1
|
Lovely CB. Bone morphogenetic protein signaling pathway- Ethanol interactions disrupt palate formation independent of gata3. Reprod Toxicol 2025; 131:108754. [PMID: 39586481 PMCID: PMC11634638 DOI: 10.1016/j.reprotox.2024.108754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 11/06/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD. From a screen for gene-ethanol interactions, we found that mutants for Bmp signaling components are ethanol-sensitive leading to defects in the zebrafish palate. Loss of Bmp signaling results in reductions in gata3 expression in the maxillary domain of the neural crest in the 1st pharyngeal arch, leading to palate defects while upregulation of human GATA3 rescues these defects. Here, we show that ethanol-treated Bmp mutants exhibit misshaped and/or broken trabeculae. Surprisingly, up regulation of GATA3 does not rescue ethanol-induced palate defects and gata3 expression was not altered in ethanol-treated Bmp mutants or dorsomorphin-treated larvae. Timing of ethanol sensitivity shows that Bmp mutants are ethanol sensitive from 10 to 18 hours post-fertilization (hpf), prior to Bmp's regulation of gata3 in palate formation. This is consistent with our previous work with dorsomorphin-dependent knock down of Bmp signaling from 10 to 18 hpf disrupting endoderm formation and subsequent jaw development. Overall, this suggests that ethanol disrupts Bmp-dependent palate development independent of and earlier than the role of gata3 in palate formation by disrupting epithelial development. Ultimately, these data demonstrate that zebrafish is a useful model to identify and characterize gene-ethanol interactions and this work will directly inform our understanding of FASD.
Collapse
Affiliation(s)
- C Ben Lovely
- University of Louisville, School of Medicine, Department of Biochemistry and Molecular Genetics, 319 Abraham Flexner Way, Louisville, KY 40202, USA.
| |
Collapse
|
2
|
Shen Q, Hu W, Liu F, Dong S, Peng X, Zhong Y, Chen C, Zuo Y, Ge C, Li W, Zha W, Ye Z, Cao Z, Liao L. Dipropyl phthalate induces craniofacial chondrogenic defects in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117603. [PMID: 39721426 DOI: 10.1016/j.ecoenv.2024.117603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Dipropyl phthalate (DPRP), a plasticizer commonly utilized in the plastics industry, has been identified in food and the environment and has the potential to present a hazard to human health and the environment. In this study, the first comprehensive evaluation of DPRP-induced craniofacial chondrogenic defects was conducted using a zebrafish model. Zebrafish embryos were exposed to 1, 2, and 4 mg/L DPRP from 6 to 96 h post-fertilization. At 80 hpf, it was observed that exposure to DPRP resulted in craniofacial developmental malformations, which were mainly characterized by the shortening of the mandibular pharyngeal arches and the inability of the accompanying artery to elongate forward. The resulting phenotype was similar to that of micrognathia syndrome. Transcriptome sequencing and molecular docking analyses revealed that DPRP down-regulated chondrocyte-related genes and induced activation of the FoxO signaling pathway, which in turn interfered with cell proliferation and apoptosis. In this process, DPRP induced elevated levels of oxidative stress in the craniofacial pharyngeal arch while promoting inflammatory responses. This ultimately led to craniofacial chondrogenic malformations in zebrafish. The present study demonstrates that DPRP induces developmental toxicity of zebrafish craniofacial cartilage, which may have adverse effects on other aquatic organisms and humans.
Collapse
Affiliation(s)
- Qinyuan Shen
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330006, PR China
| | - Weitao Hu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Fasheng Liu
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Si Dong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Xinya Peng
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Yihang Zhong
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Chao Chen
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Yuhua Zuo
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Chenkai Ge
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Weirong Li
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Wenwen Zha
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Zhijun Ye
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China.
| | - Lan Liao
- The Affiliated Stomatological Hospital, Jiangxi Medical College, Nanchang University, Jiangxi Provincial Key Laboratory of Oral Diseases, Jiangxi Provincial Clinical Research Center for Oral Diseases, Nanchang, Jiangxi 330006, PR China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs and Epigenetics, Clinical Research Center of Affiliated Hospital of Jinggangshan University, College of Life Sciences, Jinggangshan University, Ji'an, Jiangxi 343009, PR China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, PR China.
| |
Collapse
|
3
|
Carroll SH, Schafer S, Kawasaki K, Tsimbal C, Jule AM, Hallett SA, Li E, Liao EC. Genetic requirement of dact1/2 to regulate noncanonical Wnt signaling and calpain 8 during embryonic convergent extension and craniofacial morphogenesis. eLife 2024; 13:RP91648. [PMID: 39570288 PMCID: PMC11581427 DOI: 10.7554/elife.91648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Kenta Kawasaki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Casey Tsimbal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Amelie M Jule
- Department of Biostatistics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Shawn A Hallett
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Edward Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Eric C Liao
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| |
Collapse
|
4
|
Lovely CB. Bone Morphogenetic Protein signaling pathway - ethanol interactions disrupt palate formation independent of gata3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623833. [PMID: 39605565 PMCID: PMC11601317 DOI: 10.1101/2024.11.15.623833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describes a wide array of neurological defects and craniofacial malformations, associated with ethanol teratogenicity. While there is growing evidence for a genetic component to FASD, little is known of the genes underlying these ethanol-induced defects. Along with timing and dosage, genetic predispositions may help explain the variability within FASD. From a screen for gene-ethanol interactions, we found that mutants for Bmp signaling components are ethanol-sensitive leading to defects in the zebrafish palate. Loss of Bmp signaling results in reductions in gata3 expression in the maxillary domain of the neural crest in the 1st pharyngeal arch, leading to palate defects while upregulation of human GATA3 rescues these defects. Here, we show that ethanol-treated Bmp mutants exhibit misshaped and/or broken trabeculae. Surprisingly, up regulation of GATA3 does not rescue ethanol-induced palate defects and gata3 expression was not altered in ethanol-treated Bmp mutants or dorsomorphin-treated larvae. Timing of ethanol sensitivity shows that Bmp mutants are ethanol sensitive from 10-18 hours post-fertilization (hpf), prior to Bmp's regulation of gata3 in palate formation. This is consistent with our previous work with dorsomorphin-dependent knock down of Bmp signaling from 10-18 hpf disrupting endoderm formation and subsequent jaw development. Overall, this suggests that ethanol disrupts Bmp-dependent palate development independent of and earlier than the role of gata3 in palate formation by disrupting epithelial development. Ultimately, these data demonstrate that zebrafish is a useful model to identify and characterize gene-ethanol interactions and this work will directly inform our understanding of FASD. Highlights Bmp pathway mutants are ethanol sensitive resulting in palate defects. Ethanol disrupts Bmp-dependent palate development independent of gata3 . Timing of ethanol sensitivity suggests ethanol disrupts Bmp-dependent epithelial morphogenesis.
Collapse
|
5
|
Köcher L, Beppi C, Penner M, Meyer S, Bögli SY, Straumann D. Concussion leads to opposing sensorimotor effects of habituation deficit and fatigue in zebrafish larvae. Brain Commun 2024; 6:fcae407. [PMID: 39568550 PMCID: PMC11577614 DOI: 10.1093/braincomms/fcae407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/12/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024] Open
Abstract
Concussion, or mild traumatic brain injury, is caused by sudden mechanical forces impacting the brain either directly or through inertial loading. This can lead to physical, behavioural and cognitive impairments. Despite concussion being a significant health issue, our understanding of the relationship between initial impact force and the subsequent neurological consequences is not well understood. Previously, we established a model of concussion in zebrafish larvae. Here, we further investigate concussions of varying severities in zebrafish larvae using linear deceleration. Using an acoustic assay to monitor the larval sensorimotor behaviour, we found that different parameters of the resulting escape behaviour are modulated by the impact force of the preceding concussive insult. To investigate the relative contributions of habituation performance and fatigue on the escape response behaviour, we constructed a neurocomputational model. Our findings suggest that a concussive impact initially affects habituation performance at first and, as the impact force increases, fatigue is induced. Fatigue then alters the escape response behaviour in an opposing manner.
Collapse
Affiliation(s)
- Laura Köcher
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Marco Penner
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Samuel Meyer
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Stefan Yu Bögli
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Dominik Straumann
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- Department of Neurology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
- Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
6
|
Zhao W, Yao J, Liu Y, Mao L, He C, Long D. Protective role of melatonin against radiation-induced disruptions in behavior rhythm of zebrafish (danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 276:107106. [PMID: 39317138 DOI: 10.1016/j.aquatox.2024.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/25/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Ionizing radiation, as an increasingly serious environmental pollutant, has aroused widespread public concern. Melatonin, as an indole heterocyclic compound, is known to have anti-inflammatory and antioxidant effects. However, few studies have considered the comprehensive impact of melatonin on radiation damage. In this study, we used zebrafish as experimental materials and employed methods such as acridine orange staining, enzyme-linked immunosorbent assay (ELISA), video tracking for automated behavior analysis, microscope imaging, and real-time fluorescence quantitative analysis. Zebrafish embryos at 2 h post-fertilization (hpf) were treated under four different experimental conditions to assess their growth, development, and metabolic consequences. Our findings indicate that 0.10 Gy gamma radiation significantly augments body length, eye area, spine width, and tail fin length in zebrafish, along with a marked increase in oxidative stress (P < 0.05). Moreover, it enhances cumulative swimming distance, time, and average speed, suggesting elevated activity levels. We observed circadian rhythm phase shifts, peak increases, and cycle shortening, accompanied by abnormal expression of genes pivotal to biological rhythms, exercise, melatonin synthesis, apoptosis/anti-apoptosis, and oxidation/antioxidant balance. The inclusion of melatonin (1 × 10-5 mol/L MLT) ameliorated these radiation-induced anomalies, while its independent effect on zebrafish was negligible. Melatonin can regulate oxidative stress responses, hinders apoptosis responses, and reprogramming the expression of rhythm-related genes in zebrafish embryos after reprogramming radiation stimulation. Overall, our research highlights melatonin's critical role in countering the biological damage inflicted by gamma radiation, proposing its potential as a therapeutic agent in radiation protection.
Collapse
Affiliation(s)
- Weichao Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| | - Jing Yao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Yu Liu
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Liang Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Chuqi He
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China
| | - Dingxin Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, PR China.
| |
Collapse
|
7
|
Klem JR, Schwantes-An TH, Abreu M, Suttie M, Gray R, Vo H, Conley G, Foroud TM, Wetherill L, Lovely CB. Mutations in the Bone Morphogenetic Protein signaling pathway sensitize zebrafish and humans to ethanol-induced jaw malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.28.546932. [PMID: 37425959 PMCID: PMC10327032 DOI: 10.1101/2023.06.28.546932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Fetal Alcohol Spectrum Disorders (FASD) describe ethanol-induced developmental defects including craniofacial malformations. While ethanol-sensitive genetic mutations contribute to facial malformations, the impacted cellular mechanisms remain unknown. Bmp signaling is a key regulator of epithelial morphogenesis driving facial development, providing a possible ethanol-sensitive mechanism. We found that zebrafish mutants for Bmp signaling components are ethanol-sensitive and affect anterior pharyngeal endoderm shape and gene expression, indicating ethanol-induced malformations of the anterior pharyngeal endoderm cause facial malformations. Integrating FASD patient data, we provide the first evidence that variants in the human Bmp receptor gene BMPR1B associate with ethanol-related differences in jaw volume. Our results show that ethanol exposure disrupts proper morphogenesis of, and tissue interactions between, facial epithelia that mirror overall viscerocranial shape changes and are predictive for Bmp-ethanol associations in human jaw development. Our data provide a mechanistic paradigm linking ethanol to disrupted epithelial cell behaviors that underlie facial defects in FASD. Summary Statement In this study, we apply a unique combination of zebrafish-based approaches and human genetic and facial dysmorphology analyses to resolve the cellular mechanisms driven by the ethanol-sensitive Bmp pathway.
Collapse
|
8
|
Meyer DN, Silva I, Vo B, Paquette A, Blount JR, George SE, Gonzalez G, Cavaneau E, Khalaf A, Petriv AM, Wu CC, Haimbaugh A, Baker TR. Juvenile exposure to low-level 2,3,7,8-tetrachlorodibenzo- p-dioxin (TCDD) alters behavior and longitudinal morphometrics in zebrafish and F 1 offspring. J Dev Orig Health Dis 2024; 15:e22. [PMID: 39397699 DOI: 10.1017/s2040174424000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental endocrine disruptor and model AhR agonist, is linked to skeletal abnormalities, cardiac edema, stunted growth rate, altered metabolism, and neurobehavioral deficits. We have previously reported transgenerational reproductive outcomes of developmental TCDD exposure in adult zebrafish (Danio rerio), an NIH-validated model for developmental and generational toxicology. Using the same paradigm of sublethal TCDD exposure (50 pg/ml) at both 3 and 7 weeks post fertilization (wpf), we investigated several novel endpoints, including longitudinal morphometrics and anxiety-linked behavior, in fish exposed as juveniles. We also assessed developmental abnormalities and neurobehavior in their F1 larval offspring. TCDD exposure induced timepoint-dependent decreases in several craniofacial and trunk morphometrics across juvenile development. In early adulthood, however, only exposed males underwent a transient period of compensatory growth, ending between 7 and 12 months post fertilization (mpf). At 12 mpf, exposed adult fish of both sexes displayed increased exploratory behaviors in a novel tank test. The F1 offspring of parents exposed at both 3 and 7 wpf were hyperactive, but neurobehavioral outcomes diverged depending on parental exposure window. F1 exposure-lineage larvae had increased rates of edema and skeletal abnormalities, but fewer unhatched larvae compared to controls. Parent- and timepoint-specific effects of exposure on abnormality rate were also evaluated; these outcomes were considerably less severe. Our novel behavioral findings expand current knowledge of the long-term and intergenerational consequences of early-life TCDD exposure in a zebrafish model, in addition to delineating minor longitudinal morphometric changes in exposed fish and abnormalities in larval offspring.
Collapse
Affiliation(s)
- Danielle N Meyer
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Isabela Silva
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Brianna Vo
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Amelia Paquette
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Jessica R Blount
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Serena E George
- School of Veterinary Medicine, University of Madison-Wisconsin, Madison, WI, USA
| | - Gabrielle Gonzalez
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Emma Cavaneau
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aicha Khalaf
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Anna-Maria Petriv
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Chia-Chen Wu
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Alex Haimbaugh
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| | - Tracie R Baker
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, USA
- Department of Pharmacology, Wayne State University, Detroit, MI, USA
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
9
|
Raterman ST, Wagener FADTG, Zethof J, Cuijpers V, Klaren PHM, Metz JR, Von den Hoff JW. foxe1 mutant zebrafish show indications of a hypothyroid phenotype and increased sensitivity to ethanol for craniofacial malformations. Dev Dyn 2024. [PMID: 39360443 DOI: 10.1002/dvdy.745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND FOXE1 mutations in humans are associated with cleft palate and hypothyroidism. We previously developed a foxe1 mutant zebrafish demonstrating mineralization defects in larvae. In the present study, we investigate the thyroid status and skeletal phenotype of adult foxe1 mutants. RESULTS Mutant fish have increased expression of tshβ in the pituitary, and of hepatic dio1 and dio2. In plasma, we found higher Mg levels. Together these findings are indicative of hypothyroidism. We further observed mineralization defects in scales due to enhanced osteoclast activity as measured by increased expression levels of tracp, ctsk, and rankl. Gene-environment interactions in the etiology of FOXE1-related craniofacial abnormalities remain elusive, which prompts the need for models to investigate genotype-phenotype associations. We here investigated whether ethanol exposure increases the risk of developing craniofacial malformations in foxe1 mutant larvae that we compared to wild types. We found in ethanol-exposed mutants an increased incidence of developmental malformations and marked changes in gene expression patterns of cartilage markers (sox9a), apoptotic markers (casp3b), retinoic acid metabolism (cyp26c1), and tissue hypoxia markers (hifaa, hifab). CONCLUSION Taken together, this study shows that the foxe1 mutant zebrafish recapitulates phenotypes associated with FOXE1 mutations in human patients and a clear foxe1-ethanol interaction.
Collapse
Affiliation(s)
- Sophie T Raterman
- Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jan Zethof
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Vincent Cuijpers
- Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter H M Klaren
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Juriaan R Metz
- Department of Plant & Animal Biology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Johannes W Von den Hoff
- Department of Dentistry-Orthodontics and Craniofacial Biology, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
10
|
Liu S, Xu L, Kashima M, Narumi R, Takahata Y, Nakamura E, Shibuya H, Tamura M, Shida Y, Inubushi T, Nukada Y, Miyazawa M, Hata K, Nishimura R, Yamashiro T, Tasaki J, Kurosaka H. Expression analysis of genes including Zfhx4 in mice and zebrafish reveals a temporospatial conserved molecular basis underlying craniofacial development. Dev Dyn 2024. [PMID: 39320016 DOI: 10.1002/dvdy.740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Embryonic craniofacial development involves several cellular and molecular events that are evolutionarily conserved among vertebrates. Vertebrate models such as mice and zebrafish have been used to investigate the molecular and cellular etiologies underlying human craniofacial disorders, including orofacial clefts. However, the molecular mechanisms underlying embryonic development in these two species are unknown. Therefore, elucidating the shared mechanisms of craniofacial development between disease models is crucial to understanding the underlying mechanisms of phenotypes in individual species. RESULTS We selected mice and zebrafish as model organisms to compare various events during embryonic craniofacial development. We identified genes (Sox9, Zfhx3 and 4, Cjun, and Six1) exhibiting similar temporal expression patterns between these species through comprehensive and stage-matched gene expression analyses. Expression analysis revealed similar gene expression in hypothetically corresponding tissues, such as the mice palate and zebrafish ethmoid plate. Furthermore, loss-of-function analysis of Zfhx4/zfhx4, a causative gene of human craniofacial anomalies including orofacial cleft, in both species resulted in deformed skeletal elements such as the palatine and ethmoid plate in mice and zebrafish, respectively. CONCLUSIONS These results demonstrate that these disease models share common molecular mechanisms, highlighting their usefulness in modeling craniofacial defects in humans.
Collapse
Affiliation(s)
- Shujie Liu
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Lin Xu
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Makoto Kashima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
- Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Japan
| | - Rika Narumi
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Eriko Nakamura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Hirotoshi Shibuya
- Mouse Phenotype Analysis Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Masaru Tamura
- Mouse Phenotype Analysis Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Yuki Shida
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Yuko Nukada
- R&D, Safety Science Research, Kao Corporation, Tochigi, Japan
| | | | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - Junichi Tasaki
- R&D, Safety Science Research, Kao Corporation, Kawasaki, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, Suita, Japan
| |
Collapse
|
11
|
Carroll SH, Schafer S, Kawasaki K, Tsimbal C, Julé AM, Hallett SA, Li E, Liao EC. Genetic requirement of dact1/2 to regulate noncanonical Wnt signaling and calpain 8 during embryonic convergent extension and craniofacial morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.566024. [PMID: 37986847 PMCID: PMC10659360 DOI: 10.1101/2023.11.07.566024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar convergent extension defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2 specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Over-expression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
| | - Kenta Kawasaki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Casey Tsimbal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Amélie M Julé
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Shawn A Hallett
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| | - Edward Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
| | - Eric C Liao
- Center for Craniofacial Innovation, Children's Hospital of Philadelphia Research Institute, Children's Hospital of Philadelphia, PA 19104, USA
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children's Hospital of Philadelphia, PA 19104, USA
- Shriners Hospital for Children, Tampa, FL 33607, USA
| |
Collapse
|
12
|
Harboe M, Kjaer-Sorensen K, Füchtbauer EM, Fenton RA, Thomsen JS, Brüel A, Oxvig C. The metalloproteinase PAPP-A is required for IGF-dependent chondrocyte differentiation and organization. Sci Rep 2024; 14:20161. [PMID: 39215168 PMCID: PMC11364822 DOI: 10.1038/s41598-024-71062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
Insulin-like growth factor (IGF) signaling is required for proper growth and skeletal development in vertebrates. Consequently, its dysregulation may lead to abnormalities of growth or skeletal structures. IGF is involved in the regulation of cell proliferation and differentiation of chondrocytes. However, the availability of bioactive IGF may be controlled by antagonizing IGF binding proteins (IGFBPs) in the circulation and tissues. As the metalloproteinase PAPP-A specifically cleaves members of the IGFBP family, we hypothesized that PAPP-A activity liberates bioactive IGF in cartilage. In PAPP-A knockout mice, the femur length was reduced and the mice showed a disorganized columnar organization of growth plate chondrocytes. Similarly, zebrafish lacking pappaa showed reduced length of Meckel's cartilage and disorganized chondrocytes, reminiscent of the mouse knockout phenotype. Expression of chondrocyte differentiation markers (sox9a, ihha, and col10a1) was markedly affected in Meckel's cartilage of pappaa knockout zebrafish, indicating that differentiation of chondrocytes was compromised. Additionally, the zebrafish pappaa knockout phenotype was mimicked by pharmacological inhibition of IGF signaling, and it could be rescued by treatment with exogenous recombinant IGF-I. In conclusion, our data suggests that IGF activity in the growing cartilage, and hence IGF signaling in chondrocytes, requires the presence of PAPP-A. The absence of PAPP-A causes aberrant chondrocyte organization and compromised growth in both mice and zebrafish.
Collapse
Affiliation(s)
- Mette Harboe
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Kasper Kjaer-Sorensen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Ernst-Martin Füchtbauer
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark
| | - Robert A Fenton
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Annemarie Brüel
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Claus Oxvig
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000, Aarhus C, Denmark.
| |
Collapse
|
13
|
Stassen SV, Kobashi M, Lam EY, Huang Y, Ho JWK, Tsia KK. StaVia: spatially and temporally aware cartography with higher-order random walks for cell atlases. Genome Biol 2024; 25:224. [PMID: 39152459 PMCID: PMC11328412 DOI: 10.1186/s13059-024-03347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells' past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage. We demonstrate this using zebrafish gastrulation data, underscoring its potential to dissect complex biological landscapes in both spatial and temporal contexts.
Collapse
Affiliation(s)
- Shobana V Stassen
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
| | - Minato Kobashi
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
| | - Edmund Y Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong
- AI Chip Center for Emerging Smart Systems, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Yuanhua Huang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Department of Statistics and Actuarial Science, The University of Hong Kong, Pokfulam, Hong Kong
| | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong
- Laboratory of Data Discovery for Health, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - Kevin K Tsia
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, Hong Kong.
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
14
|
Fellmann F, Saunders C, O’Donohue MF, Reid DW, McFadden KA, Montel-Lehry N, Yu C, Fang M, Zhang J, Royer-Bertrand B, Farinelli P, Karboul N, Willer JR, Fievet L, Bhuiyan ZA, Kleinhenz AL, Jadeau J, Fulbright J, Rivolta C, Renella R, Katsanis N, Beckmann JS, Nicchitta CV, Da Costa L, Davis EE, Gleizes PE. An atypical form of 60S ribosomal subunit in Diamond-Blackfan anemia linked to RPL17 variants. JCI Insight 2024; 9:e172475. [PMID: 39088281 PMCID: PMC11385091 DOI: 10.1172/jci.insight.172475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/25/2024] [Indexed: 08/03/2024] Open
Abstract
Diamond-Blackfan anemia syndrome (DBA) is a ribosomopathy associated with loss-of-function variants in more than 20 ribosomal protein (RP) genes. Here, we report the genetic, functional, and biochemical dissection of 2 multigenerational pedigrees with variants in RPL17, a large ribosomal subunit protein-encoding gene. Affected individuals had clinical features and erythroid proliferation defects consistent with DBA. Further, RPL17/uL22 depletion resulted in anemia and micrognathia in zebrafish larvae, and in vivo complementation studies indicated that RPL17 variants were pathogenic. Lymphoblastoid cell lines (LCLs) derived from patients displayed a ribosomal RNA maturation defect reflecting haploinsufficiency of RPL17. The proteins encoded by RPL17 variants were not incorporated into ribosomes, but 10%-20% of 60S ribosomal subunits contained a short form of 5.8S rRNA (5.8SC), a species that is marginal in normal cells. These atypical 60S subunits were actively engaged in translation. Ribosome profiling showed changes of the translational profile, but those are similar to LCLs bearing RPS19 variants. These results link an additional RP gene to DBA. They show that ribosomes can be modified substantially by RPL17 haploinsufficiency but support the paradigm that translation alterations in DBA are primarily related to insufficient ribosome production rather than to changes in ribosome structure or composition.
Collapse
Affiliation(s)
- Florence Fellmann
- The ColLaboratory, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Carol Saunders
- University of Missouri Kansas City, School of Medicine, Kansas City, Missouri, USA
- Department of Pathology and Laboratory Medicine, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | | | - David W. Reid
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Kelsey A. McFadden
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Nathalie Montel-Lehry
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Cong Yu
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Pietro Farinelli
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | - Jason R. Willer
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Lorraine Fievet
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Zahurul Alam Bhuiyan
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Alissa L.W. Kleinhenz
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Julie Jadeau
- MCD, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Joy Fulbright
- Division of Hematology/Oncology, Children’s Mercy Hospital and Clinics, Kansas City, Missouri, USA
| | - Carlo Rivolta
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Raffaele Renella
- Division of Pediatrics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
| | - Jacques S. Beckmann
- Service of Medical Genetics, University Hospital Lausanne (CHUV), Lausanne, Switzerland
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Clinical Bioinformatics, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christopher V. Nicchitta
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Lydie Da Costa
- AP-HP, Service d’Hématologie Biologique, Hôpital Robert Debré, Paris, France
- Université Paris Cité, Paris, France
- Hematim EA4666, CURS, CHU Amiens, Amiens, France
- LABEX GR-EX, Paris, France
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, North Carolina, USA
- Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
- Departments of Pediatrics and Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | |
Collapse
|
15
|
Wang H, Ma C, Liu C, Sun L, Wang Y, Xue J, Zhao B, Dong W. The c-Fos/AP-1 inhibitor inhibits sulfur mustard-induced chondrogenesis impairment in zebrafish larvae. CHEMOSPHERE 2024; 359:142299. [PMID: 38761826 DOI: 10.1016/j.chemosphere.2024.142299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Sulfur mustard (SM, dichlorodiethyl sulfide) is a potent erosive chemical poison that can cause pulmonary lung, skin and eye disease complications in humans. Currently, there is no designated remedy for SM, and its operation's toxicological process remains unidentified. This work employed zebrafish as a model organism to investigate the toxic manifestations and mechanisms of exposure to SM, aiming to offer novel insights for preventing and treating this condition. The results showed that SM caused a decrease in the survival rate of the zebrafish larvae (LC50 = 2.47 mg/L), a reduction in the hatching rate, an increase in the pericardial area, and small head syndrome. However, T-5224 (a selective inhibitor of c-Fos/activator protein) attenuated the reduction in mortality (LC50 = 2.79 mg/L), the reduction in hatching rate, and the worsening of morphological changes. We discovered that SM causes cartilage developmental disorders in zebrafish larvae. The reverse transcription-quantitative polymerase chain reaction found that SM increased the expression of inflammation-related genes (IL-1β, IL-6, and TNF-α) and significantly increased cartilage development-related gene expression (fosab, mmp9, and atf3). However, the expression of sox9a, sox9b, and Col2a1a was reduced. The protein level detection also found an increase in c-fos protein expression and a significant decrease in COL2A1 expression. However, T-5224,also and mitigated the changes in gene expression, and protein levels caused by SM exposure. The results of this study indicate that SM-induced cartilage development disorders are closely related to the c-Fos/AP-1 pathway in zebrafish.
Collapse
Affiliation(s)
- Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chenglong Ma
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China; State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Chunyu Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Lan Sun
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Jiangdong Xue
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing, 100850, China.
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, 028000, China.
| |
Collapse
|
16
|
Pereur R, Dambroise E. Insights into Craniofacial Development and Anomalies: Exploring Fgf Signaling in Zebrafish Models. Curr Osteoporos Rep 2024; 22:340-352. [PMID: 38739352 DOI: 10.1007/s11914-024-00873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE OF REVIEW To illustrate the value of using zebrafish to understand the role of the Fgf signaling pathway during craniofacial skeletal development under normal and pathological conditions. RECENT FINDINGS Recent data obtained from studies on zebrafish have demonstrated the genetic redundancy of Fgf signaling pathway and have identified new molecular partners of this signaling during the early stages of craniofacial skeletal development. Studies on zebrafish models demonstrate the involvement of the Fgf signaling pathway at every stage of craniofacial development. They particularly emphasize the central role of Fgf signaling pathway during the early stages of the development, which significantly impacts the formation of the various structures making up the craniofacial skeleton. This partly explains the craniofacial abnormalities observed in disorders associated with FGF signaling. Future research efforts should focus on investigating zebrafish Fgf signaling during more advanced stages, notably by establishing zebrafish models expressing mutations responsible for diseases such as craniosynostoses.
Collapse
Affiliation(s)
- Rachel Pereur
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Université Paris Cité, INSERM UMR 1163, Imagine Institut, 24 boulevard Montparnasse, 75015, Paris, France
| | - Emilie Dambroise
- Laboratory of Molecular and Physiopathological Bases of Osteochondrodysplasia, Université Paris Cité, INSERM UMR 1163, Imagine Institut, 24 boulevard Montparnasse, 75015, Paris, France.
| |
Collapse
|
17
|
He(何璇) XA, Berenson A, Bernard M, Weber C, Cook LE, Visel A, Fuxman Bass JI, Fisher S. Identification of conserved skeletal enhancers associated with craniosynostosis risk genes. Hum Mol Genet 2024; 33:837-849. [PMID: 37883470 PMCID: PMC11070136 DOI: 10.1093/hmg/ddad182] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 10/20/2023] [Indexed: 10/28/2023] Open
Abstract
Craniosynostosis, defined by premature fusion of one or multiple cranial sutures, is a common congenital defect affecting more than 1/2000 infants and results in restricted brain expansion. Single gene mutations account for 15%-20% of cases, largely as part of a syndrome, but the majority are nonsyndromic with complex underlying genetics. We hypothesized that the two noncoding genomic regions identified by a GWAS for craniosynostosis contain distal regulatory elements for the risk genes BMPER and BMP2. To identify such regulatory elements, we surveyed conserved noncoding sequences from both risk loci for enhancer activity in transgenic Danio rerio. We identified enhancers from both regions that direct expression to skeletal tissues, consistent with the endogenous expression of bmper and bmp2. For each locus, we also found a skeletal enhancer that also contains a sequence variant associated with craniosynostosis risk. We examined the activity of each enhancer during craniofacial development and found that the BMPER-associated enhancer is active in the restricted region of cartilage closely associated with frontal bone initiation. The same enhancer is active in mouse skeletal tissues, demonstrating evolutionarily conserved activity. Using enhanced yeast one-hybrid assays, we identified transcription factors that bind each enhancer and observed differential binding between alleles, implicating multiple signaling pathways. Our findings help unveil the genetic mechanism of the two craniosynostosis risk loci. More broadly, our combined in vivo approach is applicable to many complex genetic diseases to build a link between association studies and specific genetic mechanisms.
Collapse
Affiliation(s)
- Xuan Anita He(何璇)
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
- Graduate Program in Biomolecular Medicine, Boston University, 72 East Concord St, Boston, MA 02118, United States
| | - Anna Berenson
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
- Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Michelle Bernard
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
- College of Arts and Sciences, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Chris Weber
- Department of Cell and Developmental Biology, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6058, United States
| | - Laura E Cook
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, United States
- U.S. Department of Energy Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA 94720, United States
- School of Natural Sciences, 5200 Lake Road, University of California Merced, Merced, CA 95343, United States
| | - Juan I Fuxman Bass
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, United States
| | - Shannon Fisher
- Department of Pharmacology, Physiology & Biophysics, Boston University, 700 Albany St, W607, Boston, MA 02118, United States
| |
Collapse
|
18
|
Ulhaq ZS, You MS, Jiang YJ, Tse WKF. p53 inhibitor or antioxidants reduce the severity of ethmoid plate deformities in zebrafish Type 3 Treacher Collins syndrome model. Int J Biol Macromol 2024; 266:131216. [PMID: 38556235 DOI: 10.1016/j.ijbiomac.2024.131216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Treacher Collins syndrome-3 (TCS-3) is a rare congenital craniofacial disorder attributed to variants in the RNA pol I subunit C (POLR1C). The pathogenesis of TCS-3 linked to polr1c involves the activation of apoptosis-dependent p53 pathways within neural crest cells (NCCs). This occurs due to disruptions in ribosome biogenesis, and the restoration of polr1c expression in early embryogenesis effectively rescues the observed craniofacial phenotype in polr1c-deficient zebrafish. Clinical variability in TCS patients suggests interactions between genes and factors like oxidative stress. Elevated production of reactive oxygen species (ROS) in epithelial cells may worsen phenotypic outcomes in TCS individuals. Our study confirmed excessive ROS production in facial regions, inducing apoptosis and altering p53 pathways. Deregulated cell-cycle and epithelial-to-mesenchymal transition (EMT) genes were also detected in the TCS-3 model. Utilizing p53 inhibitor (Pifithrin-α; PFT-α) or antioxidants (Glutathione; GSH and N-Acetyl-L-cysteine; NAC) effectively corrected migrated NCC distribution in the pharyngeal arch (PA), suppressed oxidative stress, prevented cell death, and modulated EMT inducers. Crucially, inhibiting p53 activation or applying antioxidants within a specific time window, notably within 30 h post-fertilization (hpf), successfully reversed phenotypic effects induced by polr1c MO.
Collapse
Affiliation(s)
- Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan; Research Center for Pre-clinical and Clinical Medicine, National Research and Innovation Agency, Cibinong 16911, Indonesia.
| | - May-Su You
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County 350, Taiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and Toxicology, Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan.
| |
Collapse
|
19
|
Alhazmi N, Alamoud KA, Albalawi F, Alalola B, Farook FF. The application of zebrafish model in the study of cleft lip and palate development: A systematic review. Heliyon 2024; 10:e28322. [PMID: 38533046 PMCID: PMC10963633 DOI: 10.1016/j.heliyon.2024.e28322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Objective Craniofacial growth and development are more than a scientific curiosity; it is of tremendous interest to clinicians. Insights into the genetic etiology of cleft lip and palate development are essential for improving diagnosis and treatment planning. The purpose of this systematic review was to utilize a zebrafish model to highlight the role of the IRF6 gene in cleft lip and palate development in humans. Data This review adhered to the guidelines outlined in the PRISMA statement. Nine studies were included in the analysis. Sources This study used major scientific databases such as MEDLINE, EMBASE, Web of Science, and the Zebrafish Information Network and yielded 1275 articles. Two reviewers performed the screening using COVIDENCE™ independently, and a third reviewer resolved any conflicts. Study selection After applying the inclusion and exclusion criteria and screening, nine studies were included in the analysis. The Systematic Review Center for Laboratory Animal Experimentation's (SYRCLE's) risk-of-bias tool was used to assess the quality of the included studies. Results The main outcome supports the role of the IRF6 gene in zebrafish periderm development and embryogenesis, and IRF6 variations result in cleft lip and palate development. The overall SYRCLE risk of bias was low-medium. Conclusion In conclusion, this review indicated the critical role of the IRF6 gene and its downstream genes (GRHL3, KLF17, and ESRP1/2) in the development of cleft lip and palate in zebrafish models. Genetic mutation zebrafish models provide a high level of insights into zebrafish craniofacial development. Clinical relevance this review provides a productive avenue for understanding the powerful and conserved zebrafish model for investigating the pathogenesis of human cleft lip and palate.
Collapse
Affiliation(s)
- Nora Alhazmi
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Khalid A. Alamoud
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Farraj Albalawi
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Bassam Alalola
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| | - Fathima F. Farook
- Preventive Dental Science Department, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, 14611, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, 11481, Saudi Arabia
- Ministry of the National Guard Health Affairs, Riyadh, 11426, Saudi Arabia
| |
Collapse
|
20
|
Fujimura K, Shima A. Water properties and quality of the largest rice production region in Japan and their influence on the reproduction of zebrafish. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21857-21868. [PMID: 38400980 DOI: 10.1007/s11356-024-32597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The health of freshwater aquarium fish and their breeding success depend critically on the quality of tap water. In general, tap water in Japan is potable, although the properties of tap water vary among regions in Japan. The city of Niigata is located in the largest rice production region of Japan. We have faced challenges concerning the reproduction of freshwater aquarium fish in Niigata. To determine whether water properties and quality affect the reproduction of aquarium fish in Niigata, we investigated the chemical properties of water and raised zebrafish in water from three different sources, namely tap water of Niigata in May, artificial freshwater (i.e., prepared via reverse osmosis), and natural spring water of Gosen, to document any effects on their sexual maturation and reproduction. We found that the tap water of Niigata was not stable throughout a year (median electrical conductivity = 147.1 μS/cm; SD = 25.6), with springtime lower than the first quartile. We also found that low concentrations of four pesticides in the tap water have been detected in May (max. concentration in 2020, bromobutide 2,000 ng/L, butachlor 600 ng/L, pyraclonil 200 ng/L, ipfencarbazone 20 ng/L). Moreover, rearing zebrafish in tap water negatively influenced both fish growth and reproduction: The sex ratio of adults was male biased (proportion of F0 male 70.8%); the average total length (30.5 mm) and weight (182 mg) of F0 males was decreased; the GSI of F0 females (9.7%) was decreased; the fecundity (the mating success 58.7%; the number of F1 eggs 63.1) of adults was reduced. Rearing in artificial freshwater could improve these outcomes (the sex ratio 55.7%; the total length of F0 males 31.8 mm; the weight of F0 males 211 mg; the GSI of F0 females 11.7%; the mating success 72.6%; the number of F1 eggs 99.0), whereas rearing in natural spring water from Gosen could improve the sex ratio (56.3%) and the weight of F0 males (200 mg), but not the others. Therefore, artificial freshwater made via reverse osmosis should be used for breeding freshwater aquarium fish in rice production region like Niigata. Finally, our results demonstrate that the reproduction of freshwater aquarium fish can serve as a bioindicator of low levels of organic pollutants in tap water and thus provide a basis for evaluating the safety of tap water for human consumption.
Collapse
Affiliation(s)
- Koji Fujimura
- Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan.
| | - Ayane Shima
- Faculty of Science, Niigata University, 8050 Ikarashi-2, Nishi-ku, Niigata, 950-2181, Japan
| |
Collapse
|
21
|
Endo Y, Groom L, Wang SM, Pannia E, Griffiths NW, Van Gennip JLM, Ciruna B, Laporte J, Dirksen RT, Dowling JJ. Two zebrafish cacna1s loss-of-function variants provide models of mild and severe CACNA1S-related myopathy. Hum Mol Genet 2024; 33:254-269. [PMID: 37930228 PMCID: PMC10800018 DOI: 10.1093/hmg/ddad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023] Open
Abstract
CACNA1S-related myopathy, due to pathogenic variants in the CACNA1S gene, is a recently described congenital muscle disease. Disease associated variants result in loss of gene expression and/or reduction of Cav1.1 protein stability. There is an incomplete understanding of the underlying disease pathomechanisms and no effective therapies are currently available. A barrier to the study of this myopathy is the lack of a suitable animal model that phenocopies key aspects of the disease. To address this barrier, we generated knockouts of the two zebrafish CACNA1S paralogs, cacna1sa and cacna1sb. Double knockout fish exhibit severe weakness and early death, and are characterized by the absence of Cav1.1 α1 subunit expression, abnormal triad structure, and impaired excitation-contraction coupling, thus mirroring the severe form of human CACNA1S-related myopathy. A double mutant (cacna1sa homozygous, cacna1sb heterozygote) exhibits normal development, but displays reduced body size, abnormal facial structure, and cores on muscle pathologic examination, thus phenocopying the mild form of human CACNA1S-related myopathy. In summary, we generated and characterized the first cacna1s zebrafish loss-of-function mutants, and show them to be faithful models of severe and mild forms of human CACNA1S-related myopathy suitable for future mechanistic studies and therapy development.
Collapse
Affiliation(s)
- Yukari Endo
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - Sabrina M Wang
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Emanuela Pannia
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Zebrafish Genetics and Disease Models Core Facility, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Nigel W Griffiths
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Jenica L M Van Gennip
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
| | - Brian Ciruna
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jocelyn Laporte
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Inserm U1258, Cnrs UMR7104, Université de Strasbourg, 1 Rue Laurent Fries, Illkirch 67400, France
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642, United States
| | - James J Dowling
- Program for Genetics and Genome Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
- Division of Neurology, Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, 555 University Ave, Toronto, ON M5G 1X8, Canada
| |
Collapse
|
22
|
DeLorenzo L, Powder KE. Epigenetics and the evolution of form: Experimental manipulation of a chromatin modification causes species-specific changes to the craniofacial skeleton. Evol Dev 2024; 26:e12461. [PMID: 37850843 PMCID: PMC10842503 DOI: 10.1111/ede.12461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 10/19/2023]
Abstract
A central question in biology is the molecular origins of phenotypic diversity. While genetic changes are key to the genotype-phenotype relationship, alterations to chromatin structure and the physical packaging of histone proteins may also be important drivers of vertebrate divergence. We investigate the impact of such an epigenetic mechanism, histone acetylation, within a textbook example of an adaptive radiation. Cichlids of Lake Malawi have adapted diverse craniofacial structures, and here we investigate how histone acetylation influences morphological variation in these fishes. Specifically, we assessed the effect of inhibiting histone deacetylation using the drug trichostatin A (TSA) on developing facial structures. We examined this during three critical developmental windows in two cichlid species with alternate adult morphologies. Exposure to TSA during neural crest cell (NCC) migration and as postmigratory NCCs proliferate in the pharyngeal arches resulted in significant changes in lateral and ventral shape in Maylandia, but not in Tropheops. This included an overall shortening of the head, widening of the lower jaw, and steeper craniofacial profile, all of which are paedomorphic morphologies. In contrast, treatment with TSA during early chondrogenesis did not result in significant morphological changes in either species. Together, these data suggest a sensitivity to epigenetic alterations that are both time- and species-dependent. We find that morphologies are due to nonautonomous or potentially indirect effects on NCC development, including in part a global developmental delay. Our research bolsters the understanding that proper histone acetylation is essential for early craniofacial development and identifies a species-specific robustness to developmental change. Overall, this study demonstrates how epigenetic regulation may play an important role in both generating and buffering morphological variation.
Collapse
Affiliation(s)
- Leah DeLorenzo
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| | - Kara E. Powder
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
23
|
Sobah ML, Liongue C, Ward AC. Contribution of Signal Transducer and Activator of Transcription 3 (STAT3) to Bone Development and Repair. Int J Mol Sci 2023; 25:389. [PMID: 38203559 PMCID: PMC10778865 DOI: 10.3390/ijms25010389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a transcription factor activated canonically by numerous cytokines and other factors, with significant roles in immunity, immune diseases, and cancer. It has also been implicated in several human skeletal disorders, with loss-of-function (LOF) mutations associated with aberrant skeletal development. To gain further insights, two zebrafish STAT3 lines were investigated: a complete LOF knockout (KO) mutant and a partial LOF mutant with the transactivation domain truncated (ΔTAD). Consistent with other studies, the KO mutants were smaller, with reduced length in early embryos exacerbated by a decreased growth rate from 5 days postfertilization (dpf). They displayed skeletal deformities that approached 80% incidence by 30 dpf, with a significant reduction in early bone but not cartilage formation. Further analysis additionally identified considerable abrogation of caudal fin regeneration, concomitant with a paucity of infiltrating macrophages and neutrophils, which may be responsible for this. Most of these phenotypes were also observed in the ΔTAD mutants, indicating that loss of canonical STAT3 signaling was the likely cause. However, the impacts on early bone formation and regeneration were muted in the ΔTAD mutant, suggesting the potential involvement of noncanonical functions in these processes.
Collapse
Affiliation(s)
- Mohamed L. Sobah
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia;
| | - Clifford Liongue
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia;
| | - Alister C. Ward
- Institute of Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia;
| |
Collapse
|
24
|
Huang W, Shi X, Zhang Q, Chen Y, Zheng S, Wu W, Luo C, Wu K. Transgenerational effects of BDE-47 to zebrafish based on histomorphometry and toxicogenomic analyses. CHEMOSPHERE 2023; 344:140401. [PMID: 37839753 DOI: 10.1016/j.chemosphere.2023.140401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/26/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Exposure to 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) has been found to have an impact on reproductive output and endocrine function in female zebrafish (Danio rerio). However, the transgenerational effects of BDE-47 have not been fully explored in previous reports. In this study, female zebrafish were exposed to BDE-47 for three consecutive weeks. The oogenesis, sex hormones, reproductive histology, and transcriptional profiles of genes along the hypothalamus-pituitary-gonad (HPG) axis were assessed in the exposed-F0 generation. After mating with unexposed males, the transgenerational effects of BDE-47 were evaluated on the basis of histopathology, morphometry and toxicogenome of the unexposed F1 generations at the larval stage. Results indicated that exposure to BDE-47 impaired reproductive capacity, disrupted endocrine system in F0 zebrafish, and compromised craniofacial skeletons and vertebrae development in F1 generations. In addition, through the use of toxicogenomics approach, immune-responsive pathways were found to be significantly enriched, and the transcript expression profiling of immune-related DEGs (IRDs) were dramatically inhibited in F1 generations following maternal BDE-47 exposure, indicating its immunotoxicity to offspring larvae. These findings advance our understanding of the transgenerational toxicity of BDE-47 and advocate for a more comprehensive assessment of other PBDE congeners through histomorphometry and toxicogenomic approaches.
Collapse
Affiliation(s)
- Wenlong Huang
- Department of Forensic Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yuequn Chen
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Wenying Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Congying Luo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
25
|
Van Wynsberghe J, Vanakker OM. Significance of Premature Vertebral Mineralization in Zebrafish Models in Mechanistic and Pharmaceutical Research on Hereditary Multisystem Diseases. Biomolecules 2023; 13:1621. [PMID: 38002303 PMCID: PMC10669475 DOI: 10.3390/biom13111621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Zebrafish are increasingly becoming an important model organism for studying the pathophysiological mechanisms of human diseases and investigating how these mechanisms can be effectively targeted using compounds that may open avenues to novel treatments for patients. The zebrafish skeleton has been particularly instrumental in modeling bone diseases as-contrary to other model organisms-the lower load on the skeleton of an aquatic animal enables mutants to survive to early adulthood. In this respect, the axial skeletons of zebrafish have been a good read-out for congenital spinal deformities such as scoliosis and degenerative disorders such as osteoporosis and osteoarthritis, in which aberrant mineralization in humans is reflected in the respective zebrafish models. Interestingly, there have been several reports of hereditary multisystemic diseases that do not affect the vertebral column in human patients, while the corresponding zebrafish models systematically show anomalies in mineralization and morphology of the spine as their leading or, in some cases, only phenotype. In this review, we describe such examples, highlighting the underlying mechanisms, the already-used or potential power of these models to help us understand and amend the mineralization process, and the outstanding questions on how and why this specific axial type of aberrant mineralization occurs in these disease models.
Collapse
Affiliation(s)
- Judith Van Wynsberghe
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| | - Olivier M. Vanakker
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium;
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Ectopic Mineralization Research Group, 9000 Ghent, Belgium
| |
Collapse
|
26
|
Li Z, Jia K, Chen X, Guo J, Zheng Z, Chen W, Peng Y, Yang Y, Lu H, Yang J. Exposure to Butylparaben Induces Craniofacial Bone Developmental Toxicity in Zebrafish (Danio rerio) Embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115523. [PMID: 37776822 DOI: 10.1016/j.ecoenv.2023.115523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/30/2023] [Accepted: 09/23/2023] [Indexed: 10/02/2023]
Abstract
Butylparaben (BuP) is a common antibacterial preservative utilized extensively in food, medical supplies, cosmetics, and personal care products. The current study reports the use of Zebrafish (Danio rerio) embryos to investigate potential developmental toxicity caused by exposure to BuP. The development of Neural crest cells (NCCs) is highly active during gastrulation in Zebrafish embryos. Thus, we utilized 0.5 mg/L, 0.75 mg/L, and 1 mg/L BuP solutions, respectively, in accordance with the international safety standard dosage. We observed severe craniofacial cartilage deformities, periocular edema, cardiac dysplasia, and delayed otolith development in the Zebrafish larvae 5 days after exposure. The oxidative stress response was significantly enhanced. In addition, the biochemical analysis revealed that the activities of catalase (CAT) and superoxide dismutase (SOD) were significantly reduced relative to the control group, whereas the concentration of malondialdehyde (MDA) was significantly elevated. Furthermore, ALP activity, a marker of osteoblast activity, was also reduced. Moreover, the RT-qPCR results indicated that the expression of chondrocyte marker genes sox9a, sox9b, and col2a1a was down-regulated. In addition, the morphology of maxillofacial chondrocytes was altered in Zebrafish larvae, and the proliferation of cranial NCCs was inhibited. Accordingly, our findings indicate that strong oxidative stress induced by BuP inhibits the proliferation of NCCs in larval Zebrafish, leading to craniofacial deformities.
Collapse
Affiliation(s)
- Zekun Li
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Kun Jia
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaomei Chen
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Jun Guo
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Zhiguo Zheng
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Weihua Chen
- Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Yuan Peng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China
| | - Yuhao Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an 343009, Jiangxi, China
| | - Jian Yang
- Department of Endodontics, Affiliated Stomatological Hospital, Nanchang University, Nanchang 330006, Jiangxi, China; Jiangxi Key Laboratory of Oral Biomedicine, Jiangxi Clinical Medical Research Center of Oral Diseases, Nanchang 330006, Jiangxi,China.
| |
Collapse
|
27
|
Du Y, Liu G, Liu Z, Mo J, Zheng M, Wei Q, Xu Y. Avermectin reduces bone mineralization via the TGF-β signaling pathway in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109702. [PMID: 37487806 DOI: 10.1016/j.cbpc.2023.109702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 07/05/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
Avermectin, a widely used insecticide, is primarily effective against animal parasites and insects. Given its extensive application in agriculture, a large amount of avermectin accumulates in natural water bodies. Studies have shown that avermectin has significant toxic effects on various organisms and on the nervous system, spine, and several other organs in humans. However, the effects of avermectin on bone development have not been reported yet. In this study, zebrafish embryos were treated with different concentrations of avermectin to explore the effects of avermectin on early bone development. The results showed that avermectin disturbed early bone development in zebrafish, caused abnormal craniofacial chondrogenesis, and reduced bone mineralization. Avermectin treatment significantly reduced mineralization in zebrafish scales and increased osteoclast activity. Real-time quantitative PCR results showed that avermectin decreased the expression of genes related to osteogenesis and transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) signaling pathways. The TGF-β inhibitor SB431542 rescued avermectin-induced bone mineralization and osteogenesis related gene expression in zebrafish during early development. Thus, this study provides insight into the mechanism of damage caused by avermectin on bone development, thus helping demonstrate its toxicity.
Collapse
Affiliation(s)
- Yongwei Du
- Soochow University, Department Orthopedics, Affiliated Hospital 2, Suzhou 320505, China; Gannan Medical University, Department Orthopedics, Affiliated Hospital 1, Ganzhou 341000, China; Soochow University, Department Orthopedics, Suzhou 320505, China
| | - Gongwen Liu
- Suzhou Traditional Chinese Medicine Hospital, Suzhou 320505, China
| | - Zhen Liu
- Gannan Medical University, Department Orthopedics, Affiliated Hospital 1, Ganzhou 341000, China
| | - Jianwen Mo
- Gannan Medical University, Department Orthopedics, Affiliated Hospital 1, Ganzhou 341000, China
| | - Miao Zheng
- Osteoporosis Clinical Center of Second Affiliated Hospital, Soochow University, Suzhou 320505, China
| | - Qi Wei
- Osteoporosis Clinical Center of Second Affiliated Hospital, Soochow University, Suzhou 320505, China
| | - Youjia Xu
- Soochow University, Department Orthopedics, Affiliated Hospital 2, Suzhou 320505, China; Soochow University, Department Orthopedics, Suzhou 320505, China.
| |
Collapse
|
28
|
Maili L, Tandon B, Yuan Q, Menezes S, Chiu F, Hashmi SS, Letra A, Eisenhoffer GT, Hecht JT. Disruption of fos causes craniofacial anomalies in developing zebrafish. Front Cell Dev Biol 2023; 11:1141893. [PMID: 37664458 PMCID: PMC10469461 DOI: 10.3389/fcell.2023.1141893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Craniofacial development is a complex and tightly regulated process and disruptions can lead to structural birth defects, the most common being nonsyndromic cleft lip and palate (NSCLP). Previously, we identified FOS as a candidate regulator of NSCLP through family-based association studies, yet its specific contributions to oral and palatal formation are poorly understood. This study investigated the role of fos during zebrafish craniofacial development through genetic disruption and knockdown approaches. Fos was expressed in the periderm, olfactory epithelium and other cell populations in the head. Genetic perturbation of fos produced an abnormal craniofacial phenotype with a hypoplastic oral cavity that showed significant changes in midface dimensions by quantitative facial morphometric analysis. Loss and knockdown of fos caused increased cell apoptosis in the head, followed by a significant reduction in cranial neural crest cells (CNCCs) populating the upper and lower jaws. These changes resulted in abnormalities of cartilage, bone and pharyngeal teeth formation. Periderm cells surrounding the oral cavity showed altered morphology and a subset of cells in the upper and lower lip showed disrupted Wnt/β-catenin activation, consistent with modified inductive interactions between mesenchymal and epithelial cells. Taken together, these findings demonstrate that perturbation of fos has detrimental effects on oral epithelial and CNCC-derived tissues suggesting that it plays a critical role in zebrafish craniofacial development and a potential role in NSCLP.
Collapse
Affiliation(s)
- Lorena Maili
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
| | - Bhavna Tandon
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Qiuping Yuan
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Simone Menezes
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| | - Frankie Chiu
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - S. Shahrukh Hashmi
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Ariadne Letra
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| | - George T. Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jacqueline T. Hecht
- Department of Pediatrics, McGovern Medical School at the University of Texas Health Science Center at Houston, Houston, TX, United States
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, United States
- Center for Craniofacial Research, University of Texas Health Science Center School of Dentistry at Houston, Houston, TX, United States
| |
Collapse
|
29
|
Nguyen S, Lee RS, Mohlmann E, Petrullo G, Blythe J, Ranieri I, McMenamin S. Craniofacial diversity across Danionins and the effects of TH status on craniofacial morphology of two Danio species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.09.552728. [PMID: 37609193 PMCID: PMC10441423 DOI: 10.1101/2023.08.09.552728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The model zebrafish ( Danio rerio ) belongs to the Danioninae subfamily with a range of informative phenotypes. However, the craniofacial diversity across the subfamily is not fully described. To better understand craniofacial phenotypes across Danioninae we used microCT and 3D geometric morphometrics to capture skull shapes from nine species. The Danio species examined showed largely similar skull shapes, although D. aesculapii , the sister species to D. rerio showed a unique morphology. Two non- Danio species examined, Chela dadiburjori and Devario aequipinnatus showed distinct skull morphologies unique from those of other species examined. Thyroid hormone regulates skeletal development and remodeling, and we asked if changes in developmental thyroid hormone metabolism could underlie some of the craniofacial diversity across Danioninae. We reared two Danio species under altered thyroid profiles, finding that hypothyroid individuals from both species showed corresponding morphological shifts in skull shape. Hypothyroid Danios showed skull morphologies closer to that of Chela and unlike any of the examined wild-type Danio species. We provide an examination of the evolved craniofacial diversity across Danioninae, and demonstrate that alterations to thyroid hormone have the capacity to create unique skull phenotypes.
Collapse
|
30
|
Yang D, Wang W, Yuan Z, Liang Y. Information-Rich Multi-Functional OCT for Adult Zebrafish Intra- and Extracranial Imaging. Bioengineering (Basel) 2023; 10:856. [PMID: 37508883 PMCID: PMC10375992 DOI: 10.3390/bioengineering10070856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The zebrafish serves as a valuable animal model for both intra- and extracranial research, particularly in relation to the brain and skull. To effectively investigate the development and regeneration of adult zebrafish, a versatile in vivo imaging technique capable of showing both intra- and extracranial conditions is essential. In this paper, we utilized a high-resolution multi-functional optical coherence tomography (OCT) to obtain rich intra- and extracranial imaging outcomes of adult zebrafish, encompassing pigmentation distribution, tissue-specific information, cranial vascular imaging, and the monitoring of traumatic brain injury (TBI). Notably, it is the first that the channels through the zebrafish cranial suture, which may have a crucial function in maintaining the patency of the cranial sutures, have been observed. Rich imaging results demonstrated that a high-resolution multi-functional OCT system can provide a wealth of novel and interpretable biological information for intra- and extracranial studies of adult zebrafish.
Collapse
Affiliation(s)
- Di Yang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Weike Wang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Zhuoqun Yuan
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| | - Yanmei Liang
- Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, Institute of Modern Optics, Nankai University, Tianjin 300350, China
| |
Collapse
|
31
|
Packard M, Gilbert MC, Tetrault E, Albertson RC. Zebrafish crocc2 mutants exhibit divergent craniofacial shape, misregulated variability, and aberrant cartilage morphogenesis. Dev Dyn 2023; 252:1026-1045. [PMID: 37032317 PMCID: PMC10524572 DOI: 10.1002/dvdy.591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND Phenotypic variation is of paramount importance in development, evolution, and human health; however, the molecular mechanisms that influence organ shape and shape variability are not well understood. During craniofacial development, the behavior of skeletal precursors is regulated by both biochemical and environmental inputs, and the primary cilia play critical roles in transducing both types of signals. Here, we examine a gene that encodes a key constituent of the ciliary rootlets, crocc2, and its role in cartilage morphogenesis in larval zebrafish. RESULTS Geometric morphometric analysis of crocc2 mutants revealed altered craniofacial shapes and expanded variation. At the cellular level, we observed altered chondrocyte shapes and planar cell polarity across multiple stages in crocc2 mutants. Notably, cellular defects were specific to areas that experience direct mechanical input. Cartilage cell number, apoptosis, and bone patterning were not affected in crocc2 mutants. CONCLUSIONS Whereas "regulatory" genes are widely implicated in patterning the craniofacial skeleton, genes that encode "structural" aspects of the cell are increasingly implicated in shaping the face. Our results add crocc2 to this list, and demonstrate that it affects craniofacial geometry and canalizes phenotypic variation. We propose that it does so via mechanosensing, possibly through the ciliary rootlet. If true, this would implicate a new organelle in skeletal development and evolution.
Collapse
Affiliation(s)
- Mary Packard
- Department of Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - Michelle C. Gilbert
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, U.S.A
- Current address, Department of Biology, Penn State University, University Park, PA 16802, U.S.A
| | - Emily Tetrault
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, U.S.A
| | - R. Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, U.S.A
| |
Collapse
|
32
|
Perez I, Reyes-Nava NG, Pinales BE, Quintana AM. Overexpression of MMACHC Prevents Craniofacial Phenotypes Caused by Knockdown of znf143b. AMERICAN JOURNAL OF UNDERGRADUATE RESEARCH 2023; 20:77-84. [PMID: 38617190 PMCID: PMC11013955 DOI: 10.33697/ajur.2023.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
ZNF143 is a sequence-specific DNA binding protein that regulates the expression of protein-coding genes and small RNA molecules. In humans, ZNF143 interacts with HCFC1, a transcriptional cofactor, to regulate the expression of downstream target genes, including MMACHC, which encodes an enzyme involved in cobalamin (cbl) metabolism. Mutations in HCFC1 or ZNF143 cause an inborn error of cobalamin metabolism characterized by abnormal cbl metabolism, intellectual disability, seizures, and mild to moderate craniofacial abnormalities. However, the mechanisms by which ZNF143 mutations cause individual phenotypes are not completely understood. Defects in metabolism and craniofacial development are hypothesized to occur because of decreased expression of MMACHC. But recent results have called into question this mechanism as the cause for craniofacial development. Therefore, in the present study, we implemented a loss of function analysis to begin to uncover the function of ZNF143 in craniofacial development using the developing zebrafish. The knockdown of znf143b, one zebrafish ortholog of ZNF143, caused craniofacial phenotypes of varied severity, which included a shortened and cleaved Meckel's cartilage, partial loss of ceratobranchial arches, and a distorted ceratohyal. These phenotypes did not result from a defect in the number of total chondrocytes but were associated with a mild to moderate decrease in mmachc expression. Interestingly, expression of human MMACHC via endogenous transgene prevented the onset of craniofacial phenotypes associated with znf143b knockdown. Collectively, our data establishes that knockdown of znf143b causes craniofacial phenotypes that can be alleviated by increased expression of MMACHC.
Collapse
Affiliation(s)
- Isaiah Perez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX
| | | | - Briana E. Pinales
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX
| | - Anita M. Quintana
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX
| |
Collapse
|
33
|
Yuan W, Hu Y, Lu C, Zhang J, Liu Y, Li X, Jia K, Huang Y, Li Z, Chen X, Wang F, Yi X, Che X, Xiong H, Cheng B, Ma J, Zhao Y, Lu H. Propineb induced notochord deformity, craniofacial malformation, and osteoporosis in zebrafish through dysregulated reactive oxygen species generation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106596. [PMID: 37290275 DOI: 10.1016/j.aquatox.2023.106596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
Dithiocarbamate (DTC) fungicides are contaminants that are ubiquitous in the environment. Exposure to DTC fungicides has been associated with a variety of teratogenic developmental effects. Propineb, a member of DTCs, was evaluated for the toxicological effects on notochord and craniofacial development, osteogenesis in zebrafish model. Embryos at 6 hours post-fertilization (hpf) were exposed to propineb at dosages of 1 and 4 μM. Morphological parameters were evaluated at exposure times of 24, 48, 72, and 120 hpf after propineb exposure. The survival and hatching rates as well as body length decreased at 1 and 4 μmol/L groups. Besides, transgenic zebrafish exposed to propineb showed abnormal vacuole biogenesis in notochord cells at the early stage of development. The expression of collagen type 2 alpha 1a (col2a1a), sonic hedgehog (shh), and heat shock protein family B member 11 (hspb11) measured by quantitative PCR and in situ hybridization experiment of col8a1a gene have consolidated the proposal process. Besides, Alcian blue, calcein, and alizarin red staining profiles displayed craniofacial malformations and osteoporosis were induced following propineb exposure. PPB exposure induced the changes in oxidative stress and reactive oxygen species inhibitor alleviated the deformities of PPB. Collectively, our data suggested that propineb exposure triggered bone abnormalities in different phenotypes of zebrafish. Therefore, propineb is a potential toxicant of high priority concern for aquatic organisms.
Collapse
Affiliation(s)
- Wei Yuan
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ying Hu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Chen Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jun Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, 210042, Jiangsu, China
| | - Ye Liu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xinran Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Kun Jia
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zekun Li
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaomei Chen
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Fei Wang
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaokun Yi
- The First Clinical College of Gannan Medical Uinversity, Ganzhou, 341000, Jiangxi, China
| | - Xiaofang Che
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Haibin Xiong
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Bo Cheng
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yan Zhao
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Affiliated Hospital of Jinggangshan University, Jinggangshan University, Ji'an, 343009, Jiangxi, China..
| |
Collapse
|
34
|
Paz D, Pinales BE, Castellanos BS, Perez I, Gil CB, Madrigal LJ, Reyes-Nava NG, Castro VL, Sloan JL, Quintana AM. Abnormal chondrocyte development in a zebrafish model of cblC syndrome restored by an MMACHC cobalamin binding mutant. Differentiation 2023; 131:74-81. [PMID: 37167860 PMCID: PMC11373873 DOI: 10.1016/j.diff.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/13/2023]
Abstract
Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutations in MMACHC cause craniofacial defects are yet to be completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC (hg13) and performed restoration experiments with either a wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development but did have abnormal chondrocyte nuclear organization and an increase in the average number of neighboring cell contacts, both phenotypes were fully penetrant. Abnormal chondrocyte nuclear organization was not associated with defects in the localization of neural crest specific markers, sox10 (RFP transgene) or barx1. Both nuclear angles and the number of neighboring cell contacts were fully restored by wildtype MMACHC and a cobalamin binding deficient variant of the MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.
Collapse
Affiliation(s)
- David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Briana E Pinales
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Barbara S Castellanos
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Isaiah Perez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Claudia B Gil
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Lourdes Jimenez Madrigal
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Jennifer L Sloan
- Metabolic Medicine Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, 79968, USA.
| |
Collapse
|
35
|
Niu X, Zhang F, Ping L, Wang Y, Zhang B, Wang J, Chen X. vwa1 Knockout in Zebrafish Causes Abnormal Craniofacial Chondrogenesis by Regulating FGF Pathway. Genes (Basel) 2023; 14:genes14040838. [PMID: 37107596 PMCID: PMC10137681 DOI: 10.3390/genes14040838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Hemifacial microsomia (HFM), a rare disorder of first- and second-pharyngeal arch development, has been linked to a point mutation in VWA1 (von Willebrand factor A domain containing 1), encoding the protein WARP in a five-generation pedigree. However, how the VWA1 mutation relates to the pathogenesis of HFM is largely unknown. Here, we sought to elucidate the effects of the VWA1 mutation at the molecular level by generating a vwa1-knockout zebrafish line using CRISPR/Cas9. Mutants and crispants showed cartilage dysmorphologies, including hypoplastic Meckel’s cartilage and palatoquadrate cartilage, malformed ceratohyal with widened angle, and deformed or absent ceratobranchial cartilages. Chondrocytes exhibited a smaller size and aspect ratio and were aligned irregularly. In situ hybridization and RT-qPCR showed a decrease in barx1 and col2a1a expression, indicating abnormal cranial neural crest cell (CNCC) condensation and differentiation. CNCC proliferation and survival were also impaired in the mutants. Expression of FGF pathway components, including fgf8a, fgfr1, fgfr2, fgfr3, fgfr4, and runx2a, was decreased, implying a role for VWA1 in regulating FGF signaling. Our results demonstrate that VWA1 is essential for zebrafish chondrogenesis through effects on condensation, differentiation, proliferation, and apoptosis of CNCCs, and likely impacts chondrogenesis through regulation of the FGF pathway.
Collapse
Affiliation(s)
- Xiaomin Niu
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fuyu Zhang
- 8-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Lu Ping
- 8-Year MD Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yibei Wang
- Department of Otolaryngology-Head & Neck Surgery, China-Japan Friendship Hospital, Beijing 100730, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing 100730, China
| | - Jian Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xiaowei Chen
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Correspondence:
| |
Collapse
|
36
|
Raterman ST, Von Den Hoff JW, Dijkstra S, De Vriend C, Te Morsche T, Broekman S, Zethof J, De Vrieze E, Wagener FADTG, Metz JR. Disruption of the foxe1 gene in zebrafish reveals conserved functions in development of the craniofacial skeleton and the thyroid. Front Cell Dev Biol 2023; 11:1143844. [PMID: 36994096 PMCID: PMC10040582 DOI: 10.3389/fcell.2023.1143844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Mutations in the FOXE1 gene are implicated in cleft palate and thyroid dysgenesis in humans.Methods: To investigate whether zebrafish could provide meaningful insights into the etiology of developmental defects in humans related to FOXE1, we generated a zebrafish mutant that has a disruption in the nuclear localization signal in the foxe1 gene, thereby restraining nuclear access of the transcription factor. We characterized skeletal development and thyroidogenesis in these mutants, focusing on embryonic and larval stages.Results: Mutant larvae showed aberrant skeletal phenotypes in the ceratohyal cartilage and had reduced whole body levels of Ca, Mg and P, indicating a critical role for foxe1 in early skeletal development. Markers of bone and cartilage (precursor) cells were differentially expressed in mutants in post-migratory cranial neural crest cells in the pharyngeal arch at 1 dpf, at induction of chondrogenesis at 3 dpf and at the start of endochondral bone formation at 6 dpf. Foxe1 protein was detected in differentiated thyroid follicles, suggesting a role for the transcription factor in thyroidogenesis, but thyroid follicle morphology or differentiation were unaffected in mutants.Discussion: Taken together, our findings highlight the conserved role of Foxe1 in skeletal development and thyroidogenesis, and show differential signaling of osteogenic and chondrogenic genes related to foxe1 mutation.
Collapse
Affiliation(s)
- Sophie T. Raterman
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
- *Correspondence: Sophie T. Raterman,
| | - Johannes W. Von Den Hoff
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Sietske Dijkstra
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Cheyenne De Vriend
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Tim Te Morsche
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Sanne Broekman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| | - Erik De Vrieze
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A. D. T. G. Wagener
- Department of Dentistry—Orthodontics and Craniofacial Biology, Radboud Institute of Molecular Life Sciences (RIMLS), Radboud University Medical Center, Nijmegen, Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, Netherlands
| |
Collapse
|
37
|
Di Martino A, Cescon M, D’Agostino C, Schilardi F, Sabatelli P, Merlini L, Faldini C. Collagen VI in the Musculoskeletal System. Int J Mol Sci 2023; 24:5095. [PMID: 36982167 PMCID: PMC10049728 DOI: 10.3390/ijms24065095] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/10/2023] Open
Abstract
Collagen VI exerts several functions in the tissues in which it is expressed, including mechanical roles, cytoprotective functions with the inhibition of apoptosis and oxidative damage, and the promotion of tumor growth and progression by the regulation of cell differentiation and autophagic mechanisms. Mutations in the genes encoding collagen VI main chains, COL6A1, COL6A2 and COL6A3, are responsible for a spectrum of congenital muscular disorders, namely Ullrich congenital muscular dystrophy (UCMD), Bethlem myopathy (BM) and myosclerosis myopathy (MM), which show a variable combination of muscle wasting and weakness, joint contractures, distal laxity, and respiratory compromise. No effective therapeutic strategy is available so far for these diseases; moreover, the effects of collagen VI mutations on other tissues is poorly investigated. The aim of this review is to outline the role of collagen VI in the musculoskeletal system and to give an update about the tissue-specific functions revealed by studies on animal models and from patients' derived samples in order to fill the knowledge gap between scientists and the clinicians who daily manage patients affected by collagen VI-related myopathies.
Collapse
Affiliation(s)
- Alberto Di Martino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Matilde Cescon
- Department of Molecular Medicine, University of Padova, 35131 Padova, Italy
| | - Claudio D’Agostino
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Francesco Schilardi
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Patrizia Sabatelli
- Unit of Bologna, CNR-Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Luciano Merlini
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| | - Cesare Faldini
- I Orthopedic and Traumatology Department, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Department of Biomedical and Neuromotor Science, DIBINEM, University of Bologna, 40136 Bologna, Italy
| |
Collapse
|
38
|
Liao W, You M, Ulhaq ZS, Li J, Jiang Y, Chen J, Tse WKF. Micro-CT analysis reveals the changes in bone mineral density in zebrafish craniofacial skeleton with age. J Anat 2023; 242:544-551. [PMID: 36256534 PMCID: PMC9919479 DOI: 10.1111/joa.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 12/01/2022] Open
Abstract
Bone has multiple functions in animals, such as supporting the body for mobility. The zebrafish skeleton is composed of craniofacial and axial skeletons. It shares a physiological curvature and consists of a similar number of vertebrae as humans. Bone degeneration and malformations have been widely studied in zebrafish as human disease models. High-resolution imaging and different bone properties such as density and volume can be obtained using micro-computed tomography (micro-CT). This study aimed to understand the possible changes in the structure and bone mineral density (BMD) of the vertebrae and craniofacial skeleton with age (4, 12 and 24 months post fertilisation [mpf]) in zebrafish. Our data showed that the BMD in the vertebrae and specific craniofacial skeleton (mandibular arch, ceratohyal and ethmoid plate) of 12 and 24 mpf fish were higher than that of the 4 mpf fish. In addition, we found the age-dependent increase in BMD was not ubiquitously observed in facial bones, and such differences were not correlated with bone type. In summary, such additional information on the craniofacial skeleton could help in understanding bone development throughout the lifespan of zebrafish.
Collapse
Affiliation(s)
- Wei‐Neng Liao
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesZhunanTaiwan
| | - May‐Su You
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanTaiwan
| | - Zulvikar Syambani Ulhaq
- Laboratory of Developmental Disorders and ToxicologyCenter for Promotion of International Education and Research, Faculty of AgricultureKyushu UniversityFukuokaJapan
- National Research and Innovation AgencyRepublic of IndonesiaJakartaIndonesia
- Department of BiochemistryMaulana Malik Ibrahim State Islamic UniversityMalangIndonesia
| | - Jui‐Ping Li
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesZhunanTaiwan
| | - Yun‐Jin Jiang
- Institute of Molecular and Genomic MedicineNational Health Research InstitutesZhunanTaiwan
- Biotechnology CenterNational Chung Hsing UniversityTaichung CityTaiwan
| | - Jen‐Kun Chen
- Institute of Biomedical Engineering and NanomedicineNational Health Research InstitutesZhunanTaiwan
- Biotechnology CenterNational Chung Hsing UniversityTaichung CityTaiwan
- Graduated Institute of Life SciencesNational Defense Medical CenterTaipei CityTaiwan
| | - William Ka Fai Tse
- Laboratory of Developmental Disorders and ToxicologyCenter for Promotion of International Education and Research, Faculty of AgricultureKyushu UniversityFukuokaJapan
| |
Collapse
|
39
|
Stewart MK, Hoehne L, Dudczig S, Mattiske DM, Pask AJ, Jusuf PR. Exposure to an environmentally relevant concentration of 17α-ethinylestradiol disrupts craniofacial development of juvenile zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114541. [PMID: 36657377 DOI: 10.1016/j.ecoenv.2023.114541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Endocrine disrupting chemicals (EDCs) can interact with native hormone receptors to interfere with and disrupt hormone signalling that is necessary for a broad range of developmental pathways. EDCs are pervasive in our environment, in particular in our waterways, making aquatic wildlife especially vulnerable to their effects. Many of these EDCs are able to bind to and activate oestrogen receptors, causing aberrant oestrogen signalling. Craniofacial development is an oestrogen-sensitive process, with oestrogen receptors expressed in chondrocytes during critical periods of development. Previous studies have demonstrated a negative effect of high concentrations of oestrogen on early craniofacial patterning in the aquatic model organism, the zebrafish (Danio rerio). In order to determine the impacts of exposure to an oestrogenic EDC, we exposed zebrafish larvae and juveniles to either a high concentration to replicate previous studies, or a low, environmentally relevant concentration of the oestrogenic contaminant, 17α-ethinylestradiol. The prolonged / chronic exposure regimen was used to replicate that seen by many animals in natural waterways. We observed changes to craniofacial morphology in all treatments, and most strikingly in the larvae-juveniles exposed to a low concentration of EE2. In the present study, we have demonstrated that the developmental stage at which exposure occurs can greatly impact phenotypic outcomes, and these results allow us to understand the widespread impact of oestrogenic endocrine disruptors. Given the conservation of key craniofacial development pathways across vertebrates, our model can further be applied in defining the risks of EDCs on mammalian organisms.
Collapse
Affiliation(s)
- Melanie K Stewart
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Luca Hoehne
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefanie Dudczig
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Deidre M Mattiske
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Andrew J Pask
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Patricia R Jusuf
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
40
|
Vanhaesebroucke O, Larouche O, Cloutier R. Whole-body variational modularity in the zebrafish: an inside-out story of a model species. Biol Lett 2023; 19:20220454. [PMID: 36974665 PMCID: PMC9943880 DOI: 10.1098/rsbl.2022.0454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
Actinopterygians are the most diversified clade of extant vertebrates. Their impressive morphological disparity bears witness to tremendous ecological diversity. Modularity, the organization of biological systems into quasi-independent anatomical/morphological units, is thought to increase evolvability of organisms and facilitate morphological diversification. Our study aims to quantify patterns of variational modularity in a model actinopterygian, the zebrafish (Danio rerio), using three-dimensional geometric morphometrics on osteological structures isolated from micro-CT scans. A total of 72 landmarks were digitized along cranial and postcranial ossified regions of 30 adult zebrafishes. Two methods were used to test modularity hypotheses, the covariance ratio and the distance matrix approach. We find strong support for two modules, one comprised paired fins and the other comprised median fins, that are best explained by functional properties of subcarangiform swimming. While the skull is tightly integrated with the rest of the body, its intrinsic integration is relatively weak supporting previous findings that the fish skull is a modular structure. Our results provide additional support for the recognition of similar hypotheses of modularity identified based on external morphology in various teleosts, and at least two variational modules are proposed. Thus, our results hint at the possibility that internal and external modularity patterns may be congruent.
Collapse
Affiliation(s)
- Olivia Vanhaesebroucke
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| | - Olivier Larouche
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Richard Cloutier
- Laboratoire de Paléontologie et Biologie évolutive, Département de biologie, chimie et géographie, Université du Québec à Rimouski, Rimouski, Québec, Canada G5L 3A1
| |
Collapse
|
41
|
Henke K, Farmer DT, Niu X, Kraus JM, Galloway JL, Youngstrom DW. Genetically engineered zebrafish as models of skeletal development and regeneration. Bone 2023; 167:116611. [PMID: 36395960 PMCID: PMC11080330 DOI: 10.1016/j.bone.2022.116611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/01/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Zebrafish (Danio rerio) are aquatic vertebrates with significant homology to their terrestrial counterparts. While zebrafish have a centuries-long track record in developmental and regenerative biology, their utility has grown exponentially with the onset of modern genetics. This is exemplified in studies focused on skeletal development and repair. Herein, the numerous contributions of zebrafish to our understanding of the basic science of cartilage, bone, tendon/ligament, and other skeletal tissues are described, with a particular focus on applications to development and regeneration. We summarize the genetic strengths that have made the zebrafish a powerful model to understand skeletal biology. We also highlight the large body of existing tools and techniques available to understand skeletal development and repair in the zebrafish and introduce emerging methods that will aid in novel discoveries in skeletal biology. Finally, we review the unique contributions of zebrafish to our understanding of regeneration and highlight diverse routes of repair in different contexts of injury. We conclude that zebrafish will continue to fill a niche of increasing breadth and depth in the study of basic cellular mechanisms of skeletal biology.
Collapse
Affiliation(s)
- Katrin Henke
- Department of Orthopaedics, Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - D'Juan T Farmer
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; Department of Orthopaedic Surgery, University of California, Los Angeles, CA 90095, USA.
| | - Xubo Niu
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Jessica M Kraus
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Jenna L Galloway
- Center for Regenerative Medicine, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
42
|
Paz D, Pinales BE, Castellanos BS, Perez I, Gil CB, Madrigal LJ, Reyes-Nava NG, Castro VL, Sloan JL, Quintana AM. Abnormal chondrocyte intercalation in a zebrafish model of cblC syndrome restored by an MMACHC cobalamin binding mutant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524982. [PMID: 36711998 PMCID: PMC9882310 DOI: 10.1101/2023.01.20.524982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Variants in the MMACHC gene cause combined methylmalonic acidemia and homocystinuria cblC type, the most common inborn error of intracellular cobalamin (vitamin B12) metabolism. cblC is associated with neurodevelopmental, hematological, ocular, and biochemical abnormalities. In a subset of patients, mild craniofacial dysmorphia has also been described. Mouse models of Mmachc deletion are embryonic lethal but cause severe craniofacial phenotypes such as facial clefts. MMACHC encodes an enzyme required for cobalamin processing and variants in this gene result in the accumulation of two metabolites: methylmalonic acid (MMA) and homocysteine (HC). Interestingly, other inborn errors of cobalamin metabolism, such as cblX syndrome, are associated with mild facial phenotypes. However, the presence and severity of MMA and HC accumulation in cblX syndrome is not consistent with the presence or absence of facial phenotypes. Thus, the mechanisms by which mutation of MMACHC cause craniofacial defects have not been completely elucidated. Here we have characterized the craniofacial phenotypes in a zebrafish model of cblC ( hg13 ) and performed restoration experiments with either wildtype or a cobalamin binding deficient MMACHC protein. Homozygous mutants did not display gross morphological defects in facial development, but did have abnormal chondrocyte intercalation, which was fully penetrant. Abnormal chondrocyte intercalation was not associated with defects in the expression/localization of neural crest specific markers, sox10 or barx1 . Most importantly, chondrocyte organization was fully restored by wildtype MMACHC and a cobalamin binding deficient variant of MMACHC protein. Collectively, these data suggest that mutation of MMACHC causes mild to moderate craniofacial phenotypes that are independent of cobalamin binding.
Collapse
Affiliation(s)
- David Paz
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Briana E Pinales
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Barbara S Castellanos
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Isaiah Perez
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Claudia B Gil
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Lourdes Jimenez Madrigal
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Nayeli G Reyes-Nava
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Victoria L Castro
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Jennifer L Sloan
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| | - Anita M Quintana
- Department of Biological Sciences, Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968 USA
| |
Collapse
|
43
|
Chalakova ZP, Johnston SA. Zebrafish Larvae as an Experimental Model of Cryptococcal Meningitis. Methods Mol Biol 2023; 2667:47-69. [PMID: 37145275 DOI: 10.1007/978-1-0716-3199-7_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This chapter provides guidance for introducing Cryptococcus neoformans into the zebrafish larvae model system to establish a CNS infection phenotype that mimics cryptococcal meningitis as seen in humans. The method outlines techniques for visualizing different stages of pathology development, from initial to severe infection profiles. The chapter provides tips for real time visualization of the interactions between the pathogen and different aspects of the CNS anatomy and immune system.
Collapse
Affiliation(s)
- Z P Chalakova
- University of Sheffield, Firth Court, Western Bank, UK
| | - S A Johnston
- University of Sheffield, Firth Court, Western Bank, UK.
| |
Collapse
|
44
|
Conith AJ, Hope SA, Albertson RC. Covariation of brain and skull shapes as a model to understand the role of crosstalk in development and evolution. Evol Dev 2023; 25:85-102. [PMID: 36377237 PMCID: PMC9839637 DOI: 10.1111/ede.12421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/24/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Covariation among discrete phenotypes can arise due to selection for shared functions, and/or shared genetic and developmental underpinnings. The consequences of such phenotypic integration are far-reaching and can act to either facilitate or limit morphological variation. The vertebrate brain is known to act as an "organizer" of craniofacial development, secreting morphogens that can affect the shape of the growing neurocranium, consistent with roles for pleiotropy in brain-neurocranium covariation. Here, we test this hypothesis in cichlid fishes by first examining the degree of shape integration between the brain and the neurocranium using three-dimensional geometric morphometrics in an F5 hybrid population, and then genetically mapping trait covariation using quantitative trait loci (QTL) analysis. We observe shape associations between the brain and the neurocranium, a pattern that holds even when we assess associations between the brain and constituent parts of the neurocranium: the rostrum and braincase. We also recover robust genetic signals for both hard- and soft-tissue traits and identify a genomic region where QTL for the brain and braincase overlap, implicating a role for pleiotropy in patterning trait covariation. Fine mapping of the overlapping genomic region identifies a candidate gene, notch1a, which is known to be involved in patterning skeletal and neural tissues during development. Taken together, these data offer a genetic hypothesis for brain-neurocranium covariation, as well as a potential mechanism by which behavioral shifts may simultaneously drive rapid change in neuroanatomy and craniofacial morphology.
Collapse
Affiliation(s)
- Andrew J. Conith
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Sylvie A. Hope
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - R. Craig Albertson
- Biology DepartmentUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
45
|
Johanson Z. Vertebrate cranial evolution: Contributions and conflict from the fossil record. Evol Dev 2023; 25:119-133. [PMID: 36308394 DOI: 10.1111/ede.12422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/12/2022] [Accepted: 10/05/2022] [Indexed: 01/14/2023]
Abstract
In modern vertebrates, the craniofacial skeleton is complex, comprising cartilage and bone of the neurocranium, dermatocranium and splanchnocranium (and their derivatives), housing a range of sensory structures such as eyes, nasal and vestibulo-acoustic capsules, with the splanchnocranium including branchial arches, used in respiration and feeding. It is well understood that the skeleton derives from neural crest and mesoderm, while the sensory elements derive from ectodermal thickenings known as placodes. Recent research demonstrates that neural crest and placodes have an evolutionary history outside of vertebrates, while the vertebrate fossil record allows the sequence of the evolution of these various features to be understood. Stem-group vertebrates such as Metaspriggina walcotti (Burgess Shale, Middle Cambrian) possess eyes, paired nasal capsules and well-developed branchial arches, the latter derived from cranial neural crest in extant vertebrates, indicating that placodes and neural crest evolved over 500 million years ago. Since that time the vertebrate craniofacial skeleton has evolved, including different types of bone, of potential neural crest or mesodermal origin. One problematic part of the craniofacial skeleton concerns the evolution of the nasal organs, with evidence for both paired and unpaired nasal sacs being the primitive state for vertebrates.
Collapse
|
46
|
Sun Y, Kumar SR, Wong CED, Tian Z, Bai H, Crump JG, Bajpai R, Lien CL. Craniofacial and cardiac defects in chd7 zebrafish mutants mimic CHARGE syndrome. Front Cell Dev Biol 2022; 10:1030587. [PMID: 36568983 PMCID: PMC9768498 DOI: 10.3389/fcell.2022.1030587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022] Open
Abstract
Congenital heart defects occur in almost 80% of patients with CHARGE syndrome, a sporadically occurring disease causing craniofacial and other abnormalities due to mutations in the CHD7 gene. Animal models have been generated to mimic CHARGE syndrome; however, heart defects are not extensively described in zebrafish disease models of CHARGE using morpholino injections or genetic mutants. Here, we describe the co-occurrence of craniofacial abnormalities and heart defects in zebrafish chd7 mutants. These mutant phenotypes are enhanced in the maternal zygotic mutant background. In the chd7 mutant fish, we found shortened craniofacial cartilages and extra cartilage formation. Furthermore, the length of the ventral aorta is altered in chd7 mutants. Many CHARGE patients have aortic arch anomalies. It should be noted that the aberrant branching of the first branchial arch artery is observed for the first time in chd7 fish mutants. To understand the cellular mechanism of CHARGE syndrome, neural crest cells (NCCs), that contribute to craniofacial and cardiovascular tissues, are examined using sox10:Cre lineage tracing. In contrast to its function in cranial NCCs, we found that the cardiac NCC-derived mural cells along the ventral aorta and aortic arch arteries are not affected in chd7 mutant fish. The chd7 fish mutants we generated recapitulate some of the craniofacial and cardiovascular phenotypes found in CHARGE patients and can be used to further determine the roles of CHD7.
Collapse
Affiliation(s)
- Yuhan Sun
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States
| | - S. Ram Kumar
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chee Ern David Wong
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Zhiyu Tian
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States
| | - Haipeng Bai
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - J. Gage Crump
- Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ruchi Bajpai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, United States,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Ching Ling Lien
- Saban Research Institute and Heart Institute, Children’s Hospital Los Angeles, Los Angeles, CA, United States,Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States,*Correspondence: Ching Ling Lien,
| |
Collapse
|
47
|
Cen P, Cui C, Zhong Y, Zhou Y, Wang Z, Xu P, Luo X, Xue L, Cheng Z, Wei Y, He Q, Zhang H, Tian M. Visualization of Mitochondria During Embryogenesis in Zebrafish by Aggregation-Induced Emission Molecules. Mol Imaging Biol 2022; 24:1007-1017. [PMID: 35835950 DOI: 10.1007/s11307-022-01752-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 12/29/2022]
Abstract
PURPOSE Aggregation-induced emission (AIE) molecules have been widely utilized for fluorescence imaging in many biomedical applications, benefited from large Stokes shift, high quantum yield, good biocompatibility, and resistance to photobleaching. And visualization of mitochondria is almost investigated in vitro and ex vivo, but in vivo study of mitochondria is more essential for systematic biological research, especially during embryogenesis. Therefore, suitable and time-saving alternatives with simple operation based on AIE molecules are urgently needed compared with traditional transgenic approach. PROCEDURES Five tetraphenylethylene isoquinolinium (TPE-IQ)-based molecules with AIE characteristics and their ability of mitochondrial visualization in vitro and in vivo and mitochondrial tracking during embryogenesis on zebrafish model were investigated. The biosafety of these AIE molecules was also evaluated systematically in vitro and in vivo. RESULTS All these five AIE molecules could image mitochondria in vitro with good biocompatibility. In them, TPE-IQ1 exhibited excellent imaging quality for in vivo visualization and tracking of mitochondria during the 4-day embryogenesis in zebrafish, in comparison with the conventional transgenic fluorescent protein. Furthermore, TPE-IQ1 could visualize mitochondrial damage induced by chemicals in real time on 24-h post fertilization (hpf) embryos. CONCLUSIONS This study indicated TPE-IQ-based AIE molecules had the potential for mitochondrial imaging and tracking during embryogenesis and mitochondrial damage visualization in vivo.
Collapse
Affiliation(s)
- Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Chunyi Cui
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence From Molecular Aggregates, South China University of Technology, Guangzhou, 510641, Guangdong, China
| | - Pengfei Xu
- Women's Hospital and Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, 310058, Zhejiang, China
| | - Xiaoyun Luo
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Le Xue
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China.,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China.,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China
| | - Zhen Cheng
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yen Wei
- Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084, China
| | - Qinggang He
- College of Chemical & Biological Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China. .,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China. .,College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310014, Zhejiang, China. .,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, 310014, Zhejiang, China.
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 31009, Zhejiang, China. .,Institute of Nuclear Medicine and Molecular Imaging of Zhejiang University, Hangzhou, 31009, Zhejiang, China. .,Key of Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, 31009, Zhejiang, China.
| |
Collapse
|
48
|
Gebuijs L, Wagener FA, Zethof J, Carels CE, Von den Hoff JW, Metz JR. Targeting fibroblast growth factor receptors causes severe craniofacial malformations in zebrafish larvae. PeerJ 2022; 10:e14338. [PMID: 36444384 PMCID: PMC9700454 DOI: 10.7717/peerj.14338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background and Objective A key pathway controlling skeletal development is fibroblast growth factor (FGF) and FGF receptor (FGFR) signaling. Major regulatory functions of FGF signaling are chondrogenesis, endochondral and intramembranous bone development. In this study we focus on fgfr2, as mutations in this gene are found in patients with craniofacial malformations. The high degree of conservation between FGF signaling of human and zebrafish (Danio rerio) tempted us to investigate effects of the mutated fgfr2 sa10729 allele in zebrafish on cartilage and bone formation. Methods We stained cartilage and bone in 5 days post fertilization (dpf) zebrafish larvae and compared mutants with wildtypes. We also determined the expression of genes related to these processes. We further investigated whether pharmacological blocking of all FGFRs with the inhibitor BGJ398, during 0-12 and 24-36 h post fertilization (hpf), affected craniofacial structure development at 5 dpf. Results We found only subtle differences in craniofacial morphology between wildtypes and mutants, likely because of receptor redundancy. After exposure to BGJ398, we found dose-dependent cartilage and bone malformations, with more severe defects in fish exposed during 0-12 hpf. These results suggest impairment of cranial neural crest cell survival and/or differentiation by FGFR inhibition. Compensatory reactions by upregulation of fgfr1a, fgfr1b, fgfr4, sp7 and dlx2a were found in the 0-12 hpf group, while in the 24-36 hpf group only upregulation of fgf3 was found together with downregulation of fgfr1a and fgfr2. Conclusions Pharmacological targeting of FGFR1-4 kinase signaling causes severe craniofacial malformations, whereas abrogation of FGFR2 kinase signaling alone does not induce craniofacial skeletal abnormalities. These findings enhance our understanding of the role of FGFRs in the etiology of craniofacial malformations.
Collapse
Affiliation(s)
- Liesbeth Gebuijs
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands,Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Frank A. Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jan Zethof
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Carine E. Carels
- Department of Human Genetics and Department of Oral Health Sciences, KU Leuven, Leuven, Belgium
| | - Johannes W. Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands,Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Juriaan R. Metz
- Department of Animal Ecology and Physiology, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
49
|
Williams AL, Bohnsack BL. Zebrafish Model of Stickler Syndrome Suggests a Role for Col2a1a in the Neural Crest during Early Eye Development. J Dev Biol 2022; 10:jdb10040042. [PMID: 36278547 PMCID: PMC9589970 DOI: 10.3390/jdb10040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/21/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Most cases of Stickler syndrome are due to autosomal-dominant COL2A1 gene mutations leading to abnormal type II collagen. Ocular findings include axial eye lengthening with vitreal degeneration and early-onset glaucoma, which can result in vision loss. Although COL2A1 is a major player in cartilage and bone formation, its specific role in eye development remains elusive. We investigated the role of Col2a1a in neural crest migration and differentiation during early zebrafish eye development. In situ hybridization, immunofluorescence, live imaging, exogenous treatments [10 μM diethylaminobenzaldehyde (DEAB), 100 nM all-trans retinoic acid (RA) and 1-3% ethanol (ETOH)] and morpholino oligonucleotide (MO) injections were used to analyze wildtype Casper (roy-/-;nacre-/-), TgBAC(col2a1a::EGFP), Tg(sox10::EGFP) and Tg(foxd3::EGFP) embryos. Col2a1a colocalized with Foxd3- and Sox10-positive cells in the anterior segment and neural crest-derived jaw. Col2a1a expression was regulated by RA and inhibited by 3% ETOH. Furthermore, MO knockdown of Col2a1a delayed jaw formation and disrupted the ocular anterior segment neural crest migration of Sox10-positive cells. Interestingly, human COL2A1 protein rescued the MO effects. Altogether, these results suggest that Col2a1a is a downstream target of RA in the cranial neural crest and is required for both craniofacial and eye development.
Collapse
Affiliation(s)
- Antionette L. Williams
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave., Chicago, IL 60611, USA
- Correspondence: (A.L.W.); (B.L.B.); Tel.: +1-312-503-4706 (A.L.W.); +1-312-227-6180 (B.L.B.)
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave., Chicago, IL 60611, USA
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave., Chicago, IL 60611, USA
- Correspondence: (A.L.W.); (B.L.B.); Tel.: +1-312-503-4706 (A.L.W.); +1-312-227-6180 (B.L.B.)
| |
Collapse
|
50
|
Reeck JC, Oxford JT. The Shape of the Jaw-Zebrafish Col11a1a Regulates Meckel's Cartilage Morphogenesis and Mineralization. J Dev Biol 2022; 10:jdb10040040. [PMID: 36278545 PMCID: PMC9590009 DOI: 10.3390/jdb10040040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 09/14/2022] [Indexed: 11/25/2022] Open
Abstract
The expression of the col11a1a gene is essential for normal skeletal development, affecting both cartilage and bone. Loss of function mutations have been shown to cause abnormalities in the growth plate of long bones, as well as in craniofacial development. However, the specific effects on Meckel's cartilage have not been well studied. To further understand the effect of col11a1a gene function, we analyzed the developing jaw in zebrafish using gene knockdown by the injection of an antisense morpholino oligonucleotide using transgenic Tg(sp7:EGFP) and Tg(Fli1a:EGFP) EGFP reporter fish, as well as wildtype AB zebrafish. Our results demonstrate that zebrafish col11a1a knockdown impairs the cellular organization of Meckel's cartilage in the developing jaw and alters the bone formation that occurs adjacent to the Meckel's cartilage. These results suggest roles for Col11a1a protein in cartilage intermediates of bone development, the subsequent mineralization of the bony collar of long bones, and that which occurs adjacent to Meckel's cartilage in the developing jaw.
Collapse
|