1
|
Nanavati BN, Noordstra I, Lwin AKO, Brooks JW, Rae J, Parton RG, Verma S, Duszyc K, Green KJ, Yap AS. The desmosome-intermediate filament system facilitates mechanotransduction at adherens junctions for epithelial homeostasis. Curr Biol 2024; 34:4081-4090.e5. [PMID: 39153481 PMCID: PMC11387132 DOI: 10.1016/j.cub.2024.07.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 12/04/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Epithelial homeostasis can be critically influenced by how cells respond to mechanical forces, both local changes in force balance between cells and altered tissue-level forces.1 Coupling of specialized cell-cell adhesions to their cytoskeletons provides epithelia with diverse strategies to respond to mechanical stresses.2,3,4 Desmosomes confer tissue resilience when their associated intermediate filaments (IFs)2,3 stiffen in response to strain,5,6,7,8,9,10,11 while mechanotransduction associated with the E-cadherin apparatus12,13 at adherens junctions (AJs) actively modulates actomyosin by RhoA signaling. Although desmosomes and AJs make complementary contributions to mechanical homeostasis in epithelia,6,8 there is increasing evidence to suggest that these cytoskeletal-adhesion systems can interact functionally and biochemically.8,14,15,16,17,18,19,20 We now report that the desmosome-IF system integrated by desmoplakin (DP) facilitates active tension sensing at AJs for epithelial homeostasis. DP function is necessary for mechanosensitive RhoA signaling at AJs to be activated when tension was applied to epithelial monolayers. This effect required DP to anchor IFs to desmosomes and recruit the dystonin (DST) cytolinker to apical junctions. DP RNAi reduced the mechanical load that was applied to the cadherin complex by increased monolayer tension. Consistent with reduced mechanical signal strength, DP RNAi compromised assembly of the Myosin VI-E-cadherin mechanosensor that activates RhoA. The integrated DP-IF system therefore supports AJ mechanotransduction by enhancing the mechanical load of tissue tension that is transmitted to E-cadherin. This crosstalk was necessary for efficient elimination of apoptotic epithelial cells by apical extrusion, demonstrating its contribution to epithelial homeostasis.
Collapse
Affiliation(s)
- Bageshri Naimish Nanavati
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Angela K O Lwin
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - John W Brooks
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - James Rae
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert G Parton
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia; Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Suzie Verma
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kinga Duszyc
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Kathleen J Green
- Departments of Pathology and Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 06011, USA
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia.
| |
Collapse
|
2
|
Müller L, Keil R, Glaß M, Hatzfeld M. Plakophilin 4 controls the spatio-temporal activity of RhoA at adherens junctions to promote cortical actin ring formation and tissue tension. Cell Mol Life Sci 2024; 81:291. [PMID: 38970683 PMCID: PMC11335210 DOI: 10.1007/s00018-024-05329-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Plakophilin 4 (PKP4) is a component of cell-cell junctions that regulates intercellular adhesion and Rho-signaling during cytokinesis with an unknown function during epidermal differentiation. Here we show that keratinocytes lacking PKP4 fail to develop a cortical actin ring, preventing adherens junction maturation and generation of tissue tension. Instead, PKP4-depleted cells display increased stress fibers. PKP4-dependent RhoA localization at AJs was required to activate a RhoA-ROCK2-MLCK-MLC2 axis and organize actin into a cortical ring. AJ-associated PKP4 provided a scaffold for the Rho activator ARHGEF2 and the RhoA effectors MLCK and MLC2, facilitating the spatio-temporal activation of RhoA signaling at cell junctions to allow cortical ring formation and actomyosin contraction. In contrast, association of PKP4 with the Rho suppressor ARHGAP23 reduced ARHGAP23 binding to RhoA which prevented RhoA activation in the cytoplasm and stress fiber formation. These data identify PKP4 as an AJ component that transduces mechanical signals into cytoskeletal organization.
Collapse
Affiliation(s)
- Lisa Müller
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany.
| | - René Keil
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| | - Mechthild Hatzfeld
- Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, Charles Tanford Protein Research Center, Kurt-Mothes-Str. 3A, 06120, Halle, Germany
| |
Collapse
|
3
|
Hung M, Lo HF, Beckmann AG, Demircioglu D, Damle G, Hasson D, Radice GL, Krauss RS. Cadherin-dependent adhesion is required for muscle stem cell niche anchorage and maintenance. Development 2024; 151:dev202387. [PMID: 38456551 PMCID: PMC11057819 DOI: 10.1242/dev.202387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/25/2024] [Indexed: 03/09/2024]
Abstract
Adhesion between stem cells and their niche provides stable anchorage and signaling cues to sustain properties such as quiescence. Skeletal muscle stem cells (MuSCs) adhere to an adjacent myofiber via cadherin-catenin complexes. Previous studies on N- and M-cadherin in MuSCs revealed that although N-cadherin is required for quiescence, they are collectively dispensable for MuSC niche localization and regenerative activity. Although additional cadherins are expressed at low levels, these findings raise the possibility that cadherins are unnecessary for MuSC anchorage to the niche. To address this question, we conditionally removed from MuSCs β- and γ-catenin, and, separately, αE- and αT-catenin, factors that are essential for cadherin-dependent adhesion. Catenin-deficient MuSCs break quiescence similarly to N-/M-cadherin-deficient MuSCs, but exit the niche and are depleted. Combined in vivo, ex vivo and single cell RNA-sequencing approaches reveal that MuSC attrition occurs via precocious differentiation, re-entry to the niche and fusion to myofibers. These findings indicate that cadherin-catenin-dependent adhesion is required for anchorage of MuSCs to their niche and for preservation of the stem cell compartment. Furthermore, separable cadherin-regulated functions govern niche localization, quiescence and MuSC maintenance.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aviva G. Beckmann
- Pathos AI, 600 West Chicago Avenue, Suite 510, Chicago, IL 60654, USA
| | - Deniz Demircioglu
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gargi Damle
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dan Hasson
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Glenn L. Radice
- Cardiovascular Research Center, Department of Medicine, Division of Cardiology, Alpert Medical School of Brown University, Providence, RI 02903, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Bioinformatics for Next Generation Sequencing Core, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
4
|
Hung M, Lo HF, Jones GEL, Krauss RS. The muscle stem cell niche at a glance. J Cell Sci 2023; 136:jcs261200. [PMID: 38149870 PMCID: PMC10785660 DOI: 10.1242/jcs.261200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Skeletal muscle stem cells (MuSCs, also called satellite cells) are the source of the robust regenerative capability of this tissue. The hallmark property of MuSCs at homeostasis is quiescence, a reversible state of cell cycle arrest required for long-term preservation of the stem cell population. MuSCs reside between an individual myofiber and an enwrapping basal lamina, defining the immediate MuSC niche. Additional cell types outside the basal lamina, in the interstitial space, also contribute to niche function. Quiescence is actively maintained by multiple niche-derived signals, including adhesion molecules presented from the myofiber surface and basal lamina, as well as soluble signaling factors produced by myofibers and interstitial cell types. In this Cell Science at a Glance article and accompanying poster, we present the most recent information on how niche signals promote MuSC quiescence and provide perspectives for further research.
Collapse
Affiliation(s)
- Margaret Hung
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Grace E. L. Jones
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S. Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Krauss RS, Kann AP. Muscle stem cells get a new look: Dynamic cellular projections as sensors of the stem cell niche. Bioessays 2023; 45:e2200249. [PMID: 36916774 PMCID: PMC10170654 DOI: 10.1002/bies.202200249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/15/2023]
Abstract
Cellular mechanisms whereby quiescent stem cells sense tissue injury and transition to an activated state are largely unknown. Quiescent skeletal muscle stem cells (MuSCs, also called satellite cells) have elaborate, heterogeneous projections that rapidly retract in response to muscle injury. They may therefore act as direct sensors of their niche environment. Retraction is driven by a Rac-to-Rho GTPase activity switch that promotes downstream MuSC activation events. These and other observations lead to several hypotheses: (1) projections are morphologically dynamic at quiescence, providing a surveillance function for muscle damage; (2) quiescent projection dynamics are regulated by the relative balance of Rac and Rho activities promoted by niche-derived cues; (3) projections, particularly their associated filopodia, sense tissue damage via changes to the biomechanical properties of the niche and/or detection of signaling cues released by damaged myofibers; and (4) the dynamic nature of projections result in a population of MuSCs with heterogeneous functional properties. These concepts may extend to other types of quiescent stem cells, as well as prove useful in translational research settings.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Allison P Kann
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
6
|
Moch M, Schieren J, Leube RE. Cortical tension regulates desmosomal morphogenesis. Front Cell Dev Biol 2022; 10:946190. [PMID: 36268507 PMCID: PMC9577410 DOI: 10.3389/fcell.2022.946190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
Mechanical stability is a fundamental and essential property of epithelial cell sheets. It is in large part determined by cell-cell adhesion sites that are tightly integrated by the cortical cytoskeleton. An intimate crosstalk between the adherens junction-associated contractile actomyosin system and the desmosome-anchored keratin intermediate filament system is decisive for dynamic regulation of epithelial mechanics. A major question in the field is whether and in which way mechanical stress affects junctional plasticity. This is especially true for the desmosome-keratin scaffold whose role in force-sensing is virtually unknown. To examine this question, we inactivated the actomyosin system in human keratinocytes (HaCaT) and canine kidney cells (MDCK) and monitored changes in desmosomal protein turnover. Partial inhibition of myosin II by para-nitro-blebbistatin led to a decrease of the cells' elastic modulus and to reduced desmosomal protein turnover in regions where nascent desmosomes are formed and, to a lower degree, in regions where larger, more mature desmosomes are present. Interestingly, desmosomal proteins are affected differently: a significant decrease in turnover was observed for the desmosomal plaque protein desmoplakin I (DspI), which links keratin filaments to the desmosomal core, and the transmembrane cadherin desmoglein 2 (Dsg2). On the other hand, the turnover of another type of desmosomal cadherin, desmocollin 2 (Dsc2), was not significantly altered under the tested conditions. Similarly, the turnover of the adherens junction-associated E-cadherin was not affected by the low doses of para-nitro-blebbistatin. Inhibition of actin polymerization by low dose latrunculin B treatment and of ROCK-driven actomyosin contractility by Y-27632 treatment also induced a significant decrease in desmosomal DspI turnover. Taken together, we conclude that changes in the cortical force balance affect desmosome formation and growth. Furthermore, they differentially modulate desmosomal protein turnover resulting in changes of desmosome composition. We take the observations as evidence for a hitherto unknown desmosomal mechanosensing and mechanoresponse pathway responding to an altered force balance.
Collapse
|
7
|
Serre JM, Lucas B, Martin SCT, Heier JA, Shao X, Hardin J. C. elegans srGAP is an α-catenin M domain-binding protein that strengthens cadherin-dependent adhesion during morphogenesis. Development 2022; 149:dev200775. [PMID: 36125129 PMCID: PMC10655919 DOI: 10.1242/dev.200775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/23/2022] [Indexed: 11/20/2022]
Abstract
The cadherin-catenin complex (CCC) is central to embryonic development and tissue repair, yet how CCC binding partners function alongside core CCC components remains poorly understood. Here, we establish a previously unappreciated role for an evolutionarily conserved protein, the slit-robo GTPase-activating protein SRGP-1/srGAP, in cadherin-dependent morphogenetic processes in the Caenorhabditis elegans embryo. SRGP-1 binds to the M domain of the core CCC component, HMP-1/α-catenin, via its C terminus. The SRGP-1 C terminus is sufficient to target it to adherens junctions, but only during later embryonic morphogenesis, when junctional tension is known to increase. Surprisingly, mutations that disrupt stabilizing salt bridges in the M domain block this recruitment. Loss of SRGP-1 leads to an increase in mobility and decrease of junctional HMP-1. In sensitized genetic backgrounds with weakened adherens junctions, loss of SRGP-1 leads to late embryonic failure. Rescue of these phenotypes requires the C terminus of SRGP-1 but also other domains of the protein. Taken together, these data establish a role for an srGAP in stabilizing and organizing the CCC during epithelial morphogenesis by binding to a partially closed conformation of α-catenin at junctions.
Collapse
Affiliation(s)
- Joel M. Serre
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Bethany Lucas
- Department of Biology, Regis University, 3333 Regis Blvd., Denver, CO 80221, USA
| | - Sterling C. T. Martin
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jonathon A. Heier
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xiangqiang Shao
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jeff Hardin
- Program in Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Biophysics Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
8
|
Diffuse gastric cancer: Emerging mechanisms of tumor initiation and progression. Biochim Biophys Acta Rev Cancer 2022; 1877:188719. [PMID: 35307354 DOI: 10.1016/j.bbcan.2022.188719] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
Gastric cancer is globally the fourth leading cause of cancer-related deaths. Patients with diffuse-type gastric cancer (DGC) particularly have a poor prognosis that only marginally improved over the last decades, as conventional chemotherapies are frequently ineffective and specific therapies are unavailable. Early-stage DGC is characterized by intramucosal lesions of discohesive cells, which can be present for many years before the emergence of advanced DGC consisting of highly proliferative and invasive cells. The mechanisms underlying the key steps of DGC development and transition to aggressive tumors are starting to emerge. Novel mouse- and organoid models for DGC, together with multi-omic analyses of DGC tumors, revealed contributions of both tumor cell-intrinsic alterations and gradual changes in the tumor microenvironment to DGC progression. In this review, we will discuss how these recent findings are leading towards an understanding of the cellular and molecular mechanisms responsible for DGC initiation and malignancy, which may provide opportunities for targeted therapies.
Collapse
|
9
|
Sharma S, Rikhy R. Measurement of Contractile Ring Tension Using Two-photon Laser Ablation during Drosophila Cellularization. Bio Protoc 2022; 12:e4362. [DOI: 10.21769/bioprotoc.4362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2021] [Accepted: 02/05/2022] [Indexed: 11/02/2022] Open
|
10
|
Abstract
Mechanical forces have emerged as essential regulators of cell organization, proliferation, migration, and polarity to regulate cellular and tissue homeostasis. Changes in forces or loss of the cellular response to them can result in abnormal embryonic development and diseases. Over the past two decades, many efforts have been put in deciphering the molecular mechanisms that convert forces into biochemical signals, allowing for the identification of many mechanotransducer proteins. Here we discuss how PDZ proteins are emerging as new mechanotransducer proteins by altering their conformations or localizations upon force loads, leading to the formation of macromolecular modules tethering the cell membrane to the actin cytoskeleton.
Collapse
|
11
|
Rajakylä EK, Lehtimäki JI, Acheva A, Schaible N, Lappalainen P, Krishnan R, Tojkander S. Assembly of Peripheral Actomyosin Bundles in Epithelial Cells Is Dependent on the CaMKK2/AMPK Pathway. Cell Rep 2021; 30:4266-4280.e4. [PMID: 32209483 DOI: 10.1016/j.celrep.2020.02.096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Defects in the maintenance of intercellular junctions are associated with loss of epithelial barrier function and consequent pathological conditions, including invasive cancers. Epithelial integrity is dependent on actomyosin bundles at adherens junctions, but the origin of these junctional bundles is incompletely understood. Here we show that peripheral actomyosin bundles can be generated from a specific actin stress fiber subtype, transverse arcs, through their lateral fusion at cell-cell contacts. Importantly, we find that assembly and maintenance of peripheral actomyosin bundles are dependent on the mechanosensitive CaMKK2/AMPK signaling pathway and that inhibition of this route leads to disruption of tension-maintaining actomyosin bundles and re-growth of stress fiber precursors. This results in redistribution of cellular forces, defects in monolayer integrity, and loss of epithelial identity. These data provide evidence that the mechanosensitive CaMKK2/AMPK pathway is critical for the maintenance of peripheral actomyosin bundles and thus dictates cell-cell junctions through cellular force distribution.
Collapse
Affiliation(s)
- Eeva Kaisa Rajakylä
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | | | - Anna Acheva
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Niccole Schaible
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sari Tojkander
- Section of Pathology, Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Deng H, Yang L, Wen P, Lei H, Blount P, Pan D. Spectrin couples cell shape, cortical tension, and Hippo signaling in retinal epithelial morphogenesis. J Cell Biol 2020; 219:133846. [PMID: 32328630 PMCID: PMC7147103 DOI: 10.1083/jcb.201907018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/26/2019] [Accepted: 01/17/2020] [Indexed: 01/05/2023] Open
Abstract
Although extracellular force has a profound effect on cell shape, cytoskeleton tension, and cell proliferation through the Hippo signaling effector Yki/YAP/TAZ, how intracellular force regulates these processes remains poorly understood. Here, we report an essential role for spectrin in specifying cell shape by transmitting intracellular actomyosin force to cell membrane. While activation of myosin II in Drosophila melanogaster pupal retina leads to increased cortical tension, apical constriction, and Yki-mediated hyperplasia, spectrin mutant cells, despite showing myosin II activation and Yki-mediated hyperplasia, paradoxically display decreased cortical tension and expanded apical area. Mechanistically, we show that spectrin is required for tethering cortical F-actin to cell membrane domains outside the adherens junctions (AJs). Thus, in the absence of spectrin, the weakened attachment of cortical F-actin to plasma membrane results in a failure to transmit actomyosin force to cell membrane, causing an expansion of apical surfaces. These results uncover an essential mechanism that couples cell shape, cortical tension, and Hippo signaling and highlight the importance of non–AJ membrane domains in dictating cell shape in tissue morphogenesis.
Collapse
Affiliation(s)
- Hua Deng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Limin Yang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Pei Wen
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Huiyan Lei
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| | - Paul Blount
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
13
|
Morris RG, Husain KB, Budnar S, Yap AS. Anillin: The First Proofreading-like Scaffold? Bioessays 2020; 42:e2000055. [PMID: 32735042 DOI: 10.1002/bies.202000055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/15/2020] [Indexed: 01/17/2023]
Abstract
Scaffolds are fundamental to many cellular signaling pathways. In this essay, a novel class of scaffolds are proposed, whose action bears striking resemblance to kinetic proofreading. Commonly, scaffold proteins are thought to work as tethers, bringing different components of a pathway together to improve the likelihood of their interaction. However, recent studies show that the cytoskeletal scaffold, anillin, supports contractile signaling by a novel, non-tethering mechanism that controls the membrane dissociation kinetics of RhoA. More generally, such proof-reading-like scaffolds are distinguished from tethers by a rare type of cooperativity, manifest as a super-linear relationship between scaffold concentration and signaling efficiency. The evidence for this hypothesis is reviewed, its conceptual ramifications are considered, and research questions for the future are discussed.
Collapse
Affiliation(s)
- Richard G Morris
- School of Physics and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Kabir B Husain
- James Franck Institute and Department of Physics, University of Chicago, Chicago, IL, USA
| | - Srikanth Budnar
- Department of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Alpha S Yap
- Department of Cell and Developmental Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
14
|
Lohmann S, Giampietro C, Pramotton FM, Al‐Nuaimi D, Poli A, Maiuri P, Poulikakos D, Ferrari A. The Role of Tricellulin in Epithelial Jamming and Unjamming via Segmentation of Tricellular Junctions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001213. [PMID: 32775171 PMCID: PMC7404176 DOI: 10.1002/advs.202001213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Collective cellular behavior in confluent monolayers supports physiological and pathological processes of epithelial development, regeneration, and carcinogenesis. Here, the attainment of a mature and static tissue configuration or the local reactivation of cell motility involve a dynamic regulation of the junctions established between neighboring cells. Tricellular junctions (tTJs), established at vertexes where three cells meet, are ideally located to control cellular shape and coordinate multicellular movements. However, their function in epithelial tissue dynamic remains poorly defined. To investigate the role of tTJs establishment and maturation in the jamming and unjamming transitions of epithelial monolayers, a semi-automatic image-processing pipeline is developed and validated enabling the unbiased and spatially resolved determination of the tTJ maturity state based on the localization of fluorescent reporters. The software resolves the variation of tTJ maturity accompanying collective transitions during tissue maturation, wound healing, and upon the adaptation to osmolarity changes. Altogether, this work establishes junctional maturity at tricellular contacts as a novel biological descriptor of collective responses in epithelial monolayers.
Collapse
Affiliation(s)
- Sophie Lohmann
- Laboratory of Thermodynamics in Emerging TechnologiesETH ZurichZurich8092Switzerland
| | - Costanza Giampietro
- EMPASwiss Federal Laboratories for Materials Science and TechnologyExperimental Continuum MechanicsDübendorf8600Switzerland
| | | | - Dunja Al‐Nuaimi
- Laboratory of Thermodynamics in Emerging TechnologiesETH ZurichZurich8092Switzerland
| | - Alessandro Poli
- IFOM‐ The FIRC Institute of Molecular OncologySpatiotemporal organization of the nucleus UnitMilan20139Italy
| | - Paolo Maiuri
- IFOM‐ The FIRC Institute of Molecular OncologySpatiotemporal organization of the nucleus UnitMilan20139Italy
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging TechnologiesETH ZurichZurich8092Switzerland
| | - Aldo Ferrari
- Laboratory of Thermodynamics in Emerging TechnologiesETH ZurichZurich8092Switzerland
- EMPASwiss Federal Laboratories for Materials Science and TechnologyExperimental Continuum MechanicsDübendorf8600Switzerland
- Institute for Mechanical SystemsETH ZurichZürich8092Switzerland
| |
Collapse
|
15
|
Karpińska K, Cao C, Yamamoto V, Gielata M, Kobielak A. Alpha-Catulin, a New Player in a Rho Dependent Apical Constriction That Contributes to the Mouse Neural Tube Closure. Front Cell Dev Biol 2020; 8:154. [PMID: 32258033 PMCID: PMC7089943 DOI: 10.3389/fcell.2020.00154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/25/2020] [Indexed: 01/01/2023] Open
Abstract
Coordination of actomyosin contraction and cell-cell junctions generates forces that can lead to tissue morphogenetic processes like the formation of neural tube (NT), however, its molecular mechanisms responsible for regulating and coupling this contractile network to cadherin adhesion remain to be fully elucidated. Here, using a gene trapping technology, we unveil the new player in this process, α-catulin, which shares sequence homology with vinculin and α-catenin. Ablation of α-catulin in mouse causes defective NT closure due to impairment of apical constriction, concomitant with apical actin and P-Mlc2 accumulation. Using a 3D culture model system, we showed that α-catulin localizes to the apical membrane and its removal alters the distribution of active RhoA and polarization. Actin cytoskeleton and P-Mlc2, downstream targets of RhoA, are not properly organized, with limited accumulation at the junctions, indicating a loss of junction stabilization. Our data suggest that α-catulin plays an important role during NT closure by acting as a scaffold for RhoA distribution, resulting in proper spatial activation of myosin to influence actin-myosin dynamics and tension at cell-cell adhesion.
Collapse
Affiliation(s)
- Kamila Karpińska
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Christine Cao
- Department of Otolaryngology-Head and Neck Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Vicky Yamamoto
- Department of Otolaryngology-Head and Neck Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Mateusz Gielata
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Agnieszka Kobielak
- Laboratory of the Molecular Biology of Cancer, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
16
|
Veeraval L, O'Leary CJ, Cooper HM. Adherens Junctions: Guardians of Cortical Development. Front Cell Dev Biol 2020; 8:6. [PMID: 32117958 PMCID: PMC7025593 DOI: 10.3389/fcell.2020.00006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/10/2020] [Indexed: 12/01/2022] Open
Abstract
Apical radial glia comprise the pseudostratified neuroepithelium lining the embryonic lateral ventricles and give rise to the extensive repertoire of pyramidal neuronal subtypes of the neocortex. The establishment of a highly apicobasally polarized radial glial morphology is a mandatory prerequisite for cortical development as it governs neurogenesis, neural migration and the integrity of the ventricular wall. As in all epithelia, cadherin-based adherens junctions (AJs) play an obligate role in the maintenance of radial glial apicobasal polarity and neuroepithelial cohesion. In addition, the assembly of resilient AJs is critical to the integrity of the neuroepithelium which must resist the tensile forces arising from increasing CSF volume and other mechanical stresses associated with the expansion of the ventricles in the embryo and neonate. Junctional instability leads to the collapse of radial glial morphology, disruption of the ventricular surface and cortical lamination defects due to failed neuronal migration. The fidelity of cortical development is therefore dependent on AJ assembly and stability. Mutations in genes known to control radial glial junction formation are causative for a subset of inherited cortical malformations (neuronal heterotopias) as well as perinatal hydrocephalus, reinforcing the concept that radial glial junctions are pivotal determinants of successful corticogenesis. In this review we explore the key animal studies that have revealed important insights into the role of AJs in maintaining apical radial glial morphology and function, and as such, have provided a deeper understanding of the aberrant molecular and cellular processes contributing to debilitating cortical malformations. We highlight the reciprocal interactions between AJs and the epithelial polarity complexes that impose radial glial apicobasal polarity. We also discuss the critical molecular networks promoting AJ assembly in apical radial glia and emphasize the role of the actin cytoskeleton in the stabilization of cadherin adhesion – a crucial factor in buffering the mechanical forces exerted as a consequence of cortical expansion.
Collapse
Affiliation(s)
- Lenin Veeraval
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Conor J O'Leary
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Helen M Cooper
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Persistent Cyfip1 Expression Is Required to Maintain the Adult Subventricular Zone Neurogenic Niche. J Neurosci 2020; 40:2015-2024. [PMID: 31988061 DOI: 10.1523/jneurosci.2249-19.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/07/2020] [Accepted: 01/21/2020] [Indexed: 11/21/2022] Open
Abstract
Neural stem cells (NSCs) persist throughout life in the subventricular zone (SVZ) neurogenic niche of the lateral ventricles as Type B1 cells in adult mice. Maintaining this population of NSCs depends on the balance between quiescence and self-renewing or self-depleting cell divisions. Interactions between B1 cells and the surrounding niche are important in regulating this balance, but the mechanisms governing these processes have not been fully elucidated. The cytoplasmic FMRP-interacting protein (Cyfip1) regulates apical-basal polarity in the embryonic brain. Loss of Cyfip1 during embryonic development in mice disrupts the embryonic niche and affects cortical neurogenesis. However, a direct role for Cyfip1 in the regulation of adult NSCs has not been established. Here, we demonstrate that Cyfip1 expression is preferentially localized to B1 cells in the adult mouse SVZ. Loss of Cyfip1 in the embryonic mouse brain results in altered adult SVZ architecture and expansion of the adult B1 cell population at the ventricular surface. Furthermore, acute deletion of Cyfip1 in adult NSCs results in a rapid change in adherens junction proteins as well as increased proliferation and number of B1 cells at the ventricular surface. Together, these data indicate that Cyfip1 plays a critical role in the formation and maintenance of the adult SVZ niche; furthermore, deletion of Cyfip1 unleashes the capacity of adult B1 cells for symmetric renewal to increase the adult NSC pool.SIGNIFICANCE STATEMENT Neural stem cells (NSCs) persist in the subventricular zone of the lateral ventricles in adult mammals, and the size of this population is determined by the balance between quiescence and self-depleting or renewing cell division. The mechanisms regulating these processes are not fully understood. This study establishes that the cytoplasmic FMRP interacting protein 1 (Cyfip1) regulates NSC fate decisions in the adult subventricular zone and adult NSCs that are quiescent or typically undergo self-depleting divisions retain the ability to self-renew. These results contribute to our understanding of how adult NSCs are regulated throughout life and has potential implications for human brain disorders.
Collapse
|
18
|
Abstract
In this issue of Developmental Cell, Budnar and colleagues report how the scaffolding protein anillin uses cycles of transient binding interactions to enhance the residence time and signaling output of active RhoA to control actomyosin contractility at epithelial junctions and during cell division.
Collapse
|
19
|
Winkley K, Ward S, Reeves W, Veeman M. Iterative and Complex Asymmetric Divisions Control Cell Volume Differences in Ciona Notochord Tapering. Curr Biol 2019; 29:3466-3477.e4. [PMID: 31607534 DOI: 10.1016/j.cub.2019.08.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022]
Abstract
The notochord of the invertebrate chordate Ciona forms a tapered rod at tailbud stages consisting of only 40 cylindrical cells in a single-file column. This tapered shape involves differences in notochord cell volume along the anterior-posterior axis. Here, we quantify sibling cell volume asymmetry throughout the developing notochord and find that there are distinctive patterns of unequal cleavage in all 4 bilateral pairs of A-line primary notochord founder cells and also in the B-line-derived secondary notochord founder cells. A quantitative model confirms that the observed patterns of unequal cleavage are sufficient to explain all the anterior-posterior variation in notochord cell volume. Many examples are known of cells that divide asymmetrically to give daughter cells of different size and fate. Here, by contrast, a series of subtle but iterative and finely patterned asymmetric divisions controls the shape of an entire organ. Quantitative 3D analysis of cell shape and spindle positioning allows us to infer multiple cellular mechanisms driving these unequal cleavages, including polarized displacements of the mitotic spindle, contributions from the shape of the mother cell, and late changes occurring between anaphase and abscission that potentially involve differential cortical contractility. We infer differential use of these mechanisms between different notochord blastomeres and also between different rounds of cell division. These results demonstrate a new role for asymmetric division in directly shaping a developing organ and point toward complex underlying mechanisms.
Collapse
Affiliation(s)
- Konner Winkley
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Spencer Ward
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Wendy Reeves
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA
| | - Michael Veeman
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, KS 66506, USA.
| |
Collapse
|
20
|
Garcia De Las Bayonas A, Philippe JM, Lellouch AC, Lecuit T. Distinct RhoGEFs Activate Apical and Junctional Contractility under Control of G Proteins during Epithelial Morphogenesis. Curr Biol 2019; 29:3370-3385.e7. [PMID: 31522942 PMCID: PMC6839405 DOI: 10.1016/j.cub.2019.08.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 01/08/2023]
Abstract
Small RhoGTPases direct cell shape changes and movements during tissue morphogenesis. Their activities are tightly regulated in space and time to specify the desired pattern of actomyosin contractility that supports tissue morphogenesis. This is expected to stem from polarized surface stimuli and from polarized signaling processing inside cells. We examined this general problem in the context of cell intercalation that drives extension of the Drosophila ectoderm. In the ectoderm, G protein-coupled receptors (GPCRs) and their downstream heterotrimeric G proteins (Gα and Gβγ) activate Rho1 both medial-apically, where it exhibits pulsed dynamics, and at junctions, where its activity is planar polarized. However, the mechanisms responsible for polarizing Rho1 activity are unclear. We report that distinct guanine exchange factors (GEFs) activate Rho1 in these two cellular compartments. RhoGEF2 acts uniquely to activate medial-apical Rho1 but is recruited both medial-apically and at junctions by Gα12/13-GTP, also called Concertina (Cta) in Drosophila. On the other hand, Dp114RhoGEF (Dp114), a newly characterized RhoGEF, is required for cell intercalation in the extending ectoderm, where it activates Rho1 specifically at junctions. Its localization is restricted to adherens junctions and is under Gβ13F/Gγ1 control. Furthermore, Gβ13F/Gγ1 activates junctional Rho1 and exerts quantitative control over planar polarization of Rho1. Finally, we found that Dp114RhoGEF is absent in the mesoderm, arguing for a tissue-specific control over junctional Rho1 activity. These results clarify the mechanisms of polarization of Rho1 activity in different cellular compartments and reveal that distinct GEFs are sensitive tuning parameters of cell contractility in remodeling epithelia. Dp114RhoGEF activates junctional Rho1 and is involved in cell intercalation Gα/Cta and Gβγ subunits tune, respectively, RhoGEF2 and Dp114RhoGEF membrane levels Gβγ subunits control planar polarity of junctional Rho1 signaling via Dp114RhoGEF Tissue-specific RhoGEFs could diversify morphogenesis in different tissues
Collapse
Affiliation(s)
| | - Jean-Marc Philippe
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France
| | - Annemarie C Lellouch
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France
| | - Thomas Lecuit
- Aix Marseille Université, CNRS, IBDM-UMR7288, Turing Center for Living Systems, 13009 Marseille, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
21
|
Finegan TM, Bergstralh DT. Division orientation: disentangling shape and mechanical forces. Cell Cycle 2019; 18:1187-1198. [PMID: 31068057 PMCID: PMC6592245 DOI: 10.1080/15384101.2019.1617006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/05/2019] [Accepted: 04/12/2019] [Indexed: 12/12/2022] Open
Abstract
Oriented cell divisions are essential for the generation of cell diversity and for tissue shaping during morphogenesis. Cells in tissues are mechanically linked to their neighbors, upon which they impose, and from which they experience, physical force. Recent work in multiple systems has revealed that tissue-level physical forces can influence the orientation of cell division. A long-standing question is whether forces are communicated to the spindle orienting machinery via cell shape or directly via mechanosensing intracellular machinery. In this article, we review the current evidence from diverse model systems that show spindles are oriented by tissue-level physical forces and evaluate current models and molecular mechanisms proposed to explain how the spindle orientation machinery responds to extrinsic force.
Collapse
Affiliation(s)
- Tara M. Finegan
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | |
Collapse
|
22
|
Wu SK, Priya R. Spatio-Temporal Regulation of RhoGTPases Signaling by Myosin II. Front Cell Dev Biol 2019; 7:90. [PMID: 31192208 PMCID: PMC6546806 DOI: 10.3389/fcell.2019.00090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 05/13/2019] [Indexed: 01/06/2023] Open
Abstract
RhoGTPase activation of non-muscle myosin II regulates cell division, extrusion, adhesion, migration, and tissue morphogenesis. However, the regulation of myosin II and mechanotransduction is not straightforward. Increasingly, the role of myosin II on the feedback regulation of RhoGTPase signaling is emerging. Indeed, myosin II controls RhoGTPase signaling through multiple mechanisms, namely contractility driven advection, scaffolding, and sequestration of signaling molecules. Here we discuss these mechanisms by which myosin II regulates RhoGTPase signaling in cell adhesion, migration, and tissue morphogenesis.
Collapse
Affiliation(s)
- Selwin K Wu
- Department of Cell Biology, Harvard Medical School, Boston, MA, United States.,Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Rashmi Priya
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
23
|
Tang VW. Cell-cell adhesion interface: orthogonal and parallel forces from contraction, protrusion, and retraction. F1000Res 2018; 7. [PMID: 30345009 PMCID: PMC6173117 DOI: 10.12688/f1000research.15860.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2018] [Indexed: 01/22/2023] Open
Abstract
The epithelial lateral membrane plays a central role in the integration of intercellular signals and, by doing so, is a principal determinant in the emerging properties of epithelial tissues. Mechanical force, when applied to the lateral cell-cell interface, can modulate the strength of adhesion and influence intercellular dynamics. Yet the relationship between mechanical force and epithelial cell behavior is complex and not completely understood. This commentary aims to provide an investigative look at the usage of cellular forces at the epithelial cell-cell adhesion interface.
Collapse
Affiliation(s)
- Vivian W Tang
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, 61801, USA
| |
Collapse
|
24
|
Yap AS, Duszyc K, Viasnoff V. Mechanosensing and Mechanotransduction at Cell-Cell Junctions. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028761. [PMID: 28778874 DOI: 10.1101/cshperspect.a028761] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell adhesion systems are defined by their ability to resist detachment force. Our understanding of the biology of cell-cell adhesions has recently been transformed by the realization that many of the forces that act on those adhesions are generated by the cells that they couple together; and that force at adhesive junctions can be sensed to regulate cell behavior. Here, we consider the mechanisms responsible for applying force to cell-cell junctions and the mechanosensory pathways that detect those forces. We focus on cadherins, as these are the best-studied examples to date, but it is likely that similar principles will apply to other molecular systems that can engage with force-generators within cells and physically couple those cells together.
Collapse
Affiliation(s)
- Alpha S Yap
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Kinga Duszyc
- Institute for Molecular Bioscience, Division of Cell Biology and Molecular Medicine, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Virgile Viasnoff
- Mechanobiology Institute, National University of Singapore, Singapore 117411.,CNRS, Singapore 117411
| |
Collapse
|
25
|
White MD, Zenker J, Bissiere S, Plachta N. Instructions for Assembling the Early Mammalian Embryo. Dev Cell 2018; 45:667-679. [DOI: 10.1016/j.devcel.2018.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
|
26
|
Peng JM, Bera R, Chiou CY, Yu MC, Chen TC, Chen CW, Wang TR, Chiang WL, Chai SP, Wei Y, Wang H, Hung MC, Hsieh SY. Actin cytoskeleton remodeling drives epithelial-mesenchymal transition for hepatoma invasion and metastasis in mice. Hepatology 2018; 67:2226-2243. [PMID: 29171033 DOI: 10.1002/hep.29678] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/10/2017] [Accepted: 11/19/2017] [Indexed: 01/11/2023]
Abstract
UNLABELLED High invasiveness is a hallmark of human hepatocellular carcinoma (HCC). Large tumors predict invasion and metastasis. Epithelial-mesenchymal transition (EMT) is crucial for cancer invasion and metastasis. However, the mechanisms whereby large tumors tend to undergo EMT remain unclear. We conducted a subgenome-wide screen and identified KLHL23 as an HCC invasion suppressor by inhibiting EMT. KLHL23 binds to actin and suppresses actin polymerization. KLHL23 silencing induced filopodium and lamellipodium formation. Moreover, EMT was suppressed by KLHL23 through its action on actin dynamics. Traditionally, actin cytoskeleton remodeling is downstream of EMT reprogramming. It is therefore intriguing to ask why and how KLHL23 inversely regulates EMT. Activation of actin cytoskeleton remodeling by either KLHL23 silencing or treatment with actin cytoskeleton modulators augmented cellular hypoxic responses in a cell-density-dependent manner, resulting in hypoxia-inducible factor (HIF) and Notch signals and subsequent EMT. Environmental hypoxia did not induce EMT unless actin cytoskeleton remodeling was simultaneously activated and only when cells were at high density. The resulting EMT was reversed by either adenosine 5'-triphosphate supplementation or actin polymerization inhibitors. Down-regulation of KLHL23 was associated with invasion, metastasis, and poor prognosis of HCC and pancreatic cancer. Correlations of tumor size with EMT and inverse association of expression of KLHL23 with HIF/Notch signals were further validated in patient-derived xenograft HCCs in mice. CONCLUSION Simultaneously activation of actin cytoskeleton remodeling by intrinsic (such as KLHL23 down-regulation) or microenvironment cues is crucial for cell-density-dependent and hypoxia-mediated EMT, providing a mechanistic link between large tumor size and invasion/metastasis. Our findings provide a means of developing the prevention and treatment strategies for tumor invasion and metastasis. (Hepatology 2018;67:2226-2243).
Collapse
Affiliation(s)
- Jei-Ming Peng
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Rabindranath Bera
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chih-Yung Chiou
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ming-Chin Yu
- Department of General Surgery, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tse-Chin Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chia-Wei Chen
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Tsung-Rui Wang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Wan-Ling Chiang
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Shin-Pei Chai
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Yongkun Wei
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Huamin Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mien-Chie Hung
- Center for Molecular Medicine and Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sen-Yung Hsieh
- Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| |
Collapse
|
27
|
Abstract
E-cadherin is a key component of the adherens junctions that are integral in cell adhesion and maintaining epithelial phenotype of cells. Homophilic E-cadherin binding between cells is important in mediating contact inhibition of proliferation when cells reach confluence. Loss of E-cadherin expression results in loss of contact inhibition and is associated with increased cell motility and advanced stages of cancer. In this review we discuss the role of E-cadherin and its downstream signaling in regulation of contact inhibition and the development and progression of cancer.
Collapse
|
28
|
Golenkina S, Chaturvedi V, Saint R, Murray MJ. Frazzled can act through distinct molecular pathways in epithelial cells to regulate motility, apical constriction, and localisation of E-Cadherin. PLoS One 2018; 13:e0194003. [PMID: 29518139 PMCID: PMC5843272 DOI: 10.1371/journal.pone.0194003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 01/11/2023] Open
Abstract
Netrin receptors of the DCC/NEO/UNC-40/Frazzled family have well established roles in cell migration and axon guidance but can also regulate epithelial features such as adhesion, polarity and adherens junction (AJ) stability. Previously, we have shown that overexpression of Drosophila Frazzled (Fra) in the peripodial epithelium (PE) inhibits wing disc eversion and also generates cellular protrusions typical of motile cells. Here, we tested whether the molecular pathways by which Fra inhibits eversion are distinct from those driving motility. We show that in disc proper (DP) epithelial cells Fra, in addition to inducing F-Actin rich protrusions, can affect localization of AJ components and columnar cell shape. We then show that these phenotypes have different requirements for the three conserved Fra cytoplasmic P-motifs and for downstream genes. The formation of protrusions required the P3 motif of Fra, as well as integrins (mys and mew), the Rac pathway (Rac1, wave and, arpc3) and myosin regulatory light chain (Sqh). In contrast, apico-basal cell shape change, which was accompanied by increased myosin phosphorylation, was critically dependent upon the P1 motif and was promoted by RhoGef2 but inhibited by Rac1. Fra also caused a loss of AJ proteins (DE-Cad and Arm) from basolateral regions of epithelial cells. This phenotype required all 3 P-motifs, and was dependent upon the polarity factor par6. par6 was not required for protrusions or cell shape change, but was required to block eversion suggesting that control of AJ components may underlie the ability of Fra to promote epithelial stability. The results imply that multiple molecular pathways act downstream of Fra in epithelial cells.
Collapse
Affiliation(s)
- Sofia Golenkina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Vishal Chaturvedi
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Saint
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J. Murray
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
Rhys AD, Monteiro P, Smith C, Vaghela M, Arnandis T, Kato T, Leitinger B, Sahai E, McAinsh A, Charras G, Godinho SA. Loss of E-cadherin provides tolerance to centrosome amplification in epithelial cancer cells. J Cell Biol 2017; 217:195-209. [PMID: 29133484 PMCID: PMC5748979 DOI: 10.1083/jcb.201704102] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/22/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022] Open
Abstract
Centrosome clustering is essential for the survival of cells containing supernumerary centrosomes. Rhys et al. show that centrosome clustering is a two-step mechanism in which increased cortical contractility, driven by loss of E-cadherin, restricts centrosome movement, facilitating HSET-mediated clustering. Centrosome amplification is a common feature of human tumors. To survive, cancer cells cluster extra centrosomes during mitosis, avoiding the detrimental effects of multipolar divisions. However, it is unclear whether clustering requires adaptation or is inherent to all cells. Here, we show that cells have varied abilities to cluster extra centrosomes. Epithelial cells are innately inefficient at clustering even in the presence of HSET/KIFC1, which is essential but not sufficient to promote clustering. The presence of E-cadherin decreases cortical contractility during mitosis through a signaling cascade leading to multipolar divisions, and its knockout promotes clustering and survival of cells with multiple centrosomes. Cortical contractility restricts centrosome movement at a minimal distance required for HSET/KIFC1 to exert its function, highlighting a biphasic model for centrosome clustering. In breast cancer cell lines, increased levels of centrosome amplification are accompanied by efficient clustering and loss of E-cadherin, indicating that this is an important adaptation mechanism to centrosome amplification in cancer.
Collapse
Affiliation(s)
- Alexander D Rhys
- Barts Cancer Institute-CRUK Centre, Queen Mary University of London, John Vane Science Centre, London, England, UK
| | - Pedro Monteiro
- Barts Cancer Institute-CRUK Centre, Queen Mary University of London, John Vane Science Centre, London, England, UK
| | - Christopher Smith
- Centre for Mechanochemical Cell Biology, Division of Biomedical Science, Warwick Medical School, University of Warwick, Coventry, England, UK
| | - Malti Vaghela
- London Centre for Nanotechnology, University College London, London, England, UK
| | - Teresa Arnandis
- Barts Cancer Institute-CRUK Centre, Queen Mary University of London, John Vane Science Centre, London, England, UK
| | - Takuya Kato
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, England, UK
| | - Birgit Leitinger
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, England, UK
| | - Erik Sahai
- Tumour Cell Biology Laboratory, Francis Crick Institute, London, England, UK
| | - Andrew McAinsh
- Centre for Mechanochemical Cell Biology, Division of Biomedical Science, Warwick Medical School, University of Warwick, Coventry, England, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London, England, UK
| | - Susana A Godinho
- Barts Cancer Institute-CRUK Centre, Queen Mary University of London, John Vane Science Centre, London, England, UK
| |
Collapse
|
30
|
|
31
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
32
|
Wen JWH, Winklbauer R. Ingression-type cell migration drives vegetal endoderm internalisation in the Xenopus gastrula. eLife 2017; 6:e27190. [PMID: 28826499 PMCID: PMC5589415 DOI: 10.7554/elife.27190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022] Open
Abstract
During amphibian gastrulation, presumptive endoderm is internalised as part of vegetal rotation, a large-scale movement that encompasses the whole vegetal half of the embryo. It has been considered a gastrulation process unique to amphibians, but we show that at the cell level, endoderm internalisation exhibits characteristics reminiscent of bottle cell formation and ingression, known mechanisms of germ layer internalisation. During ingression proper, cells leave a single-layered epithelium. In vegetal rotation, the process occurs in a multilayered cell mass; we refer to it as ingression-type cell migration. Endoderm cells move by amoeboid shape changes, but in contrast to other instances of amoeboid migration, trailing edge retraction involves ephrinB1-dependent macropinocytosis and trans-endocytosis. Moreover, although cells are separated by wide gaps, they are connected by filiform protrusions, and their migration depends on C-cadherin and the matrix protein fibronectin. Cells move in the same direction but at different velocities, to rearrange by differential migration.
Collapse
Affiliation(s)
- Jason WH Wen
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| | - Rudolf Winklbauer
- Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
| |
Collapse
|
33
|
O’Leary CJ, Nourse CC, Lee NK, White A, Langford M, Sempert K, Cole SJ, Cooper HM. Neogenin Recruitment of the WAVE Regulatory Complex to Ependymal and Radial Progenitor Adherens Junctions Prevents Hydrocephalus. Cell Rep 2017; 20:370-383. [DOI: 10.1016/j.celrep.2017.06.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/11/2017] [Accepted: 06/20/2017] [Indexed: 12/11/2022] Open
|
34
|
Acharya BR, Wu SK, Lieu ZZ, Parton RG, Grill SW, Bershadsky AD, Gomez GA, Yap AS. Mammalian Diaphanous 1 Mediates a Pathway for E-cadherin to Stabilize Epithelial Barriers through Junctional Contractility. Cell Rep 2017; 18:2854-2867. [DOI: 10.1016/j.celrep.2017.02.078] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 01/19/2017] [Accepted: 02/27/2017] [Indexed: 01/08/2023] Open
|
35
|
Luxenburg C, Geiger B. Multiscale View of Cytoskeletal Mechanoregulation of Cell and Tissue Polarity. Handb Exp Pharmacol 2017; 235:263-284. [PMID: 27807694 DOI: 10.1007/164_2016_34] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ability of cells to generate, maintain, and repair tissues with complex architecture, in which distinct cells function as coherent units, relies on polarity cues. Polarity can be described as an asymmetry along a defined axis, manifested at the molecular, structural, and functional levels. Several types of cell and tissue polarities were described in the literature, including front-back, apical-basal, anterior-posterior, and left-right polarity. Extensive research provided insights into the specific regulators of each polarization process, as well as into generic elements that affect all types of polarities. The actin cytoskeleton and the associated adhesion structures are major regulators of most, if not all, known forms of polarity. Actin filaments exhibit intrinsic polarity and their ability to bind many proteins including the mechanosensitive adhesion and motor proteins, such as myosins, play key roles in cell polarization. The actin cytoskeleton can generate mechanical forces and together with the associated adhesions, probe the mechanical, structural, and chemical properties of the environment, and transmit signals that impact numerous biological processes, including cell polarity. In this article we highlight novel mechanisms whereby the mechanical forces and actin-adhesion complexes regulate cell and tissue polarity in a variety of natural and experimental systems.
Collapse
Affiliation(s)
- Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
36
|
Priya R, Wee K, Budnar S, Gomez GA, Yap AS, Michael M. Coronin 1B supports RhoA signaling at cell-cell junctions through Myosin II. Cell Cycle 2016; 15:3033-3041. [PMID: 27650961 DOI: 10.1080/15384101.2016.1234549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Non-muscle myosin II (NMII) motor proteins are responsible for generating contractile forces inside eukaryotic cells. There is also a growing interest in the capacity for these motor proteins to influence cell signaling through scaffolding, especially in the context of RhoA GTPase signaling. We previously showed that NMIIA accumulation and stability within specific regions of the cell cortex, such as the zonula adherens (ZA), allows the formation of a stable RhoA signaling zone. Now we demonstrate a key role for Coronin 1B in maintaining this junctional pool of NMIIA, as depletion of Coronin 1B significantly compromised myosin accumulation and stability at junctions. The loss of junctional NMIIA, upon Coronin 1B knockdown, perturbed RhoA signaling due to enhanced junctional recruitment of the RhoA antagonist, p190B Rho GAP. This effect was blocked by the expression of phosphomimetic MRLC-DD, thus reinforcing the central role of NMII in regulating RhoA signaling.
Collapse
Affiliation(s)
- Rashmi Priya
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Kenneth Wee
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Srikanth Budnar
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Guillermo A Gomez
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Alpha S Yap
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia
| | - Magdalene Michael
- a Division of Cell Biology and Molecular Medicine, Program in Membrane Interface Biology, Institute for Molecular Bioscience, The University of Queensland, St. Lucia , Brisbane , Queensland , Australia.,b Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus , London , UK
| |
Collapse
|
37
|
Winklbauer R. Cell adhesion strength from cortical tension - an integration of concepts. J Cell Sci 2016; 128:3687-93. [PMID: 26471994 DOI: 10.1242/jcs.174623] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Morphogenetic mechanisms such as cell movement or tissue separation depend on cell attachment and detachment processes, which involve adhesion receptors as well as the cortical cytoskeleton. The interplay between the two components is of stunning complexity. Most strikingly, the binding energy of adhesion molecules is usually too small for substantial cell-cell attachment, pointing to a main deficit in our present understanding of adhesion. In this Opinion article, I integrate recent findings and conceptual advances in the field into a coherent framework for cell adhesion. I argue that active cortical tension is best viewed as an integral part of adhesion, and propose on this basis a non-arbitrary measure of adhesion strength - the tissue surface tension of cell aggregates. This concept of adhesion integrates heterogeneous molecular inputs into a single mechanical property and simplifies the analysis of attachment-detachment processes. It draws attention to the enormous variation of adhesion strengths among tissues, whose origin and function is little understood.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
38
|
Abstract
Linkage of the actomyosin cytoskeleton to cell-cell junctions drives cell shape change in development and homeostasis. In this issue of Developmental Cell, Jodoin et al. (2015) provide new insights into the underlying mechanisms, revealing that factors driving actin filament disassembly and thus dynamics also play key roles in apical constriction.
Collapse
|
39
|
Chojnacka K, Bilinska B, Mruk DD. Interleukin 1alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal 2016; 28:469-480. [DOI: 10.1016/j.cellsig.2016.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/08/2016] [Indexed: 01/09/2023]
|
40
|
Di Zenzo G, Amber KT, Sayar BS, Müller EJ, Borradori L. Immune response in pemphigus and beyond: progresses and emerging concepts. Semin Immunopathol 2015; 38:57-74. [DOI: 10.1007/s00281-015-0541-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022]
|
41
|
Abstract
β-catenin is widely regarded as the primary transducer of canonical WNT signals to the nucleus. In most vertebrates, there are eight additional catenins that are structurally related to β-catenin, and three α-catenin genes encoding actin-binding proteins that are structurally related to vinculin. Although these catenins were initially identified in association with cadherins at cell-cell junctions, more recent evidence suggests that the majority of catenins also localize to the nucleus and regulate gene expression. Moreover, the number of catenins reported to be responsive to canonical WNT signals is increasing. Here, we posit that multiple catenins form a functional network in the nucleus, possibly engaging in conserved protein-protein interactions that are currently better characterized in the context of actin-based cell junctions.
Collapse
|
42
|
Regulation of Endothelial Adherens Junctions by Tyrosine Phosphorylation. Mediators Inflamm 2015; 2015:272858. [PMID: 26556953 PMCID: PMC4628659 DOI: 10.1155/2015/272858] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/16/2015] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells form a semipermeable, regulated barrier that limits the passage of fluid, small molecules, and leukocytes between the bloodstream and the surrounding tissues. The adherens junction, a major mechanism of intercellular adhesion, is comprised of transmembrane cadherins forming homotypic interactions between adjacent cells and associated cytoplasmic catenins linking the cadherins to the cytoskeleton. Inflammatory conditions promote the disassembly of the adherens junction and a loss of intercellular adhesion, creating openings or gaps in the endothelium through which small molecules diffuse and leukocytes transmigrate. Tyrosine kinase signaling has emerged as a central regulator of the inflammatory response, partly through direct phosphorylation and dephosphorylation of the adherens junction components. This review discusses the findings that support and those that argue against a direct effect of cadherin and catenin phosphorylation in the disassembly of the adherens junction. Recent findings indicate a complex interaction between kinases, phosphatases, and the adherens junction components that allow a fine regulation of the endothelial permeability to small molecules, leukocyte migration, and barrier resealing.
Collapse
|
43
|
Abstract
Cadherin-catenin complexes are critical for the assembly of cell-cell adhesion structures known as adherens junctions. In addition to the mechanical linkage of neighboring cells to each other, these cell-cell adhesion protein complexes have recently emerged as important sensors and transmitters of the extracellular cues inside the cell body and into the nucleus. In the past few years, multiple studies have identified a connection between the cadherin-catenin protein complexes and major intracellular signaling pathways. Those studies are the main focus of this review.
Collapse
Affiliation(s)
- Olga Klezovitch
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Valeri Vasioukhin
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA ; Department of Pathology, University of Washington, Seattle, WA, 98195, USA ; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
44
|
Zaidel-Bar R, Zhenhuan G, Luxenburg C. The contractome – a systems view of actomyosin contractility in non-muscle cells. J Cell Sci 2015; 128:2209-17. [DOI: 10.1242/jcs.170068] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/27/2015] [Indexed: 12/21/2022] Open
Abstract
ABSTRACT
Actomyosin contractility is a highly regulated process that affects many fundamental biological processes in each and every cell in our body. In this Cell Science at a Glance article and the accompanying poster, we mined the literature and databases to map the contractome of non-muscle cells. Actomyosin contractility is involved in at least 49 distinct cellular functions that range from providing cell architecture to signal transduction and nuclear activity. Containing over 100 scaffolding and regulatory proteins, the contractome forms a highly complex network with more than 230 direct interactions between its components, 86 of them involving phosphorylation. Mapping these interactions, we identify the key regulatory pathways involved in the assembly of actomyosin structures and in activating myosin to produce contractile forces within non-muscle cells at the exact time and place necessary for cellular function.
Collapse
Affiliation(s)
- Ronen Zaidel-Bar
- Mechanobiology Institute, National University of Singapore, T-lab building #05-01, 5A Engineering Drive 1, 117411, Singapore
| | - Guo Zhenhuan
- Mechanobiology Institute, National University of Singapore, T-lab building #05-01, 5A Engineering Drive 1, 117411, Singapore
| | - Chen Luxenburg
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, P.O. Box 39040, Tel Aviv 69978, Israel
| |
Collapse
|