1
|
Chen X, Xiang W, Xu L, Zhao J, Yu Y, Ke Q, Liu Z, Gan L. Dentatorubral-pallidoluysian atrophy: a case report and review of literature. J Med Case Rep 2024; 18:429. [PMID: 39238050 PMCID: PMC11378363 DOI: 10.1186/s13256-024-04745-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Dentatorubral-pallidoluysian atrophy is a rare autosomal dominant neurodegenerative disease. It is a rare disease in the world. Therefore, sharing clinical encounters of this case can deepen global awareness and understanding of the disease. CASE PRESENTATION The patient was a 34-year-old male of Han nationality who was unmarried. The patient was admitted owing to weakness of the left lower limb with walking instability for 2 months and aggravation for 1 month. There was no dizziness, headache, numbness of limbs, convulsions, nausea, vomiting, abdominal pain, ataxia, nausea, vomiting, or abdominal pain. No nausea, vomiting, diarrhea, abdominal distension, tinnitus, hearing loss, fever, cough, expectoration. Personal history: worked in Cambodia 5 years ago, worked in Dubai 3 years ago, engaged in computer work, smoking or drinking habits. The patient was unmarried. Family history: the mother had symptoms similar to walking unsteadily (undiagnosed). Positive signs include a wide-base gait with a rotatory nystagmus that jumps upward in both eyes. Bilateral finger-nose instability test was quasi-positive, rapid alternating test was negative, and eye closure tolerance test was positive. Tendon reflexes were active in both upper limbs and hyperreflexia in both lower limbs. Stability of the heel, knee, and tibia. Genetic testing showed that the number of repeats in the dentatorubral-pallidoluysian atrophy ATN1 gene was 18 and 62, and the (CAG)n repeat sequence in the ATN1 gene was abnormal, with a repeat number of 62, and the patient was a pathogenic variant. The patient was diagnosed with dentatorubral-pallidoluysian atrophy. Dentatorubral-pallidoluysian atrophy remains a progressive neurodegenerative disease with no effective treatment. At present, the proband is taking 5 mg of buspirone three times a day, which has been reported to improve the symptoms. The patient was followed up for 6 months after taking buspirone, and there was no significant improvement in the temporary symptoms. At present, there are few cases of dentatorubral-pallidoluysian atrophy, and the characteristics of nystagmus in this disease have not been proposed in the past. This case reported the unusual presentation of nystagmus. CONCLUSION Dentatorubral-pallidoluygur atrophy is a rare neurodegenerative disease with autosomal dominant inheritance. To the best of our knowledge, our present case report is the first case report of dentatorubral-pallidoluygur atrophy with specific nystagmus. We describe the special eye shake and its positive signs to increase dentatorubral-pallidoluysian atrophy clinical positive signs.
Collapse
Affiliation(s)
- Xin Chen
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenwen Xiang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lijun Xu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Jiahao Zhao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ye Yu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Qing Ke
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhipeng Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Li Gan
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Uguen K, Michaud JL, Génin E. Short Tandem Repeats in the era of next-generation sequencing: from historical loci to population databases. Eur J Hum Genet 2024; 32:1037-1044. [PMID: 38982300 PMCID: PMC11369099 DOI: 10.1038/s41431-024-01666-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/11/2024] Open
Abstract
In this study, we explore the landscape of short tandem repeats (STRs) within the human genome through the lens of evolving technologies to detect genomic variations. STRs, which encompass approximately 3% of our genomic DNA, are crucial for understanding human genetic diversity, disease mechanisms, and evolutionary biology. The advent of high-throughput sequencing methods has revolutionized our ability to accurately map and analyze STRs, highlighting their significance in genetic disorders, forensic science, and population genetics. We review the current available methodologies for STR analysis, the challenges in interpreting STR variations across different populations, and the implications of STRs in medical genetics. Our findings underscore the urgent need for comprehensive STR databases that reflect the genetic diversity of global populations, facilitating the interpretation of STR data in clinical diagnostics, genetic research, and forensic applications. This work sets the stage for future studies aimed at harnessing STR variations to elucidate complex genetic traits and diseases, reinforcing the importance of integrating STRs into genetic research and clinical practice.
Collapse
Affiliation(s)
- Kevin Uguen
- Univ Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.
- Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France.
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada.
| | - Jacques L Michaud
- CHU Sainte-Justine Azrieli Research Centre, Montréal, QC, Canada
- Department of Pediatrics, Université de Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | | |
Collapse
|
3
|
Hu J, Xing Z, Yang H, Zhou Y, Guo L, Zhang X, Xu L, Liu Q, Ye J, Zhong X, Wang J, Lin R, Long E, Jiang J, Chen L, Pan Y, He L, Chen JY. Deep learning-enhanced R-loop prediction provides mechanistic implications for repeat expansion diseases. iScience 2024; 27:110584. [PMID: 39188986 PMCID: PMC11345597 DOI: 10.1016/j.isci.2024.110584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/17/2024] [Accepted: 07/22/2024] [Indexed: 08/28/2024] Open
Abstract
R-loops play diverse functional roles, but controversial genomic localization of R-loops have emerged from experimental approaches, posing significant challenges for R-loop research. The development and application of an accurate computational tool for studying human R-loops remains an unmet need. Here, we introduce DeepER, a deep learning-enhanced R-loop prediction tool. DeepER showcases outstanding performance compared to existing tools, facilitating accurate genome-wide annotation of R-loops and a deeper understanding of the position- and context-dependent effects of nucleotide composition on R-loop formation. DeepER also unveils a strong association between certain tandem repeats and R-loop formation, opening a new avenue for understanding the mechanisms underlying some repeat expansion diseases. To facilitate broader utilization, we have developed a user-friendly web server as an integral component of R-loopBase. We anticipate that DeepER will find extensive applications in the field of R-loop research.
Collapse
Affiliation(s)
- Jiyun Hu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Zetong Xing
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hongbing Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yongli Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Liufei Guo
- School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China
| | - Xianhong Zhang
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Longsheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jing Ye
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoming Zhong
- Center of Excellence for Leukemia Studies, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jixin Wang
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ruoyao Lin
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Erping Long
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Jiewei Jiang
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lang He
- School of Computer Science and Technology, Xi’an University of Posts and Telecommunications, Xi’an, Shaanxi 710121, China
| | - Jia-Yu Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Chemistry and Biomedicine Innovation Center (ChemBIC), Department of Neurology at Nanjing Drum Tower Hospital, Nanjing University, Nanjing, Jiangsu 210023, China
- Nanchuang (Jiangsu) Institute of Chemistry and Health, Nanjing, Jiangsu 210023, China
| |
Collapse
|
4
|
Tenchov R, Sasso JM, Zhou QA. Polyglutamine (PolyQ) Diseases: Navigating the Landscape of Neurodegeneration. ACS Chem Neurosci 2024; 15:2665-2694. [PMID: 38996083 PMCID: PMC11311141 DOI: 10.1021/acschemneuro.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding proteins with abnormally expanded polyglutamine tract. A total of nine polyQ disorders have been identified, including Huntington's disease, six spinocerebellar ataxias, dentatorubral pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA). The diseases of this class are each considered rare, yet polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. While each subtype of polyQ diseases has its own causative gene, certain pathologic molecular attributes have been implicated in virtually all of the polyQ diseases, including protein aggregation, proteolytic cleavage, neuronal dysfunction, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Although animal models of polyQ disease are available helping to understand their pathogenesis and access disease-modifying therapies, there is neither a cure nor prevention for these diseases, with only symptomatic treatments available. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in the class of polyQ diseases. We examine the publication landscape in the area in effort to provide insights into current knowledge advances and developments. We review the most discussed concepts and assess the strategies to combat these diseases. Finally, we inspect clinical applications of products against polyQ diseases with their development pipelines. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding the class of polyQ diseases, to outline challenges, and evaluate growth opportunities to further efforts in combating the diseases.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
5
|
Lian M, Tan VJ, Taguchi R, Zhao M, Phang GP, Tan AS, Liu S, Lee CG, Chong SS. Preimplantation Genetic Testing of Spinocerebellar Ataxia Type 3/Machado-Joseph Disease-Robust Tools for Direct and Indirect Detection of the ATXN3 (CAG) n Repeat Expansion. Int J Mol Sci 2024; 25:8073. [PMID: 39125643 PMCID: PMC11311680 DOI: 10.3390/ijms25158073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3/MJD) is a neurodegenerative disorder caused by the ATXN3 CAG repeat expansion. Preimplantation genetic testing for monogenic disorders (PGT-M) of SCA3/MJD should include reliable repeat expansion detection coupled with high-risk allele determination using informative linked markers. One couple underwent SCA3/MJD PGT-M combining ATXN3 (CAG)n triplet-primed PCR (TP-PCR) with customized linkage-based risk allele genotyping on whole-genome-amplified trophectoderm cells. Microsatellites closely linked to ATXN3 were identified and 16 markers were genotyped on 187 anonymous DNAs to verify their polymorphic information content. In the SCA3/MJD PGT-M case, the ATXN3 (CAG)n TP-PCR and linked marker analysis results concurred completely. Among the three unaffected embryos, a single embryo was transferred and successfully resulted in an unaffected live birth. A total of 139 microsatellites within 1 Mb upstream and downstream of the ATXN3 CAG repeat were identified and 8 polymorphic markers from each side were successfully co-amplified in a single-tube reaction. A PGT-M assay involving ATXN3 (CAG)n TP-PCR and linkage-based risk allele identification has been developed for SCA3/MJD. A hexadecaplex panel of highly polymorphic microsatellites tightly linked to ATXN3 has been developed for the rapid identification of informative markers in at-risk couples for use in the PGT-M of SCA3/MJD.
Collapse
Affiliation(s)
- Mulias Lian
- Preimplantation Genetic Diagnosis Centre, Department of Obstetrics and Gynaecology, National University Hospital, Singapore 119074, Singapore
| | - Vivienne J. Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Riho Taguchi
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mingjue Zhao
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Gui-Ping Phang
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Arnold S. Tan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Shuling Liu
- KKIVF Centre, Reproductive Medicine, KK Women’s & Children’s Hospital, Singapore 229899, Singapore
| | - Caroline G. Lee
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Duke-NUS Medical School, Singapore 169857, Singapore
| | - Samuel S. Chong
- Preimplantation Genetic Diagnosis Centre, Department of Obstetrics and Gynaecology, National University Hospital, Singapore 119074, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, Singapore 119074, Singapore
| |
Collapse
|
6
|
Biswas DD, Shi Y, El Haddad L, Sethi R, Huston M, Kehoe S, Scarrow ER, Strickland LM, Pucci LA, Dhindsa JS, Hunanyan A, La Spada AR, ElMallah MK. Respiratory neuropathology in spinocerebellar ataxia type 7. JCI Insight 2024; 9:e170444. [PMID: 39053472 PMCID: PMC11457860 DOI: 10.1172/jci.insight.170444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant neurological disorder caused by deleterious CAG repeat expansion in the coding region of the ataxin 7 gene (polyQ-ataxin-7). Infantile-onset SCA7 leads to severe clinical manifestation of respiratory distress, but the exact cause of respiratory impairment remains unclear. Using the infantile-SCA7 mouse model, the SCA7266Q/5Q mouse, we examined the impact of pathological polyQ-ataxin-7 on hypoglossal (XII) and phrenic motor units. We identified the transcript profile of the medulla and cervical spinal cord and investigated the XII and phrenic nerves and the neuromuscular junctions in the diaphragm and tongue. SCA7266Q/5Q astrocytes showed significant intranuclear inclusions of ataxin-7 in the XII and putative phrenic motor nuclei. Transcriptomic analysis revealed dysregulation of genes involved in amino acid and neurotransmitter transport and myelination. Additionally, SCA7266Q/5Q mice demonstrated blunted efferent output of the XII nerve and demyelination in both XII and phrenic nerves. Finally, there was an increased number of neuromuscular junction clusters with higher expression of synaptic markers in SCA7266Q/5Q mice compared with WT controls. These preclinical findings elucidate the underlying pathophysiology responsible for impaired glial cell function and death leading to dysphagia, aspiration, and respiratory failure in infantile SCA7.
Collapse
Affiliation(s)
- Debolina D Biswas
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Yihan Shi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Léa El Haddad
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ronit Sethi
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Meredith Huston
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Sean Kehoe
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Evelyn R Scarrow
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Laura M Strickland
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Logan A Pucci
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Justin S Dhindsa
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Ani Hunanyan
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Albert R La Spada
- Departments of Pathology and Laboratory Medicine, Neurology, Biological Chemistry, and Neurobiology and Behavior, and
- UCI Center for Neurotherapeutics, University of California Irvine, Irvine, California, USA
| | - Mai K ElMallah
- Division of Pulmonary and Sleep Medicine, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
7
|
Moldovean-Cioroianu NS. Reviewing the Structure-Function Paradigm in Polyglutamine Disorders: A Synergistic Perspective on Theoretical and Experimental Approaches. Int J Mol Sci 2024; 25:6789. [PMID: 38928495 PMCID: PMC11204371 DOI: 10.3390/ijms25126789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Polyglutamine (polyQ) disorders are a group of neurodegenerative diseases characterized by the excessive expansion of CAG (cytosine, adenine, guanine) repeats within host proteins. The quest to unravel the complex diseases mechanism has led researchers to adopt both theoretical and experimental methods, each offering unique insights into the underlying pathogenesis. This review emphasizes the significance of combining multiple approaches in the study of polyQ disorders, focusing on the structure-function correlations and the relevance of polyQ-related protein dynamics in neurodegeneration. By integrating computational/theoretical predictions with experimental observations, one can establish robust structure-function correlations, aiding in the identification of key molecular targets for therapeutic interventions. PolyQ proteins' dynamics, influenced by their length and interactions with other molecular partners, play a pivotal role in the polyQ-related pathogenic cascade. Moreover, conformational dynamics of polyQ proteins can trigger aggregation, leading to toxic assembles that hinder proper cellular homeostasis. Understanding these intricacies offers new avenues for therapeutic strategies by fine-tuning polyQ kinetics, in order to prevent and control disease progression. Last but not least, this review highlights the importance of integrating multidisciplinary efforts to advancing research in this field, bringing us closer to the ultimate goal of finding effective treatments against polyQ disorders.
Collapse
Affiliation(s)
- Nastasia Sanda Moldovean-Cioroianu
- Institute of Materials Science, Bioinspired Materials and Biosensor Technologies, Kiel University, Kaiserstraße 2, 24143 Kiel, Germany;
- Faculty of Physics, Babeș-Bolyai University, Kogălniceanu 1, RO-400084 Cluj-Napoca, Romania
| |
Collapse
|
8
|
Mishra R, Gerlach GJ, Sahoo B, Camacho CJ, Wetzel R. A Targetable Self-association Surface of the Huntingtin exon1 Helical Tetramer Required for Assembly of Amyloid Pre-nucleation Oligomers. J Mol Biol 2024; 436:168607. [PMID: 38734203 DOI: 10.1016/j.jmb.2024.168607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Polyglutamine (polyQ) sequences undergo repeat-length dependent formation of disease-associated, amyloid-like cross-β core structures with kinetics and aggregate morphologies often influenced by the flanking sequences. In Huntington's disease (HD), the httNT segment on the polyQ's N-terminal flank enhances aggregation rates by changing amyloid nucleation from a classical homogeneous mechanism to a two-step process requiring an ɑ-helix-rich oligomeric intermediate. A folded, helix-rich httNT tetrameric structure suggested to be this critical intermediate was recently reported. Here we employ single alanine replacements along the httNT sequence to assess this proposed structure and refine the mechanistic model. We find that Ala replacement of hydrophobic residues within simple httNT peptides greatly suppresses helicity, supporting the tetramer model. These same helix-disruptive replacements in the httNT segment of an exon-1 analog greatly reduce aggregation kinetics, suggesting that an ɑ-helix rich multimer - either the tetramer or a larger multimer - plays an on-pathway role in nucleation. Surprisingly, several other Ala replacements actually enhance helicity and/or amyloid aggregation. The spatial localization of these residues on the tetramer surface suggests a self-association interface responsible for formation of the octomers and higher-order multimers most likely required for polyQ amyloid nucleation. Multimer docking of the tetramer, using the protein-protein docking algorithm ClusPro, predicts this symmetric surface to be a viable tetramer dimerization interface. Intriguingly, octomer formation brings the emerging polyQ chains into closer proximity at this tetramer-tetramer interface. Further supporting the potential importance of tetramer super-assembly, computational docking with a known exon-1 aggregation inhibitor predicts ligand contacts with residues at this interface.
Collapse
Affiliation(s)
- Rakesh Mishra
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Gabriella J Gerlach
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA
| | - Bankanidhi Sahoo
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Carlos J Camacho
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| | - Ronald Wetzel
- Department Structural Biology, University of Pittsburgh School of Medicine Pittsburgh, PA 15260, USA.
| |
Collapse
|
9
|
Mier P, Andrade-Navarro MA, Morett E. Homorepeat variability within the human population. NAR Genom Bioinform 2024; 6:lqae053. [PMID: 38774515 PMCID: PMC11106027 DOI: 10.1093/nargab/lqae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/12/2024] [Accepted: 05/08/2024] [Indexed: 05/24/2024] Open
Abstract
Genetic variation within populations plays a crucial role in driving evolution. Unlike the average protein sequence, the evolution of homorepeats can be influenced by DNA replication slippage, when DNA polymerases either add or skip repeats of nucleotides. While there are some diseases known to be caused by abnormal changes in the length of amino acid homorepeats, naturally occurring variations in homorepeat length remain relatively unexplored. In our study, we examined the variation in amino acid homorepeat length of human individuals by analyzing 125 748 exomes, as well as 15 708 whole genomes. Our analyses revealed significant variability in homorepeat length across the human population, indicating that these motifs are prone to mutations at higher rates than non repeat sequences. We focused our study on glutamine homorepeats, also known as polyQ sequences, and found that shorter polyQ sequences tend to exhibit greater length variation, while longer ones primarily undergo deletions. Notably, polyQ sequencesthat are more conserved across primates tend to show less variation within the human population, indicating stronger selective pressure to maintain their length. Overall, our results demonstrate that there is large natural variation in the length of homorepeats within the human population, with no apparent impact on observable traits.
Collapse
Affiliation(s)
- Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 2001, Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
10
|
Zhang H, Lv S, Jin C, Ren F, Wang J. Wheat gluten amyloid fibrils: Conditions, mechanism, characterization, application, and future perspectives. Int J Biol Macromol 2023; 253:126435. [PMID: 37611682 DOI: 10.1016/j.ijbiomac.2023.126435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Amyloid fibrils have excellent structural characteristics, such as a high aspect ratio, excellent stiffness, and a wide availability of functional groups on the surface. More studies are now focusing on the formation of amyloid fibrils using food proteins. Protein fibrillation is now becoming recognized as a promising strategy for enhancing the function of food proteins and expanding their range of applications. Wheat gluten is rich in glutamine (Q), hydrophobic amino acids, and the α-helix structure with high β-sheet tendency. These characteristics make it very easy for wheat gluten to form amyloid fibrils. The conditions, formation mechanism, characterization methods, and application of amyloid fibrils formed by wheat gluten are summarized in this review. Further exploration of amyloid fibrils formed by wheat gluten will reveal how they can play a significant role in food, biology, and other fields, especially in medicine.
Collapse
Affiliation(s)
- Huijuan Zhang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Shihao Lv
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Chengming Jin
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Ren
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
11
|
Elena-Real CA, Mier P, Sibille N, Andrade-Navarro MA, Bernadó P. Structure-function relationships in protein homorepeats. Curr Opin Struct Biol 2023; 83:102726. [PMID: 37924569 DOI: 10.1016/j.sbi.2023.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/06/2023]
Abstract
Homorepeats (or polyX), protein segments containing repetitions of the same amino acid, are abundant in proteomes from all kingdoms of life and are involved in crucial biological functions as well as several neurodegenerative and developmental diseases. Mainly inserted in disordered segments of proteins, the structure/function relationships of homorepeats remain largely unexplored. In this review, we summarize present knowledge for the most abundant homorepeats, highlighting the role of the inherent structure and the conformational influence exerted by their flanking regions. Recent experimental and computational methods enable residue-specific investigations of these regions and promise novel structural and dynamic information for this elusive group of proteins. This information should increase our knowledge about the structural bases of phenomena such as liquid-liquid phase separation and trinucleotide repeat disorders.
Collapse
Affiliation(s)
- Carlos A Elena-Real
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France. https://twitter.com/carloselenareal
| | - Pablo Mier
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Nathalie Sibille
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France
| | - Miguel A Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University Mainz. Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany
| | - Pau Bernadó
- Centre de Biologie Structurale (CBS), Université de Montpellier, INSERM, CNRS. 29 rue de Navacelles, 34090 Montpellier, France.
| |
Collapse
|
12
|
Wilton-Clark H, Al-aghbari A, Yang J, Yokota T. Advancing Epidemiology and Genetic Approaches for the Treatment of Spinal and Bulbar Muscular Atrophy: Focus on Prevalence in the Indigenous Population of Western Canada. Genes (Basel) 2023; 14:1634. [PMID: 37628685 PMCID: PMC10454234 DOI: 10.3390/genes14081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Spinal and bulbar muscular atrophy (SBMA), also known as Kennedy's disease, is a debilitating neuromuscular disease characterized by progressive muscular weakness and neuronal degeneration, affecting 1-2 individuals per 100,000 globally. While SBMA is relatively rare, recent studies have shown a significantly higher prevalence of the disease among the indigenous population of Western Canada compared to the general population. The disease is caused by a pathogenic expansion of polyglutamine residues in the androgen receptor protein, which acts as a key transcriptional regulator for numerous genes. SBMA has no cure, and current treatments are primarily supportive and focused on symptom management. Recently, a form of precision medicine known as antisense therapy has gained traction as a promising therapeutic option for numerous neuromuscular diseases. Antisense therapy uses small synthetic oligonucleotides to confer therapeutic benefit by acting on pathogenic mRNA molecules, serving to either degrade pathogenic mRNA transcripts or helping to modulate splicing. Recent studies have explored the suitability of antisense therapy for the treatment of SBMA, primarily focused on gene therapy and antisense-mediated mRNA knockdown approaches. Advancements in understanding the pathogenesis of SBMA and the development of targeted therapies offer hope for improved quality of life for individuals affected by this debilitating condition. Continued research is essential to optimize these genetic approaches, ensuring their safety and efficacy.
Collapse
Affiliation(s)
- Harry Wilton-Clark
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Ammar Al-aghbari
- Department of Biological Sciences, Faculty of Science, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Jessica Yang
- Department of Immunology, Department of Pharmacology and Toxicology, Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| |
Collapse
|
13
|
Weber JJ, Costa MDC, Scaglione KM, Todi SV, Nguyen HP. Editorial: The role of posttranslational modifications in polyglutamine diseases. Front Mol Neurosci 2023; 16:1271226. [PMID: 37654791 PMCID: PMC10466034 DOI: 10.3389/fnmol.2023.1271226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/02/2023] Open
Affiliation(s)
- Jonasz Jeremiasz Weber
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Maria do Carmo Costa
- Department of Neurology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| | - K. Matthew Scaglione
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, United States
| | - Sokol V. Todi
- Department of Pharmacology, Wayne State University, Detroit, MI, United States
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
14
|
Santarelli S, Londero C, Soldano A, Candelaresi C, Todeschini L, Vernizzi L, Bellosta P. Drosophila melanogaster as a model to study autophagy in neurodegenerative diseases induced by proteinopathies. Front Neurosci 2023; 17:1082047. [PMID: 37274187 PMCID: PMC10232775 DOI: 10.3389/fnins.2023.1082047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/14/2023] [Indexed: 06/06/2023] Open
Abstract
Proteinopathies are a large group of neurodegenerative diseases caused by both genetic and sporadic mutations in particular genes which can lead to alterations of the protein structure and to the formation of aggregates, especially toxic for neurons. Autophagy is a key mechanism for clearing those aggregates and its function has been strongly associated with the ubiquitin-proteasome system (UPS), hence mutations in both pathways have been associated with the onset of neurodegenerative diseases, particularly those induced by protein misfolding and accumulation of aggregates. Many crucial discoveries regarding the molecular and cellular events underlying the role of autophagy in these diseases have come from studies using Drosophila models. Indeed, despite the physiological and morphological differences between the fly and the human brain, most of the biochemical and molecular aspects regulating protein homeostasis, including autophagy, are conserved between the two species.In this review, we will provide an overview of the most common neurodegenerative proteinopathies, which include PolyQ diseases (Huntington's disease, Spinocerebellar ataxia 1, 2, and 3), Amyotrophic Lateral Sclerosis (C9orf72, SOD1, TDP-43, FUS), Alzheimer's disease (APP, Tau) Parkinson's disease (a-syn, parkin and PINK1, LRRK2) and prion diseases, highlighting the studies using Drosophila that have contributed to understanding the conserved mechanisms and elucidating the role of autophagy in these diseases.
Collapse
Affiliation(s)
- Stefania Santarelli
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Chiara Londero
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Alessia Soldano
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Carlotta Candelaresi
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Leonardo Todeschini
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
| | - Luisa Vernizzi
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Paola Bellosta
- Department of Cellular, Computational and Integrative Biology (CiBiO), University of Trento, Trento, Italy
- Department of Medicine, NYU Langone Medical Center, New York, NY, United States
| |
Collapse
|
15
|
Barbosa Pereira PJ, Manso JA, Macedo-Ribeiro S. The structural plasticity of polyglutamine repeats. Curr Opin Struct Biol 2023; 80:102607. [PMID: 37178477 DOI: 10.1016/j.sbi.2023.102607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
From yeast to humans, polyglutamine (polyQ) repeat tracts are found frequently in the proteome and are particularly prominent in the activation domains of transcription factors. PolyQ is a polymorphic motif that modulates functional protein-protein interactions and aberrant self-assembly. Expansion of the polyQ repeated sequences beyond critical physiological repeat length thresholds triggers self-assembly and is linked to severe pathological implications. This review provides an overview of the current knowledge on the structures of polyQ tracts in the soluble and aggregated states and discusses the influence of neighboring regions on polyQ secondary structure, aggregation, and fibril morphologies. The influence of the genetic context of the polyQ-encoding trinucleotides is briefly discussed as a challenge for future endeavors in this field.
Collapse
Affiliation(s)
- Pedro José Barbosa Pereira
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal.
| | - José A Manso
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal; Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135, Porto, Portugal
| |
Collapse
|
16
|
What the Gut Tells the Brain-Is There a Link between Microbiota and Huntington's Disease? Int J Mol Sci 2023; 24:ijms24054477. [PMID: 36901907 PMCID: PMC10003333 DOI: 10.3390/ijms24054477] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The human intestinal microbiota is a diverse and dynamic microenvironment that forms a complex, bi-directional relationship with the host. The microbiome takes part in the digestion of food and the generation of crucial nutrients such as short chain fatty acids (SCFA), but is also impacts the host's metabolism, immune system, and even brain functions. Due to its indispensable role, microbiota has been implicated in both the maintenance of health and the pathogenesis of many diseases. Dysbiosis in the gut microbiota has already been implicated in many neurodegenerative diseases such as Parkinson's disease (PD) and Alzheimer's disease (AD). However, not much is known about the microbiome composition and its interactions in Huntington's disease (HD). This dominantly heritable, incurable neurodegenerative disease is caused by the expansion of CAG trinucleotide repeats in the huntingtin gene (HTT). As a result, toxic RNA and mutant protein (mHTT), rich in polyglutamine (polyQ), accumulate particularly in the brain, leading to its impaired functions. Interestingly, recent studies indicated that mHTT is also widely expressed in the intestines and could possibly interact with the microbiota, affecting the progression of HD. Several studies have aimed so far to screen the microbiota composition in mouse models of HD and find out whether observed microbiome dysbiosis could affect the functions of the HD brain. This review summarizes ongoing research in the HD field and highlights the essential role of the intestine-brain axis in HD pathogenesis and progression. The review also puts a strong emphasis on indicating microbiome composition as a future target in the urgently needed therapy for this still incurable disease.
Collapse
|
17
|
Nowak B, Kozlowska E, Pawlik W, Fiszer A. Atrophin-1 Function and Dysfunction in Dentatorubral-Pallidoluysian Atrophy. Mov Disord 2023; 38:526-536. [PMID: 36809552 DOI: 10.1002/mds.29355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare, incurable genetic disease that belongs to the group of polyglutamine (polyQ) diseases. DRPLA is the most common in the Japanese population; however, its global prevalence is also increasing due to better clinical recognition. It is characterized by cerebellar ataxia, myoclonus, epilepsy, dementia, and chorea. DRPLA is caused by dynamic mutation of CAG repeat expansion in ATN1 gene encoding the atrophin-1 protein. In the cascade of molecular disturbances, the pathological form of atrophin-1 is the initial factor, which has not been precisely characterized so far. Reports indicate that DRPLA is associated with disrupted protein-protein interactions (in which an expanded polyQ tract plays a crucial role), as well as gene expression deregulation. There is a great need to design efficient therapy that would address the underlying neurodegenerative process and thus prevent or alleviate DRPLA symptoms. An in-depth understanding of the normal atrophin-1 function and mutant atrophin-1 dysfunction is crucial for this purpose. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Bartosz Nowak
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Weronika Pawlik
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
18
|
Estrada-Sánchez AM, Rebec GV, Galvan L. Editorial: New insight into Huntington's disease: From neuropathology to possible therapeutic targets. Front Neurosci 2023; 17:1138712. [PMID: 36816128 PMCID: PMC9933495 DOI: 10.3389/fnins.2023.1138712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Affiliation(s)
- Ana María Estrada-Sánchez
- División de Biología Molecular, Laboratorio de Neurobiología, Instituto Potosino de Investigación Científica y Tecnológica (IPICYT), San Luis Potosí, Mexico,*Correspondence: Ana María Estrada-Sánchez ✉
| | - George V. Rebec
- Program in Neuroscience, Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States
| | - Laurie Galvan
- Sciences Department, Université de Nîmes, Nîmes, France
| |
Collapse
|
19
|
Kurokawa R, Kurokawa M, Mitsutake A, Nakaya M, Baba A, Nakata Y, Moritani T, Abe O. Clinical and neuroimaging review of triplet repeat diseases. Jpn J Radiol 2023; 41:115-130. [PMID: 36169768 PMCID: PMC9889482 DOI: 10.1007/s11604-022-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 02/04/2023]
Abstract
Triplet repeat diseases (TRDs) refer to a group of diseases caused by three nucleotide repeats elongated beyond a pathologic threshold. TRDs are divided into the following four groups depending on the pathomechanisms, although the pathomechanisms of several diseases remain unelucidated: polyglutamine disorders, caused by a pathologic repeat expansion of CAG (coding the amino acid glutamine) located within the exon; loss-of-function repeat disorders, characterized by the common feature of a loss of function of the gene within which they occur; RNA gain-of-function disorders, involving the production of a toxic RNA species; and polyalanine disorders, caused by a pathologic repeat expansion of GCN (coding the amino acid alanine) located within the exon. Many of these TRDs manifest through neurologic symptoms; moreover, neuroimaging, especially brain magnetic resonance imaging, plays a pivotal role in the detection of abnormalities, differentiation, and management of TRDs. In this article, we reviewed the clinical and neuroimaging features of TRDs. An early diagnosis of TRDs through clinical and imaging approaches is important and may contribute to appropriate medical intervention for patients and their families.
Collapse
Affiliation(s)
- Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Mariko Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Akihiko Mitsutake
- Department of Neurology, International University of Health and Welfare, Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329 Japan
| | - Moto Nakaya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akira Baba
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042 Japan
| | - Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
20
|
Liu Y, Wan L, Ngai CK, Wang Y, Lam SL, Guo P. Structures and conformational dynamics of DNA minidumbbells in pyrimidine-rich repeats associated with neurodegenerative diseases. Comput Struct Biotechnol J 2023; 21:1584-1592. [PMID: 36874156 PMCID: PMC9975016 DOI: 10.1016/j.csbj.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/05/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023] Open
Abstract
Expansions of short tandem repeats (STRs) are associated with approximately 50 human neurodegenerative diseases. These pathogenic STRs are prone to form non-B DNA structure, which has been considered as one of the causative factors for repeat expansions. Minidumbbell (MDB) is a relatively new type of non-B DNA structure formed by pyrimidine-rich STRs. An MDB is composed of two tetraloops or pentaloops, exhibiting a highly compact conformation with extensive loop-loop interactions. The MDB structures have been found to form in CCTG tetranucleotide repeats associated with myotonic dystrophy type 2, ATTCT pentanucleotide repeats associated with spinocerebellar ataxia type 10, and the recently discovered ATTTT/ATTTC repeats associated with spinocerebellar ataxia type 37 and familial adult myoclonic epilepsy. In this review, we first introduce the structures and conformational dynamics of MDBs with a focus on the high-resolution structural information determined by nuclear magnetic resonance spectroscopy. Then we discuss the effects of sequence context, chemical environment, and nucleobase modification on the structure and thermostability of MDBs. Finally, we provide perspectives on further explorations of sequence criteria and biological functions of MDBs.
Collapse
Affiliation(s)
- Yuan Liu
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, Guangdong 510640, China
| | - Liqi Wan
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheuk Kit Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Yang Wang
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Sik Lok Lam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, China
| | - Pei Guo
- Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC) Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
21
|
Saha G, Ghosh S, Dubey VK, Saudagar P. Gene Alterations Induced by Glutamine (Q) Encoding CAG Repeats Associated with Neurodegeneration. Methods Mol Biol 2023; 2575:3-23. [PMID: 36301468 DOI: 10.1007/978-1-0716-2716-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Several studies have been reported linking the role of polyglutamine (polyQ) disease-associated proteins with altered gene regulation induced by an unstable trinucleotide (CAG) repeat. Owing to their dynamic nature of expansion, these DNA repeats form secondary structures interfering with the normal cellular mechanisms like replication and transcription and, thereby, have become the underlying cause of numerous neurodegenerative disorders involving mental retardation and/or muscular or neuronal degeneration. Despite the widespread expression of the disease-causing protein, specific subsets of neurons are susceptible to specific patterns of inheritance and clinical symptoms. Although this cell-type selectivity is still elusive and less understood, it has been found that aberrant transcriptional regulation is one of the primary causes of polyQ diseases where the functions of histone-modifying complexes are disrupted. Besides, epigenetic modifications play a critical role in the pathogenesis of these diseases. In this chapter, we will be delving into how these polyQ repeats induce the self-assembly and aggregation of altered carrier proteins based on gene alterations, causing neuronal toxicity and cellular deaths. Besides, genomic instability in CAG repeats due to altered chromatin-related enzymes will be highlighted, along with epigenetic changes present in many polyQ disorders. Understanding the underlying molecular mechanisms in the root cause of these disorders will culminate in identifying therapeutic approaches for the treatment of these neurodegenerative disorders.
Collapse
Affiliation(s)
- Gundappa Saha
- Department of Basic & Translational Sciences, Penn Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sukanya Ghosh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology BHU, Varanasi, Uttar Pradesh, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal, Telangana, India.
| |
Collapse
|
22
|
Bonini NM. A perspective on Drosophila genetics and its insight into human neurodegenerative disease. Front Mol Biosci 2022; 9:1060796. [PMID: 36518845 PMCID: PMC9743296 DOI: 10.3389/fmolb.2022.1060796] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 10/28/2022] [Indexed: 09/07/2023] Open
Abstract
Drosophila has been long appreciated as a classic genetic system for its ability to define gene function in vivo. Within the last several decades, the fly has also emerged as a premiere system for modeling and defining mechanisms of human disease by expressing dominant human disease genes and analyzing the effects. Here I discuss key aspects of this latter approach that first intrigued me to focus my laboratory research on this idea. Differences between the loss-of-function vs. the gain-of-function approach are raised-and the insight of these approaches for appreciating mechanisms that contribute to human neurodegenerative disease. The application of modifier genetics, which is a prominent goal of models of human disease, has implications for how specific genes or pathways intersect with the dominant disease-associated mechanisms. Models of human disease will continue to reveal unanticipated insight into fundamental cellular processes-insight that might be harder to glean from classical genetic methodologies vs modifier genetics of disease.
Collapse
Affiliation(s)
- Nancy M. Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Incebacak Eltemur RD, Nguyen HP, Weber JJ. Calpain-mediated proteolysis as driver and modulator of polyglutamine toxicity. Front Mol Neurosci 2022; 15:1020104. [PMID: 36385755 PMCID: PMC9648470 DOI: 10.3389/fnmol.2022.1020104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/26/2022] [Indexed: 09/22/2023] Open
Abstract
Among posttranslational modifications, directed proteolytic processes have the strongest impact on protein integrity. They are executed by a variety of cellular machineries and lead to a wide range of molecular consequences. Compared to other forms of proteolytic enzymes, the class of calcium-activated calpains is considered as modulator proteases due to their limited proteolytic activity, which changes the structure and function of their target substrates. In the context of neurodegeneration and - in particular - polyglutamine disorders, proteolytic events have been linked to modulatory effects on the molecular pathogenesis by generating harmful breakdown products of disease proteins. These findings led to the formulation of the toxic fragment hypothesis, and calpains appeared to be one of the key players and auspicious therapeutic targets in Huntington disease and Machado Joseph disease. This review provides a current survey of the role of calpains in proteolytic processes found in polyglutamine disorders. Together with insights into general concepts behind toxic fragments and findings in polyglutamine disorders, this work aims to inspire researchers to broaden and deepen the knowledge in this field, which will help to evaluate calpain-mediated proteolysis as a unifying and therapeutically targetable posttranslational mechanism in neurodegeneration.
Collapse
Affiliation(s)
- Rana Dilara Incebacak Eltemur
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Huu Phuc Nguyen
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
| | - Jonasz Jeremiasz Weber
- Department of Human Genetics, Ruhr University Bochum, Bochum, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Chen Y, Fan J, Xiao D, Li X. The role of SCAMP5 in central nervous system diseases. Neurol Res 2022; 44:1024-1037. [PMID: 36217917 DOI: 10.1080/01616412.2022.2107754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE Secretory carrier membrane proteins (SCAMPs) constitute a group of membrane transport proteins in plants, insects and mammals. The mammalian genome contains five types of SCAMP genes, namely, SCAMP1-SCAMP5. SCAMPs participate in the vesicle cycling fusion of vesicles and cell membranes and play roles in regulating exocytosis and endocytosis, activating synaptic function and transmitting nerve signals. Among these proteins, SCAMP5 is highly expressed in the brain and has direct or indirect effects on the function of the central nervous system. This paper may allow us to better understand the role of SCAMP5 in the central nervous system diseases. SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases. METHODS Through PubMed, this paper examined and analyzed the role of SCAMP5 in the central nervous system, as well as the relationship between SCAMP5 and various neurological diseases using the key terms "secretory carrier membrane proteins"," SCAMP5"," exocytosis"," endocytosis", "synaptic function", "central nervous system diseases" up to 01 March 2022. RESULTS SCAMP5 regulates membrane transport, controls the exocytosis of SVs and is related to secretion carrier and membrane function. In addition, SCAMP5 plays a major role in the normal maintenance of the physiological functions of nerve cells. CONCLUSION This article summarizes the effects of SCAMP5 on nerve cell exocytosis, endocytosis and synaptic function, as well as the relationship between SCAMP5 and various neurological diseases, to better understand the role of SCAMP5 in the pathogenesis of neurological diseases.
Collapse
Affiliation(s)
- Ye Chen
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Jiali Fan
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Dongqiong Xiao
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| | - Xihong Li
- Department of Emergency, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.,Ministry of Education, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Chengdu, Sichuan, China
| |
Collapse
|
25
|
Marchioretti C, Zuccaro E, Pandey UB, Rosati J, Basso M, Pennuto M. Skeletal Muscle Pathogenesis in Polyglutamine Diseases. Cells 2022; 11:2105. [PMID: 35805189 PMCID: PMC9265456 DOI: 10.3390/cells11132105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/27/2023] Open
Abstract
Polyglutamine diseases are characterized by selective dysfunction and degeneration of specific types of neurons in the central nervous system. In addition, nonneuronal cells can also be affected as a consequence of primary degeneration or due to neuronal dysfunction. Skeletal muscle is a primary site of toxicity of polyglutamine-expanded androgen receptor, but it is also affected in other polyglutamine diseases, more likely due to neuronal dysfunction and death. Nonetheless, pathological processes occurring in skeletal muscle atrophy impact the entire body metabolism, thus actively contributing to the inexorable progression towards the late and final stages of disease. Skeletal muscle atrophy is well recapitulated in animal models of polyglutamine disease. In this review, we discuss the impact and relevance of skeletal muscle in patients affected by polyglutamine diseases and we review evidence obtained in animal models and patient-derived cells modeling skeletal muscle.
Collapse
Affiliation(s)
- Caterina Marchioretti
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Emanuela Zuccaro
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Udai Bhan Pandey
- Department of Pediatrics, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA 15100, USA;
| | - Jessica Rosati
- Cellular Reprogramming Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, 71100 Foggia, Italy;
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38100 Trento, Italy;
| | - Maria Pennuto
- Department of Biomedical Sciences (DBS), University of Padova, 35131 Padova, Italy; (C.M.); (E.Z.)
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
26
|
Kulkarni P, Salgia R, Uversky VN. Intrinsic disorder, extraterrestrial peptides, and prebiotic life on the earth. J Biomol Struct Dyn 2022:1-5. [PMID: 35723592 DOI: 10.1080/07391102.2022.2088619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The discovery of mechanisms for the synthesis of homo-polymeric oligopeptides, such as polyglycine under conditions relevant to the astrophysical environment as well as in scenarios resembling primordial conditions that prevailed soon after Earth was formed, raises hopes in the search of extraterrestrial life. It also raises the possibility of extraterrestrial contribution to origin of life on Earth in the form of simple polypeptides. Bioinformatics analyses strongly predict such homo-polymeric peptides to be intrinsically disordered underscoring the potential involvement of IDPs in the origin of life which, even in its simplest form, could emerge spontaneously by autocatalysis of the primordial IDPs in self-organizing systems that evolved over time following natural selection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA.,Department of Systems Biology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ravi Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| |
Collapse
|
27
|
Abstract
Thanks to recent improvements in NMR spectrometer hardware and pulse sequence design, modern 13C NMR has become a useful tool for biomolecular applications. The complete assignment of a protein can be accomplished by using 13C detected multinuclear experiments and it can provide unique information relevant for the study of a variety of different biomolecules including paramagnetic proteins and intrinsically disordered proteins. A wide range of NMR observables can be measured, concurring to the structural and dynamic characterization of a protein in isolation, as part of a larger complex, or even inside a living cell. We present the different properties of 13C with respect to 1H, which provide the rationale for the experiments developed and their application, the technical aspects that need to be faced, and the many experimental variants designed to address different cases. Application areas where these experiments successfully complement proton NMR are also described.
Collapse
Affiliation(s)
- Isabella C. Felli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberta Pierattelli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
28
|
Martinez-Rojas VA, Juarez-Hernandez LJ, Musio C. Ion channels and neuronal excitability in polyglutamine neurodegenerative diseases. Biomol Concepts 2022; 13:183-199. [DOI: 10.1515/bmc-2022-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/14/2022] [Indexed: 11/15/2022] Open
Abstract
Abstract
Polyglutamine (polyQ) diseases are a family composed of nine neurodegenerative inherited disorders (NDDs) caused by pathological expansions of cytosine-adenine-guanine (CAG) trinucleotide repeats which encode a polyQ tract in the corresponding proteins. CAG polyQ repeat expansions produce neurodegeneration via multiple downstream mechanisms; among those the neuronal activity underlying the ion channels is affected directly by specific channelopathies or indirectly by secondary dysregulation. In both cases, the altered excitability underlies to gain- or loss-of-function pathological effects. Here we summarize the repertoire of ion channels in polyQ NDDs emphasizing the biophysical features of neuronal excitability and their pathogenic role. The aim of this review is to point out the value of a deeper understanding of those functional mechanisms and processes as crucial elements for the designing and targeting of novel therapeutic avenues.
Collapse
Affiliation(s)
- Vladimir A. Martinez-Rojas
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Leon J. Juarez-Hernandez
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| | - Carlo Musio
- Institute of Biophysics (IBF), Trento Unit, National Research Council (CNR) , Via Sommarive 18 , 38123 Trento , Italy
| |
Collapse
|
29
|
Goswami R, Bello AI, Bean J, Costanzo KM, Omer B, Cornelio-Parra D, Odah R, Ahluwalia A, Allan SK, Nguyen N, Shores T, Aziz NA, Mohan RD. The Molecular Basis of Spinocerebellar Ataxia Type 7. Front Neurosci 2022; 16:818757. [PMID: 35401096 PMCID: PMC8987156 DOI: 10.3389/fnins.2022.818757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/07/2022] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia (SCA) type 7 (SCA7) is caused by a CAG trinucleotide repeat expansion in the ataxin 7 (ATXN7) gene, which results in polyglutamine expansion at the amino terminus of the ATXN7 protein. Although ATXN7 is expressed widely, the best characterized symptoms of SCA7 are remarkably tissue specific, including blindness and degeneration of the brain and spinal cord. While it is well established that ATXN7 functions as a subunit of the Spt Ada Gcn5 acetyltransferase (SAGA) chromatin modifying complex, the mechanisms underlying SCA7 remain elusive. Here, we review the symptoms of SCA7 and examine functions of ATXN7 that may provide further insights into its pathogenesis. We also examine phenotypes associated with polyglutamine expanded ATXN7 that are not considered symptoms of SCA7.
Collapse
Affiliation(s)
- Rituparna Goswami
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Abudu I. Bello
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Joe Bean
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Kara M. Costanzo
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Bwaar Omer
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Dayanne Cornelio-Parra
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Revan Odah
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Amit Ahluwalia
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Shefaa K. Allan
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Nghi Nguyen
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - Taylor Shores
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
| | - N. Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ryan D. Mohan
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, MO, United States
- *Correspondence: Ryan D. Mohan,
| |
Collapse
|
30
|
The evolutionary history of the polyQ tract in huntingtin sheds light on its functional pro-neural activities. Cell Death Differ 2022; 29:293-305. [PMID: 34974533 PMCID: PMC8817008 DOI: 10.1038/s41418-021-00914-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/09/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Huntington's disease is caused by a pathologically long (>35) CAG repeat located in the first exon of the Huntingtin gene (HTT). While pathologically expanded CAG repeats are the focus of extensive investigations, non-pathogenic CAG tracts in protein-coding genes are less well characterized. Here, we investigated the function and evolution of the physiological CAG tract in the HTT gene. We show that the poly-glutamine (polyQ) tract encoded by CAGs in the huntingtin protein (HTT) is under purifying selection and subjected to stronger selective pressures than CAG-encoded polyQ tracts in other proteins. For natural selection to operate, the polyQ must perform a function. By combining genome-edited mouse embryonic stem cells and cell assays, we show that small variations in HTT polyQ lengths significantly correlate with cells' neurogenic potential and with changes in the gene transcription network governing neuronal function. We conclude that during evolution natural selection promotes the conservation and purity of the CAG-encoded polyQ tract and that small increases in its physiological length influence neural functions of HTT. We propose that these changes in HTT polyQ length contribute to evolutionary fitness including potentially to the development of a more complex nervous system.
Collapse
|
31
|
Fourier A, Quadrio I. Proteinopathies associated to repeat expansion disorders. J Neural Transm (Vienna) 2022; 129:173-185. [DOI: 10.1007/s00702-021-02454-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022]
|
32
|
Genetic architecture of motor neuron diseases. J Neurol Sci 2021; 434:120099. [PMID: 34965490 DOI: 10.1016/j.jns.2021.120099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022]
Abstract
Motor neuron diseases (MNDs) are rare and frequently fatal neurological disorders in which motor neurons within the brainstem and spinal cord regions slowly die. MNDs are primarily caused by genetic mutations, and > 100 different mutant genes in humans have been discovered thus far. Given the fact that many more MND-related genes have yet to be discovered, the growing body of genetic evidence has offered new insights into the diverse cellular and molecular mechanisms involved in the aetiology and pathogenesis of MNDs. This search may aid in the selection of potential candidate genes for future investigation and, eventually, may open the door to novel interventions to slow down disease progression. In this review paper, we have summarized detailed existing research findings of different MNDs, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), spinal bulbar muscle atrophy (SBMA) and hereditary spastic paraplegia (HSP) in relation to their complex genetic architecture.
Collapse
|
33
|
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
34
|
CK1BP Reduces α-Synuclein Oligomerization and Aggregation Independent of Serine 129 Phosphorylation. Cells 2021; 10:cells10112830. [PMID: 34831053 PMCID: PMC8616157 DOI: 10.3390/cells10112830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
The pathological accumulation of α-Synuclein (α-Syn) is the hallmark of neurodegenerative α-synucleinopathies, including Parkinsons's disease (PD). In contrast to the mostly non-phosphorylated soluble α-Syn, aggregated α-Syn is usually phosphorylated at serine 129 (S129). Therefore, S129-phosphorylation is suspected to interfere with α-Syn aggregation. Among other kinases, protein kinase CK1 (CK1) is known to phosphorylate α-Syn at S129. We overexpressed CK1 binding protein (CK1BP) to inhibit CK1 kinase activity. Using Bimolecular Fluorescence Complementation (BiFC) in combination with biochemical methods, we monitored the S129 phosphorylation and oligomerization of α-Syn in HEK293T cells. We found that CK1BP reduced the overall protein levels of α-Syn. Moreover, CK1BP concomitantly reduced S129 phosphorylation, oligomerization and the amount of insoluble α-Syn. Analyzing different α-Syn variants including S129 mutations, we show that the effects of CK1BP on α-Syn accumulation were independent of S129 phosphorylation. Further analysis of an aggregating polyglutamine (polyQ) protein confirmed a phosphorylation-independent decrease in aggregation. Our results imply that the inhibition of CK1 activity by CK1BP might exert beneficial effects on NDDs in general. Accordingly, CK1BP represents a promising target for the rational design of therapeutic approaches to cease or at least delay the progression of α-synucleinopathies.
Collapse
|
35
|
McIntosh CS, Li D, Wilton SD, Aung-Htut MT. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021; 9:1499. [PMID: 34829728 PMCID: PMC8615177 DOI: 10.3390/biomedicines9111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine (polyQ) ataxias are a heterogenous group of neurological disorders all caused by an expanded CAG trinucleotide repeat located in the coding region of each unique causative gene. To date, polyQ ataxias encompass six disorders: spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17 and account for a larger group of disorders simply known as polyglutamine disorders, which also includes Huntington's disease. These diseases are typically characterised by progressive ataxia, speech and swallowing difficulties, lack of coordination and gait, and are unfortunately fatal in nature, with the exception of SCA6. All the polyQ spinocerebellar ataxias have a hallmark feature of neuronal aggregations and share many common pathogenic mechanisms, such as mitochondrial dysfunction, impaired proteasomal function, and autophagy impairment. Currently, therapeutic options are limited, with no available treatments that slow or halt disease progression. Here, we discuss the common molecular and clinical presentations of polyQ spinocerebellar ataxias. We will also discuss the promising antisense oligonucleotide therapeutics being developed as treatments for these devastating diseases. With recent advancements and therapeutic approvals of various antisense therapies, it is envisioned that some of the studies reviewed may progress into clinical trials and beyond.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Dunhui Li
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
36
|
McGurk L, Rifai OM, Shcherbakova O, Perlegos AE, Byrns CN, Carranza FR, Zhou HW, Kim HJ, Zhu Y, Bonini NM. Toxicity of pathogenic ataxin-2 in Drosophila shows dependence on a pure CAG repeat sequence. Hum Mol Genet 2021; 30:1797-1810. [PMID: 34077532 PMCID: PMC8444453 DOI: 10.1093/hmg/ddab148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Spinocerebellar ataxia type 2 is a polyglutamine (polyQ) disease associated with an expanded polyQ domain within the protein product of the ATXN2 gene. Interestingly, polyQ repeat expansions in ATXN2 are also associated with amyotrophic lateral sclerosis (ALS) and parkinsonism depending upon the length of the polyQ repeat expansion. The sequence encoding the polyQ repeat also varies with disease presentation: a pure CAG repeat is associated with SCA2, whereas the CAG repeat in ALS and parkinsonism is typically interrupted with the glutamine encoding CAA codon. Here, we asked if the purity of the CAG sequence encoding the polyQ repeat in ATXN2 could impact the toxicity of the ataxin-2 protein in vivo in Drosophila. We found that ataxin-2 encoded by a pure CAG repeat conferred toxicity in the retina and nervous system, whereas ataxin-2 encoded by a CAA-interrupted repeat or CAA-only repeat failed to confer toxicity, despite expression of the protein at similar levels. Furthermore, the CAG-encoded ataxin-2 protein aggregated in the fly eye, while ataxin-2 encoded by either a CAA/G or CAA repeat remained diffuse. The toxicity of the CAG-encoded ataxin-2 protein was also sensitive to the translation factor eIF4H, a known modifier of the toxic GGGGCC repeat in flies. These data indicate that ataxin-2 encoded by a pure CAG versus interrupted CAA/G polyQ repeat domain is associated with differential toxicity, indicating that mechanisms associated with the purity of the sequence of the polyQ domain contribute to disease.
Collapse
Affiliation(s)
- Leeanne McGurk
- Division of Cell & Developmental Biology, School of Life Sciences, University of Dundee, Dundee, UK
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Olivia M Rifai
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - China N Byrns
- Neurosciences Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Medical Sciences Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faith R Carranza
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Henry W Zhou
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Hyung-Jun Kim
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yongqing Zhu
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Nancy M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
- Neurosciences Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Chaudhry A, Anthanasiou-Fragkouli A, Houlden H. DRPLA: understanding the natural history and developing biomarkers to accelerate therapeutic trials in a globally rare repeat expansion disorder. J Neurol 2021; 268:3031-3041. [PMID: 33106889 PMCID: PMC8289787 DOI: 10.1007/s00415-020-10218-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Dentatorubral-pallidoluysian atrophy (DRPLA) is a rare neurodegenerative disorder caused by CAG repeat expansions in the atrophin-1 gene and is inherited in an autosomal dominant fashion. There are currently no disease-modifying treatments available. The broad development of therapies for DRPLA, as well as other similar rare diseases, has hit a roadblock due to the rarity of the condition and the wide global distribution of patients and families, consequently inhibiting biomarker development and therapeutic research. Considering the shifting focus towards diverse populations, widespread genetic testing, rapid advancements in the development of clinical and wet biomarkers for Huntington's disease (HD), and the ongoing clinical trials for antisense oligonucleotide (ASO) therapies, the prospect of developing effective treatments in rare disorders has completely changed. The awareness of the HD ASO program has prompted global collaboration for rare disorders in natural history studies and the development of biomarkers, with the eventual goal of undergoing treatment trials. Here, we discuss DRPLA, which shares similarities with HD, and how in this and other repeat expansion disorders, neurogenetics groups like ours at UCL are gearing up for forthcoming natural history studies to accelerate future ASO treatment trials to hopefully emulate the progress seen in HD.
Collapse
Affiliation(s)
- Aiysha Chaudhry
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | | | - Henry Houlden
- Department of Neuromuscular Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| |
Collapse
|
38
|
Fusco AF, Pucci LA, Switonski PM, Biswas DD, McCall AL, Kahn AF, Dhindsa JS, Strickland LM, La Spada AR, ElMallah MK. Respiratory dysfunction in a mouse model of spinocerebellar ataxia type 7. Dis Model Mech 2021; 14:dmm048893. [PMID: 34160002 PMCID: PMC8319550 DOI: 10.1242/dmm.048893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/15/2021] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an autosomal-dominant neurodegenerative disorder caused by a CAG repeat expansion in the coding region of the ataxin-7 gene. Infantile-onset SCA7 patients display extremely large repeat expansions (>200 CAGs) and exhibit progressive ataxia, dysarthria, dysphagia and retinal degeneration. Severe hypotonia, aspiration pneumonia and respiratory failure often contribute to death in affected infants. To better understand the features of respiratory and upper airway dysfunction in SCA7, we examined breathing and putative phrenic and hypoglossal neuropathology in a knock-in mouse model of early-onset SCA7 carrying an expanded allele with 266 CAG repeats. Whole-body plethysmography was used to measure awake spontaneously breathing SCA7-266Q knock-in mice at baseline in normoxia and during a hypercapnic/hypoxic respiratory challenge at 4 and 8 weeks, before and after the onset of disease. Postmortem studies included quantification of putative phrenic and hypoglossal motor neurons and microglia, and analysis of ataxin-7 aggregation at end stage. SCA7-266Q mice had profound breathing deficits during a respiratory challenge, exhibiting reduced respiratory output and a greater percentage of time in apnea. Histologically, putative phrenic and hypoglossal motor neurons of SCA7 mice exhibited a reduction in number accompanied by increased microglial activation, indicating neurodegeneration and neuroinflammation. Furthermore, intranuclear ataxin-7 accumulation was observed in cells neighboring putative phrenic and hypoglossal motor neurons in SCA7 mice. These findings reveal the importance of phrenic and hypoglossal motor neuron pathology associated with respiratory failure and upper airway dysfunction, which are observed in infantile-onset SCA7 patients and likely contribute to their early death.
Collapse
Affiliation(s)
- Anna F. Fusco
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Logan A. Pucci
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Pawel M. Switonski
- Department of Pathology & Laboratory Medicine, and Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Neurology, School of Medicine, Duke University, Durham, NC 27708, USA
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14 Str., 61-704 Poznan, Poland
| | - Debolina D. Biswas
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Angela L. McCall
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Amanda F. Kahn
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Justin S. Dhindsa
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Laura M. Strickland
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| | - Albert R. La Spada
- Department of Pathology & Laboratory Medicine, and Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
- Department of Neurology, School of Medicine, Duke University, Durham, NC 27708, USA
- UCI Institute for Neurotherapeutics, Department of Neurology, School of Medicine, University of California Irvine, Irvine, CA 92697, USA
| | - Mai K. ElMallah
- Department of Pediatrics, School of Medicine, Duke University, Durham, NC 27708, USA
| |
Collapse
|
39
|
Ghosh B, Karmakar S, Prasad M, Mandal AK. Praja1 ubiquitin ligase facilitates degradation of polyglutamine proteins and suppresses polyglutamine-mediated toxicity. Mol Biol Cell 2021; 32:1579-1593. [PMID: 34161122 PMCID: PMC8351749 DOI: 10.1091/mbc.e20-11-0747] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
A network of chaperones and ubiquitin ligases sustain intracellular proteostasis and is integral in preventing aggregation of misfolded proteins associated with various neurodegenerative diseases. Using cell-based studies of polyglutamine (polyQ) diseases, spinocerebellar ataxia type 3 (SCA3) and Huntington's disease (HD), we aimed to identify crucial ubiquitin ligases that protect against polyQ aggregation. We report here that Praja1 (PJA1), a Ring-H2 ubiquitin ligase abundantly expressed in the brain, is diminished when polyQ repeat proteins (ataxin-3/huntingtin) are expressed in cells. PJA1 interacts with polyQ proteins and enhances their degradation, resulting in reduced aggregate formation. Down-regulation of PJA1 in neuronal cells increases polyQ protein levels vis-a-vis their aggregates, rendering the cells vulnerable to cytotoxic stress. Finally, PJA1 suppresses polyQ toxicity in yeast and rescues eye degeneration in a transgenic Drosophila model of SCA3. Thus, our findings establish PJA1 as a robust ubiquitin ligase of polyQ proteins and induction of which might serve as an alternative therapeutic strategy in handling cytotoxic polyQ aggregates.
Collapse
Affiliation(s)
- Baijayanti Ghosh
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Susnata Karmakar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Atin K Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| |
Collapse
|
40
|
Oura S, Noda T, Morimura N, Hitoshi S, Nishimasu H, Nagai Y, Nureki O, Ikawa M. Precise CAG repeat contraction in a Huntington's Disease mouse model is enabled by gene editing with SpCas9-NG. Commun Biol 2021; 4:771. [PMID: 34163001 PMCID: PMC8222283 DOI: 10.1038/s42003-021-02304-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 06/03/2021] [Indexed: 12/22/2022] Open
Abstract
The clustered regularly interspaced palindromic repeats (CRISPR)/Cas9 system is a research hotspot in gene therapy. However, the widely used Streptococcus pyogenes Cas9 (WT-SpCas9) requires an NGG protospacer adjacent motif (PAM) for target recognition, thereby restricting targetable disease mutations. To address this issue, we recently reported an engineered SpCas9 nuclease variant (SpCas9-NG) recognizing NGN PAMs. Here, as a feasibility study, we report SpCas9-NG-mediated repair of the abnormally expanded CAG repeat tract in Huntington's disease (HD). By targeting the boundary of CAG repeats with SpCas9-NG, we precisely contracted the repeat tracts in HD-mouse-derived embryonic stem (ES) cells. Further, we confirmed the recovery of phenotypic abnormalities in differentiated neurons and animals produced from repaired ES cells. Our study shows that SpCas9-NG can be a powerful tool for repairing abnormally expanded CAG repeats as well as other disease mutations that are difficult to access with WT-SpCas9.
Collapse
Affiliation(s)
- Seiya Oura
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Taichi Noda
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Division of Reproductive Biology, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Naoko Morimura
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Seiji Hitoshi
- Department of Integrative Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Nishimasu
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Department of Structural Biology, Research center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Neurology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Masahito Ikawa
- Department of Experimental Genome Research, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
- Laboratory of Reproductive Systems Biology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
41
|
Tran Q, Sudasinghe A, Jones B, Xiong K, Cohen RE, Sharlin DS, Hartert KT, Goellner GM. FAM171B is a novel polyglutamine protein widely expressed in the mammalian brain. Brain Res 2021; 1766:147540. [PMID: 34052262 DOI: 10.1016/j.brainres.2021.147540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
Mutation in proteins containing polyglutamine (polyQ) tracts has been shown to underlie a number of severe human neurodegenerative disorders such as Huntington's Disease and Spinocerebellar Ataxia. In this study, we identify and describe FAM171B as a novel polyQ protein containing fourteen consecutive glutamine residues in its National Center for Biotechnology Information (NCBI) referenced sequence. Utilizing western blotting, in situ hybridization, and immunohistochemistry, we demonstrate that FAM171B is widely expressed in mouse brain with pronounced localization in the hippocampus, cerebellum, and cerebral cortex. Furthermore, immunofluorescence experiments reveal that FAM171B predominantly localizes to vesicle-like structures in the cytoplasm of neurons. Finally, bioinformatic analysis suggests that FAM171B is robustly expressed in human brain, and (similar to other polyQ disease genes) its polyQ tract is polymorphic within the general human population. Thus, as a polyQ protein that is expressed in brain, FAM171B should be considered a candidate gene for an as yet molecularly uncharacterized neurodegenerative disease.
Collapse
Affiliation(s)
- Quan Tran
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Ashani Sudasinghe
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Brooke Jones
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Ka Xiong
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Rachel E Cohen
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - David S Sharlin
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Keenan T Hartert
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States
| | - Geoffrey M Goellner
- Department of Biological Sciences, Trafton South 242, Minnesota State University, Mankato, MN 56001, United States.
| |
Collapse
|
42
|
Clenbuterol-sensitive delayed outward potassium currents in a cell model of spinal and bulbar muscular atrophy. Pflugers Arch 2021; 473:1213-1227. [PMID: 34021780 DOI: 10.1007/s00424-021-02559-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/09/2021] [Accepted: 03/23/2021] [Indexed: 10/21/2022]
Abstract
Spinal and bulbar muscular atrophy (SBMA) is a neuromuscular disease caused by polyglutamine (polyQ) expansions in the androgen receptor (AR) gene. SBMA is characterized by selective dysfunction and degeneration of motor neurons in the brainstem and spinal cord through still unclear mechanisms in which ion channel modulation might play a central role as for other neurodegenerative diseases. The beta2-adrenergic agonist clenbuterol was observed to ameliorate the SBMA phenotype in mice and patient-derived myotubes. However, the underlying molecular mechanism has yet to be clarified. Here, we unveil that ionic current alterations induced by the expression of polyQ-expanded AR in motor neuron-derived MN-1 cells are attenuated by the administration of clenbuterol. Our combined electrophysiological and pharmacological approach allowed us to reveal that clenbuterol modifies delayed outward potassium currents. Overall, we demonstrated that the protection provided by clenbuterol restores the normal function through the modulation of KV2-type outward potassium currents, possibly contributing to the protective effect on motor neuron toxicity in SBMA.
Collapse
|
43
|
Depienne C, Mandel JL. 30 years of repeat expansion disorders: What have we learned and what are the remaining challenges? Am J Hum Genet 2021; 108:764-785. [PMID: 33811808 PMCID: PMC8205997 DOI: 10.1016/j.ajhg.2021.03.011] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022] Open
Abstract
Tandem repeats represent one of the most abundant class of variations in human genomes, which are polymorphic by nature and become highly unstable in a length-dependent manner. The expansion of repeat length across generations is a well-established process that results in human disorders mainly affecting the central nervous system. At least 50 disorders associated with expansion loci have been described to date, with half recognized only in the last ten years, as prior methodological difficulties limited their identification. These limitations still apply to the current widely used molecular diagnostic methods (exome or gene panels) and thus result in missed diagnosis detrimental to affected individuals and their families, especially for disorders that are very rare and/or clinically not recognizable. Most of these disorders have been identified through family-driven approaches and many others likely remain to be identified. The recent development of long-read technologies provides a unique opportunity to systematically investigate the contribution of tandem repeats and repeat expansions to the genetic architecture of human disorders. In this review, we summarize the current and most recent knowledge about the genetics of repeat expansion disorders and the diversity of their pathophysiological mechanisms and outline the perspectives of developing personalized treatments in the future.
Collapse
Affiliation(s)
- Christel Depienne
- Institute of Human Genetics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, UMR S 1127, Inserm U1127, CNRS UMR 7225, 75013 Paris, France.
| | - Jean-Louis Mandel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67400, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch 67400, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch 67400, France; Université de Strasbourg, Illkirch 67400, France; USIAS University of Strasbourg Institute of Advanced study, 67000 Strasbourg, France.
| |
Collapse
|
44
|
Minakawa EN, Nagai Y. Protein Aggregation Inhibitors as Disease-Modifying Therapies for Polyglutamine Diseases. Front Neurosci 2021; 15:621996. [PMID: 33642983 PMCID: PMC7907447 DOI: 10.3389/fnins.2021.621996] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/18/2021] [Indexed: 12/11/2022] Open
Abstract
The polyglutamine (polyQ) diseases are a group of inherited neurodegenerative diseases caused by the abnormal expansion of a CAG trinucleotide repeat that are translated into an expanded polyQ stretch in the disease-causative proteins. The expanded polyQ stretch itself plays a critical disease-causative role in the pathomechanisms underlying polyQ diseases. Notably, the expanded polyQ stretch undergoes a conformational transition from the native monomer into the β-sheet-rich monomer, followed by the formation of soluble oligomers and then insoluble aggregates with amyloid fibrillar structures. The intermediate soluble species including the β-sheet-rich monomer and oligomers exhibit substantial neurotoxicity. Therefore, protein conformation stabilization and aggregation inhibition that target the upstream of the insoluble aggregate formation would be a promising approach toward the development of disease-modifying therapies for polyQ diseases. PolyQ aggregation inhibitors of different chemical categories, such as intrabodies, peptides, and small chemical compounds, have been identified through intensive screening methods. Among them, recent advances in the brain delivery methods of several peptides and the screening of small chemical compounds have brought them closer to clinical utility. Notably, the recent discovery of arginine as a potent conformation stabilizer and aggregation inhibitor of polyQ proteins both in vitro and in vivo have paved way to the clinical trial for the patients with polyQ diseases. Meanwhile, expression reduction of expanded polyQ proteins per se would be another promising approach toward disease modification of polyQ diseases. Gene silencing, especially by antisense oligonucleotides (ASOs), have succeeded in reducing the expression of polyQ proteins in the animal models of various polyQ diseases by targeting the aberrant mRNA with expanded CAG repeats. Of note, some of these ASOs have recently been translated into clinical trials. Here we overview and discuss these recent advances toward the development of disease modifying therapies for polyQ diseases. We envision that combination therapies using aggregation inhibitors and gene silencing would meet the needs of the patients with polyQ diseases and their caregivers in the near future to delay or prevent the onset and progression of these currently intractable diseases.
Collapse
Affiliation(s)
- Eiko N Minakawa
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan.,Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
45
|
Przybyl L, Wozna-Wysocka M, Kozlowska E, Fiszer A. What, When and How to Measure-Peripheral Biomarkers in Therapy of Huntington's Disease. Int J Mol Sci 2021; 22:ijms22041561. [PMID: 33557131 PMCID: PMC7913877 DOI: 10.3390/ijms22041561] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022] Open
Abstract
Among the main challenges in further advancing therapeutic strategies for Huntington’s disease (HD) is the development of biomarkers which must be applied to assess the efficiency of the treatment. HD is a dreadful neurodegenerative disorder which has its source of pathogenesis in the central nervous system (CNS) but is reflected by symptoms in the periphery. Visible symptoms include motor deficits and slight changes in peripheral tissues, which can be used as hallmarks for prognosis of the course of HD, e.g., the onset of the disease symptoms. Knowing how the pathology develops in the context of whole organisms is crucial for the development of therapy which would be the most beneficial for patients, as well as for proposing appropriate biomarkers to monitor disease progression and/or efficiency of treatment. We focus here on molecular peripheral biomarkers which could be used as a measurable outcome of potential therapy. We present and discuss a list of wet biomarkers which have been proposed in recent years to measure pre- and postsymptomatic HD. Interestingly, investigation of peripheral biomarkers in HD can unravel new aspects of the disease pathogenesis. This especially refers to inflammatory proteins or specific immune cells which attract scientific attention in neurodegenerative disorders.
Collapse
Affiliation(s)
- Lukasz Przybyl
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland
- Correspondence: (L.P.); (A.F.)
| | - Magdalena Wozna-Wysocka
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Emilia Kozlowska
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
| | - Agnieszka Fiszer
- Department of Medical Biotechnology, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (M.W.-W.); (E.K.)
- Correspondence: (L.P.); (A.F.)
| |
Collapse
|
46
|
Gomes-Pereira M, Monckton DG. Chronic Exposure to Cadmium and Antioxidants Does Not Affect the Dynamics of Expanded CAG•CTG Trinucleotide Repeats in a Mouse Cell Culture System of Unstable DNA. Front Cell Neurosci 2021; 14:606331. [PMID: 33603644 PMCID: PMC7884634 DOI: 10.3389/fncel.2020.606331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 12/02/2022] Open
Abstract
More than 30 human disorders are caused by the expansion of simple sequence DNA repeats, among which triplet repeats remain the most frequent. Most trinucleotide repeat expansion disorders affect primarily the nervous system, through mechanisms of neurodysfunction and/or neurodegeneration. While trinucleotide repeat tracts are short and stably transmitted in unaffected individuals, disease-associated expansions are highly dynamic in the germline and in somatic cells, with a tendency toward further expansion. Since longer repeats are associated with increasing disease severity and earlier onset of symptoms, intergenerational repeat size gains account for the phenomenon of anticipation. In turn, higher levels of age-dependent somatic expansion have been linked with increased disease severity and earlier age of onset, implicating somatic instability in the onset and progression of disease symptoms. Hence, tackling the root cause of symptoms through the control of repeat dynamics may provide therapeutic modulation of clinical manifestations. DNA repair pathways have been firmly implicated in the molecular mechanism of repeat length mutation. The demonstration that repeat expansion depends on functional DNA mismatch repair (MMR) proteins, points to MMR as a potential therapeutic target. Similarly, a role of DNA base excision repair (BER) in repeat expansion has also been suggested, particularly during the removal of oxidative lesions. Using a well-characterized mouse cell model system of an unstable CAG•CTG trinucleotide repeat, we tested if expanded repeat tracts can be stabilized by small molecules with reported roles in both pathways: cadmium (an inhibitor of MMR activity) and a variety of antioxidants (capable of neutralizing oxidative species). We found that chronic exposure to sublethal doses of cadmium and antioxidants did not result in significant reduction of the rate of trinucleotide repeat expansion. Surprisingly, manganese yielded a significant stabilization of the triplet repeat tract. We conclude that treatment with cadmium and antioxidants, at doses that do not interfere with cell survival and cell culture dynamics, is not sufficient to modify trinucleotide repeat dynamics in cell culture.
Collapse
Affiliation(s)
| | - Darren G Monckton
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
47
|
A fine balance between Prpf19 and Exoc7 in achieving degradation of aggregated protein and suppression of cell death in spinocerebellar ataxia type 3. Cell Death Dis 2021; 12:136. [PMID: 33542212 PMCID: PMC7862454 DOI: 10.1038/s41419-021-03444-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/30/2023]
Abstract
Polyglutamine (polyQ) diseases comprise Huntington's disease and several subtypes of spinocerebellar ataxia, including spinocerebellar ataxia type 3 (SCA3). The genomic expansion of coding CAG trinucleotide sequence in disease genes leads to the production and accumulation of misfolded polyQ domain-containing disease proteins, which cause cellular dysfunction and neuronal death. As one of the principal cellular protein clearance pathways, the activity of the ubiquitin-proteasome system (UPS) is tightly regulated to ensure efficient clearance of damaged and toxic proteins. Emerging evidence demonstrates that UPS plays a crucial role in the pathogenesis of polyQ diseases. Ubiquitin (Ub) E3 ligases catalyze the transfer of a Ub tag to label proteins destined for proteasomal clearance. In this study, we identified an E3 ligase, pre-mRNA processing factor 19 (Prpf19/prp19), that modulates expanded ataxin-3 (ATXN3-polyQ), disease protein of SCA3, induced neurodegeneration in both mammalian and Drosophila disease models. We further showed that Prpf19/prp19 promotes poly-ubiquitination and degradation of mutant ATXN3-polyQ protein. Our data further demonstrated the nuclear localization of Prpf19/prp19 is essential for eliciting its modulatory function towards toxic ATXN3-polyQ protein. Intriguingly, we found that exocyst complex component 7 (Exoc7/exo70), a Prpf19/prp19 interacting partner, modulates expanded ATXN3-polyQ protein levels and toxicity in an opposite manner to Prpf19/prp19. Our data suggest that Exoc7/exo70 exerts its ATXN3-polyQ-modifying effect through regulating the E3 ligase function of Prpf19/prp19. In summary, this study allows us to better define the mechanistic role of Exoc7/exo70-regulated Prpf19/prp19-associated protein ubiquitination pathway in SCA3 pathogenesis.
Collapse
|
48
|
Donaldson J, Powell S, Rickards N, Holmans P, Jones L. What is the Pathogenic CAG Expansion Length in Huntington's Disease? J Huntingtons Dis 2021; 10:175-202. [PMID: 33579866 PMCID: PMC7990448 DOI: 10.3233/jhd-200445] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Huntington's disease (HD) (OMIM 143100) is caused by an expanded CAG repeat tract in the HTT gene. The inherited CAG length is known to expand further in somatic and germline cells in HD subjects. Age at onset of the disease is inversely correlated with the inherited CAG length, but is further modulated by a series of genetic modifiers which are most likely to act on the CAG repeat in HTT that permit it to further expand. Longer repeats are more prone to expansions, and this expansion is age dependent and tissue-specific. Given that the inherited tract expands through life and most subjects develop disease in mid-life, this implies that in cells that degenerate, the CAG length is likely to be longer than the inherited length. These findings suggest two thresholds- the inherited CAG length which permits further expansion, and the intracellular pathogenic threshold, above which cells become dysfunctional and die. This two-step mechanism has been previously proposed and modelled mathematically to give an intracellular pathogenic threshold at a tract length of 115 CAG (95% confidence intervals 70- 165 CAG). Empirically, the intracellular pathogenic threshold is difficult to determine. Clues from studies of people and models of HD, and from other diseases caused by expanded repeat tracts, place this threshold between 60- 100 CAG, most likely towards the upper part of that range. We assess this evidence and discuss how the intracellular pathogenic threshold in manifest disease might be better determined. Knowing the cellular pathogenic threshold would be informative for both understanding the mechanism in HD and deploying treatments.
Collapse
Affiliation(s)
- Jasmine Donaldson
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Sophie Powell
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Nadia Rickards
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Peter Holmans
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Lesley Jones
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
49
|
Nakamori M, Mochizuki H. Targeting Expanded Repeats by Small Molecules in Repeat Expansion Disorders. Mov Disord 2020; 36:298-305. [DOI: 10.1002/mds.28397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/20/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Affiliation(s)
- Masayuki Nakamori
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| | - Hideki Mochizuki
- Department of Neurology Osaka University Graduate School of Medicine Osaka Japan
| |
Collapse
|
50
|
New developments in Huntington's disease and other triplet repeat diseases: DNA repair turns to the dark side. Neuronal Signal 2020; 4:NS20200010. [PMID: 33224521 PMCID: PMC7672267 DOI: 10.1042/ns20200010] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023] Open
Abstract
Huntington’s disease (HD) is a fatal, inherited neurodegenerative disease that causes neuronal death, particularly in medium spiny neurons. HD leads to serious and progressive motor, cognitive and psychiatric symptoms. Its genetic basis is an expansion of the CAG triplet repeat in the HTT gene, leading to extra glutamines in the huntingtin protein. HD is one of nine genetic diseases in this polyglutamine (polyQ) category, that also includes a number of inherited spinocerebellar ataxias (SCAs). Traditionally it has been assumed that HD age of onset and disease progression were solely the outcome of age-dependent exposure of neurons to toxic effects of the inherited mutant huntingtin protein. However, recent genome-wide association studies (GWAS) have revealed significant effects of genetic variants outside of HTT. Surprisingly, these variants turn out to be mostly in genes encoding DNA repair factors, suggesting that at least some disease modulation occurs at the level of the HTT DNA itself. These DNA repair proteins are known from model systems to promote ongoing somatic CAG repeat expansions in tissues affected by HD. Thus, for triplet repeats, some DNA repair proteins seem to abandon their normal genoprotective roles and, instead, drive expansions and accelerate disease. One attractive hypothesis—still to be proven rigorously—is that somatic HTT expansions augment the disease burden of the inherited allele. If so, therapeutic approaches that lower levels of huntingtin protein may need blending with additional therapies that reduce levels of somatic CAG repeat expansions to achieve maximal effect.
Collapse
|