1
|
Sha Z, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Bernhardt B, Bolte S, Busatto GF, Calderoni S, Calvo R, Daly E, Deruelle C, Duan M, Duran FLS, Durston S, Ecker C, Ehrlich S, Fair D, Fedor J, Fitzgerald J, Floris DL, Franke B, Freitag CM, Gallagher L, Glahn DC, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, King JA, Lazaro L, Luna B, McGrath J, Medland SE, Muratori F, Murphy DGM, Neufeld J, O'Hearn K, Oranje B, Parellada M, Pariente JC, Postema MC, Remnelius KL, Retico A, Rosa PGP, Rubia K, Shook D, Tammimies K, Taylor MJ, Tosetti M, Wallace GL, Zhou F, Thompson PM, Fisher SE, Buitelaar JK, Francks C. Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol Psychiatry 2022; 27:2114-2125. [PMID: 35136228 PMCID: PMC9126820 DOI: 10.1038/s41380-022-01452-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
Abstract
Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sven Bolte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosa Calvo
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, UK
| | - Christine Deruelle
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Meiyu Duan
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Fabio Luis Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sarah Durston
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Damien Fair
- Institute of Child Development, Department of Pediatrics, Masonic Institute of the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Fedor
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline Fitzgerald
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115-5724, USA
- Olin Neuropsychiatric Research Center, Hartford, CT, USA
| | - Shlomi Haar
- Department of Brain Sciences, Imperial College London, London, UK
| | - Liesbeth Hoekstra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Joseph A King
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jane McGrath
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Declan G M Murphy
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley Foundation NHS Trust, London, UK
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kirsten O'Hearn
- Department of Physiology and Pharmacology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Bob Oranje
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jose C Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomdiques August Pi i Sunyer), Barcelona, Spain
| | - Merel C Postema
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Alessandra Retico
- National Institute for Nuclear Physics, Pisa Division, Largo B. Pontecorvo 3, Pisa, Italy
| | - Pedro Gomes Penteado Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Katya Rubia
- Institute of Psychiatry, King's College London, London, UK
| | - Devon Shook
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristiina Tammimies
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region, Stockholm, Sweden
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Womens and Childrens Health, Karolinska Institutet and Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Margot J Taylor
- Diagnostic Imaging, The Hospital for Sick Children, and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, USA
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Simon E Fisher
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Clyde Francks
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Padoan CS, Garcia LF, Crespo KC, Longaray VK, Martini M, Contessa JC, Kapczinski F, de Oliveira FH, Goldim JR, Vs Magalhães P. A qualitative study exploring the process of postmortem brain tissue donation after suicide. Sci Rep 2022; 12:4710. [PMID: 35304551 PMCID: PMC8933424 DOI: 10.1038/s41598-022-08729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 03/08/2022] [Indexed: 11/30/2022] Open
Abstract
Access to postmortem brain tissue can be valuable in refining knowledge on the pathophysiology and genetics of neuropsychiatric disorders. Obtaining postmortem consent for the donation after death by suicide can be difficult, as families may be overwhelmed by a violent and unexpected death. Examining the process of brain donation can inform on how the request can best be conducted. This is a qualitative study with in-depth interviews with forty-one people that were asked to consider brain donation-32 who had consented to donation and 9 who refused it. Data collection and analyses were carried out according to grounded theory. Five key themes emerged from data analysis: the context of the families, the invitation to talk to the research team, the experience with the request protocol, the participants' assessment of the experience, and their participation in the study as an opportunity to heal. The participants indicated that a brain donation request that is respectful and tactful can be made without adding to the family distress brought on by suicide and pondering brain donation was seen as an opportunity to transform the meaning of the death and invest it with a modicum of solace for being able to contribute to research.
Collapse
Affiliation(s)
- Carolina Stopinski Padoan
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Lucas França Garcia
- Graduate Program in Health Promotion, Cesumar University, Maringá, Paraná, Brazil
| | - Kleber Cardoso Crespo
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Vanessa Kenne Longaray
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Murilo Martini
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Júlia Camargo Contessa
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
| | - Flávio Kapczinski
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil
- St. Joseph's Healthcare Hamilton McMaster University, Hamilton, ON, Canada
| | - Francine Hehn de Oliveira
- Serviço de Patologia, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - José Roberto Goldim
- Bioethics Department, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pedro Vs Magalhães
- Universidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto Alegre, Centro de Pesquisa Clínica, Faculty of Medicine, Graduate Program in Psychiatry and Behavioral Sciences, Porto Alegre, Brazil.
| |
Collapse
|
4
|
Anderson MP, Quinton R, Kelly K, Falzon A, Halladay A, Schumann CM, Hof PR, Tamminga CA, Hare CK, Amaral DG. Autism BrainNet: A Collaboration Between Medical Examiners, Pathologists, Researchers, and Families to Advance the Understanding and Treatment of Autism Spectrum Disorder. Arch Pathol Lab Med 2021; 145:494-501. [PMID: 32960953 DOI: 10.5858/arpa.2020-0164-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 11/06/2022]
Abstract
CONTEXT.— Autism spectrum disorder is a neurodevelopmental condition that affects over 1% of the population worldwide. Developing effective preventions and treatments for autism will depend on understanding the neuropathology of the disorder. While evidence from magnetic resonance imaging indicates altered development of the autistic brain, it lacks the resolution needed to identify the cellular and molecular underpinnings of the disorder. Postmortem studies of human brain tissue currently represent the only viable option to pursuing these critical studies. Historically, the availability of autism brain tissue has been extremely limited. OBJECTIVE.— To overcome this limitation, Autism BrainNet, funded by the Simons Foundation, was formed as a network of brain collection sites that work in a coordinated fashion to develop a library of human postmortem brain tissues for distribution to researchers worldwide. Autism BrainNet has collection sites (or Nodes) in California, Texas, and Massachusetts; affiliated, international Nodes are located in Oxford, England and Montreal, Quebec, Canada. DATA SOURCES.— Pubmed, Autism BrainNet. CONCLUSIONS.— Because the death of autistic individuals is often because of an accident, drowning, suicide, or sudden unexpected death in epilepsy, they often are seen in a medical examiner's or coroner's office. Yet, autism is rarely considered when evaluating the cause of death. Advances in our understanding of chronic traumatic encephalopathy have occurred because medical examiners and neuropathologists questioned whether a pathologic change might exist in individuals who played contact sports and later developed severe behavioral problems. This article highlights the potential for equally significant breakthroughs in autism arising from the proactive efforts of medical examiners, pathologists, and coroners in partnership with Autism BrainNet.
Collapse
Affiliation(s)
- Matthew P Anderson
- From the Departments of Neurology and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts (Anderson)
| | - Reade Quinton
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota (Quinton)
| | - Karen Kelly
- Department of Pathology and Laboratory Medicine, Brody School of Medicine at East Carolina University Greenville, North Carolina (Kelly)
| | - Andrew Falzon
- Office of the Chief State Medical Examiner, Trenton, New Jersey (Falzon)
| | - Alycia Halladay
- Autism Science Foundation, New York, New York (Halladay).,Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey (Halladay)
| | - Cynthia M Schumann
- The MIND Institute, University of California at Davis, Sacramento (Schumann and Amaral)
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York (Hof)
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas (Tamminga)
| | | | - David G Amaral
- The MIND Institute, University of California at Davis, Sacramento (Schumann and Amaral)
| |
Collapse
|
5
|
Masuda K, Han X, Kato H, Sato H, Zhang Y, Sun X, Hirofuji Y, Yamaza H, Yamada A, Fukumoto S. Dental Pulp-Derived Mesenchymal Stem Cells for Modeling Genetic Disorders. Int J Mol Sci 2021; 22:ijms22052269. [PMID: 33668763 PMCID: PMC7956585 DOI: 10.3390/ijms22052269] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
A subpopulation of mesenchymal stem cells, developmentally derived from multipotent neural crest cells that form multiple facial tissues, resides within the dental pulp of human teeth. These stem cells show high proliferative capacity in vitro and are multipotent, including adipogenic, myogenic, osteogenic, chondrogenic, and neurogenic potential. Teeth containing viable cells are harvested via minimally invasive procedures, based on various clinical diagnoses, but then usually discarded as medical waste, indicating the relatively low ethical considerations to reuse these cells for medical applications. Previous studies have demonstrated that stem cells derived from healthy subjects are an excellent source for cell-based medicine, tissue regeneration, and bioengineering. Furthermore, stem cells donated by patients affected by genetic disorders can serve as in vitro models of disease-specific genetic variants, indicating additional applications of these stem cells with high plasticity. This review discusses the benefits, limitations, and perspectives of patient-derived dental pulp stem cells as alternatives that may complement other excellent, yet incomplete stem cell models, such as induced pluripotent stem cells, together with our recent data.
Collapse
Affiliation(s)
- Keiji Masuda
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| | - Xu Han
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Hiroki Kato
- Department of Molecular Cell Biology and Oral Anatomy, Graduate School of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan;
| | - Hiroshi Sato
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yu Zhang
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Xiao Sun
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Yuta Hirofuji
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Haruyoshi Yamaza
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
| | - Aya Yamada
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
| | - Satoshi Fukumoto
- Section of Oral Medicine for Children, Division of Oral Health, Growth and Development, Faculty of Dental Science, Kyushu University, Maidashi 3-1-1, Higashi-Ku, Fukuoka 812-8582, Japan; (X.H.); (H.S.); (Y.Z.); (X.S.); (Y.H.); (H.Y.)
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Graduate School of Dentistry, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, Miyagi 980-8577, Japan;
- Correspondence: (K.M.); (S.F.); Tel.: +81-92-642-6402 (K.M. & S.F.)
| |
Collapse
|