely result from loss of midbrain dopamine neurons in the substantia nigra pars compacta, PD has long been considered to be one of the most promising target diseases for cell-based therapy. Indeed, numerous clinical and preclinical studies using fetal cell transplantation have provided proof of concept that cell replacement therapy may be a viable therapeutic approach for PD. However, the use of human fetal cells as a standardized therapeutic regimen has been fraught with fundamental ethical, practical, and clinical issues, prompting scientists to explore alternative cell sources. Based on groundbreaking establishments of human embryonic stem cells and induced pluripotent stem cells, these human pluripotent stem cells have been the subject of extensive research, leading to tremendous advancement in our understanding of these novel classes of stem cells and promising great potential for regenerative medicine. In this review, we discuss the prospects and challenges of human pluripotent stem cell-based cell therapy for PD.
Collapse
Affiliation(s)
- Kai-C Sonntag
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Laboratory for Translational Research on Neurodegeneration, 115 Mill Street, Belmont, MA, 02478, United States; Program for Neuropsychiatric Research, 115 Mill Street, Belmont, MA, 02478, United States
| | - Bin Song
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Nayeon Lee
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Jin Hyuk Jung
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Young Cha
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Pierre Leblanc
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States
| | - Carolyn Neff
- Kaiser Permanente Medical Group, Irvine, CA, 92618, United States
| | - Sek Won Kong
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, United States; Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, 02115, United States
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States
| | - Jeffrey Schweitzer
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, United States.
| | - Kwang-Soo Kim
- Department of Psychiatry, McLean Hospital, Harvard Medical School, United States; Molecular Neurobiology Laboratory, Program in Neuroscience and Harvard Stem Cell Institute, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA, 02478, United States.
| |
Collapse
|
12
|
Cisbani G, Maxan A, Kordower JH, Planel E, Freeman TB, Cicchetti F. Presence of tau pathology within foetal neural allografts in patients with Huntington's and Parkinson's disease. Brain 2017; 140:2982-2992. [PMID: 29069396 DOI: 10.1093/brain/awx255] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/05/2017] [Indexed: 11/12/2022] Open
Abstract
Cell replacement has been explored as a therapeutic strategy to repair the brain in patients with Huntington's and Parkinson's disease. Post-mortem evaluations of healthy grafted tissue in such cases have revealed the development of Huntington- or Parkinson-like pathology including mutant huntingtin aggregates and Lewy bodies. An outstanding question remains if tau pathology can also be seen in patients with Huntington's and Parkinson's disease who had received foetal neural allografts. This was addressed by immunohistochemical/immunofluorescent stainings performed on grafted tissue of two Huntington's disease patients, who came to autopsy 9 and 12 years post-transplantation, and two patients with Parkinson's disease who came to autopsy 18 months and 16 years post-transplantation. We show that grafts also contain tau pathology in both types of transplanted patients. In two patients with Huntington's disease, the grafted tissue showed the presence of hyperphosphorylated tau [both AT8 (phospho-tau Ser202 and Thr205) and CP13 (pSer202) immunohistochemical stainings] pathological inclusions, neurofibrillary tangles and neuropil threads. In patients with Parkinson's disease, the grafted tissue was characterized by hyperphosphorylated tau (AT8; immunofluorescent staining) pathological inclusions, neurofibrillary tangles and neuropil threads but only in the patient who came to autopsy 16 years post-transplantation. Abundant tau-related pathology was observed in the cortex and striatum of all cases studied. While the striatum of the grafted Huntington's disease patient revealed an equal amount of 3-repeat and 4-repeat isoforms of tau, the grafted tissue showed elevated 4-repeat isoforms by western blot. This suggests that transplants may have acquired tau pathology from the host brain, although another possibility is that this was due to acceleration of ageing. This finding not only adds to the recent reports that tau pathology is a feature of these neurodegenerative diseases, but also that tau pathology can manifest in healthy neural tissue transplanted into the brains of patients with two distinct neurodegenerative disorders.
Collapse
Affiliation(s)
- Giulia Cisbani
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Alexander Maxan
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada
| | - Jeffrey H Kordower
- Department of Neurological Sciences and Center for Brain Repair, Rush University Medical Center, Chicago, IL 60612, USA
| | - Emmanuel Planel
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| | - Thomas B Freeman
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA.,Center of Excellence for Aging and Brain Repair, University of South Florida, Tampa, FL 33606-3571, USA
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec-Université Laval, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC, Canada.,Département de Psychiatrie and Neurosciences, Université Laval, Québec, QC, Canada
| |
Collapse
|
13
|
Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci 2017; 18:101-113. [PMID: 28104909 DOI: 10.1038/nrn.2016.178] [Citation(s) in RCA: 656] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Intracellular α-synuclein (α-syn)-rich protein aggregates called Lewy pathology (LP) and neuronal death are commonly found in the brains of patients with clinical Parkinson disease (cPD). It is widely believed that LP appears early in the disease and spreads in synaptically coupled brain networks, driving neuronal dysfunction and death. However, post-mortem analysis of human brains and connectome-mapping studies show that the pattern of LP in cPD is not consistent with this simple model, arguing that, if LP propagates in cPD, it must be gated by cell- or region-autonomous mechanisms. Moreover, the correlation between LP and neuronal death is weak. In this Review, we briefly discuss the evidence for and against the spreading LP model, as well as evidence that cell-autonomous factors govern both α-syn pathology and neuronal death.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - José A Obeso
- Centro Integral de Neurociencias A.C. (CINAC), HM Puerta del Sur, Hospitales de Madrid, Mostoles and CEU San Pablo University, 28938 Madrid, Spain.,Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, 28031 Madrid, Spain
| | - Glenda M Halliday
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney 2006, Australia.,School of Medical Sciences, University of New South Wales and Neuroscience Research Australia, Sydney 2052, Australia
| |
Collapse
|
14
|
Carelli S, Giallongo T, Viaggi C, Latorre E, Gombalova Z, Raspa A, Mazza M, Vaglini F, Di Giulio AM, Gorio A. Recovery from experimental parkinsonism by intrastriatal application of erythropoietin or EPO-releasing neural precursors. Neuropharmacology 2017; 119:76-90. [PMID: 28373075 DOI: 10.1016/j.neuropharm.2017.03.035] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/15/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
Abstract
An extensive literature has shown a powerful neuroprotective action of Erythropoietin (EPO) both in vivo and in vitro. This study shows that EPO, whether ectopically administered or released by neural precursors, does reverse MPTP-induced parkinsonism in mice. Unilateral stereotaxic injection of 2.5 × 105 erythropoietin-releasing neural precursor cells (Er-NPCs) rescued degenerating striatal dopaminergic neurons and promoted behavioral recovery as shown by three independent behavioral tests. These effects were replicated through direct intrastriatal administration of recombinant human EPO. At the end of the observational period, most of the transplanted Er-NPCs were vital and migrated via the striatum to reach Substantia Nigra. The restorative effects appear to be mediated by EPO since co-injection of anti-EPO or anti-EPOR antibodies antagonized the positive outcomes. Furthermore, this report supports the neuroprotective action of EPO, which may also be achieved via administration of EPO-releasing cells such as Er-NPCs.
Collapse
Affiliation(s)
- Stephana Carelli
- Laboratories of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy.
| | - Toniella Giallongo
- Laboratories of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Cristina Viaggi
- Dipartimento di Ricerca Traslazionale e Delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Italy
| | - Elisa Latorre
- Laboratories of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Zuzana Gombalova
- Laboratories of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Andrea Raspa
- Laboratories of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Massimiliano Mazza
- Experimental Oncology Department, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Francesca Vaglini
- Dipartimento di Ricerca Traslazionale e Delle Nuove Tecnologie in Medicina e Chirurgia, Università di Pisa, Italy
| | - Anna Maria Di Giulio
- Laboratories of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy
| | - Alfredo Gorio
- Laboratories of Pharmacology, Department of Health Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
15
|
Abstract
Parkinson disease is the second-most common neurodegenerative disorder that affects 2-3% of the population ≥65 years of age. Neuronal loss in the substantia nigra, which causes striatal dopamine deficiency, and intracellular inclusions containing aggregates of α-synuclein are the neuropathological hallmarks of Parkinson disease. Multiple other cell types throughout the central and peripheral autonomic nervous system are also involved, probably from early disease onwards. Although clinical diagnosis relies on the presence of bradykinesia and other cardinal motor features, Parkinson disease is associated with many non-motor symptoms that add to overall disability. The underlying molecular pathogenesis involves multiple pathways and mechanisms: α-synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal transport and neuroinflammation. Recent research into diagnostic biomarkers has taken advantage of neuroimaging in which several modalities, including PET, single-photon emission CT (SPECT) and novel MRI techniques, have been shown to aid early and differential diagnosis. Treatment of Parkinson disease is anchored on pharmacological substitution of striatal dopamine, in addition to non-dopaminergic approaches to address both motor and non-motor symptoms and deep brain stimulation for those developing intractable L-DOPA-related motor complications. Experimental therapies have tried to restore striatal dopamine by gene-based and cell-based approaches, and most recently, aggregation and cellular transport of α-synuclein have become therapeutic targets. One of the greatest current challenges is to identify markers for prodromal disease stages, which would allow novel disease-modifying therapies to be started earlier.
Collapse
|
16
|
Nugent E, Kaminski CF, Kaminski Schierle GS. Super-resolution imaging of alpha-synuclein polymorphisms and their potential role in neurodegeneration. Integr Biol (Camb) 2017; 9:206-210. [DOI: 10.1039/c6ib00206d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eileen Nugent
- Sector of Biological and Soft Systems, The Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - Gabriele S. Kaminski Schierle
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| |
Collapse
|
17
|
Kordower JH, Goetz CG, Chu Y, Halliday GM, Nicholson DA, Musial TF, Marmion DJ, Stoessl AJ, Sossi V, Freeman TB, Olanow CW. Robust graft survival and normalized dopaminergic innervation do not obligate recovery in a Parkinson disease patient. Ann Neurol 2017; 81:46-57. [PMID: 27900791 DOI: 10.1002/ana.24820] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The main goal of dopamine cell replacement therapy in Parkinson disease (PD) is to provide clinical benefit mediated by graft survival with nigrostriatal reinnervation. We report a dichotomy between graft structure and clinical function in a patient dying 16 years following fetal nigral grafting. METHODS A 55-year-old levodopa-responsive woman with PD received bilateral putaminal fetal mesencephalic grafts as part of an NIH-sponsored double-blind sham-controlled trial. The patient never experienced clinical benefit, and her course was complicated by the development of graft-related dyskinesias. Fluorodopa positron emission tomography demonstrated significant increases postgrafting bilaterally. She experienced worsening of parkinsonism with severe dyskinesias, and underwent subthalamic nucleus deep brain stimulation 8 years after grafting. She died 16 years after transplantation. RESULTS Postmortem analyses confirmed the diagnosis of PD and demonstrated >300,000 tyrosine hydroxylase (TH)-positive grafted cells per side with normalized striatal TH-immunoreactive fiber innervation and bidirectional synaptic connectivity. Twenty-seven percent and 17% of grafted neurons were serine 129-phosphorylated α-synuclein positive in the left and right putamen, respectively. INTERPRETATION These findings represent the largest number of surviving dopamine neurons and the densest and most widespread graft-mediated striatal dopamine reinnervation following a transplant procedure reported to date. Despite this, clinical recovery was not observed. Furthermore, the grafts were associated with a form of dyskinesias that resembled diphasic dyskinesia and persisted in the off-medication state. We hypothesize that the grafted cells produced a low level of dopamine sufficient to cause a levodopa-independent continuous form of diphasic dyskinesias, but insufficient to provide an antiparkinsonian benefit. ANN NEUROL 2017;81:46-57.
Collapse
Affiliation(s)
- Jeffrey H Kordower
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL.,Van Andel Institute, Grand Rapids, MI
| | - Christopher G Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Yaping Chu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Glenda M Halliday
- Neuroscience Research Australia and Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Daniel A Nicholson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - Timothy F Musial
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - David J Marmion
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vesna Sossi
- Pacific Parkinson's Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Thomas B Freeman
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL
| | - C Warren Olanow
- Departments of Neurology and Neuroscience, Mount Sinai School of Medicine, New York, NY
| |
Collapse
|
18
|
Studer L. Strategies for bringing stem cell-derived dopamine neurons to the clinic—The NYSTEM trial. PROGRESS IN BRAIN RESEARCH 2017; 230:191-212. [DOI: 10.1016/bs.pbr.2017.02.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Abstract
Over the past three decades, significant progress has been made in the development of potential regenerative cell-based therapies for neurodegenerative disease, with most success being seen in Parkinson's disease. Cell-based therapies face many challenges including ethical considerations, potential for immune-mediated rejection with allogeneic and xenogeneic tissue, pathological spread of protein-related disease into the grafted tissue as well as the risk of graft overgrowth and tumorigenesis in stem cell-derived transplants. Preclinical trials have looked at many tissue types of which the most successful to date have been those using fetal ventral mesencephalon grafts, which led to clinical trials, which have shown that in some cases they can work very well. With important proof-of-concept derived from these studies, there is now much interest in how dopaminergic neurons derived from stem cell sources could be used to develop cell-based therapies suitable for clinical use, with clinical trials poised to enter the clinic in the next couple of years.
Collapse
Affiliation(s)
- Thomas B Stoker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge
| | - Roger A Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Forvie Site, Cambridge, CB2 0PY, UK.,Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge
| |
Collapse
|
20
|
Walsh DM, Selkoe DJ. A critical appraisal of the pathogenic protein spread hypothesis of neurodegeneration. Nat Rev Neurosci 2016; 17:251-60. [PMID: 26988744 DOI: 10.1038/nrn.2016.13] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There has been an explosion in the number of papers discussing the hypothesis of 'pathogenic spread' in neurodegenerative disease - the idea that abnormal forms of disease-associated proteins, such as tau or α-synuclein, physically move from neuron to neuron to induce disease progression. However, whether inter-neuronal spread of protein aggregates actually occurs in humans and, if so, whether it causes symptom onset remain uncertain. Even if pathogenic spread is proven in humans, it is unclear how much this would alter the specific therapeutic approaches that are in development. A critical appraisal of this increasingly popular hypothesis thus seems both important and timely.
Collapse
Affiliation(s)
- Dominic M Walsh
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
Aron Badin R, Vadori M, Vanhove B, Nerriere-Daguin V, Naveilhan P, Neveu I, Jan C, Lévèque X, Venturi E, Mermillod P, Van Camp N, Dollé F, Guillermier M, Denaro L, Manara R, Citton V, Simioni P, Zampieri P, D'avella D, Rubello D, Fante F, Boldrin M, De Benedictis GM, Cavicchioli L, Sgarabotto D, Plebani M, Stefani AL, Brachet P, Blancho G, Soulillou JP, Hantraye P, Cozzi E. Cell Therapy for Parkinson's Disease: A Translational Approach to Assess the Role of Local and Systemic Immunosuppression. Am J Transplant 2016; 16:2016-29. [PMID: 26749114 DOI: 10.1111/ajt.13704] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/29/2015] [Accepted: 12/22/2015] [Indexed: 01/25/2023]
Abstract
Neural transplantation is a promising therapeutic approach for neurodegenerative diseases; however, many patients receiving intracerebral fetal allografts exhibit signs of immunization to donor antigens that could compromise the graft. In this context, we intracerebrally transplanted mesencephalic pig xenografts into primates to identify a suitable strategy to enable long-term cell survival, maturation, and differentiation. Parkinsonian primates received WT or CTLA4-Ig transgenic porcine xenografts and different durations of peripheral immunosuppression to test whether systemic plus graft-mediated local immunosuppression might avoid rejection. A striking recovery of spontaneous locomotion was observed in primates receiving systemic plus local immunosuppression for 6 mo. Recovery was associated with restoration of dopaminergic activity detected both by positron emission tomography imaging and histological examination. Local infiltration by T cells and CD80/86+ microglial cells expressing indoleamine 2,3-dioxigenase were observed only in CTLA4-Ig recipients. Results suggest that in this primate neurotransplantation model, peripheral immunosuppression is indispensable to achieve the long-term survival of porcine neuronal xenografts that is required to study the beneficial immunomodulatory effect of local blockade of T cell costimulation.
Collapse
Affiliation(s)
- R Aron Badin
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - M Vadori
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - B Vanhove
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France.,CHU de Nantes, Institut de Transplantation Urologie Néphrologie, Université de Nantes, Nantes, France
| | - V Nerriere-Daguin
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - P Naveilhan
- Institut National de la Santé et de la Recherche Médicale UMR913, Nantes, France
| | - I Neveu
- Institut National de la Santé et de la Recherche Médicale UMR913, Nantes, France
| | - C Jan
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - X Lévèque
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - E Venturi
- INRA Physio Reproduction Femelle CR de Tours, Nouzilly, France
| | - P Mermillod
- INRA Physio Reproduction Femelle CR de Tours, Nouzilly, France
| | - N Van Camp
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - F Dollé
- CEA, I²BM, Service Hospitalier Frédéric Joliot, Orsay, France
| | | | - L Denaro
- Neurosciences, University of Padua, Padua, Italy
| | - R Manara
- Neurosciences, University of Padua, Padua, Italy
| | - V Citton
- Neurosciences, University of Padua, Padua, Italy
| | - P Simioni
- Neurosciences, University of Padua, Padua, Italy
| | - P Zampieri
- Neurosciences, University of Padua, Padua, Italy
| | - D D'avella
- Neurosciences, University of Padua, Padua, Italy
| | - D Rubello
- Nuclear Medicine, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - F Fante
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - M Boldrin
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy
| | - G M De Benedictis
- Department of Animal Medicine, Production and Health, University of Padua, Legnaro, Italy
| | - L Cavicchioli
- Department of Comparative Biomedicine and Food Science, University of Padua, Legnaro, Italy
| | - D Sgarabotto
- Transplant Infectious Disease Unit, Padua University Hospital, Padua, Italy
| | - M Plebani
- Department of Laboratory Medicine, Padua University Hospital, Padua, Italy
| | - A L Stefani
- Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - P Brachet
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - G Blancho
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France.,CHU de Nantes, Institut de Transplantation Urologie Néphrologie, Université de Nantes, Nantes, France
| | - J P Soulillou
- Institut National de la Santé et de la Recherche Médicale UMR1064, Nantes, France
| | - P Hantraye
- MIRCen, CEA UMR 9199, Fontenay-aux-Roses, France
| | - E Cozzi
- CORIT (Consortium for Research in Organ Transplantation), Padua, Italy.,Transplant Immunology Unit, Padua University Hospital, Padua, Italy
| |
Collapse
|
22
|
Effects of sensory cueing in virtual motor rehabilitation. A review. J Biomed Inform 2016; 60:49-57. [PMID: 26826454 DOI: 10.1016/j.jbi.2016.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 11/27/2015] [Accepted: 01/18/2016] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To critically identify studies that evaluate the effects of cueing in virtual motor rehabilitation in patients having different neurological disorders and to make recommendations for future studies. METHODS Data from MEDLINE®, IEEExplore, Science Direct, Cochrane library and Web of Science was searched until February 2015. We included studies that investigate the effects of cueing in virtual motor rehabilitation related to interventions for upper or lower extremities using auditory, visual, and tactile cues on motor performance in non-immersive, semi-immersive, or fully immersive virtual environments. These studies compared virtual cueing with an alternative or no intervention. RESULTS Ten studies with a total number of 153 patients were included in the review. All of them refer to the impact of cueing in virtual motor rehabilitation, regardless of the pathological condition. After selecting the articles, the following variables were extracted: year of publication, sample size, study design, type of cueing, intervention procedures, outcome measures, and main findings. The outcome evaluation was done at baseline and end of the treatment in most of the studies. All of studies except one showed improvements in some or all outcomes after intervention, or, in some cases, in favor of the virtual rehabilitation group compared to the control group. CONCLUSIONS Virtual cueing seems to be a promising approach to improve motor learning, providing a channel for non-pharmacological therapeutic intervention in different neurological disorders. However, further studies using larger and more homogeneous groups of patients are required to confirm these findings.
Collapse
|
23
|
GABA-ergic cell therapy for epilepsy: Advances, limitations and challenges. Neurosci Biobehav Rev 2015; 62:35-47. [PMID: 26748379 DOI: 10.1016/j.neubiorev.2015.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/06/2015] [Accepted: 12/28/2015] [Indexed: 01/04/2023]
Abstract
Diminution in the number of gamma-amino butyric acid positive (GABA-ergic) interneurons and their axon terminals, and/or alterations in functional inhibition are conspicuous brain alterations believed to contribute to the persistence of seizures in acquired epilepsies such as temporal lobe epilepsy. This has steered a perception that replacement of lost GABA-ergic interneurons would improve inhibitory synaptic neurotransmission in the epileptic brain region and thereby reduce the occurrence of seizures. Indeed, studies using animal prototypes have reported that grafting of GABA-ergic progenitors derived from multiple sources into epileptic regions can reduce seizures. This review deliberates recent advances, limitations and challenges concerning the development of GABA-ergic cell therapy for epilepsy. The efficacy and limitations of grafts of primary GABA-ergic progenitors from the embryonic lateral ganglionic eminence and medial ganglionic eminence (MGE), neural stem/progenitor cells expanded from MGE, and MGE-like progenitors generated from human pluripotent stem cells for alleviating seizures and co-morbidities of epilepsy are conferred. Additional studies required for possible clinical application of GABA-ergic cell therapy for epilepsy are also summarized.
Collapse
|
24
|
McCann H, Cartwright H, Halliday GM. Neuropathology of α-synuclein propagation and braak hypothesis. Mov Disord 2015; 31:152-60. [DOI: 10.1002/mds.26421] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 08/10/2015] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | - Glenda M. Halliday
- Neuroscience Research Australia; Sydney Australia
- University of New South Wales; Sydney Australia
| |
Collapse
|
25
|
Wylie A, Sundaram R, Kus C, Ghassabian A, Yeung EH. Maternal prepregnancy obesity and achievement of infant motor developmental milestones in the upstate KIDS study. Obesity (Silver Spring) 2015; 23:907-13. [PMID: 25755075 PMCID: PMC4380825 DOI: 10.1002/oby.21040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/30/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Maternal prepregnancy obesity is associated with several poor infant health outcomes; however, studies that investigated motor development have been inconsistent. Thus, maternal prepregnancy weight status and infants' gross motor development were examined. METHODS Participants consisted of 4,901 mother-infant pairs from the Upstate KIDS study, a longitudinal cohort in New York. Mothers indicated dates when infants achieved each of six gross motor milestones when infants were 4, 8, 12, 18, and 24 months old. Failure time modeling under a Weibull distribution was utilized to compare time to achievement across three levels of maternal prepregnancy BMI. Hazard ratios (HR) below one indicate a lower "risk" of achieving the milestone and translate to later achievement. RESULTS Compared to infants born to thin and normal-weight mothers (BMI < 25), infants born to mothers with obesity (BMI > 30) were slower to sit without support (HR = 0.91, P = 0.03) and crawl on hands and knees (HR = 0.86, P < 0.001), after adjusting for maternal and birth characteristics. Increased gestational age was associated with faster achievement of all milestones, but additional adjustment did not impact results. CONCLUSIONS Maternal prepregnancy obesity was associated with a slightly longer time for infant to sit and crawl, potentially due to a compromised intrauterine environment or reduced physically active play.
Collapse
Affiliation(s)
- Amanda Wylie
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockville, Maryland, USA; Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | | | | |
Collapse
|
26
|
Effenberg A, Stanslowsky N, Klein A, Wesemann M, Haase A, Martin U, Dengler R, Grothe C, Ratzka A, Wegner F. Striatal Transplantation of Human Dopaminergic Neurons Differentiated From Induced Pluripotent Stem Cells Derived From Umbilical Cord Blood Using Lentiviral Reprogramming. Cell Transplant 2014; 24:2099-112. [PMID: 25420114 DOI: 10.3727/096368914x685591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) are promising sources for regenerative therapies like the replacement of dopaminergic neurons in Parkinson's disease. They offer an unlimited cell source that can be standardized and optimized to produce applicable cell populations to gain maximal functional recovery. In the present study, human cord blood-derived iPSCs (hCBiPSCs) were differentiated into dopaminergic neurons utilizing two different in vitro protocols for neural induction: (protocol I) by fibroblast growth factor (FGF-2) signaling, (protocol II) by bone morphogenetic protein (BMP)/transforming growth factor (TGF-β) inhibition. After maturation, in vitro increased numbers of tyrosine hydroxylase (TH)-positive neurons (7.4% of total cells) were observed by protocol II compared to 3.5% in protocol I. Furthermore, 3 weeks after transplantation in hemiparkinsonian rats in vivo, a reduced number of undifferentiated proliferating cells was achieved with protocol II. In contrast, proliferation still occurred in protocol I-derived grafts, resulting in tumor-like growth in two out of four animals 3 weeks after transplantation. Protocol II, however, did not increase the number of TH(+) cells in the striatal grafts of hemiparkinsonian rats. In conclusion, BMP/TGF-β inhibition was more effective than FGF-2 signaling with regard to dopaminergic induction of hCBiPSCs in vitro and prevented graft overgrowth in vivo.
Collapse
Affiliation(s)
- Anna Effenberg
- Institute of Neuroanatomy, Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Barker R. Developing Stem Cell Therapies for Parkinson’s Disease: Waiting Until the Time Is Right. Cell Stem Cell 2014; 15:539-42. [DOI: 10.1016/j.stem.2014.09.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Cicchetti F, Lacroix S, Cisbani G, Vallières N, Saint-Pierre M, St-Amour I, Tolouei R, Skepper JN, Hauser RA, Mantovani D, Barker RA, Freeman TB. Mutant huntingtin is present in neuronal grafts in huntington disease patients. Ann Neurol 2014; 76:31-42. [DOI: 10.1002/ana.24174] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Affiliation(s)
- Francesca Cicchetti
- Centre Hospitalier Universitaire de Québec Research Center
- Departments of Psychiatry and Neurosciences
| | - Steve Lacroix
- Centre Hospitalier Universitaire de Québec Research Center
- Molecular Medicine, Laval University; Quebec City Quebec Canada
| | - Giulia Cisbani
- Centre Hospitalier Universitaire de Québec Research Center
| | | | | | | | - Ranna Tolouei
- Biomaterials and Bioengineering Laboratory; Saint-François d'Assise Hospital
- Department of Mining Engineering, Metallurgy, and Materials; Laval University; Quebec City Quebec Canada
| | - Jeremy N. Skepper
- Cambridge Advanced Imaging Centre; University of Cambridge; Cambridge United Kingdom
| | - Robert A. Hauser
- Departments of Neurology, Pharmacology, and Experimental Therapeutics; Parkinson's Disease and Movement Disorders National Parkinson's Foundation Center of Excellence, University of South Florida; Tampa Florida
| | - Diego Mantovani
- Biomaterials and Bioengineering Laboratory; Saint-François d'Assise Hospital
- Department of Mining Engineering, Metallurgy, and Materials; Laval University; Quebec City Quebec Canada
| | - Roger A. Barker
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences; University of Cambridge; Cambridge United Kingdom
| | - Thomas B. Freeman
- Department of Neurosurgery and Brain Repair
- Center of Excellence for Aging and Brain Repair; University of South Florida; Tampa Florida
| |
Collapse
|
29
|
Differentiating neurons derived from human umbilical cord blood stem cells work as a test system for developmental neurotoxicity. Mol Neurobiol 2014; 51:791-807. [DOI: 10.1007/s12035-014-8716-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/11/2014] [Indexed: 01/19/2023]
|
30
|
Petit GH, Olsson TT, Brundin P. Review: The future of cell therapies and brain repair:
P
arkinson's disease leads the way. Neuropathol Appl Neurobiol 2014; 40:60-70. [DOI: 10.1111/nan.12110] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/16/2013] [Indexed: 12/22/2022]
Affiliation(s)
- G. H. Petit
- Neuronal Survival Unit, Department of Experimental Medical Science Wallenberg Neuroscience Center Lund Sweden
| | - T. T. Olsson
- Van Andel Research Institute Center for Neurodegenerative Science Grand Rapids MI USA
| | - P. Brundin
- Neuronal Survival Unit, Department of Experimental Medical Science Wallenberg Neuroscience Center Lund Sweden
- Van Andel Research Institute Center for Neurodegenerative Science Grand Rapids MI USA
| |
Collapse
|
31
|
Kefalopoulou Z, Politis M, Piccini P, Mencacci N, Bhatia K, Jahanshahi M, Widner H, Rehncrona S, Brundin P, Björklund A, Lindvall O, Limousin P, Quinn N, Foltynie T. Long-term clinical outcome of fetal cell transplantation for Parkinson disease: two case reports. JAMA Neurol 2014; 71:83-7. [PMID: 24217017 PMCID: PMC4235249 DOI: 10.1001/jamaneurol.2013.4749] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE Recent advances in stem cell technologies have rekindled an interest in the use of cell replacement strategies for patients with Parkinson disease. This study reports the very long-term clinical outcomes of fetal cell transplantation in 2 patients with Parkinson disease. Such long-term follow-up data can usefully inform on the potential efficacy of this approach, as well as the design of trials for its further evaluation. OBSERVATIONS Two patients received intrastriatal grafts of human fetal ventral mesencephalic tissue, rich in dopaminergic neuroblasts, as restorative treatment for their Parkinson disease. To evaluate the very long-term efficacy of the grafts, clinical assessments were performed 18 and 15 years posttransplantation. Motor improvements gained gradually over the first postoperative years were sustained up to 18 years posttransplantation, while both patients have discontinued, and remained free of any, pharmacological dopaminergic therapy. CONCLUSIONS AND RELEVANCE The results from these 2 cases indicate that dopaminergic cell transplantation can offer very long-term symptomatic relief in patients with Parkinson disease and provide proof-of-concept support for future clinical trials using fetal or stem cell therapies.
Collapse
Affiliation(s)
- Zinovia Kefalopoulou
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| | - Marios Politis
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, England
| | - Paola Piccini
- Department of Medicine, Hammersmith Hospital, Imperial College London, London, England
| | - Niccolo Mencacci
- Reta Lila Weston Laboratories and Department of Molecular Neuroscience, UCL Institute of Neurology, London, England
| | - Kailash Bhatia
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| | - Håkan Widner
- Division of Neurology, Department of Clinical Sciences, University Hospital, Lund, Sweden
| | - Stig Rehncrona
- Division of Neurology, Department of Clinical Sciences, University Hospital, Lund, Sweden5Division of Neurosurgery, Department of Clinical Sciences, University Hospital, Lund, Sweden
| | - Patrik Brundin
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Anders Björklund
- Neuronal Survival Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden7Neurobiology Unit, Wallenberg Neuroscience Center, Lund University, Lund, Sweden
| | - Olle Lindvall
- Division of Neurology, Department of Clinical Sciences, University Hospital, Lund, Sweden
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| | - Niall Quinn
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, London, England
| |
Collapse
|
32
|
Rylander D, Bagetta V, Pendolino V, Zianni E, Grealish S, Gardoni F, Di Luca M, Calabresi P, Cenci MA, Picconi B. Region-specific restoration of striatal synaptic plasticity by dopamine grafts in experimental parkinsonism. Proc Natl Acad Sci U S A 2013; 110:E4375-84. [PMID: 24170862 PMCID: PMC3831970 DOI: 10.1073/pnas.1311187110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intrastriatal transplantation of dopaminergic neurons can restore striatal dopamine levels and improve parkinsonian deficits, but the mechanisms underlying these effects are poorly understood. Here, we show that transplants of dopamine neurons partially restore activity-dependent synaptic plasticity in the host striatal neurons. We evaluated synaptic plasticity in regions distal or proximal to the transplant (i.e., dorsolateral and ventrolateral striatum) and compared the effects of dopamine- and serotonin-enriched grafts using a rat model of Parkinson disease. Naïve rats showed comparable intrinsic membrane properties in the two subregions but distinct patterns of long-term synaptic plasticity. The ventrolateral striatum showed long-term potentiation using the same protocol that elicited long-term depression in the dorsolateral striatum. The long-term potentiation was linked to higher expression of postsynaptic AMPA and N2B NMDA subunits (GluN2B) and was dependent on the activation of GluN2A and GluN2B subunits and the D1 dopamine receptor. In both regions, the synaptic plasticity was abolished after a severe dopamine depletion and could not be restored by grafted serotonergic neurons. Solely, dopamine-enriched grafts could restore the long-term potentiation and partially restore motor deficits in the rats. The restoration could only be seen close to the graft, in the ventrolateral striatum where the graft-derived reinnervation was denser, compared with the distal dorsolateral region. These data provide proof of concept that dopamine-enriched transplants are able to functionally integrate into the host brain and restore deficits in striatal synaptic plasticity after experimental parkinsonism. The region-specific restoration might impose limitations in symptomatic improvement following neural transplantation.
Collapse
Affiliation(s)
- Daniella Rylander
- Basal Ganglia Pathophysiological Unit, Lund University, BMC F11, 22184 Lund, Sweden
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Vincenza Bagetta
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Valentina Pendolino
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| | - Elisa Zianni
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Shane Grealish
- Developmental and Regenerative Neurobiology, Lund University, BMC A11, 22184 Lund, Sweden; and
| | - Fabrizio Gardoni
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Monica Di Luca
- Dipartimento Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paolo Calabresi
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
- Clinica Neurologica, Università degli studi di Perugia, Ospedale Santa Maria della Misericordia, S. Andrea delle Fratte, 06156 Perugia, Italy
| | - M. Angela Cenci
- Basal Ganglia Pathophysiological Unit, Lund University, BMC F11, 22184 Lund, Sweden
| | - Barbara Picconi
- Fondazione Santa Lucia, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00143 Rome, Italy
| |
Collapse
|
33
|
Dunning CJR, George S, Brundin P. What's to like about the prion-like hypothesis for the spreading of aggregated α-synuclein in Parkinson disease? Prion 2013; 7:92-7. [PMID: 23360753 PMCID: PMC3609056 DOI: 10.4161/pri.23806] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
α-Synuclein is a key protein in Parkinson disease. Not only is it the major protein component of Lewy bodies, but it is implicated in several cellular processes that are disrupted in Parkinson disease. Misfolded α-synuclein has also been shown to spread from cell-to-cell and, in a prion-like fashion, trigger aggregation of α-synuclein in the recipient cell. In this mini-review we explore the evidence that misfolded α-synuclein underlies the spread of pathology in Parkinson disease and discuss why it should be considered a prion-like protein.
Collapse
|