1
|
Falsetti L, Viticchi G, Zaccone V, Guerrieri E, Moroncini G, Luzzi S, Silvestrini M. Shared Molecular Mechanisms among Alzheimer’s Disease, Neurovascular Unit Dysfunction and Vascular Risk Factors: A Narrative Review. Biomedicines 2022; 10:biomedicines10020439. [PMID: 35203654 PMCID: PMC8962428 DOI: 10.3390/biomedicines10020439] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/27/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, affecting 24 million individuals. Clinical and epidemiological studies have found several links between vascular risk factors (VRF), neurovascular unit dysfunction (NVUd), blood-brain barrier breakdown (BBBb) and AD onset and progression in adulthood, suggesting a pathogenetic continuum between AD and vascular dementia. Shared pathways between AD, VRF, and NVUd/BBB have also been found at the molecular level, underlining the strength of this association. The present paper reviewed the literature describing commonly shared molecular pathways between adult-onset AD, VRF, and NVUd/BBBb. Current evidence suggests that VRF and NVUd/BBBb are involved in AD neurovascular and neurodegenerative pathology and share several molecular pathways. This is strongly supportive of the hypothesis that the presence of VRF can at least facilitate AD onset and progression through several mechanisms, including NVUd/BBBb. Moreover, vascular disease and several comorbidities may have a cumulative effect on VRF and worsen the clinical manifestations of AD. Early detection and correction of VRF and vascular disease by improving NVUd/BBBd could be a potential target to reduce the overall incidence and delay cognitive impairment in AD.
Collapse
Affiliation(s)
- Lorenzo Falsetti
- Internal and Subintensive Medicine Department, Azienda Ospedaliero-Universitaria “Ospedali Riuniti” di Ancona, 60100 Ancona, Italy;
- Correspondence: ; Tel.: +39-071-596-5269
| | - Giovanna Viticchi
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| | - Vincenzo Zaccone
- Internal and Subintensive Medicine Department, Azienda Ospedaliero-Universitaria “Ospedali Riuniti” di Ancona, 60100 Ancona, Italy;
| | - Emanuele Guerrieri
- Emergency Medicine Residency Program, Università Politecnica delle Marche, 60121 Ancona, Italy;
| | | | - Simona Luzzi
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| | - Mauro Silvestrini
- Neurologic Clinic, Marche Polytechnic University, 60126 Ancona, Italy; (G.V.); (S.L.); (M.S.)
| |
Collapse
|
2
|
Alambyan V, Pace J, Miller B, Cohen ML, Gokhale S, Singh G, Shun MC, Hammond A, Ramos-Estebanez C. The Emerging Role of Inhaled Heroin in the Opioid Epidemic: A Review. JAMA Neurol 2019; 75:1423-1434. [PMID: 29987325 DOI: 10.1001/jamaneurol.2018.1693] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Importance Opioid addiction affects approximately 2.4 million Americans. Nearly 1 million individuals, including a growing subset of 21 000 minors, abuse heroin. Its annual cost within the United States amounts to $51 billion. Inhaled heroin use represents a global phenomenon and is approaching epidemic levels east of the Mississippi River as well as among urban youth. Chasing the dragon (CTD) by heating heroin and inhaling its fumes is particularly concerning, because this method of heroin usage has greater availability, greater ease of administration, and impressive intensity of subjective experience (high) compared with sniffing or snorting, although it also has a safer infectious profile compared with heroin injection. This is relevant owing to peculiar and often catastrophic brain complications. Following the American Medical Association Opioid Task Force mandate, we contribute a description of the pharmacology, pathophysiology, clinical spectrum, neuroimaging, and neuropathology of CTD leukoencephalopathy, as distinct from other heroin abuse modalities. Observations The unique spectrum of CTD-associated health outcomes includes an aggressive toxic leukoencephalopathy with pathognomonic neuropathologic features, along with sporadic instances of movement disorders and hydrocephalus. Clinical CTD severity is predominantly moderate at admission, frequently unmodified at discharge, and largely improved in the long term. Mild cases survive with minor sequelae, while moderate to severe presentations might deteriorate and progress to death. Other methods of heroin use may complicate with stroke, seizure, obstructive hydrocephalus, and (uncharacteristically) leukoencephalopathy. Conclusions and Relevance The distinct pharmacology of CTD correlates with its specific clinical and radiological features and prompts grave concern for potential morbidity and long-term disability costs. Proposed diagnostic criteria and standardized reporting would ameliorate the limitations of CTD literature and facilitate patient selection for a coenzyme Q10 therapeutic trial.
Collapse
Affiliation(s)
- Vilakshan Alambyan
- Neurocritical Care and Stroke Division, Department of Neurology, The Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Jonathan Pace
- Department of Neurosurgery, The Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Benjamin Miller
- Department of Neurology, University of Minnesota, Minneapolis
| | - Mark L Cohen
- Department of Pathology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Sankalp Gokhale
- Departments of Neurology and Anesthesiology, Banner University Medical Center, University of Arizona College of Medicine, Tucson
| | - Gagandeep Singh
- Neurocritical Care and Stroke Division, Department of Neurology, The Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Ming-Chieh Shun
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio
| | - Anthony Hammond
- Department of Emergency Medicine, University Hospital Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| | - Ciro Ramos-Estebanez
- Neurocritical Care and Stroke Division, Department of Neurology, The Neurological Institute, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
3
|
Patel SH, Ismaiel OA, Mylott WR, Yuan M, McClay JL, Paris JJ, Hauser KF, McRae M. Cell-type specific differences in antiretroviral penetration and the effects of HIV-1 Tat and morphine among primary human brain endothelial cells, astrocytes, pericytes, and microglia. Neurosci Lett 2019; 712:134475. [PMID: 31491466 DOI: 10.1016/j.neulet.2019.134475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
The inability to achieve adequate intracellular antiretroviral concentrations may contribute to HIV persistence within the brain and to neurocognitive deficits in opioid abusers. To investigate, intracellular antiretroviral concentrations were measured in primary human astrocytes, microglia, pericytes, and brain microvascular endothelial cells (BMECs), and in an immortalized brain endothelial cell line (hCMEC/D3). HIV-1 Tat and morphine effects on intracellular antiretroviral concentrations also were evaluated. After pretreatment for 24 h with vehicle, HIV-1 Tat, morphine, or combined Tat and morphine, cells were incubated for 1 h with equal concentrations of a mixture of tenofovir, emtricitabine, and dolutegravir at one of two concentrations (5 μM or 10 μM). Intracellular drug accumulation was measured using LC-MS/MS. Drug penetration differed depending on the drug, the extracellular concentration used for dosing, and cell type. Significant findings included: 1) Dolutegravir (at 5 μM or 10 μM) accumulated more in HBMECs than other cell types. 2) At 5 μM, intracellular emtricitabine levels were higher in microglia than other cell types; while at 10 μM, emtricitabine accumulation was greatest in HBMECs. 3) Tenofovir (5 or 10 μM extracellular dosing) displayed greater accumulation inside HBMECs than in other cell types. 4) After Tat and/or morphine pretreatment, the relative accumulation of antiretroviral drugs was greater in morphine-exposed HBMECs compared to other treatments. The opposite effect was observed in astrocytes in which morphine exposure decreased drug accumulation. In summary, the intracellular accumulation of antiretroviral drugs differed depending on the particular drug involved, the concentration of the applied antiretroviral drug, and the cell type targeted. Moreover, morphine, and to a lesser extent Tat, exposure also had differential effects on antiretroviral accumulation. These data highlight the complexity of optimizing brain-targeted HIV therapeutics, especially in the setting of chronic opioid use or misuse.
Collapse
Affiliation(s)
- Sulay H Patel
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Omnia A Ismaiel
- PPD Laboratories, Richmond, VA, USA; Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | | | | | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
4
|
Vecchio LM, Meng Y, Xhima K, Lipsman N, Hamani C, Aubert I. The Neuroprotective Effects of Exercise: Maintaining a Healthy Brain Throughout Aging. Brain Plast 2018; 4:17-52. [PMID: 30564545 PMCID: PMC6296262 DOI: 10.3233/bpl-180069] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2018] [Indexed: 02/06/2023] Open
Abstract
Physical activity plays an essential role in maintaining a healthy body, yet it also provides unique benefits for the vascular and cellular systems that sustain a healthy brain. While the benefit of exercise has been observed in humans of all ages, the availability of preclinical models has permitted systematic investigations into the mechanisms by which exercise supports and protects the brain. Over the past twenty-five years, rodent models have shown that increased physical activity elevates neurotrophic factors in the hippocampal and cortical areas, facilitating neurotransmission throughout the brain. Increased physical activity (such as by the voluntary use of a running wheel or regular, timed sessions on a treadmill) also promotes proliferation, maturation and survival of cells in the dentate gyrus, contributing to the process of adult hippocampal neurogenesis. In this way, rodent studies have tremendous value as they demonstrate that an 'active lifestyle' has the capacity to ameliorate a number of age-related changes in the brain, including the decline in adult neurogenesis. Moreover, these studies have shown that greater physical activity may protect the brain health into advanced age through a number of complimentary mechanisms: in addition to upregulating factors in pro-survival neurotrophic pathways and enhancing synaptic plasticity, increased physical activity promotes brain health by supporting the cerebrovasculature, sustaining the integrity of the blood-brain barrier, increasing glymphatic clearance and proteolytic degradation of amyloid beta species, and regulating microglia activation. Collectively, preclinical studies demonstrate that exercise initiates diverse and powerful neuroprotective pathways that may converge to promote continued brain health into old age. This review will draw on both seminal and current literature that highlights mechanisms by which exercise supports the functioning of the brain, and aids in its protection.
Collapse
Affiliation(s)
- Laura M. Vecchio
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Ying Meng
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Kristiana Xhima
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| | - Nir Lipsman
- Institute of Medical Sciences, University of Toronto, ON, Canada
- Physical Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
| | - Clement Hamani
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Institute of Medical Sciences, University of Toronto, ON, Canada
| | - Isabelle Aubert
- Biological Sciences, Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada
| |
Collapse
|
5
|
Ponomarev I, Stelly CE, Morikawa H, Blednov YA, Mayfield RD, Harris RA. Mechanistic insights into epigenetic modulation of ethanol consumption. Alcohol 2017; 60:95-101. [PMID: 28433417 DOI: 10.1016/j.alcohol.2017.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/16/2022]
Abstract
There is growing evidence that small-molecule inhibitors of epigenetic modulators, such as histone deacetylases (HDAC) and DNA methyltransferases (DNMT), can reduce voluntary ethanol consumption in animal models, but molecular and cellular processes underlying this behavioral effect are poorly understood. We used C57BL/6J male mice to investigate the effects of two FDA-approved drugs, decitabine (a DNMT inhibitor) and SAHA (an HDAC inhibitor), on ethanol consumption using two tests: binge-like drinking in the dark (DID) and chronic intermittent every other day (EOD) drinking. Decitabine but not SAHA reduced ethanol consumption in both tests. We further investigated decitabine's effects on the brain's reward pathway by gene expression profiling in the ventral tegmental area (VTA), using RNA sequencing and electrophysiological recordings from VTA dopaminergic neurons. Decitabine-induced decreases in EOD drinking were associated with global changes in gene expression, implicating regulation of cerebral blood flow, extracellular matrix organization, and neuroimmune functions in decitabine actions. In addition, an in vivo administration of decitabine shortened ethanol-induced excitation of VTA dopaminergic neurons in vitro, suggesting that decitabine reduces ethanol drinking via changes in the reward pathway. Taken together, our data suggest a contribution of both neuronal and non-neuronal mechanisms in the VTA in the regulation of ethanol consumption. Decitabine and other epigenetic compounds have been approved for cancer treatment, and understanding their mechanisms of actions in the brain may assist in repurposing these drugs and developing novel therapies for central disorders, including drug addiction.
Collapse
Affiliation(s)
- Igor Ponomarev
- Waggoner Center for Alcohol and Addiction Research, USA; The College of Pharmacy, The University of Texas at Austin, 2500 Speedway A4800, Austin, TX, 78712, USA.
| | | | | | | | | | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, USA; The College of Pharmacy, The University of Texas at Austin, 2500 Speedway A4800, Austin, TX, 78712, USA
| |
Collapse
|
6
|
|
7
|
Sajja RK, Rahman S, Cucullo L. Drugs of abuse and blood-brain barrier endothelial dysfunction: A focus on the role of oxidative stress. J Cereb Blood Flow Metab 2016; 36:539-54. [PMID: 26661236 PMCID: PMC4794105 DOI: 10.1177/0271678x15616978] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 10/13/2015] [Indexed: 02/01/2023]
Abstract
Psychostimulants and nicotine are the most widely abused drugs with a detrimental impact on public health globally. While the long-term neurobehavioral deficits and synaptic perturbations are well documented with chronic use of methamphetamine, cocaine, and nicotine, emerging human and experimental studies also suggest an increasing incidence of neurovascular complications associated with drug abuse. Short- or long-term administration of psychostimulants or nicotine is known to disrupt blood-brain barrier (BBB) integrity/function, thus leading to an increased risk of brain edema and neuroinflammation. Various pathophysiological mechanisms have been proposed to underlie drug abuse-induced BBB dysfunction suggesting a central and unifying role for oxidative stress in BBB endothelium and perivascular cells. This review discusses drug-specific effects of methamphetamine, cocaine, and tobacco smoking on brain microvascular crisis and provides critical assessment of oxidative stress-dependent molecular pathways focal to the global compromise of BBB. Additionally, given the increased risk of human immunodeficiency virus (HIV) encephalitis in drug abusers, we have summarized the synergistic pathological impact of psychostimulants and HIV infection on BBB integrity with an emphasis on unifying role of endothelial oxidative stress. This mechanistic framework would guide further investigations on specific molecular pathways to accelerate therapeutic approaches for the prevention of neurovascular deficits by drugs of abuse.
Collapse
Affiliation(s)
- Ravi K Sajja
- Center for Blood-Brain Barrier Research, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, SD, USA
| | - Luca Cucullo
- Center for Blood-Brain Barrier Research, Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| |
Collapse
|
8
|
Davis TP, Abbruscato TJ, Egleton RD. Peptides at the blood brain barrier: Knowing me knowing you. Peptides 2015; 72:50-6. [PMID: 25937599 PMCID: PMC4627938 DOI: 10.1016/j.peptides.2015.04.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 04/20/2015] [Accepted: 04/21/2015] [Indexed: 12/15/2022]
Abstract
When the Davis Lab was first asked to contribute to this special edition of Peptides to celebrate the career and influence of Abba Kastin on peptide research, it felt like a daunting task. It is difficult to really understand and appreciate the influence that Abba has had, not only on a generation of peptide researchers, but also on the field of blood brain barrier (BBB) research, unless you lived it as we did. When we look back at our careers and those of our former students, one can truly see that several of Abba's papers played an influential role in the development of our personal research programs.
Collapse
Affiliation(s)
- Thomas P Davis
- The Davis Lab, Department of Medical Pharmacology, University of Arizona, Tucson, AZ 85724-5050.
| | - Thomas J Abbruscato
- Texas Tech University Health Sciences Center, School of Pharmacy, Amarillo, TX 79106
| | - Richard D Egleton
- Joan C. Edwards School of Medicine at Marshall University, Huntington, WV 25755
| |
Collapse
|