1
|
Banovac I, Prkačin MV, Kirchbaum I, Trnski-Levak S, Bobić-Rasonja M, Sedmak G, Petanjek Z, Jovanov-Milosevic N. Morphological and Molecular Characteristics of Perineuronal Nets in the Human Prefrontal Cortex-A Possible Link to Microcircuitry Specialization. Mol Neurobiol 2025; 62:1094-1111. [PMID: 38958887 PMCID: PMC11711633 DOI: 10.1007/s12035-024-04306-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/13/2024] [Indexed: 07/04/2024]
Abstract
Perineuronal nets (PNNs) are a type of extracellular matrix (ECM) that play a significant role in synaptic activity and plasticity of interneurons in health and disease. We researched PNNs' regional and laminar representation and molecular composition using immunohistochemistry and transcriptome analysis of Brodmann areas (BA) 9, 14r, and 24 in 25 human postmortem brains aged 13-82 years. The numbers of VCAN- and NCAN-expressing PNNs, relative to the total number of neurons, were highest in cortical layers I and VI while WFA-binding (WFA+) PNNs were most abundant in layers III-V. The ECM glycosylation pattern was the most pronounced regional difference, shown by a significantly lower proportion of WFA+ PNNs in BA24 (3.27 ± 0.69%) compared to BA9 (6.32 ± 1.73%; P = 0.0449) and BA14 (5.64 ± 0.71%; P = 0.0278). The transcriptome of late developmental and mature stages revealed a relatively stable expression of PNN-related transcripts (log2-transformed expression values: 6.5-8.5 for VCAN and 8.0-9.5 for NCAN). Finally, we propose a classification of PNNs that envelop GABAergic neurons in the human cortex. The significant differences in PNNs' morphology, distribution, and molecular composition strongly suggest an involvement of PNNs in specifying distinct microcircuits in particular cortical regions and layers.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Matija Vid Prkačin
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Ivona Kirchbaum
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Sara Trnski-Levak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Mihaela Bobić-Rasonja
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia
| | - Goran Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, Šalata 11, HR-10000, Zagreb, Croatia.
- Croatian Institute for Brain Research, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, School of Medicine University of Zagreb, Šalata 12, HR-10000, Zagreb, Croatia.
- Department of Biology, University of Zagreb School of Medicine, Šalata 3, HR-10000, Zagreb, Croatia.
| |
Collapse
|
2
|
Kostović I. Development of the basic architecture of neocortical circuitry in the human fetus as revealed by the coupling spatiotemporal pattern of synaptogenesis along with microstructure and macroscale in vivo MR imaging. Brain Struct Funct 2024; 229:2339-2367. [PMID: 39102068 PMCID: PMC11612014 DOI: 10.1007/s00429-024-02838-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/12/2024] [Indexed: 08/06/2024]
Abstract
In humans, a quantifiable number of cortical synapses appears early in fetal life. In this paper, we present a bridge across different scales of resolution and the distribution of synapses across the transient cytoarchitectonic compartments: marginal zone (MZ), cortical plate (CP), subplate (SP), and in vivo MR images. The tissue of somatosensory cortex (7-26 postconceptional weeks (PCW)) was prepared for electron microscopy, and classified synapses with a determined subpial depth were used for creating histograms matched to the histological sections immunoreacted for synaptic markers and aligned to in vivo MR images (1.5 T) of corresponding fetal ages (maternal indication). Two time periods and laminar patterns of synaptogenesis were identified: an early and midfetal two-compartmental distribution (MZ and SP) and a late fetal three-compartmental distribution (CP synaptogenesis). During both periods, a voluminous, synapse-rich SP was visualized on the in vivo MR. Another novel finding concerns the phase of secondary expansion of the SP (13 PCW), where a quantifiable number of synapses appears in the upper SP. This lamina shows a T2 intermediate signal intensity below the low signal CP. In conclusion, the early fetal appearance of synapses shows early differentiation of putative genetic mechanisms underlying the synthesis, transport and assembly of synaptic proteins. "Pioneering" synapses are likely to play a morphogenetic role in constructing of fundamental circuitry architecture due to interaction between neurons. They underlie spontaneous, evoked, and resting state activity prior to ex utero experience. Synapses can also mediate genetic and environmental triggers, adversely altering the development of cortical circuitry and leading to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Evans AD, Pournoori N, Saksala E, Oommen OP. Glycosaminoglycans' for brain health: Harnessing glycosaminoglycan based biomaterials for treating central nervous system diseases and in-vitro modeling. Biomaterials 2024; 309:122629. [PMID: 38797120 DOI: 10.1016/j.biomaterials.2024.122629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/06/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Dysfunction of the central nervous system (CNS) following traumatic brain injuries (TBI), spinal cord injuries (SCI), or strokes remains challenging to address using existing medications and cell-based therapies. Although therapeutic cell administration, such as stem cells and neuronal progenitor cells (NPCs), have shown promise in regenerative properties, they have failed to provide substantial benefits. However, the development of living cortical tissue engineered grafts, created by encapsulating these cells within an extracellular matrix (ECM) mimetic hydrogel scaffold, presents a promising functional replacement for damaged cortex in cases of stroke, SCI, and TBI. These grafts facilitate neural network repair and regeneration following CNS injuries. Given that natural glycosaminoglycans (GAGs) are a major constituent of the CNS, GAG-based hydrogels hold potential for the next generation of CNS healing therapies and in vitro modeling of CNS diseases. Brain-specific GAGs not only offer structural and biochemical signaling support to encapsulated neural cells but also modulate the inflammatory response in lesioned brain tissue, facilitating host integration and regeneration. This review briefly discusses different roles of GAGs and their related proteoglycan counterparts in healthy and diseases brain and explores current trends and advancements in GAG-based biomaterials for treating CNS injuries and modeling diseases. Additionally, it examines injectable, 3D bioprintable, and conductive GAG-based scaffolds, highlighting their clinical potential for in vitro modeling of patient-specific neural dysfunction and their ability to enhance CNS regeneration and repair following CNS injury in vivo.
Collapse
Affiliation(s)
- Austin D Evans
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Negin Pournoori
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Emmi Saksala
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland
| | - Oommen P Oommen
- Bioengineering and Nanomedicine Group, Faculty of Medicine and Health Technologies, Tampere University, 33720, Tampere, Finland; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, UK.
| |
Collapse
|
4
|
Pogledic I, Bobić‐Rasonja M, Mitter C, Štajduhar A, Schwartz E, Milković‐Periša M, Baltzer PA, Lequin M, Krampl‐Bettelheim E, Kasprian G, Judaš M, Prayer D, Jovanov‐Milosevic N. Fetal indusium griseum is a possible biomarker of the regularity of brain midline development in 3T MR imaging: A retrospective observational study. Acta Obstet Gynecol Scand 2024; 103:897-906. [PMID: 38339766 PMCID: PMC11019519 DOI: 10.1111/aogs.14781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 01/03/2024] [Indexed: 02/12/2024]
Abstract
INTRODUCTION This study aimed to assess the visibility of the indusium griseum (IG) in magnetic resonance (MR) scans of the human fetal brain and to evaluate its reliability as an imaging biomarker of the normality of brain midline development. MATERIAL AND METHODS The retrospective observational study encompassed T2-w 3T MR images from 90 post-mortem fetal brains and immunohistochemical sections from 41 fetal brains (16-40 gestational weeks) without cerebral pathology. Three raters independently inspected and evaluated the visibility of IG in post-mortem and in vivo MR scans. Weighted kappa statistics and regression analysis were used to determine inter- and intra-rater agreement and the type and strength of the association of IG visibility with gestational age. RESULTS The visibility of the IG was the highest between the 25 and 30 gestational week period, with a very good inter-rater variability (kappa 0.623-0.709) and excellent intra-rater variability (kappa 0.81-0.93). The immunochemical analysis of the histoarchitecture of IG discloses the expression of highly hydrated extracellular molecules in IG as the substrate of higher signal intensity and best visibility of IG during the mid-fetal period. CONCLUSIONS The knowledge of developmental brain histology and fetal age allows us to predict the IG-visibility in magnetic resonance imaging (MRI) and use it as a biomarker to evaluate the morphogenesis of the brain midline. As a biomarker, IG is significant for post-mortem pathological examination by MRI. Therefore, in the clinical in vivo imaging examination, IG should be anticipated when an assessment of the brain midline structures is needed in mid-gestation, including corpus callosum thickness measurements.
Collapse
Affiliation(s)
- Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image‐guided Therapy, Allgemeines KrankenhausMedical University of ViennaViennaAustria
| | - Mihaela Bobić‐Rasonja
- Department of BiologySchool of Medicine, University of ZagrebZagrebCroatia
- Croatian Institute for Brain Research, Scientific Center of Excellence for Basic, Clinical and Translational NeuroscienceSchool of Medicine University of ZagrebZagrebCroatia
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image‐guided Therapy, Allgemeines KrankenhausMedical University of ViennaViennaAustria
- Department of Systematic Anatomy, Center for Anatomy and Cell BiologyMedical University of ViennaViennaAustria
| | - Andrija Štajduhar
- Croatian Institute for Brain Research, Scientific Center of Excellence for Basic, Clinical and Translational NeuroscienceSchool of Medicine University of ZagrebZagrebCroatia
- School of MedicineSchool of Public Health “Andrija Štampar” University of ZagrebZagrebCroatia
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Marija Milković‐Periša
- Department of Pathology and Cytology, School of MedicineUniversity Hospital Center Zagreb, University of ZagrebZagrebCroatia
| | - Pascal A. Baltzer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image‐guided Therapy, Allgemeines KrankenhausMedical University of ViennaViennaAustria
| | - Maarten Lequin
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image‐guided Therapy, Allgemeines KrankenhausMedical University of ViennaViennaAustria
| | - Miloš Judaš
- Croatian Institute for Brain Research, Scientific Center of Excellence for Basic, Clinical and Translational NeuroscienceSchool of Medicine University of ZagrebZagrebCroatia
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image‐guided Therapy, Allgemeines KrankenhausMedical University of ViennaViennaAustria
| | - Natasa Jovanov‐Milosevic
- Department of BiologySchool of Medicine, University of ZagrebZagrebCroatia
- Croatian Institute for Brain Research, Scientific Center of Excellence for Basic, Clinical and Translational NeuroscienceSchool of Medicine University of ZagrebZagrebCroatia
| |
Collapse
|
5
|
Eşiyok N, Heide M. The SVZ stem cell niche-components, functions, and in vitro modelling. Front Cell Dev Biol 2023; 11:1332901. [PMID: 38188021 PMCID: PMC10766702 DOI: 10.3389/fcell.2023.1332901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024] Open
Abstract
Neocortical development depends on the intrinsic ability of neural stem and progenitor cells to proliferate and differentiate to generate the different kinds of neurons in the adult brain. These progenitor cells can be distinguished into apical progenitors, which occupy a stem cell niche in the ventricular zone and basal progenitors, which occupy a stem cell niche in the subventricular zone (SVZ). During development, the stem cell niche provided in the subventricular zone enables the increased proliferation and self-renewal of basal progenitors, which likely underlie the expansion of the human neocortex. However, the components forming the SVZ stem cell niche in the developing neocortex have not yet been fully understood. In this review, we will discuss potential components of the SVZ stem cell niche, i.e., extracellular matrix composition and brain vasculature, and their possible key role in establishing and maintaining this niche during fetal neocortical development. We will also emphasize the potential role of basal progenitor morphology in maintaining their proliferative capacity within the stem cell niche of the SVZ. Finally, we will focus on the use of brain organoids to i) understand the unique features of basal progenitors, notably basal radial glia; ii) study components of the SVZ stem cell niche; and iii) provide future directions on how to improve brain organoids, notably the organoid SVZ, and make them more reliable models of human neocortical development and evolution studies.
Collapse
Affiliation(s)
| | - Michael Heide
- Research Group Brain Development and Evolution, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
6
|
Soles A, Selimovic A, Sbrocco K, Ghannoum F, Hamel K, Moncada EL, Gilliat S, Cvetanovic M. Extracellular Matrix Regulation in Physiology and in Brain Disease. Int J Mol Sci 2023; 24:7049. [PMID: 37108212 PMCID: PMC10138624 DOI: 10.3390/ijms24087049] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The extracellular matrix (ECM) surrounds cells in the brain, providing structural and functional support. Emerging studies demonstrate that the ECM plays important roles during development, in the healthy adult brain, and in brain diseases. The aim of this review is to briefly discuss the physiological roles of the ECM and its contribution to the pathogenesis of brain disease, highlighting the gene expression changes, transcriptional factors involved, and a role for microglia in ECM regulation. Much of the research conducted thus far on disease states has focused on "omic" approaches that reveal differences in gene expression related to the ECM. Here, we review recent findings on alterations in the expression of ECM-associated genes in seizure, neuropathic pain, cerebellar ataxia, and age-related neurodegenerative disorders. Next, we discuss evidence implicating the transcription factor hypoxia-inducible factor 1 (HIF-1) in regulating the expression of ECM genes. HIF-1 is induced in response to hypoxia, and also targets genes involved in ECM remodeling, suggesting that hypoxia could contribute to ECM remodeling in disease conditions. We conclude by discussing the role microglia play in the regulation of the perineuronal nets (PNNs), a specialized form of ECM in the central nervous system. We show evidence that microglia can modulate PNNs in healthy and diseased brain states. Altogether, these findings suggest that ECM regulation is altered in brain disease, and highlight the role of HIF-1 and microglia in ECM remodeling.
Collapse
Affiliation(s)
- Alyssa Soles
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Adem Selimovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Kaelin Sbrocco
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Ferris Ghannoum
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Katherine Hamel
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Emmanuel Labrada Moncada
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Stephen Gilliat
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Marija Cvetanovic
- Department of Neuroscience, University of Minnesota, 321 Church St SE, Minneapolis, MN 55455, USA
- Institute for Translational Neuroscience, University of Minnesota, 2101 6th Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids. Biomolecules 2022; 13:biom13010025. [PMID: 36671410 PMCID: PMC9855696 DOI: 10.3390/biom13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Brain organoids are invaluable tools for pathophysiological studies or drug screening, but there are still challenges to overcome in making them more reproducible and relevant. Recent advances in three-dimensional (3D) bioprinting of human neural organoids is an emerging approach that may overcome the limitations of self-organized organoids. It requires the development of optimal hydrogels, and a wealth of research has improved our knowledge about biomaterials both in terms of their intrinsic properties and their relevance on 3D culture of brain cells and tissue. Although biomaterials are rarely biologically neutral, few articles have reviewed their roles on neural cells. We here review the current knowledge on unmodified biomaterials amenable to support 3D bioprinting of neural organoids with a particular interest in their impact on cell homeostasis. Alginate is a particularly suitable bioink base for cell encapsulation. Gelatine is a valuable helper agent for 3D bioprinting due to its viscosity. Collagen, fibrin, hyaluronic acid and laminin provide biological support to adhesion, motility, differentiation or synaptogenesis and optimize the 3D culture of neural cells. Optimization of specialized hydrogels to direct differentiation of stem cells together with an increased resolution in phenotype analysis will further extend the spectrum of possible bioprinted brain disease models.
Collapse
|
8
|
Angelopoulos I, Gakis G, Birmpas K, Kyrousi C, Habeos EE, Kaplani K, Lygerou Z, Habeos I, Taraviras S. Metabolic regulation of the neural stem cell fate: Unraveling new connections, establishing new concepts. Front Neurosci 2022; 16:1009125. [PMID: 36340763 PMCID: PMC9634649 DOI: 10.3389/fnins.2022.1009125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
The neural stem cell niche is a key regulator participating in the maintenance, regeneration, and repair of the brain. Within the niche neural stem cells (NSC) generate new neurons throughout life, which is important for tissue homeostasis and brain function. NSCs are regulated by intrinsic and extrinsic factors with cellular metabolism being lately recognized as one of the most important ones, with evidence suggesting that it may serve as a common signal integrator to ensure mammalian brain homeostasis. The aim of this review is to summarize recent insights into how metabolism affects NSC fate decisions in adult neural stem cell niches, with occasional referencing of embryonic neural stem cells when it is deemed necessary. Specifically, we will highlight the implication of mitochondria as crucial regulators of NSC fate decisions and the relationship between metabolism and ependymal cells. The link between primary cilia dysfunction in the region of hypothalamus and metabolic diseases will be examined as well. Lastly, the involvement of metabolic pathways in ependymal cell ciliogenesis and physiology regulation will be discussed.
Collapse
Affiliation(s)
| | - Georgios Gakis
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Kyriakos Birmpas
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Christina Kyrousi
- First Department of Psychiatry, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, Athens, Greece
- University Mental Health, Neurosciences and Precision Medicine Research Institute “Costas Stefanis”, Athens, Greece
| | - Evagelia Eva Habeos
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Konstantina Kaplani
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Ioannis Habeos
- Division of Endocrinology, Department of Internal Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- *Correspondence: Stavros Taraviras,
| |
Collapse
|
9
|
Wu Y, Lu YC, Kapse K, Jacobs M, Andescavage N, Donofrio MT, Lopez C, Quistorff JL, Vezina G, Krishnan A, du Plessis AJ, Limperopoulos C. In Utero MRI Identifies Impaired Second Trimester Subplate Growth in Fetuses with Congenital Heart Disease. Cereb Cortex 2022; 32:2858-2867. [PMID: 34882775 PMCID: PMC9247421 DOI: 10.1093/cercor/bhab386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 11/13/2022] Open
Abstract
The subplate is a transient brain structure which plays a key role in the maturation of the cerebral cortex. Altered brain growth and cortical development have been suggested in fetuses with complex congenital heart disease (CHD) in the third trimester. However, at an earlier gestation, the putative role of the subplate in altered brain development in CHD fetuses is poorly understood. This study aims to examine subplate growth (i.e., volume and thickness) and its relationship to cortical sulcal development in CHD fetuses compared with healthy fetuses by using 3D reconstructed fetal magnetic resonance imaging. We studied 260 fetuses, including 100 CHD fetuses (22.3-32 gestational weeks) and 160 healthy fetuses (19.6-31.9 gestational weeks). Compared with healthy fetuses, CHD fetuses had 1) decreased global and regional subplate volumes and 2) decreased subplate thickness in the right hemisphere overall, in frontal and temporal lobes, and insula. Compared with fetuses with two-ventricle CHD, those with single-ventricle CHD had reduced subplate volume and thickness in right occipital and temporal lobes. Finally, impaired subplate growth was associated with disturbances in cortical sulcal development in CHD fetuses. These findings suggested a potential mechanistic pathway and early biomarker for the third-trimester failure of brain development in fetuses with complex CHD. SIGNIFICANCE STATEMENT Our findings provide an early biomarker for brain maturational failure in fetuses with congenital heart disease, which may guide the development of future prenatal interventions aimed at reducing neurological compromise of prenatal origin in this high-risk population.
Collapse
Affiliation(s)
- Yao Wu
- Developing Brain Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Yuan-Chiao Lu
- Developing Brain Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Kushal Kapse
- Developing Brain Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Marni Jacobs
- School of Health Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nickie Andescavage
- Division of Neonatology, Children’s National Hospital, Washington, DC 20010, USA
| | - Mary T Donofrio
- Division of Cardiology, Children’s National Hospital, Washington, DC 20010, USA
| | - Catherine Lopez
- Developing Brain Institute, Children’s National Hospital, Washington, DC 20010, USA
| | | | - Gilbert Vezina
- Department of Diagnostic Imaging and Radiology, Children’s National Hospital, Washington, DC 20010, USA
| | - Anita Krishnan
- Division of Cardiology, Children’s National Hospital, Washington, DC 20010, USA
| | - Adré J du Plessis
- Prenatal Pediatrics Institute, Children’s National Hospital, Washington, DC 20010, USA
| | - Catherine Limperopoulos
- Address correspondence to Catherine Limperopoulos, Developing Brain Institute, Children's National Hospital, Washington, DC 20010, USA.
| |
Collapse
|
10
|
Trnski S, Nikolić B, Ilic K, Drlje M, Bobic-Rasonja M, Darmopil S, Petanjek Z, Hranilovic D, Jovanov-Milosevic N. The Signature of Moderate Perinatal Hypoxia on Cortical Organization and Behavior: Altered PNN-Parvalbumin Interneuron Connectivity of the Cingulate Circuitries. Front Cell Dev Biol 2022; 10:810980. [PMID: 35295859 PMCID: PMC8919082 DOI: 10.3389/fcell.2022.810980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/11/2022] [Indexed: 11/29/2022] Open
Abstract
This study was designed in a rat model to determine the hallmarks of possible permanent behavioral and structural brain alterations after a single moderate hypoxic insult. Eighty-two Wistar Han (RccHan: WIST) rats were randomly subjected to hypoxia (pO2 73 mmHg/2 h) or normoxia at the first postnatal day. The substantially increased blood lactate, a significantly decreased cytochrome-C-oxygenase expression in the brain, and depleted subventricular zone suggested a high vulnerability of subset of cell populations to oxidative stress and consequent tissue response even after a single, moderate, hypoxic event. The results of behavioral tests (open-field, hole-board, social-choice, and T-maze) applied at the 30–45th and 70–85th postnatal days revealed significant hyperactivity and a slower pace of learning in rats subjected to perinatal hypoxia. At 3.5 months after hypoxic insult, the histochemical examination demonstrated a significantly increased number of specific extracellular matrix—perineuronal nets and increased parvalbumin expression in a subpopulation of interneurons in the medial and retrosplenial cingulate cortex of these animals. Conclusively, moderate perinatal hypoxia in rats causes a long-lasting reorganization of the connectivity in the cingulate cortex and consequent alterations of related behavioral and cognitive abilities. This non-invasive hypoxia model in the rat successfully and complementarily models the moderate perinatal hypoxic injury in fetuses and prematurely born human babies and may enhance future research into new diagnostic and therapeutic strategies for perinatal medicine.
Collapse
Affiliation(s)
- Sara Trnski
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Barbara Nikolić
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Katarina Ilic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Neuroimaging, BRAIN Centre, Institute of Psychiatry, Psychology, and Neuroscience, King’s College London, London, United Kingdom
| | - Matea Drlje
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Mihaela Bobic-Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Sanja Darmopil
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Zdravko Petanjek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravka Hranilovic
- Department of Biology, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
- Department of Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
- *Correspondence: Natasa Jovanov-Milosevic,
| |
Collapse
|
11
|
Long KR, Huttner WB. The Role of the Extracellular Matrix in Neural Progenitor Cell Proliferation and Cortical Folding During Human Neocortex Development. Front Cell Neurosci 2022; 15:804649. [PMID: 35140590 PMCID: PMC8818730 DOI: 10.3389/fncel.2021.804649] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular matrix (ECM) has long been known to regulate many aspects of neural development in many different species. However, the role of the ECM in the development of the human neocortex is not yet fully understood. In this review we discuss the role of the ECM in human neocortex development and the different model systems that can be used to investigate this. In particular, we will focus on how the ECM regulates human neural stem and progenitor cell proliferation and differentiation, how the ECM regulates the architecture of the developing human neocortex and the effect of mutations in ECM and ECM-associated genes in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Katherine R. Long
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
12
|
Ioannidis K, Angelopoulos I, Gakis G, Karantzelis N, Spyroulias GA, Lygerou Z, Taraviras S. 3D Reconstitution of the Neural Stem Cell Niche: Connecting the Dots. Front Bioeng Biotechnol 2021; 9:705470. [PMID: 34778223 PMCID: PMC8581349 DOI: 10.3389/fbioe.2021.705470] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023] Open
Abstract
Neural stem cells (NSCs) are important constituents of the nervous system, and they become constrained in two specific regions during adulthood: the subventricular zone (SVZ) and the subgranular zone (SGZ) of the dentate gyrus in the hippocampus. The SVZ niche is a limited-space zone where NSCs are situated and comprised of growth factors and extracellular matrix (ECM) components that shape the microenvironment of the niche. The interaction between ECM components and NSCs regulates the equilibrium between self-renewal and differentiation. To comprehend the niche physiology and how it controls NSC behavior, it is fundamental to develop in vitro models that resemble adequately the physiologic conditions present in the neural stem cell niche. These models can be developed from a variety of biomaterials, along with different biofabrication approaches that permit the organization of neural cells into tissue-like structures. This review intends to update the most recent information regarding the SVZ niche physiology and the diverse biofabrication approaches that have been used to develop suitable microenvironments ex vivo that mimic the NSC niche physiology.
Collapse
Affiliation(s)
- Konstantinos Ioannidis
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece.,Department of Development and Regeneration, Prometheus Division of Skeletal Tissue Engineering, Skeletal Biology and Engineering Research Center, KU Leuven, Leuven, Belgium
| | - Ioannis Angelopoulos
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Georgios Gakis
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| | - Nikolaos Karantzelis
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece.,Department of Hematology, Oncology and Stem Cell Transplantation, University Medical Center Freiburg, Freiburg, Germany
| | | | - Zoi Lygerou
- Department of General Biology, School of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
13
|
Pogledic I, Schwartz E, Bobić-Rasonja M, Mitter C, Baltzer P, Gruber GM, Milković-Periša M, Haberler C, Bettelheim D, Kasprian G, Judaš M, Prayer D, Jovanov-Milošević N. 3T MRI signal intensity profiles and thicknesses of transient zones in human fetal brain at mid-gestation. Eur J Paediatr Neurol 2021; 35:67-73. [PMID: 34653829 DOI: 10.1016/j.ejpn.2021.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/15/2022]
Abstract
In this study we compare temporal lobe (TL) signal intensity (SI) profiles, along with the average thicknesses of the transient zones obtained from postmortem MRI (pMRI) scans and corresponding histological slices, to the frontal lobe (FL) SI and zone thicknesses, in normal fetal brains. The purpose was to assess the synchronization of the corticogenetic processes in different brain lobes. Nine postmortem human fetal brains without cerebral pathologies, from 19 to 24 weeks of gestation (GW) were analyzed on T2-weighted 3T pMRI, at the coronal level of the thalamus and basal ganglia. The SI profiles of the transient zones in the TL correlate well spatially and temporally to the signal intensity profile of the FL. During the examined period, in the TL, the intermediate and subventricular zone are about the size of the subplate zone (SP), while the superficial SP demonstrates the highest signal intensity. The correlation of the SI profiles and the distributions of the transient zones in the two brain lobes, indicates a time-aligned histogenesis during this narrow time window. The 3TpMRI enables an assessment of the regularity of lamination patterns in the fetal telencephalic wall, upon comparative evaluation of sizes of the transient developmental zones and the SI profiles of different cortical regions. A knowledge of normal vs. abnormal transient lamination patterns and the SI profiles is a prerequisite for further advancement of the MR diagnostic tools needed for early detection of developmental brain pathologies prenatally, especially mild white matter injuries such as lesions of TL due to prenatal cytomegalovirus infections, or cortical malformations.
Collapse
Affiliation(s)
- Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Mihaela Bobić-Rasonja
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia; University of Zagreb, School of Medicine, Department of Biology, Šalata 3, 10000, Zagreb, Croatia
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Pascal Baltzer
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Gerlinde Maria Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, 3500, Krems, Austria
| | - Marija Milković-Periša
- University Hospital Centre Zagreb, Department of Pathology and Cytology, Petrova 13, 10000, Zagreb, Croatia; University of Zagreb, School of Medicine, Institute of Pathology, Šalata 10, 10000 Zagreb, Croatia
| | - Christine Haberler
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090, Vienna, Austria
| | - Dieter Bettelheim
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090, Vienna, Austria
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Miloš Judaš
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, 1090, Vienna, Austria
| | - Nataša Jovanov-Milošević
- University of Zagreb, School of Medicine, Croatian Institute for Brain Research, Section for Developmental Neuroscience, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Šalata 12, 10000, Zagreb, Croatia; University of Zagreb, School of Medicine, Department of Biology, Šalata 3, 10000, Zagreb, Croatia.
| |
Collapse
|
14
|
Cho AN, Jin Y, An Y, Kim J, Choi YS, Lee JS, Kim J, Choi WY, Koo DJ, Yu W, Chang GE, Kim DY, Jo SH, Kim J, Kim SY, Kim YG, Kim JY, Choi N, Cheong E, Kim YJ, Je HS, Kang HC, Cho SW. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat Commun 2021; 12:4730. [PMID: 34354063 PMCID: PMC8342542 DOI: 10.1038/s41467-021-24775-5] [Citation(s) in RCA: 176] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/06/2021] [Indexed: 11/10/2022] Open
Abstract
Brain organoids derived from human pluripotent stem cells provide a highly valuable in vitro model to recapitulate human brain development and neurological diseases. However, the current systems for brain organoid culture require further improvement for the reliable production of high-quality organoids. Here, we demonstrate two engineering elements to improve human brain organoid culture, (1) a human brain extracellular matrix to provide brain-specific cues and (2) a microfluidic device with periodic flow to improve the survival and reduce the variability of organoids. A three-dimensional culture modified with brain extracellular matrix significantly enhanced neurogenesis in developing brain organoids from human induced pluripotent stem cells. Cortical layer development, volumetric augmentation, and electrophysiological function of human brain organoids were further improved in a reproducible manner by dynamic culture in microfluidic chamber devices. Our engineering concept of reconstituting brain-mimetic microenvironments facilitates the development of a reliable culture platform for brain organoids, enabling effective modeling and drug development for human brain diseases.
Collapse
Affiliation(s)
- Ann-Na Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yoonhee Jin
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yeonjoo An
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jin Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Yi Sun Choi
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Jung Seung Lee
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Junghoon Kim
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Won-Young Choi
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Dong-Jun Koo
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Weonjin Yu
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Gyeong-Eon Chang
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Dong-Yoon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jihun Kim
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung-Yon Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ju Young Kim
- Department of Advanced Materials Engineering, Kangwon National University, Samcheok, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea
| | - Young-Joon Kim
- Department of Biochemistry, Yonsei University, Seoul, Republic of Korea
| | - Hyunsoo Shawn Je
- Signature Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Hoon-Chul Kang
- Division of Pediatric Neurology, Department of Pediatrics, Severance Children's Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, Seoul, Republic of Korea.
- Center for Nanomedicine, Institute for Basic science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
15
|
Bobić-Rasonja M, Pogledić I, Mitter C, Štajduhar A, Milković-Periša M, Trnski S, Bettelheim D, Hainfellner JA, Judaš M, Prayer D, Jovanov-Milošević N. Developmental Differences Between the Limbic and Neocortical Telencephalic Wall: An Intrasubject Slice-Matched 3 T MRI-Histological Correlative Study in Humans. Cereb Cortex 2021; 31:3536-3550. [PMID: 33704445 DOI: 10.1093/cercor/bhab030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/20/2022] Open
Abstract
The purpose of the study was to investigate the interrelation of the signal intensities and thicknesses of the transient developmental zones in the cingulate and neocortical telencephalic wall, using T2-weighted 3 T-magnetic resonance imaging (MRI) and histological scans from the same brain hemisphere. The study encompassed 24 postmortem fetal brains (15-35 postconceptional weeks, PCW). The measurements were performed using Fiji and NDP.view2. We found that T2w MR signal-intensity curves show a specific regional and developmental stage profile already at 15 PCW. The MRI-histological correlation reveals that the subventricular-intermediate zone (SVZ-IZ) contributes the most to the regional differences in the MRI-profile and zone thicknesses, growing by a factor of 2.01 in the cingulate, and 1.78 in the neocortical wall. The interrelations of zone or wall thicknesses, obtained by both methods, disclose a different rate and extent of shrinkage per region (highest in neocortical subplate and SVZ-IZ) and stage (highest in the early second half of fetal development), distorting the zones' proportion in histological sections. This intrasubject, slice-matched, 3 T correlative MRI-histological study provides important information about regional development of the cortical wall, critical for the design of MRI criteria for prenatal brain monitoring and early detection of cortical or other brain pathologies in human fetuses.
Collapse
Affiliation(s)
- Mihaela Bobić-Rasonja
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, 10000 Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ivana Pogledić
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Andrija Štajduhar
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, 10000 Zagreb, Croatia.,Andrija Štampar School of Public Health, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Marija Milković-Periša
- University Hospital Centre Zagreb, Department of Pathology and Cytology, 10000 Zagreb, Croatia
| | - Sara Trnski
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Dieter Bettelheim
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, 1090 Vienna, Austria
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, 10000 Zagreb, Croatia
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, School of Medicine University of Zagreb, 10000 Zagreb, Croatia.,Department of Biology, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Bobić Rasonja M, Orešković D, Knezović V, Pogledić I, Pupačić D, Vukšić M, Brugger PC, Prayer D, Petanjek Z, Jovanov Milošević N. Histological and MRI Study of the Development of the Human Indusium Griseum. Cereb Cortex 2020; 29:4709-4724. [PMID: 30722016 DOI: 10.1093/cercor/bhz004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/10/2018] [Accepted: 01/14/2019] [Indexed: 12/23/2022] Open
Abstract
To uncover the ontogenesis of the human indusium griseum (IG), 28 post-mortem fetal human brains, 12-40 postconceptional weeks (PCW) of age, and 4 adult brains were analyzed immunohistochemically and compared with post-mortem magnetic resonance imaging (MRI) of 28 fetal brains (14-41 PCW). The morphogenesis of the IG occurred between 12 and 15 PCW, transforming the bilateral IG primordia into a ribbon-like cortical lamina. The histogenetic transition of sub-laminated zones into the three-layered cortical organization occurred between 15 and 35 PCW, concomitantly with rapid cell differentiation that occurred from 18 to 28 PCW and the elaboration of neuronal connectivity during the entire second half of gestation. The increasing number of total cells and neurons in the IG at 25 and 35 PCW confirmed its continued differentiation throughout this period. High-field 3.0 T post-mortem MRI enabled visualization of the IG at the mid-fetal stage using T2-weighted sequences. In conclusion, the IG had a distinct histogenetic differentiation pattern than that of the neighboring intralimbic areas of the same ontogenetic origin, and did not show any signs of regression during the fetal period or postnatally, implying a functional role of the IG in the adult brain, which is yet to be disclosed.
Collapse
Affiliation(s)
- Mihaela Bobić Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Darko Orešković
- Department of Neurosurgery, Clinical Hospital Dubrava, Av. G. Šuška 6, Zagreb, Croatia
| | - Vinka Knezović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Ivana Pogledić
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Daniela Pupačić
- Department of Anesthesiology, Resuscitation and Intensive Care, University Hospital Center Split, Split, Croatia
| | - Mario Vukšić
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| | - Peter C Brugger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Waehringerstrasse 13, Vienna, Austria
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Division of Neuroradiology and Musculoskeletal Radiology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna, Austria
| | - Zdravko Petanjek
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia.,Department of Anatomy and Clinical Anatomy, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nataša Jovanov Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Šalata12, Zagreb, Croatia
| |
Collapse
|
17
|
Baburamani AA, Vontell RT, Uus A, Pietsch M, Patkee PA, Wyatt-Ashmead J, Chin-Smith EC, Supramaniam VG, Donald Tournier J, Deprez M, Rutherford MA. Assessment of radial glia in the frontal lobe of fetuses with Down syndrome. Acta Neuropathol Commun 2020; 8:141. [PMID: 32819430 PMCID: PMC7441567 DOI: 10.1186/s40478-020-01015-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Down syndrome (DS) occurs with triplication of human chromosome 21 and is associated with deviations in cortical development evidenced by simplified gyral appearance and reduced cortical surface area. Radial glia are neuronal and glial progenitors that also create a scaffolding structure essential for migrating neurons to reach cortical targets and therefore play a critical role in cortical development. The aim of this study was to characterise radial glial expression pattern and morphology in the frontal lobe of the developing human fetal brain with DS and age-matched controls. Secondly, we investigated whether microstructural information from in vivo magnetic resonance imaging (MRI) could reflect histological findings from human brain tissue samples. Immunohistochemistry was performed on paraffin-embedded human post-mortem brain tissue from nine fetuses and neonates with DS (15-39 gestational weeks (GW)) and nine euploid age-matched brains (18-39 GW). Radial glia markers CRYAB, HOPX, SOX2, GFAP and Vimentin were assessed in the Ventricular Zone, Subventricular Zone and Intermediate Zone. In vivo diffusion MRI was used to assess microstructure in these regions in one DS (21 GW) and one control (22 GW) fetal brain. We found a significant reduction in radial glial progenitor SOX2 and subtle deviations in radial glia expression (GFAP and Vimentin) prior to 24 GW in DS. In vivo, fetal MRI demonstrates underlying radial projections consistent with immunohistopathology. Radial glial alterations may contribute to the subsequent simplified gyral patterns and decreased cortical volumes observed in the DS brain. Recent advances in fetal MRI acquisition and analysis could provide non-invasive imaging-based biomarkers of early developmental deviations.
Collapse
Affiliation(s)
- Ana A. Baburamani
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Regina T. Vontell
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- University of Miami Brain Endowment Bank, Miami, FL 33136 USA
| | - Alena Uus
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Maximilian Pietsch
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Prachi A. Patkee
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Jo Wyatt-Ashmead
- Neuropathology and Pediatric-Perinatal Pathology Service [NaPPPS], Holly Springs, MS 38635 USA
| | - Evonne C. Chin-Smith
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Veena G. Supramaniam
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - J. Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Maria Deprez
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
- Department of Biomedical Engineering, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| | - Mary A. Rutherford
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King’s College London, London, SE1 7EH UK
| |
Collapse
|
18
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
19
|
Pogledic I, Schwartz E, Mitter C, Baltzer P, Milos RI, Gruber GM, Brugger PC, Hainfellner J, Bettelheim D, Langs G, Kasprian G, Prayer D. The Subplate Layers: The Superficial and Deep Subplate Can be Discriminated on 3 Tesla Human Fetal Postmortem MRI. Cereb Cortex 2020; 30:5038-5048. [PMID: 32377685 DOI: 10.1093/cercor/bhaa099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/24/2020] [Accepted: 03/24/2020] [Indexed: 01/19/2023] Open
Abstract
The subplate (SP) is a transient structure of the human fetal brain that becomes the most prominent layer of the developing pallium during the late second trimester. It is important in the formation of thalamocortical and cortico-cortical connections. The SP is vulnerable in perinatal brain injury and may play a role in complex neurodevelopmental disorders, such as schizophrenia and autism. Nine postmortem fetal human brains (19-24 GW) were imaged on a 3 Tesla MR scanner and the T2-w images in the frontal and temporal lobes were compared, in each case, with the histological slices of the same brain. The brains were confirmed to be without any brain pathology. The purpose of this study was to demonstrate that the superficial SP (sSP) and deep SP (dSP) can be discriminated on postmortem MR images. More specifically, we aimed to clarify that the observable, thin, hyperintense layer below the cortical plate in the upper SP portion on T2-weighted MR images has an anatomical correspondence to the histologically established sSP. Therefore, the distinction between the sSP and dSP layers, using clinically available MR imaging methodology, is possible in postmortem MRI and can help in the imaging interpretation of the fetal cerebral layers.
Collapse
Affiliation(s)
- Ivana Pogledic
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ernst Schwartz
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Christian Mitter
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Pascal Baltzer
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ruxandra-Iulia Milos
- Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerlinde Maria Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria
| | - Peter C Brugger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Dieter Bettelheim
- Division of Obstetrics and Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria
| | - Georg Langs
- Computational Imaging Research Lab, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Gregor Kasprian
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Daniela Prayer
- Division of Neuroradiology and Musculoskeletal Radiology, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
20
|
Subramanian L, Calcagnotto ME, Paredes MF. Cortical Malformations: Lessons in Human Brain Development. Front Cell Neurosci 2020; 13:576. [PMID: 32038172 PMCID: PMC6993122 DOI: 10.3389/fncel.2019.00576] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Creating a functional cerebral cortex requires a series of complex and well-coordinated developmental steps. These steps have evolved across species with the emergence of cortical gyrification and coincided with more complex behaviors. The presence of diverse progenitor cells, a protracted timeline for neuronal migration and maturation, and diverse neuronal types are developmental features that have emerged in the gyrated cortex. These factors could explain how the human brain has expanded in size and complexity. However, their complex nature also renders new avenues of vulnerability by providing additional cell types that could contribute to disease and longer time windows that could impact the composition and organization of the cortical circuit. We aim to discuss the unique developmental steps observed in human corticogenesis and propose how disruption of these species-unique processes could lead to malformations of cortical development.
Collapse
Affiliation(s)
- Lakshmi Subramanian
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Neuroscience, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mercedes F Paredes
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States.,Department of Neurology, University of California, San Francisco, San Francisco, CA, United States.,Neuroscience Graduate Division, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
21
|
Milos RI, Jovanov-Milošević N, Mitter C, Bobić-Rasonja M, Pogledic I, Gruber GM, Kasprian G, Brugger PC, Weber M, Judaš M, Prayer D. Developmental dynamics of the periventricular parietal crossroads of growing cortical pathways in the fetal brain - In vivo fetal MRI with histological correlation. Neuroimage 2020; 210:116553. [PMID: 31972277 DOI: 10.1016/j.neuroimage.2020.116553] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 12/19/2022] Open
Abstract
The periventricular crossroads have been described as transient structures of the fetal brain where major systems of developing fibers intersect. The triangular parietal crossroad constitutes one major crossroad region. By combining in vivo and post-mortem fetal MRI with histological and immunohistochemical methods, we aimed to characterize these structures. Data from 529 in vivo and 66 post-mortem MRI examinations of fetal brains between gestational weeks (GW) 18-39 were retrospectively reviewed. In each fetus, the area adjacent to the trigone of the lateral ventricles at the exit of the posterior limb of the internal capsule (PLIC) was assessed with respect to signal intensity, size, and shape on T2-weighted images. In addition, by using in vivo diffusion tensor imaging (DTI), the main fiber pathways that intersect in these areas were identified. In order to explain the in vivo features of the parietal crossroads (signal intensity and developmental profile), we analyzed 23 post-mortem fetal human brains, between 16 and 40 GW of age, processed by histological and immunohistochemical methods. The parietal crossroads were triangular-shaped areas with the base in the continuity of the PLIC, adjacent to the germinal matrix and the trigone of the lateral ventricles, with the tip pointing toward the subplate. These areas appeared hyperintense to the subplate, and corresponded to a convergence zone of the developing external capsule, the PLIC, and the fronto-occipital association fibers. They were best detected between GW 25-26, and, at term, they became isointense to the adjacent structures. The immunohistochemical results showed a distinct cellular, fibrillar, and extracellular matrix arrangement in the parietal crossroads, depending on the stage of development, which influenced the MRI features. The parietal crossroads are transient, but important structures in white matter maturation and their damage may be indicative of a poor prognosis for a fetus with regard to neurological development. In addition, impairment of this region may explain the complex neurodevelopmental deficits in preterm infants with periventricular hypoxic/ischemic or inflammatory lesions.
Collapse
Affiliation(s)
- Ruxandra-Iulia Milos
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Nataša Jovanov-Milošević
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Christian Mitter
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Mihaela Bobić-Rasonja
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ivana Pogledic
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Gerlinde M Gruber
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Gregor Kasprian
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Peter C Brugger
- Division of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael Weber
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Daniela Prayer
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
22
|
Werner C. Matrix-mediated modulation of neuron identity. Nat Biomed Eng 2019; 2:473-474. [PMID: 30948829 DOI: 10.1038/s41551-018-0270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Carsten Werner
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden and Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany.
| |
Collapse
|
23
|
Serati M, Delvecchio G, Orsenigo G, Mandolini GM, Lazzaretti M, Scola E, Triulzi F, Brambilla P. The Role of the Subplate in Schizophrenia and Autism: A Systematic Review. Neuroscience 2019; 408:58-67. [PMID: 30930130 DOI: 10.1016/j.neuroscience.2019.03.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023]
Abstract
The subplate (SP) represents a transitory cytoarchitectural fetal compartment containing most subcortical and cortico-cortical afferents, and has a fundamental role in the structural development of the healthy adult brain. There is evidence that schizophrenia and autism may be determined by developmental defects in the cortex or cortical circuitry during the earliest stages of pregnancy. This article provides an overview on fetal SP development, considering its role in schizophrenia and autism, as supported by a systematic review of the main databases. The SP has been described as a cortical amplifier with a role in the coordination of cortical activity, and sensitive growth and migration windows have crucial consequences with respect to cognitive functioning. Although there are not enough studies to draw final conclusions, improved knowledge of the SP's role in schizophrenia and autism spectrum disorders may help to elucidate and possibly prevent the onset of these two severe disorders.
Collapse
Affiliation(s)
- Marta Serati
- Department of Mental Health, ASST Rhodense, Rho, Milan, Italy.
| | - Giuseppe Delvecchio
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Giulia Orsenigo
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Gian Mario Mandolini
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Matteo Lazzaretti
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Italy
| | - Elisa Scola
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Fabio Triulzi
- Department of Neuroradiology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Psychiatry and Behavioural Neurosciences, University of Texas at Houston, TX, USA
| |
Collapse
|
24
|
Mühlebner A, Bongaarts A, Sarnat HB, Scholl T, Aronica E. New insights into a spectrum of developmental malformations related to mTOR dysregulations: challenges and perspectives. J Anat 2019; 235:521-542. [PMID: 30901081 DOI: 10.1111/joa.12956] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2019] [Indexed: 12/20/2022] Open
Abstract
In recent years the role of the mammalian target of rapamycin (mTOR) pathway has emerged as crucial for normal cortical development. Therefore, it is not surprising that aberrant activation of mTOR is associated with developmental malformations and epileptogenesis. A broad spectrum of malformations of cortical development, such as focal cortical dysplasia (FCD) and tuberous sclerosis complex (TSC), have been linked to either germline or somatic mutations in mTOR pathway-related genes, commonly summarised under the umbrella term 'mTORopathies'. However, there are still a number of unanswered questions regarding the involvement of mTOR in the pathophysiology of these abnormalities. Therefore, a monogenetic disease, such as TSC, can be more easily applied as a model to study the mechanisms of epileptogenesis and identify potential new targets of therapy. Developmental neuropathology and genetics demonstrate that FCD IIb and hemimegalencephaly are the same diseases. Constitutive activation of mTOR signalling represents a shared pathogenic mechanism in a group of developmental malformations that have histopathological and clinical features in common, such as epilepsy, autism and other comorbidities. We seek to understand the effect of mTOR dysregulation in a developing cortex with the propensity to generate seizures as well as the aftermath of the surrounding environment, including the white matter.
Collapse
Affiliation(s)
- A Mühlebner
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Bongaarts
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H B Sarnat
- Departments of Paediatrics, Pathology (Neuropathology) and Clinical Neurosciences, University of Calgary Cumming School of Medicine and Alberta Children's Hospital Research Institute (Owerko Centre), Calgary, AB, Canada
| | - T Scholl
- Department of Paediatric and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - E Aronica
- Department of Neuropathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Amsterdam, The Netherlands
| |
Collapse
|
25
|
Kostović I, Išasegi IŽ, Krsnik Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J Anat 2018; 235:481-506. [PMID: 30549027 DOI: 10.1111/joa.12920] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
The objective of this paper was to collect normative data essential for analyzing the subplate (SP) role in pathogenesis of developmental disorders, characterized by abnormal circuitry, such as hypoxic-ischemic lesions, autism and schizophrenia. The main cytological features of the SP, such as low cell density, early differentiation of neurons and glia, plexiform arrangement of axons and dendrites, presence of synapses and a large amount of extracellular matrix (ECM) distinguish this compartment from the cell-dense cortical plate (CP; towards pia) and large fiber bundles of external axonal strata of fetal white matter (towards ventricle). For SP delineation from these adjacent layers based on combined cytological criteria, we analyzed the sublaminar distribution of different microstructural elements and the associated maturational gradients throughout development, using immunocytochemical and histological techniques on postmortem brain material (Zagreb Neuroembryological Collection). The analysis revealed that the SP compartment of the lateral neocortex shows changes in laminar organization throughout fetal development: the monolayer in the early fetal period (presubplate) undergoes dramatic bilaminar transformation between 13 and 15 postconceptional weeks (PCW), followed by subtle sublamination in three 'floors' (deep, intermediate, superficial) of midgestation (15-21 PCW). During the stationary phase (22-28 PCW), SP persists as a trilaminar compartment, gradually losing its sublaminar organization towards the end of gestation and remains as a single layer of SP remnant in the newborn brain. Based on these sublaminar transformations, we have documented developmental changes in the distribution, maturational gradients and expression of molecular markers in SP synapses, transitional forms of astroglia, neurons and ECM, which occur concomitantly with the ingrowth of thalamo-cortical, basal forebrain and cortico-cortical axons in a deep to superficial fashion. The deep SP is the zone of ingrowing axons - 'entrance (ingrowth) zone'. The process of axonal ingrowth begins with thalamo-cortical fibers and basal forebrain afferents, indicating an oblique geometry. During the later fetal period, deep SP receives long cortico-cortical axons exhibiting a tangential geometry. Intermediate SP ('proper') is the navigation and 'nexus' sublamina consisting of a plexiform arrangement of cellular elements providing guidance and substrate for axonal growth, and also containing transient connectivity of dendrites and axons in a tangential plane without radial boundaries immersed in an ECM-rich continuum. Superficial SP is the axonal accumulation ('waiting compartment') and target selection zone, indicating a dense distribution of synaptic markers, accumulation of thalamo-cortical axons (around 20 PCW), overlapping with dendrites from layer VI neurons. In the late preterm brain period, superficial SP contains a chondroitin sulfate non-immunoreactive band. The developmental dynamics for the distribution of neuronal, glial and ECM markers comply with sequential ingrowth of afferents in three levels of SP: ECM and synaptic markers shift from deep to superficial SP, with transient forms of glia following this arrangement, and calretinin neurons are concentrated in the SP during the formation phase. These results indicate developmental and morphogenetic roles in the SP cellular (transient glia, neurons and synapses) and ECM framework, enabling the spatial accommodation, navigation and establishment of numerous connections of cortical pathways in the expanded human brain. The original findings of early developmental dynamics of transitional subtypes of astroglia, calretinin neurons, ECM and synaptic markers presented in the SP are interesting in the light of recent concepts concerning its functional and morphogenetic role and an increasing interest in SP as a prospective substrate of abnormalities in cortical circuitry, leading to a cognitive deficit in different neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Iris Žunić Išasegi
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Željka Krsnik
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Centre of Excellence for Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
26
|
Korotkov A, Broekaart DWM, van Scheppingen J, Anink JJ, Baayen JC, Idema S, Gorter JA, Aronica E, van Vliet EA. Increased expression of matrix metalloproteinase 3 can be attenuated by inhibition of microRNA-155 in cultured human astrocytes. J Neuroinflammation 2018; 15:211. [PMID: 30031401 PMCID: PMC6054845 DOI: 10.1186/s12974-018-1245-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 07/02/2018] [Indexed: 12/21/2022] Open
Abstract
Background Temporal lobe epilepsy (TLE) is a chronic neurological disease, in which about 30% of patients cannot be treated adequately with anti-epileptic drugs. Brain inflammation and remodeling of the extracellular matrix (ECM) seem to play a major role in TLE. Matrix metalloproteinases (MMPs) are proteolytic enzymes largely responsible for the remodeling of the ECM. The inhibition of MMPs has been suggested as a novel therapy for epilepsy; however, available MMP inhibitors lack specificity and cause serious side effects. We studied whether MMPs could be modulated via microRNAs (miRNAs). Several miRNAs mediate inflammatory responses in the brain, which are known to control MMP expression. The aim of this study was to investigate whether an increased expression of MMPs after interleukin-1β (IL-1β) stimulation can be attenuated by inhibition of the inflammation-associated miR-155. Methods We investigated the expression of MMP2, MMP3, MMP9, and MMP14 in cultured human fetal astrocytes after stimulation with the pro-inflammatory cytokine IL-1β. The cells were transfected with miR-155 antagomiR, and the effect on MMP3 expression was investigated using real-time quantitative PCR and Western blotting. Furthermore, we characterized MMP3 and miR-155 expression in brain tissue of TLE patients with hippocampal sclerosis (TLE-HS) and during epileptogenesis in a rat TLE model. Results Inhibition of miR-155 by the antagomiR attenuated MMP3 overexpression after IL-1β stimulation in astrocytes. Increased expression of MMP3 and miR-155 was also evident in the hippocampus of TLE-HS patients and throughout epileptogenesis in the rat TLE model. Conclusions Our experiments showed that MMP3 is dynamically regulated by seizures as shown by increased expression in TLE tissue and during different phases of epileptogenesis in the rat TLE model. MMP3 can be induced by the pro-inflammatory cytokine IL-1β and is regulated by miR-155, suggesting a possible strategy to prevent epilepsy via reduction of inflammation. Electronic supplementary material The online version of this article (10.1186/s12974-018-1245-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anatoly Korotkov
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Diede W M Broekaart
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jackelien van Scheppingen
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Jasper J Anink
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Johannes C Baayen
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Sander Idema
- Department of Neurosurgery, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Eleonora Aronica
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.,Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, The Netherlands
| | - Erwin A van Vliet
- Department of (Neuro) Pathology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands. .,Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Andreopoulou E, Arampatzis A, Patsoni M, Kazanis I. Being a Neural Stem Cell: A Matter of Character But Defined by the Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1041:81-118. [PMID: 29204830 DOI: 10.1007/978-3-319-69194-7_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cells that build the nervous system, either this is a small network of ganglia or a complicated primate brain, are called neural stem and progenitor cells. Even though the very primitive and the very recent neural stem cells (NSCs) share common basic characteristics that are hard-wired within their character, such as the expression of transcription factors of the SoxB family, their capacity to give rise to extremely different neural tissues depends significantly on instructions from the microenvironment. In this chapter we explore the nature of the NSC microenvironment, looking through evolution, embryonic development, maturity and even disease. Experimental work undertaken over the last 20 years has revealed exciting insight into the NSC microcosmos. NSCs are very capable in producing their own extracellular matrix and in regulating their behaviour in an autocrine and paracrine manner. Nevertheless, accumulating evidence indicates an important role for the vasculature, especially within the NSC niches of the postnatal brain; while novel results reveal direct links between the metabolic state of the organism and the function of NSCs.
Collapse
Affiliation(s)
- Evangelia Andreopoulou
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Asterios Arampatzis
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK
- School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Melina Patsoni
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece
| | - Ilias Kazanis
- Lab of Developmental Biology, Department of Biology, University of Patras, Patras, Greece.
- Wellcome Trust- MRC Cambridge Stem Cell Biology Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Tokariev A, Stjerna S, Lano A, Metsäranta M, Palva JM, Vanhatalo S. Preterm Birth Changes Networks of Newborn Cortical Activity. Cereb Cortex 2018; 29:814-826. [DOI: 10.1093/cercor/bhy012] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/07/2018] [Indexed: 12/31/2022] Open
Affiliation(s)
- Anton Tokariev
- Department of Clinical Neurophysiology, University of Helsinki, HUS, Helsinki, Finland
| | - Susanna Stjerna
- Department of Clinical Neurophysiology, University of Helsinki, HUS, Helsinki, Finland
| | - Aulikki Lano
- Department of Child Neurology, Children’s Hospital, University of Helsinki and HUH, Helsinki, Finland
| | - Marjo Metsäranta
- Department of Neonatology, Children’s Hospital, University of Helsinki and HUH, Helsinki, Finland
| | - J Matias Palva
- Neuroscience Center, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Sampsa Vanhatalo
- Department of Clinical Neurophysiology, University of Helsinki, HUS, Helsinki, Finland
| |
Collapse
|
29
|
Koolen N, Dereymaeker A, Räsänen O, Jansen K, Vervisch J, Matic V, Naulaers G, De Vos M, Van Huffel S, Vanhatalo S. Early development of synchrony in cortical activations in the human. Neuroscience 2016; 322:298-307. [PMID: 26876605 PMCID: PMC4819727 DOI: 10.1016/j.neuroscience.2016.02.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 11/26/2022]
Abstract
We study the early development of cortical activations synchrony index (ASI). Cortical activations become increasingly synchronized during the last trimester. Interhemispheric synchrony increases more than intrahemispheric synchrony. Our EEG metric ASI can be directly translated to experimental animal studies. ASI holds promise as an early functional biomarker of brain networks.
Early intermittent cortical activity is thought to play a crucial role in the growth of neuronal network development, and large scale brain networks are known to provide the basis for higher brain functions. Yet, the early development of the large scale synchrony in cortical activations is unknown. Here, we tested the hypothesis that the early intermittent cortical activations seen in the human scalp EEG show a clear developmental course during the last trimester of pregnancy, the period of intensive growth of cortico-cortical connections. We recorded scalp EEG from altogether 22 premature infants at post-menstrual age between 30 and 44 weeks, and the early cortical synchrony was quantified using recently introduced activation synchrony index (ASI). The developmental correlations of ASI were computed for individual EEG signals as well as anatomically and mathematically defined spatial subgroups. We report two main findings. First, we observed a robust and statistically significant increase in ASI in all cortical areas. Second, there were significant spatial gradients in the synchrony in fronto-occipital and left-to-right directions. These findings provide evidence that early cortical activity is increasingly synchronized across the neocortex. The ASI-based metrics introduced in our work allow direct translational comparison to in vivo animal models, as well as hold promise for implementation as a functional developmental biomarker in future research on human neonates.
Collapse
Affiliation(s)
- N Koolen
- Division STADIUS, Department of Electrical Engineering (ESAT), University of Leuven, Leuven, Belgium; iMinds-KU Leuven Medical IT Department, Leuven, Belgium.
| | - A Dereymaeker
- Department of Development and Regeneration, Neonatology, University of Leuven, Leuven, Belgium
| | - O Räsänen
- Department of Signal Processing and Acoustics, Aalto University, Espoo, Finland
| | - K Jansen
- Department of Development and Regeneration, Neonatology, University of Leuven, Leuven, Belgium
| | - J Vervisch
- Department of Development and Regeneration, Neonatology, University of Leuven, Leuven, Belgium
| | - V Matic
- Division STADIUS, Department of Electrical Engineering (ESAT), University of Leuven, Leuven, Belgium; iMinds-KU Leuven Medical IT Department, Leuven, Belgium
| | - G Naulaers
- Department of Development and Regeneration, Neonatology, University of Leuven, Leuven, Belgium
| | - M De Vos
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - S Van Huffel
- Division STADIUS, Department of Electrical Engineering (ESAT), University of Leuven, Leuven, Belgium; iMinds-KU Leuven Medical IT Department, Leuven, Belgium
| | - S Vanhatalo
- Department of Children's Clinical Neurophysiology, HUS Medical Imaging Center and Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
30
|
|