1
|
Kim W, Zia MB, Naik RR, Ho KKHY, Selomulya C. Effects of polyphenols from Tasmannia lanceolata on structural, emulsifying, and antioxidant properties of pea protein. Food Chem 2025; 464:141589. [PMID: 39406142 DOI: 10.1016/j.foodchem.2024.141589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
The effects of polyphenols from Tasmanian pepper (Tasmannia Lanceolata) leaf and berry on the functional properties of pea protein were investigated in flaxseed oil-in-water emulsions. Phenolic acids and flavonols in Tasmanian pepper leaf with smaller molecular weights led to stronger non-covalent interactions with pea protein, while anthocyanins from Tasmanian pepper berry induced protein aggregation under acidic condition and co-existed with proteins in neutral and alkaline conditions. The total phenolic content was significantly increased with incorporation of polyphenols from Tasmanian pepper leaf (334.94-445.92 μg/mL) and berry (72.89-153.03 μg/mL) to pea protein (4.19-15.59 μg/mL). The oxidative stability of emulsions at pH 3 and 7 was enhanced, reducing TBARS value from 1.54 to 2.68 mg MDA/kg in pea protein to 0.56-0.85 mg MDA/kg after 2 weeks storage. These findings illustrated the distinct interactions between pea protein and different polyphenols from Tasmanian pepper leaf and berry to enhance the antioxidant capacity of pea protein.
Collapse
Affiliation(s)
- Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | - Muhammad Bin Zia
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia
| | | | - Kacie K H Y Ho
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | | |
Collapse
|
2
|
Jian X, Shi C, Xu T, Liu B, Zhou L, Jiang L, Liu K. Efficacy and safety of dietary polyphenol administration as assessed by hormonal, glycolipid metabolism, inflammation and oxidative stress parameters in patients with PCOS: a meta-analysis and systematic review. Crit Rev Food Sci Nutr 2024:1-25. [PMID: 39682053 DOI: 10.1080/10408398.2024.2440063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
BACKGROUND The current knowledge about the efficacy and safety of dietary polyphenol administration in patients with polycystic ovarian syndrome (PCOS) is divergent. OBJECTIVE To evaluate the pooled efficacy and safety of dietary polyphenol administration in the treatment of patients with PCOS. METHODS The pubmed, Embase, Scopus, Cochrane Library, and Web of Science databases were searched for randomized controlled trials (RCTs) of dietary polyphenol administration for the treatment of PCOS. English-language RCTs involving adults with PCOS were thoroughly searched in electronic databases from the time of their establishment to May 2024. Random-effects models were used because heterogeneity was derived from differences in intervention materials and study duration, among other confounding factors. The effect sizes of the outcomes in the pooled analysis are expressed as weighted mean differences (WMDs) and 95% confidence intervals (CIs). RESULTS A total of 15 RCTs involving 934 patients were finally included. Compared with control treatments, dietary polyphenol administration significantly reduced luteinizing hormone (LH) (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00), and prolactin levels (WMD: -3.73, 95% CI [-6.73 to -0.74], p = 0.01). Dietary polyphenol administration significantly reduced insulin levels (WMD: -0.85, 95% CI [-1.32 to -0.38], p = 0.00). Regarding lipid metabolism, dietary polyphenol administration only reduced triglyceride levels (WMD: -8.96, 95% CI [-16.44 to -1.49], p = 0.02). Malondialdehyde (MDA) (WMD: -0.65, 95% CI [-0.68 to -0.62], p = 0.00), tumor necrosis factor (TNF-α) (WMD: -1.39, 95% CI [-2.41 to -0.37], p = 0.01) concentrations were significantly reduced by dietary polyphenol administration. None of the interventions significantly affected weight, body mass index (BMI), waist circumference (WC), homeostatic model-insulin resistance (HOMA-IR), fasting blood sugar (FBS), glycated hemoglobin (HBA1c), follicle-stimulating hormone (FSH), testosterone (T), dehydroepiandrosterone (DHEA), estradiol (E2), anti-Müllerian hormone (AMH), quantitative insulin-sensitivity check index (QUICKI), sex hormone-binding globulin (SHBG), total antioxidant capacity (TAC), C-peptide, C-reactive protein (CRP), high-density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, cholesterol/HDL, acne score, thyroid-stimulating hormone (TSH), aspartate aminotransferase (AST), alanine aminotransferase (ALT) or alkaline phosphatase (ALP). CONCLUSION Dietary polyphenol administration was efficacious in patients with PCOS in our study. This review might provide new insight into the treatment of patients with PCOS and the potential of daily polyphenol supplementation in patients with PCOS. Nevertheless, these results must be interpreted carefully as a result of the heterogeneity and risk of bias among the studies and we expect that more high-quality RCTs evaluating the efficacy and safety of dietary polyphenol adnimistration in patients with PCOS will be conducted in the future. SYSTEMATIC REVIEW REGISTRATION CRD42024498494.
Collapse
Affiliation(s)
- Xian Jian
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Chen Shi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Liyuan Zhou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang
| |
Collapse
|
3
|
Pan J, Li C, Liu J, Jiao Z, Zhang Q, Lv Z, Yang W, Chen D, Liu H. Polysaccharide-Based Packaging Coatings and Films with Phenolic Compounds in Preservation of Fruits and Vegetables-A Review. Foods 2024; 13:3896. [PMID: 39682968 DOI: 10.3390/foods13233896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
Considerable interest has emerged in developing biodegradable food packaging materials derived from polysaccharides. Phenolic compounds serve as natural bioactive substances with a range of functional properties. Various phenolic compounds have been incorporated into polysaccharide-based films and coatings for food packaging, thereby enhancing product shelf life by mitigating quality degradation due to oxidation and microbial growth. This review offers a comprehensive overview of the current state of polysaccharide-based active films and coatings enriched with phenolic compounds for preserving fruits and vegetables. The different approaches for the addition of phenols to polysaccharides-based packaging materials are discussed. The modifications in film properties resulting from incorporating polyphenols are systematically characterized. Then, the application of these composite materials as protectants and intelligent packaging in fruit and vegetables preservation is highlighted. In future, several points, such as the preservative mechanism, safety evaluation, and combination with other techniques along the whole supply chain could be considered to design polyphenol-polysaccharides packaging more in line with actual production needs.
Collapse
Affiliation(s)
- Junkun Pan
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Chengheng Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jiechao Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhonggao Jiao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhenzhen Lv
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Wenbo Yang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dalei Chen
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Hui Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453000, China
| |
Collapse
|
4
|
Yang W, Zhang L, Yang Y, Xiang H, Yang P. Plant secondary metabolites-mediated plant defense against bacteria and fungi pathogens. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109224. [PMID: 39437667 DOI: 10.1016/j.plaphy.2024.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/30/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Plant diseases caused by pathogenic bacteria and fungi are major threats to both wild plants and crops. To counteract these threats, plants have evolved various defense mechanisms, including the production of plant secondary metabolites (PSMs). These compounds, such as terpenoids, phenolics, alkaloids, and glucosinolates, offer a versatile, efficient, and cost-effective means of pathogen resistance. The traditional pathogen management methods relying on synthetic microbicides are often environment unfriendly. In contrast, PSMs provide promising alternative way due to their high efficiency and environmental benefits. This article reviews the categories, biosynthetic pathways, mechanisms of actions, and the commercialization of the PSMs to enhance our understanding of their pathogen resistance capabilities. The goal is to develop sustainable disease management strategies using PSM-based bactericides and fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China.
| |
Collapse
|
5
|
Nie RZ, Luo HM, Chen JY, Sun LH, Wang ZB, Zhang ZP, Bao YR. Molecular insights into the interactions of theaflavin and epicatechin with different lipid bilayer membranes by molecular dynamics simulation. Chem Phys Lipids 2024; 262:105405. [PMID: 38795837 DOI: 10.1016/j.chemphyslip.2024.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024]
Abstract
At present, consumers increasingly favored the natural food preservatives with fewer side-effects on health. The green tea catechins and black tea theaflavins attracted considerable interest, and their antibacterial effects were extensively reported in the literature. Epicatechin (EC), a green tea catechin without a gallate moiety, showed no bactericidal activity, whereas the theaflavin (TF), also lacking a gallate moiety, exhibited potent bactericidal activity, and the antibacterial effects of green tea catechins and black tea theaflavins were closely correlated with their abilities to disrupt the bacterial cell membrane. In our present study, the mechanisms of membrane interaction modes and behaviors of TF and EC were explored by molecular dynamics simulations. It was demonstrated that TF exhibited markedly stronger affinity for the POPG bilayer compared to EC. Additionally, the hydrophobic interactions of tropolone/catechol rings with the acyl chain part could significantly contribute to the penetration of TF into the POPG bilayer. It was also found that the resorcinol/pyran rings were the key functional groups in TF for forming hydrogen bonds with the POPG bilayer. We believed that the findings from our current study could offer useful insights to better understand the stronger antibacterial effects of TF compared to EC.
Collapse
Affiliation(s)
- Rong-Zu Nie
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Huo-Min Luo
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou University of Light Industry, Zhengzhou 450001, China; Key Laboratory of Cold Chain Food Processing and Safety Control, Ministry of Education, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jing-Yu Chen
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Li-Heng Sun
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zi-Bo Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhen-Ping Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Ya-Ru Bao
- Science and Technology Division, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| |
Collapse
|
6
|
Djenane D, Aider M. The one-humped camel: The animal of future, potential alternative red meat, technological suitability and future perspectives. F1000Res 2024; 11:1085. [PMID: 38798303 PMCID: PMC11128057 DOI: 10.12688/f1000research.125246.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 05/29/2024] Open
Abstract
The 2020 world population data sheet indicates that world population is projected to increase from 7.8 billion in 2020 to 9.9 billion by 2050 (Increase of more than 25%). Due to the expected growth in human population, the demand for meats that could improve health status and provide therapeutic benefits is also projected to rise. The dromedary also known as the Arabian camel, or one-humped camel ( Camelus dromedarius), a pseudo ruminant adapted to arid climates, has physiological, biological and metabolic characteristics which give it a legendary reputation for surviving in the extreme conditions of desert environments considered restrictive for other ruminants. Camel meat is an ethnic food consumed across the arid regions of Middle East, North-East Africa, Australia and China. For these medicinal and nutritional benefits, camel meat can be a great option for sustainable meat worldwide supply. A considerable amount of literature has been published on technological aspects and quality properties of beef, lamb and pork but the information available on the technological aspects of the meat of the one humped camel is very limited. Camels are usually raised in less developed countries and their meat is as nutritionally good as any other traditional meat source. Its quality also depends on the breed, sex, age, breeding conditions and type of muscle consumed. A compilation of existing literature related to new technological advances in packaging, shelf-life and quality of camel meat has not been reviewed to the best of our knowledge. Therefore, this review attempts to explore the nutritional composition, health benefits of camel meat, as well as various technological and processing interventions to improve its quality and consumer acceptance. This review will be helpful for camel sector and highlight the potential for global marketability of camel meat and to generate value added products.
Collapse
Affiliation(s)
- Djamel Djenane
- Laboratory of Meat Quality and Food Safety, Department of Meat Science and Technology., University of Mouloud MAMMERI, Tizi-Ouzou, 15000, Algeria
| | - Mohammed Aider
- Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec City, QC, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec City, QC, Canada
| |
Collapse
|
7
|
Hu YM, Wang YR, Zhao WB, Ding YY, Wu ZR, Wang GH, Deng P, Zhang SY, An JX, Zhang ZJ, Luo XF, Liu YQ. Efficacy of pterostilbene suppression on Aspergillus flavus growth, aflatoxin B 1 biosynthesis and potential mechanisms. Int J Food Microbiol 2023; 404:110318. [PMID: 37454507 DOI: 10.1016/j.ijfoodmicro.2023.110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/15/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
Aspergillus flavus, a widespread saprotrophic filamentous fungus, could colonize agricultural crops with aflatoxin contamination, which endangers food security and the agricultural economy. A safe, effective and environmentally friendly fungicide is urgently needed. Pterostilbene, a natural phytoalexin originated from Pterocarpus indicus Willd., Vaccinium spp. and Vitis vinifera L., has been reported to possess excellent antimicrobial activity. More importantly, it is quite safe and healthy. In our screening tests of plant polyphenols for the inhibition of A. flavus, we found that pterostilbene evidently inhibited mycelial growth of Aspergillus flavus (EC50 = 15.94 μg/mL) and the inhibitory effect was better than that of natamycin (EC50 = 22.01 μg/mL), which is a natural product widely used in food preservation. Therefore, we provided insights into the efficacy of pterostilbene suppression on A. flavus growth, aflatoxin B1 biosynthesis and its potential mechanisms against A. flavus in the present study. Here, pterostilbene at concentrations of 250 and 500 μg/mL could effectively inhibit the infection of A. flavus on peanuts. And the biosynthesis of the secondary metabolite aflatoxin B1 was also inhibited. The antifungal effects of pterostilbene are exerted by inducing a large amount of intracellular reactive oxygen species production to bring the cells into a state of oxidative stress, damaging cellular biomolecules such as DNA, proteins and lipids and destroying the integrity of the cell membrane. Taken together, our study strongly supported the fact that pterostilbene could be considered a safe and effective antifungal agent against A. flavus infection.
Collapse
Affiliation(s)
- Yong-Mei Hu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| | - Yi-Rong Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Wen-Bin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Yan Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Guang-Han Wang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Peng Deng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China; Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China; State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
8
|
Salvio G, Ciarloni A, Gianfelice C, Lacchè F, Sabatelli S, Giacchetti G, Balercia G. The Effects of Polyphenols on Bone Metabolism in Postmenopausal Women: Systematic Review and Meta-Analysis of Randomized Control Trials. Antioxidants (Basel) 2023; 12:1830. [PMID: 37891909 PMCID: PMC10604028 DOI: 10.3390/antiox12101830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Osteoporosis is a condition favored by the postmenopausal decline in estrogen levels and worsened by oxidative stress (OS). Polyphenols are natural compounds abundantly found in fruits and vegetables, and they exert antioxidant and hormonal effects that could be useful in osteoporosis prevention, as suggested by epidemiological studies showing a lower incidence of fractures in individuals consuming polyphenol-rich diets. The aim of our meta-analysis is to evaluate the effects of polyphenols on bone mineral density (BMD, primary endpoint) and bone turnover markers (BTMs, secondary endpoint) in postmenopausal women. Twenty-one randomized control trials (RCTs) were included in our analysis after in-depth search on PubMed, EMBASE, and Scopus databases. We found that supplementation with polyphenols for 3-36 months exerted no statically significant effects on BMD measured at lumbar spine (sMD: 0.21, 95% CI [-0.08 to 0.51], p = 0.16), femoral neck (sMD: 0.16, 95% CI [-0.23 to 0.55], p = 0.42), total hip (sMD: 0.05, 95% CI [-0.14 to 0.24], p = 0.61), and whole body (sMD: -0.12, 95% CI [-0.42 to 0.17], p = 0.41). Subgroup analysis based on treatment duration showed no statistical significance, but a significant effect on lumbar BMD emerged when studies with duration of 24 months or greater were analyzed separately. On the other hand, we found a significantly slight increase in bone-specific alkaline phosphatase (BALP) levels (sMD: 1.27, 95% CI [1.13 to 1.42], p < 0.0001) and a decrease in pyridinoline (PD) levels (sMD: -0.58, 95% CI [-0.77 to -0.39], p < 0.0001). High heterogeneity among studies and unclear risk of bias in one third of the included studies emerged. A subgroup analysis showed similar effects for different duration of treatment and models of dual-energy X-ray absorptiometry (DXA) scanner. More robust evidence is needed before recommending the prescription of polyphenols in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Giancarlo Balercia
- Endocrinology Clinic, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, 60126 Ancona, Italy; (G.S.); (A.C.); (C.G.); (F.L.); (S.S.); (G.G.)
| |
Collapse
|
9
|
Rostami M, Kolahi Azar H, Salehi M, Abedin Dargoush S, Rostamani H, Jahed-Khaniki G, Alikord M, Aghabeigi R, Ahmadi A, Beheshtizadeh N, Webster TJ, Rezaei N. The food and biomedical applications of curcumin-loaded electrospun nanofibers: A comprehensive review. Crit Rev Food Sci Nutr 2023; 64:12383-12410. [PMID: 37691403 DOI: 10.1080/10408398.2023.2251584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Encapsulating curcumin (CUR) in nanocarriers such as liposomes, polymeric micelles, silica nanoparticles, protein-based nanocarriers, solid lipid nanoparticles, and nanocrystals could be efficient for a variety of industrial and biomedical applications. Nanofibers containing CUR represent a stable polymer-drug carrier with excellent surface-to-volume ratios for loading and cell interactions, tailored porosity for controlled CUR release, and diverse properties that fit the requirements for numerous applications. Despite the mentioned benefits, electrospinning is not capable of producing fibers from multiple polymers and biopolymers, and the product's effectiveness might be affected by various machine- and material-dependent parameters like the voltage and the flow rate of the electrospinning process. This review delves into the current and innovative recent research on nanofibers containing CUR and their various applications.
Collapse
Affiliation(s)
- Mohammadreza Rostami
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Science and Nutrition Group (FSAN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hanieh Kolahi Azar
- Department of Pathology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojdeh Salehi
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Hosein Rostamani
- Department of Biomedical Engineering-Biomaterials, Islamic Azad University, Mashhad, Iran
| | - Gholamreza Jahed-Khaniki
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Alikord
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Aghabeigi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Ahmadi
- Department of Food Sciences and Technology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nima Beheshtizadeh
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Regenerative Medicine Group (REMED), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- Programa de Pós-Graduação em Ciência e Engenharia dos Materiais, Universidade Federal do Piauí, Teresina, Brazil
- School of Engineering, Saveetha University, Chennai, India
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
10
|
Geana EI, Ciucure CT, Tamaian R, Marinas IC, Gaboreanu DM, Stan M, Chitescu CL. Antioxidant and Wound Healing Bioactive Potential of Extracts Obtained from Bark and Needles of Softwood Species. Antioxidants (Basel) 2023; 12:1383. [PMID: 37507922 PMCID: PMC10376860 DOI: 10.3390/antiox12071383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Interest in the extraction of phytochemical bioactive compounds, especially polyphenols from biomass, has recently increased due to their valuable biological potential as natural sources of antioxidants, which could be used in a wide range of applications, from foods and pharmaceuticals to green polymers and bio-based materials. The present research study aimed to provide a comprehensive chemical characterization of the phytochemical composition of forest biomass (bark and needles) of softwood species (Picea abies L., H. Karst., and Abies alba Mill.) and to investigate their in vitro antioxidant and antimicrobial activities to assess their potential in treating and healing infected chronic wounds. The DPPH radical-scavenging method and P-LD were used for a mechanistic explanation of the biomolecular effects of the investigated bioactive compounds. (+)-Catechin, epicatechin, rutin, myricetin, 4 hydroxybenzoic and p-cumaric acids, kaempherol, and apigenin were the main quantified polyphenols in coniferous biomass (in quantities around 100 µg/g). Also, numerous phenolic acids, flavonoids, stilbenes, terpenes, lignans, secoiridoids, and indanes with antioxidant, antimicrobial, anti-inflammatory, antihemolytic, and anti-carcinogenic potential were identified. The Abies alba needle extract was more toxic to microbial strains than the eukaryotic cells that provide its active wound healing principles. In this context, developing industrial upscaling strategies is imperative for the long-term success of biorefineries and incorporating them as part of a circular bio-economy.
Collapse
Affiliation(s)
- Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Corina Teodora Ciucure
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Radu Tamaian
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 240050 Ramnicu Valcea, Romania;
| | - Ioana Cristina Marinas
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Diana Mădălina Gaboreanu
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Miruna Stan
- Department of Microbiology and Biochemistry, Research Institute of the University of Bucharest-ICUB, 050567 Bucharest, Romania; (D.M.G.); (M.S.)
| | - Carmen Lidia Chitescu
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800008 Galati, Romania;
| |
Collapse
|
11
|
Zhao R, Ran J, Ruan X, Du H, Li G, Zhao L, Sun J, Liang X. Apple polyphenol biotransformation using probiotics in vitro and dynamic simulated digestion by bionic rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37062937 DOI: 10.1002/jsfa.12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The present study investigated the effects of fermentation by Lactobacillus rhamnosus zrx01 (LR-zrx01), Lactobacillus acidophilus zrx02 (LA-zrx02), and Lactobacillus plantarum zrx03 (LP-zrx03), as well as dynamic simulated digestion by bionic rats, on the biotransformation and antioxidant potential of apple polyphenols. Polyphenols were determined by ultra-high-performance liquid chromatography-mass spectrometry, the dynamic simulated digestion of fermented apple pulp was determined by bionic rats, and the antibacterial and antioxidant activities were analyzed. RESULTS The polyphenol content of apple pulp fermented using the three strains was respectively 1.41, 1.38, and 1.36 times that of non-fermented pulp. The antibacterial activity of apple pulp improved dramatically after fermentation. Moreover, the antioxidant potential of apple pulp increased after fermentation and digestion. After dynamic simulated digestion by bionic rats, the polyphenol content in unfermented and the three fermented groups increased significantly by 1.19, 1.23, 1.20, and 1.19 times compared to that before digestion, respectively. The major polyphenols in each group with obvious changes were epicatechin, rutin, kaempferol, quercetin-3 galactoside, p-coumaric acid, and two unknown substances, 1 and 2. CONCLUSION Fermented and digested apple polyphenols showed better biotransformation effects and mostly existed in the form of small molecules, which was conducive to the improvement of polyphenol bioavailability and beneficial to the absorption of active substances by the human body. These findings build a foundation for the development of functional food beverages. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruixiang Zhao
- Henan Institute of Science and Technology, School of Food Science, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Xinxiang, China
| | - Junjian Ran
- Henan Institute of Science and Technology, School of Food Science, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Xinxiang, China
| | - Xiaoli Ruan
- Henan Institute of Science and Technology, School of Food Science, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Xinxiang, China
| | - Hanxiao Du
- Henan Institute of Science and Technology, School of Food Science, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Xinxiang, China
| | - Gang Li
- Henan Institute of Science and Technology, School of Food Science, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Xinxiang, China
| | - Lili Zhao
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Junliang Sun
- Henan Institute of Science and Technology, School of Food Science, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Xinxiang, China
| | - Xinhong Liang
- Henan Institute of Science and Technology, School of Food Science, Key Lab Breeding Base of College of Henan Province, Xinxiang Engineering Technology Research Center for Agricultural Products Processing, Xinxiang, China
| |
Collapse
|
12
|
Melanoma Cellular Signaling Transduction Pathways Targeted by Polyphenols Action Mechanisms. Antioxidants (Basel) 2023; 12:antiox12020407. [PMID: 36829966 PMCID: PMC9952468 DOI: 10.3390/antiox12020407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Melanoma is the most aggressive type of skin cancer. Although different anti-melanoma treatments are available, their efficacy is still improvable, and the number of deaths continues to increase worldwide. A promising source of antitumor agents could be presented by polyphenols-natural plant-based compounds. Over the past decades, many studies have described multiple anticancer effects of polyphenols in melanoma, presenting their potential interactions with targeted molecules from different signaling pathways. However, to our knowledge, there is no comprehensive review on polyphenols-regulated mechanisms in melanoma cells available in the literature. To fulfill this gap, this article aims to summarize the current knowledge of molecular mechanisms of action regulated by polyphenols involved in melanoma initiation and progression. Here, we focus on in vitro and in vivo effects of polyphenol treatments on tumor-essential cellular pathways, such as cell proliferation, apoptosis, autophagy, inflammation, angiogenesis, and metastasis. Moreover, emerging studies regarding the well-marked role of polyphenols in the regulation of microRNAs (miRNAs), highlighting their contribution to melanoma development, are also epitomized. Finally, we hope this review will provide a firm basis for developing polyphenol-based therapeutic agents in melanoma treatment.
Collapse
|
13
|
Gaur G, Gänzle MG. Conversion of (poly)phenolic compounds in food fermentations by lactic acid bacteria: Novel insights into metabolic pathways and functional metabolites. Curr Res Food Sci 2023; 6:100448. [PMID: 36713641 PMCID: PMC9876838 DOI: 10.1016/j.crfs.2023.100448] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/07/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023] Open
Abstract
Lactobacillaceae are among the major fermentation organisms in most food fermentations but the metabolic pathways for conversion of (poly)phenolic compounds by lactobacilli have been elucidated only in the past two decades. Hydroxycinnamic and hydroxybenzoic acids are metabolized by separate enzymes which include multiple esterases, decarboxylases and hydroxycinnamic acid reductases. Glycosides of phenolic compounds including flavonoids are metabolized by glycosidases, some of which are dedicated to glycosides of plant phytochemicals rather than oligosaccharides. Metabolism of phenolic compounds in food fermentations often differs from metabolism in vitro, likely reflecting the diversity of phenolic compounds and the unknown stimuli that induce expression of metabolic genes. Current knowledge will facilitate fermentation strategies to achieve improved food quality by targeted conversion of phenolic compounds.
Collapse
Affiliation(s)
- Gautam Gaur
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Huang H, Li Y, Gui F, Yang P, Zhang J, Li W, Zhong C, Cao L. Optimizing the purification process of polyphenols of sea buckthorn seed and its potential freshness effect. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Kaboré K, Konaté K, Sama H, Dakuyo R, Sanou A, Bazié D, Diao M, Dicko MH. Evaluation of the physicochemical parameters of edible oils sold in the three cities of Burkina Faso. Food Sci Nutr 2022; 10:2029-2035. [PMID: 35702288 PMCID: PMC9179140 DOI: 10.1002/fsn3.2819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 01/18/2023] Open
Abstract
The edible oil needs of African countries are met by imported or locally produced ones. Therefore, consumers are generally confronted with a choice of edible oils of poorly controlled quality. However, quality control of edible oils for local consumption is of high necessity. This study aimed to assess the quality of edible oils sold and consumed in some cities in Burkina Faso. Oil samples collected in the cities of Dédougou, Koudougou, and Nouna were used for several analyses. Oil samples from palm, refined and unrefined cottonseed, and groundnut were collected. Standard methods were used to assess the physicochemical quality parameters of the oils, including the peroxide value, water and volatile matter content, acid value, traces of soap, and mineral oil contents. The parameters varied significantly depending on the oil type, but not by the locality of origin. The peroxide indices had varied from 3.24 to 39.99 mEq O2/kg oil. The acid indices varied from 0.22 mg KOH/g to 1.24 mg KOH/g. The water and volatile matter contents ranged from 0.04% to 0.88%. The test for traces of soap gave values ranging from 0 to 76 ppm. For the mineral oil test, four samples of cottonseed oil collected in Dedougou gave positive results. Compared to international reference standards, in particular the Codex Alimentarius standard, it may constitute a health risk for consumers. The poor storage, distribution, and marketing conditions of the oils could explain their poor quality. In order to provide consumers with quality oils, regular controls must be undertaken in the places where the oils are stored and/or marketed.
Collapse
Affiliation(s)
- Kabakdé Kaboré
- Laboratory of Biochemistry, Biotechnology, Food Technology and NutritionUniversity Joseph Ki‐ZERBOOuagadougouBurkina Faso
| | - Kiéssoun Konaté
- Laboratory of Biochemistry, Biotechnology, Food Technology and NutritionUniversity Joseph Ki‐ZERBOOuagadougouBurkina Faso
| | - Hemayoro Sama
- Laboratory of Biochemistry and Applied ChemistryUniversity Joseph Ki‐ZERBOOuagadougouBurkina Faso
| | - Roger Dakuyo
- Laboratory of Biochemistry, Biotechnology, Food Technology and NutritionUniversity Joseph Ki‐ZERBOOuagadougouBurkina Faso
| | - Abdoudramane Sanou
- Laboratory of Biochemistry, Biotechnology, Food Technology and NutritionUniversity Joseph Ki‐ZERBOOuagadougouBurkina Faso
| | - David Bazié
- Laboratory of Biochemistry, Biotechnology, Food Technology and NutritionUniversity Joseph Ki‐ZERBOOuagadougouBurkina Faso
| | - Mamounata Diao
- Laboratory of Biochemistry, Biotechnology, Food Technology and NutritionUniversity Joseph Ki‐ZERBOOuagadougouBurkina Faso
| | - Mamoudou Hama Dicko
- Laboratory of Biochemistry, Biotechnology, Food Technology and NutritionUniversity Joseph Ki‐ZERBOOuagadougouBurkina Faso
| |
Collapse
|
16
|
Gutierrez J, Bakke A, Vatta M, Merrill AR. Plant Natural Products as Antimicrobials for Control of Streptomyces scabies: A Causative Agent of the Common Scab Disease. Front Microbiol 2022; 12:833233. [PMID: 35154047 PMCID: PMC8828645 DOI: 10.3389/fmicb.2021.833233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
The common scab disease caused by Streptomyces scabies, a soil-dwelling Gram-positive bacterium, is an economically important disease of potatoes and other tuber crops. The lack of effective treatments against this disease accounts for large economic losses globally. Plant extracts were screened to find several that effectively inhibited Streptomyces scabies growth in culture. Seven tinctures showed the greatest inhibition of S. scabies growth by reducing pathogen growth in culture by 75% or more. These extracts were myrrh, garlic, cayenne, barberry, frankincense, wild indigo root, and lavender. Myrrh extract from Commiphora myrrha, a resin made from tree sap, showed strong antibacterial activity by reducing the growth of S. scabies to 13% of the control. Additionally, a flavonoid library was screened to identify several compounds that were effective to control the pathogen growth. The flavonoids that showed the greatest inhibition of Streptomyces scabies growth were sophoraflavanone G, jaceosidin, baicalein, and quercetin. Minimum inhibitory concentrations for the effective flavonoids were calculated to be 6.8 ± 0.4 μM, 100.0 ± 2.1 μM, 202.9 ± 5.3 μM, and 285.2 ± 6.8 μM, respectively. The mean lethal doses for these flavonoids against Streptomyces scabies were 2.0 ± 0.1 μM, 22.6 ± 0.5 μM, 52.9 ± 1.3 μM, and 37.8 ± 1.0 μM, respectively. A live/dead assay showed complete cell death in the presence of sophoraflavanone G indicative of a bactericidal mechanism for flavonoid action on Streptomyces scabies. Scanning electron and transmission electron microscopy imaging showed damaged cell membrane morphologies when Streptomyces scabies was exposed to these flavonoids. Mycelia appeared as flat and deflated structures with contents seen as spewing from branching hyphae with numerous holes and tears in the membrane structure indicative of cell death. Sophoraflavanone G showed the greatest potency and potential as a natural antibiotic from the library of tested flavonoids. These results suggest that these plant compounds act on the pathogen through a bactericidal mechanism involving cell membrane destabilization and disruption leading to cell death.
Collapse
|