1
|
Jyothish L, Kazi S, Gokhale JS. Microfluidics for detection of food pathogens: recent trends and opportunities. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:2243-2262. [PMID: 39431185 PMCID: PMC11486885 DOI: 10.1007/s13197-024-06058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 10/22/2024]
Abstract
Safe and healthy food is the fundamental right of every citizen. Problems caused by foodborne pathogens have always raised a threat to food safety and human health. Centers for Disease Control and Prevention (CDC) estimates that around 48 million people are affected by food intoxication, and 3000 people succumb to death. Hence, it is inevitable that an approach that is efficient, reliable, sensitive, and rapid approach that can replace the conventional analytical methods such as microbiological and biochemical methods, high throughput next-generation sequence (NGS), polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA), etc. Even though the accuracy of conventional methods is high, it is tedious; increased consumption of reagents/samples, false positives, and complex operations are the drawbacks of these methods. Microfluidic devices have shown remarkable advances in all branches of science. They serve as an alternative to conventional ways to overcome the abovementioned drawbacks. Furthermore, coupling microfluidics can improve the efficiency and accuracy of conventional methods such as surface plasma resonance, loop-mediated isothermal amplification, ELISA, and PCR. This article reviewed the progress of microfluidic devices in the last ten years in detecting foodborne pathogens. Microfluidic technology has opened the research gateway for developing low-cost, on-site, portable, and rapid assay devices. The article includes the application of microfluidic-based devices to identify critical food pathogens and briefly discusses the necessary research in this area.
Collapse
Affiliation(s)
- Lakshmi Jyothish
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Sameera Kazi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| | - Jyoti S. Gokhale
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019 India
| |
Collapse
|
2
|
Antonelli G, Filippi J, D'Orazio M, Curci G, Casti P, Mencattini A, Martinelli E. Integrating machine learning and biosensors in microfluidic devices: A review. Biosens Bioelectron 2024; 263:116632. [PMID: 39116628 DOI: 10.1016/j.bios.2024.116632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Microfluidic devices are increasingly widespread in the literature, being applied to numerous exciting applications, from chemical research to Point-of-Care devices, passing through drug development and clinical scenarios. Setting up these microenvironments, however, introduces the necessity of locally controlling the variables involved in the phenomena under investigation. For this reason, the literature has deeply explored the possibility of introducing sensing elements to investigate the physical quantities and the biochemical concentration inside microfluidic devices. Biosensors, particularly, are well known for their high accuracy, selectivity, and responsiveness. However, their signals could be challenging to interpret and must be carefully analysed to carry out the correct information. In addition, proper data analysis has been demonstrated even to increase biosensors' mentioned qualities. To this regard, machine learning algorithms are undoubtedly among the most suitable approaches to undertake this job, automatically learning from data and highlighting biosensor signals' characteristics at best. Interestingly, it was also demonstrated to benefit microfluidic devices themselves, in a new paradigm that the literature is starting to name "intelligent microfluidics", ideally closing this benefic interaction among these disciplines. This review aims to demonstrate the advantages of the triad paradigm microfluidics-biosensors-machine learning, which is still little used but has a great perspective. After briefly describing the single entities, the different sections will demonstrate the benefits of the dual interactions, highlighting the applications where the reviewed triad paradigm was employed.
Collapse
Affiliation(s)
- Gianni Antonelli
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Joanna Filippi
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Michele D'Orazio
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Giorgia Curci
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Paola Casti
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Arianna Mencattini
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy
| | - Eugenio Martinelli
- Department of Electronic Engineering & Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (ICLOC), University of Rome Tor Vergata, Via del Politecnico, 1, 00133, Rome, Italy.
| |
Collapse
|
3
|
Alexandre-Franco MF, Kouider R, Kassir Al-Karany R, Cuerda-Correa EM, Al-Kassir A. Recent Advances in Polymer Science and Fabrication Processes for Enhanced Microfluidic Applications: An Overview. MICROMACHINES 2024; 15:1137. [PMID: 39337797 PMCID: PMC11433824 DOI: 10.3390/mi15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
This review explores significant advancements in polymer science and fabrication processes that have enhanced the performance and broadened the application scope of microfluidic devices. Microfluidics, essential in biotechnology, medicine, and chemical engineering, relies on precise fluid manipulation in micrometer-sized channels. Recent innovations in polymer materials, such as flexible, biocompatible, and structurally robust polymers, have been pivotal in developing advanced microfluidic systems. Techniques like replica molding, microcontact printing, solvent-assisted molding, injection molding, and 3D printing are examined, highlighting their advantages and recent developments. Additionally, the review discusses the diverse applications of polymer-based microfluidic devices in biomedical diagnostics, drug delivery, organ-on-chip models, environmental monitoring, and industrial processes. This paper also addresses future challenges, including enhancing chemical resistance, achieving multifunctionality, ensuring biocompatibility, and scaling up production. By overcoming these challenges, the potential for widespread adoption and impactful use of polymer-based microfluidic technologies can be realized.
Collapse
Affiliation(s)
- María F Alexandre-Franco
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Rahmani Kouider
- Department of Technology, Ziane Achour University of Djelfa, Djelfa 17000, Algeria
| | | | - Eduardo M Cuerda-Correa
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06006 Badajoz, Spain
| | - Awf Al-Kassir
- School of Industrial Engineers, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
4
|
Park S, Laskow TC, Chen J, Guha P, Dawn B, Kim D. Microphysiological systems for human aging research. Aging Cell 2024; 23:e14070. [PMID: 38180277 PMCID: PMC10928588 DOI: 10.1111/acel.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/06/2024] Open
Abstract
Recent advances in microphysiological systems (MPS), also known as organs-on-a-chip (OoC), enable the recapitulation of more complex organ and tissue functions on a smaller scale in vitro. MPS therefore provide the potential to better understand human diseases and physiology. To date, numerous MPS platforms have been developed for various tissues and organs, including the heart, liver, kidney, blood vessels, muscle, and adipose tissue. However, only a few studies have explored using MPS platforms to unravel the effects of aging on human physiology and the pathogenesis of age-related diseases. Age is one of the risk factors for many diseases, and enormous interest has been devoted to aging research. As such, a human MPS aging model could provide a more predictive tool to understand the molecular and cellular mechanisms underlying human aging and age-related diseases. These models can also be used to evaluate preclinical drugs for age-related diseases and translate them into clinical settings. Here, we provide a review on the application of MPS in aging research. First, we offer an overview of the molecular, cellular, and physiological changes with age in several tissues or organs. Next, we discuss previous aging models and the current state of MPS for studying human aging and age-related conditions. Lastly, we address the limitations of current MPS and present future directions on the potential of MPS platforms for human aging research.
Collapse
Affiliation(s)
- Seungman Park
- Department of Mechanical EngineeringUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Thomas C. Laskow
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jingchun Chen
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Prasun Guha
- Nevada Institute of Personalized MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
- School of Life SciencesUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of MedicineUniversity of Nevada, Las VegasLas VegasNevadaUSA
| | - Deok‐Ho Kim
- Department of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMarylandUSA
- Center for Microphysiological SystemsJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
5
|
Nardi L, Davis NM, Sansolini S, Baratto de Albuquerque T, Laarraj M, Caputo D, de Cesare G, Shariati Pour SR, Zangheri M, Calabria D, Guardigli M, Balsamo M, Carrubba E, Carubia F, Ceccarelli M, Ghiozzi M, Popova L, Tenaglia A, Crisconio M, Donati A, Nascetti A, Mirasoli M. APHRODITE: A Compact Lab-on-Chip Biosensor for the Real-Time Analysis of Salivary Biomarkers in Space Missions. BIOSENSORS 2024; 14:72. [PMID: 38391991 PMCID: PMC10887022 DOI: 10.3390/bios14020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
One of the main challenges to be faced in deep space missions is to protect the health and ensure the maximum efficiency of the crew by preparing methods of prevention and in situ diagnosis. Indeed, the hostile environment causes important health problems, ranging from muscle atrophy, osteopenia, and immunological and metabolic alterations due to microgravity, to an increased risk of cancer caused by exposure to radiation. It is, therefore, necessary to provide new methods for the real-time measurement of biomarkers suitable for deepening our knowledge of the effects of space flight on the balance of the immune system and for allowing the monitoring of the astronaut's health during long-term missions. APHRODITE will enable human space exploration because it fills this void that affects both missions in LEO and future missions to the Moon and Mars. Its scientific objectives are the design, production, testing, and in-orbit demonstration of a compact, reusable, and reconfigurable system for performing the real-time analysis of oral fluid samples in manned space missions. In the frame of this project, a crew member onboard the ISS will employ APHRODITE to measure the selected target analytes, cortisol, and dehydroepiandrosterone sulfate (DHEA-S), in oral fluid, in four (plus one additional desired session) separate experiment sessions. The paper addresses the design of the main subsystems of the analytical device and the preliminary results obtained during the first implementations of the device subsystems and testing measurements on Earth. In particular, the system design and the experiment data output of the lab-on-chip photosensors and of the front-end readout electronics are reported in detail along with preliminary chemical tests for the duplex competitive CL-immunoassay for the simultaneous detection of cortisol and DHEA-S. Different applications also on Earth are envisaged for the APHRODITE device, as it will be suitable for point-of-care testing applications (e.g., emergency medicine, bioterrorism, diagnostics in developing countries, etc.).
Collapse
Affiliation(s)
- Lorenzo Nardi
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Nithin Maipan Davis
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Serena Sansolini
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Thiago Baratto de Albuquerque
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mohcine Laarraj
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Domenico Caputo
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Giampiero de Cesare
- Department of Information Engineering, Electronics and Telecommunications, Sapienza University of Rome, Via Eudossiana 18, I-00184 Rome, Italy; (D.C.); (G.d.C.)
| | - Seyedeh Rojin Shariati Pour
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Via Selmi 2, I-40126 Bologna, Italy; (D.C.); (M.G.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| | - Michele Balsamo
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Elisa Carrubba
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Fabrizio Carubia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marco Ceccarelli
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Michele Ghiozzi
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Liyana Popova
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Andrea Tenaglia
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Marino Crisconio
- Agenzia Spaziale Italiana (ASI), Italian Space Agency, Via del Politecnico, I-00133 Rome, Italy;
| | - Alessandro Donati
- Kayser Italy S.r.l. Unipersonale, Via di Popogna 501, I-57128 Livorno, Italy; (M.B.); (E.C.); (F.C.); (M.C.); (M.G.); (L.P.); (A.T.); (A.D.)
| | - Augusto Nascetti
- School of Aerospace Engineering, Sapienza University of Rome, Via Salaria 851, I-00138 Rome, Italy; (N.M.D.); (S.S.); (T.B.d.A.); (M.L.); (A.N.)
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum—University of Bologna, Tecnopolo di Rimini, Via Dario Campana 71, I-47922 Rimini, Italy; (S.R.S.P.); (M.Z.); (M.M.)
- Interdepartmental Centre for Industrial Aerospace Research (CIRI AEROSPACE), Alma Mater Studiorum—University of Bologna, Via Baldassarre Canaccini 12, I-47121 Forlì, Italy
| |
Collapse
|
6
|
Torres-Castro K, Acuña-Umaña K, Lesser-Rojas L, Reyes DR. Microfluidic Blood Separation: Key Technologies and Critical Figures of Merit. MICROMACHINES 2023; 14:2117. [PMID: 38004974 PMCID: PMC10672873 DOI: 10.3390/mi14112117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023]
Abstract
Blood is a complex sample comprised mostly of plasma, red blood cells (RBCs), and other cells whose concentrations correlate to physiological or pathological health conditions. There are also many blood-circulating biomarkers, such as circulating tumor cells (CTCs) and various pathogens, that can be used as measurands to diagnose certain diseases. Microfluidic devices are attractive analytical tools for separating blood components in point-of-care (POC) applications. These platforms have the potential advantage of, among other features, being compact and portable. These features can eventually be exploited in clinics and rapid tests performed in households and low-income scenarios. Microfluidic systems have the added benefit of only needing small volumes of blood drawn from patients (from nanoliters to milliliters) while integrating (within the devices) the steps required before detecting analytes. Hence, these systems will reduce the associated costs of purifying blood components of interest (e.g., specific groups of cells or blood biomarkers) for studying and quantifying collected blood fractions. The microfluidic blood separation field has grown since the 2000s, and important advances have been reported in the last few years. Nonetheless, real POC microfluidic blood separation platforms are still elusive. A widespread consensus on what key figures of merit should be reported to assess the quality and yield of these platforms has not been achieved. Knowing what parameters should be reported for microfluidic blood separations will help achieve that consensus and establish a clear road map to promote further commercialization of these devices and attain real POC applications. This review provides an overview of the separation techniques currently used to separate blood components for higher throughput separations (number of cells or particles per minute). We present a summary of the critical parameters that should be considered when designing such devices and the figures of merit that should be explicitly reported when presenting a device's separation capabilities. Ultimately, reporting the relevant figures of merit will benefit this growing community and help pave the road toward commercialization of these microfluidic systems.
Collapse
Affiliation(s)
- Karina Torres-Castro
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
- Theiss Research, La Jolla, CA 92037, USA
| | - Katherine Acuña-Umaña
- Medical Devices Master’s Program, Instituto Tecnológico de Costa Rica (ITCR), Cartago 30101, Costa Rica
| | - Leonardo Lesser-Rojas
- Research Center in Atomic, Nuclear and Molecular Sciences (CICANUM), San José 11501, Costa Rica;
- School of Physics, Universidad de Costa Rica (UCR), San José 11501, Costa Rica
| | - Darwin R. Reyes
- Biophysical and Biomedical Measurements Group, National Institute of Standards and Technology (NIST), 100 Bureau Drive, Gaithersburg, MD 20899, USA;
| |
Collapse
|
7
|
Trinh KTL. Microfluidic Formulation for Biomedical Applications. Pharmaceuticals (Basel) 2023; 16:1587. [PMID: 38004452 PMCID: PMC10675076 DOI: 10.3390/ph16111587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Microfluidic technology was recognized in the 1980s when the first micropumps and micro-valves were developed to manipulate fluids for biological applications [...].
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- BioNano Applications Research Center, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
8
|
Sood A, Kumar A, Gupta VK, Kim CM, Han SS. Translational Nanomedicines Across Human Reproductive Organs Modeling on Microfluidic Chips: State-of-the-Art and Future Prospects. ACS Biomater Sci Eng 2023; 9:62-84. [PMID: 36541361 DOI: 10.1021/acsbiomaterials.2c01080] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Forecasting the consequence of nanoparticles (NPs) and therapeutically significant molecules before materializing for human clinical trials is a mainstay for drug delivery and screening processes. One of the noteworthy obstacles that has prevented the clinical translation of NP-based drug delivery systems and novel drugs is the lack of effective preclinical platforms. As a revolutionary technology, the organ-on-a-chip (OOC), a coalition of microfluidics and tissue engineering, has surfaced as an alternative to orthodox screening platforms. OOC technology recapitulates the structural and physiological features of human organs along with intercommunications between tissues on a chip. The current review discusses the concept of microfluidics and confers cutting-edge fabrication processes for chip designing. We also outlined the advantages of microfluidics in analyzing NPs in terms of characterization, transport, and degradation in biological systems. The review further elaborates the scope and research on translational nanomedicines in human reproductive organs (testis, placenta, uterus, and menstrual cycle) by taking the advantages offered by microfluidics and shedding light on their potential future implications. Finally, we accentuate the existing challenges for clinical translation and scale-up dynamics for microfluidics chips and emphasize its future perspectives.
Collapse
Affiliation(s)
- Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College, Edinburgh EH9 3JG, United Kingdom
| | - Chul Min Kim
- Department of Mechatronics Engineering, Gyeongsang National University, 33 Dongjin-ro, Jinju, Gyeongsangnam-do 52725, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.,Institute of Cell Culture, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| |
Collapse
|
9
|
Integrated lab-on-a-chip devices: Fabrication methodologies, transduction system for sensing purposes. J Pharm Biomed Anal 2023; 223:115120. [DOI: 10.1016/j.jpba.2022.115120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
|
10
|
Chen FL, Shang LD, Lin YC, Chang BY, Hsiao YC. Label-Free, Portable, and Color-Indicating Cholesteric Liquid Crystal Test Kit for Acute Myocardial Infarction by Spectral Analysis and Naked-Eye Observation. BIOSENSORS 2022; 13:60. [PMID: 36671895 PMCID: PMC9856049 DOI: 10.3390/bios13010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/24/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The early diagnosis of acute myocardial infarction is difficult in patients with nondiagnostic characteristics. Acute myocardial infarction with chest pain is associated with increased mortality. This study developed a portable test kit based on cholesteric liquid crystals (CLCs) for the rapid detection of AMI through eye observation at home. The test kit was established on dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride-coated substrates covered by a CLC-binding antibody. Cardiac troponin I (cTnI) is a major biomarker of myocardial cellular injury in human blood. The data showed that the concentration of cTnI was related to light transmittance in a positive way. The proposed CLC test kit can be operated with a smartphone; therefore, it has high potential for use as a point-of-care device for home testing. Moreover, the CLC test kit is an effective and innovative device for the rapid testing of acute myocardial infarction-related diseases through eye observation, spectrometer, or even smartphone applications.
Collapse
Affiliation(s)
- Fu-Lun Chen
- Department of Internal Medicine, Division of Infectious Diseases, Wan Fang Hospital, Taipei Medical University, No.111, Sec. 3, Xinglong Rd., Wenshan Dist., Taipei 11600, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
| | - Li-Dan Shang
- Department of Geography and Planning, University of Liverpool, Liverpool L69 3BX, UK
| | - Yen-Chung Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, 250 Wuxing St., Taipei 11031, Taiwan
- Department of Internal Medicine, Division of Nephrology, Taipei Medical University Hospital, 252 Wuxing St., Taipei 110, Taiwan
- TMU Research Center of Urology and Kidney (TMU-RCUK), Taipei Medical University, Taipei 110, Taiwan
| | - Bo-Yen Chang
- Department of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Hsiao
- Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei 11031, Taiwan
- International PhD Program for Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
11
|
Kim H, Zhbanov A, Yang S. Microfluidic Systems for Blood and Blood Cell Characterization. BIOSENSORS 2022; 13:13. [PMID: 36671848 PMCID: PMC9856090 DOI: 10.3390/bios13010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A laboratory blood test is vital for assessing a patient's health and disease status. Advances in microfluidic technology have opened the door for on-chip blood analysis. Currently, microfluidic devices can reproduce myriad routine laboratory blood tests. Considerable progress has been made in microfluidic cytometry, blood cell separation, and characterization. Along with the usual clinical parameters, microfluidics makes it possible to determine the physical properties of blood and blood cells. We review recent advances in microfluidic systems for measuring the physical properties and biophysical characteristics of blood and blood cells. Added emphasis is placed on multifunctional platforms that combine several microfluidic technologies for effective cell characterization. The combination of hydrodynamic, optical, electromagnetic, and/or acoustic methods in a microfluidic device facilitates the precise determination of various physical properties of blood and blood cells. We analyzed the physical quantities that are measured by microfluidic devices and the parameters that are determined through these measurements. We discuss unexplored problems and present our perspectives on the long-term challenges and trends associated with the application of microfluidics in clinical laboratories. We expect the characterization of the physical properties of blood and blood cells in a microfluidic environment to be considered a standard blood test in the future.
Collapse
Affiliation(s)
- Hojin Kim
- Department of Mechatronics Engineering, Dongseo University, Busan 47011, Republic of Korea
| | - Alexander Zhbanov
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sung Yang
- School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
12
|
Cherusseri J, Savio CM, Khalid M, Chaudhary V, Numan A, Varma SJ, Menon A, Kaushik A. SARS-CoV-2-on-Chip for Long COVID Management. BIOSENSORS 2022; 12:890. [PMID: 36291027 PMCID: PMC9599615 DOI: 10.3390/bios12100890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a "wicked evil" in this century due to its extended progression and huge human mortalities. Although the diagnosis of SARS-CoV-2 viral infection is made simple and practical by employing reverse transcription polymerase chain reaction (RT-PCR) investigation, the process is costly, complex, time-consuming, and requires experts for testing and the constraints of a laboratory. Therefore, these challenges have raised the paradigm of on-site portable biosensors on a single chip, which reduces human resources and enables remote access to minimize the overwhelming burden on the existing global healthcare sector. This article reviews the recent advancements in biosensors for long coronavirus disease (COVID) management using a multitude of devices, such as point-of-care biosensors and lab-on-chip biosensors. Furthermore, it details the shift in the paradigm of SARS-CoV-2-on-chip biosensors from the laboratory to on-site detection with intelligent and economical operation, representing near-future diagnostic technologies for public health emergency management.
Collapse
Affiliation(s)
- Jayesh Cherusseri
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Claire Mary Savio
- Department of Engineering, Amity University Dubai, Dubai International Academic City P.O. Box 345019, United Arab Emirates
| | - Mohammad Khalid
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Vishal Chaudhary
- Research Cell & Department of Physics, Bhagini Nivedita College, University of Delhi, Delhi 110043, India
- SUMAN Laboratory (Sustainable Materials and Advanced Nanotechnology), New Delhi 110072, India
| | - Arshid Numan
- Graphene & Advanced 2D Materials Research Group (GAMRG), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
- Sunway Materials Smart Science & Engineering (SMS2E) Research Cluster, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya 47500, Malaysia
| | - Sreekanth J. Varma
- Materials for Energy Storage and Optoelectronic Devices Group, Department of Physics, Sanatana Dharma College, University of Kerala, Alappuzha 688003, India
| | - Amrutha Menon
- Advanced Bio-Energy Devices Laboratory, Research & Development Division, JC Puli Energy Private Limited, Koduvayur, Palakkad 678501, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, India
| |
Collapse
|
13
|
Valle NME, Nucci MP, Alves AH, Rodrigues LD, Mamani JB, Oliveira FA, Lopes CS, Lopes AT, Carreño MNP, Gamarra LF. Advances in Concentration Gradient Generation Approaches in a Microfluidic Device for Toxicity Analysis. Cells 2022; 11:cells11193101. [PMID: 36231063 PMCID: PMC9563958 DOI: 10.3390/cells11193101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
This systematic review aimed to analyze the development and functionality of microfluidic concentration gradient generators (CGGs) for toxicological evaluation of different biological organisms. We searched articles using the keywords: concentration gradient generator, toxicity, and microfluidic device. Only 33 of the 352 articles found were included and examined regarding the fabrication of the microdevices, the characteristics of the CGG, the biological model, and the desired results. The main fabrication method was soft lithography, using polydimethylsiloxane (PDMS) material (91%) and SU-8 as the mold (58.3%). New technologies were applied to minimize shear and bubble problems, reduce costs, and accelerate prototyping. The Christmas tree CGG design and its variations were the most reported in the studies, as well as the convective method of generation (61%). Biological models included bacteria and nematodes for antibiotic screening, microalgae for pollutant toxicity, tumor and normal cells for, primarily, chemotherapy screening, and Zebrafish embryos for drug and metal developmental toxicity. The toxic effects of each concentration generated were evaluated mostly with imaging and microscopy techniques. This study showed an advantage of CGGs over other techniques and their applicability for several biological models. Even with soft lithography, PDMS, and Christmas tree being more popular in their respective categories, current studies aim to apply new technologies and intricate architectures to improve testing effectiveness and reduce common microfluidics problems, allowing for high applicability of toxicity tests in different medical and environmental models.
Collapse
Affiliation(s)
- Nicole M. E. Valle
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Mariana P. Nucci
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- LIM44—Hospital das Clínicas da Faculdade Medicina da Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | - Caique S. Lopes
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
| | - Alexandre T. Lopes
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Marcelo N. P. Carreño
- Departamento de Engenharia de Sistema Eletrônicos, Escola Politécnica, Universidade de São Paulo, São Paulo 05508-010, Brazil
| | - Lionel F. Gamarra
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
- Pontifícia Universidade Católica de São Paulo, São Paulo 01303-050, Brazil
- Correspondence: ; Tel.: +55-11-2151-0243
| |
Collapse
|
14
|
Chuang EY, Ho TL, Wang YC, Hsiao YC. Smartphone and home-based liquid crystal sensor for rapid screening of acute myocardial infarction by naked-eye observation and image analysis. Talanta 2022; 250:123698. [PMID: 35763951 DOI: 10.1016/j.talanta.2022.123698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
An early diagnosis of acute myocardial infarction (AMI) or thrombosis is complicated in patients with non-diagnostic features. AMI or thrombosis patients with chest pain are unintentionally discharged and have increased mortality. The study aimed to develop a smartphone biomedical sensor as a rapid test for AMI or thrombosis by naked-eye observation. The system was built on dimethyloctadecyl [3-(trimethoxysilyl)propyl]ammonium chloride (DMOAP)-coated glass substrates, which refers to a nematic liquid crystal (LC)-binding antibody. One of the main biomolecules, cardiac troponin I (cTnI), is a substance in blood in people whose bodies are vulnerable to suffering a myocardial infarction or thrombosis. The other medium, LC, is a sensing biomaterial as an earlier detection method of ameliorating the disadvantages of older methods. Results revealed that the density of cTnI was positively correlated with the coefficient of light transmittance, and it has a high chance of being developed as a point-of-care device for a home inspection as it can be operated with a smartphone. As discussed above, the nematic LC is an effective and innovative healthcare method as a rapid test for diagnosis of AMI or thrombosis related diseases by naked-eye observation.
Collapse
Affiliation(s)
- Er-Yuan Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan; International PhD Program for Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Thi-Luu Ho
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yen-Chieh Wang
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Yu-Cheng Hsiao
- International PhD Program for Biomedical Engineering, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Biomedical Optomechatronics, College of Biomedical Engineering, Taipei, 11031, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan; Stanford Byers Center for Biodesign, Stanford, USA.
| |
Collapse
|
15
|
Advances in Hydrogel-Based Microfluidic Blood–Brain-Barrier Models in Oncology Research. Pharmaceutics 2022; 14:pharmaceutics14050993. [PMID: 35631579 PMCID: PMC9144371 DOI: 10.3390/pharmaceutics14050993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 12/10/2022] Open
Abstract
The intrinsic architecture and complexity of the brain restricts the capacity of therapeutic molecules to reach their potential targets, thereby limiting therapeutic possibilities concerning neurological ailments and brain malignancy. As conventional models fail to recapitulate the complexity of the brain, progress in the field of microfluidics has facilitated the development of advanced in vitro platforms that could imitate the in vivo microenvironments and pathological features of the blood–brain barrier (BBB). It is highly desirous that developed in vitro BBB-on-chip models serve as a platform to investigate cancer metastasis of the brain along with the possibility of efficiently screening chemotherapeutic agents against brain malignancies. In order to improve the proficiency of BBB-on-chip models, hydrogels have been widely explored due to their unique physical and chemical properties, which mimic the three-dimensional (3D) micro architecture of tissues. Hydrogel-based BBB-on-chip models serves as a stage which is conducive for cell growth and allows the exchange of gases and nutrients and the removal of metabolic wastes between cells and the cell/extra cellular matrix (ECM) interface. Here, we present recent advancements in BBB-on-chip models targeting brain malignancies and examine the utility of hydrogel-based BBB models that could further strengthen the future application of microfluidic devices in oncology research.
Collapse
|
16
|
Khemthongcharoen N, Uawithya P, Yookong N, Chanasakulniyom M, Jeamsaksiri W, Sripumkhai W, Pattamang P, Juntasaro E, Houngkamhang N, Thienthong T, Promptmas C. Microfluidic system evaluation for the semi-automatic detection of MOG-IgG in serum samples. SENSING AND BIO-SENSING RESEARCH 2021. [DOI: 10.1016/j.sbsr.2021.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
17
|
Prospects of Extracellular Vesicles in Otorhinolaryngology, Head and Neck Surgery. JOURNAL OF NANOTHERANOSTICS 2021. [DOI: 10.3390/jnt2040013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The diagnostic and therapeutic potential of extracellular vesicles (EVs) has been recognised in many fields of medicine for several years. More recently, it has become a topic of increasing interest in otorhinolaryngology, head and neck surgery (ORL-HNS). With this narrative review, we have aspired to determine different aspects of those nanometrically sized theranostic particles, which seem to have promising potential as biomarkers in some of the most common diseases of the ORL-HNS by being available via less invasive diagnostic methods. At the same time, a better understanding of their activity provides us with new possibilities for developing specific target treatments. So far, most research has been oriented towards the role of EVs in the progression of head and neck cancer, notably head and neck squamous cell cancer. Nonetheless, some of this research has focused on chronic diseases of the ears, nose and paranasal sinuses. However, most research is still in the preclinical or experimental phase. It therefore requires a further and more profound understanding of EV content and behaviour to utilise their nanotheranostic capacities to their fullest potential.
Collapse
|
18
|
Khizar S, Zine N, Errachid A, Jaffrezic-Renault N, Elaissari A. Microfluidic based nanoparticle synthesis and their potential applications. Electrophoresis 2021; 43:819-838. [PMID: 34758117 DOI: 10.1002/elps.202100242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022]
Abstract
A lot of substantial innovation in advancement of microfluidic field in recent years to produce nanoparticle reveals a number of distinctive characteristics for instance compactness, controllability, fineness in process, and stability along with minimal reaction amount. Recently, a prompt development, as well as realization in production of nanoparticles in microfluidic environs having dimension of micro to nanometers and constituents extending from metals, semiconductors to polymers, has been made. Microfluidics technology integrates fluid mechanics for production of nanoparticles having exclusive with homogenous sizes, shapes, and morphology, which are utilized in several bioapplications such as biosciences, drug delivery, healthcare, including food engineering. Nanoparticles are usually well-known for having fine and rough morphology because of their small dimensions including exceptional physical, biological, chemical, and optical properties. Though the orthodox procedures need huge instruments, costly autoclaves, use extra power, extraordinary heat loss, as well as take surplus time for synthesis. Additionally, this is fascinating in order to systematize, assimilate, in addition, to reduce traditional tools onto one platform to produce micro and nanoparticles. The synthesis of nanoparticles by microfluidics permits fast handling besides better efficacy of method utilizing the smallest components for process. Herein, we will focus on synthesis of nanoparticles by means of microfluidic devices intended for different bioapplications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sumera Khizar
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Nadia Zine
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | - Abdelhamid Errachid
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| | | | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, Lyon, F-69622, France
| |
Collapse
|
19
|
A Low-Cost 3-in-1 3D Printer as a Tool for the Fabrication of Flow-Through Channels of Microfluidic Systems. MICROMACHINES 2021; 12:mi12080947. [PMID: 34442569 PMCID: PMC8398763 DOI: 10.3390/mi12080947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/17/2022]
Abstract
Recently published studies have shown that microfluidic devices fabricated by in-house three-dimensional (3D) printing, computer numerical control (CNC) milling and laser engraving have a good quality of performance. The 3-in-1 3D printers, desktop machines that integrate the three primary functions in a single user-friendly set-up are now available for computer-controlled adaptable surface processing, for less than USD 1000. Here, we demonstrate that 3-in-1 3D printer-based micromachining is an effective strategy for creating microfluidic devices and an easier and more economical alternative to, for instance, conventional photolithography. Our aim was to produce plastic microfluidic chips with engraved microchannel structures or micro-structured plastic molds for casting polydimethylsiloxane (PDMS) chips with microchannel imprints. The reproducability and accuracy of fabrication of microfluidic chips with straight, crossed line and Y-shaped microchannel designs were assessed and their microfluidic performance checked by liquid stream tests. All three fabrication methods of the 3-in-1 3D printer produced functional microchannel devices with adequate solution flow. Accordingly, 3-in-1 3D printers are recommended as cheap, accessible and user-friendly tools that can be operated with minimal training and little starting knowledge to successfully fabricate basic microfluidic devices that are suitable for educational work or rapid prototyping.
Collapse
|
20
|
Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021; 22:2011. [PMID: 33670545 PMCID: PMC7921936 DOI: 10.3390/ijms22042011] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Microfluidics is a relatively newly emerged field based on the combined principles of physics, chemistry, biology, fluid dynamics, microelectronics, and material science. Various materials can be processed into miniaturized chips containing channels and chambers in the microscale range. A diverse repertoire of methods can be chosen to manufacture such platforms of desired size, shape, and geometry. Whether they are used alone or in combination with other devices, microfluidic chips can be employed in nanoparticle preparation, drug encapsulation, delivery, and targeting, cell analysis, diagnosis, and cell culture. This paper presents microfluidic technology in terms of the available platform materials and fabrication techniques, also focusing on the biomedical applications of these remarkable devices.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Faculty of Engineering in Foreign Languages, University Politehnica of Bucharest, 011061 Bucharest, Romania;
| | - Cristina Chircov
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandra Cătălina Bîrcă
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
| | - Alexandru Mihai Grumezescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| |
Collapse
|
21
|
Molinski J, Tadimety A, Burklund A, Zhang JXJ. Scalable Signature-Based Molecular Diagnostics Through On-chip Biomarker Profiling Coupled with Machine Learning. Ann Biomed Eng 2020; 48:2377-2399. [PMID: 32816167 PMCID: PMC7785517 DOI: 10.1007/s10439-020-02593-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023]
Abstract
Molecular diagnostics have traditionally relied on discrete biological substances as diagnostic markers. In recent years however, advances in on-chip biomarker screening technologies and data analytics have enabled signature-based diagnostics. Such diagnostics aim to utilize unique combinations of multiple biomarkers or diagnostic 'fingerprints' rather than discrete analyte measurements. This approach has shown to improve both diagnostic accuracy and diagnostic specificity. In this review, signature-based diagnostics enabled by microfluidic and micro-/nano- technologies will be reviewed with a focus on device design and data analysis pipelines and methodologies. With increasing amounts of data available from microfluidic biomarker screening, isolation, and detection platforms, advanced data handling and analytics approaches can be employed. Thus, current data analysis approaches including machine learning and recent advances with image processing, along with potential future directions will be explored. Lastly, the needs and gaps in current literature will be elucidated to inform future efforts towards development of molecular diagnostics and biomarker screening technologies.
Collapse
Affiliation(s)
- John Molinski
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Amogha Tadimety
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - Alison Burklund
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA
| | - John X J Zhang
- Thayer School of Engineering at Dartmouth, 14 Engineering Drive, Hanover, NH, 03755, USA.
- Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
22
|
Scalable COVID-19 Detection Enabled by Lab-on-Chip Biosensors. Cell Mol Bioeng 2020; 13:313-329. [PMID: 32837587 PMCID: PMC7416807 DOI: 10.1007/s12195-020-00642-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction The emergence of a novel coronavirus, SARS-CoV-2, has highlighted the need for rapid, accurate, and point-of-care diagnostic testing. As of now, there is not enough testing capacity in the world to meet the stated testing targets, which are expected to skyrocket globally for broader testing during reopening Aim This review focuses on the development of lab-on-chip biosensing platforms for diagnosis of COVID-19 infection. Results We discuss advantages of utilizing lab-on-chip technologies in response to the current global pandemic, including their potential for low-cost, rapid sample-to-answer processing times, and ease of integration into a range of healthcare settings. We then highlight the development of magnetic, colorimetric, plasmonic, electrical, and lateral flow-based lab-on-chip technologies for the detection of SARS-CoV-2, in addition to other viruses. We focus on rapid, point-of-care technologies that can be deployed at scale, as such devices could be promising alternatives to the current gold standard of reverse transcription-polymerase chain reaction (RT-PCR) diagnostic testing. Conclusion This review is intended to provide an overview of the current state-of-the-field and serve as a resource for innovative development of new lab-on-chip assays for COVID-19 detection.
Collapse
|