1
|
Skory RM. Revisiting trophectoderm-inner cell mass lineage segregation in the mammalian preimplantation embryo. Hum Reprod 2024; 39:1889-1898. [PMID: 38926157 DOI: 10.1093/humrep/deae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.
Collapse
Affiliation(s)
- Robin M Skory
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Nakagawa S, Carnevali D, Tan X, Alvarez MJ, Parfitt DE, Di Vicino U, Arumugam K, Shin W, Aranda S, Normanno D, Sebastian-Perez R, Cannatá C, Cortes P, Neguembor MV, Shen MM, Califano A, Cosma MP. The Wnt-dependent master regulator NKX1-2 controls mouse pre-implantation development. Stem Cell Reports 2024; 19:689-709. [PMID: 38701778 PMCID: PMC11103935 DOI: 10.1016/j.stemcr.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/05/2024] Open
Abstract
Embryo size, specification, and homeostasis are regulated by a complex gene regulatory and signaling network. Here we used gene expression signatures of Wnt-activated mouse embryonic stem cell (mESC) clones to reverse engineer an mESC regulatory network. We identify NKX1-2 as a novel master regulator of preimplantation embryo development. We find that Nkx1-2 inhibition reduces nascent RNA synthesis, downregulates genes controlling ribosome biogenesis, RNA translation, and transport, and induces severe alteration of nucleolus structure, resulting in the exclusion of RNA polymerase I from nucleoli. In turn, NKX1-2 loss of function leads to chromosome missegregation in the 2- to 4-cell embryo stages, severe decrease in blastomere numbers, alterations of tight junctions (TJs), and impairment of microlumen coarsening. Overall, these changes impair the blastocoel expansion-collapse cycle and embryo cavitation, leading to altered lineage specification and developmental arrest.
Collapse
Affiliation(s)
- Shoma Nakagawa
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Carnevali
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Xiangtian Tan
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Mariano J Alvarez
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth Inc, New York, NY, USA
| | - David-Emlyn Parfitt
- Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Umberto Di Vicino
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Karthik Arumugam
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - William Shin
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Sergi Aranda
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Davide Normanno
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Institute of Human Genetics, CNRS, Montpellier, France
| | - Ruben Sebastian-Perez
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Chiara Cannatá
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Paola Cortes
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Maria Victoria Neguembor
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Michael M Shen
- Department of Systems Biology, Columbia University, New York, NY, USA; Departments of Medicine, Genetics and Development, Urology, and Systems Biology, Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Chan Zuckerberg Biohub New York, New York, NY, USA.
| | - Maria Pia Cosma
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Pg.Lluis Companys 23, 08010 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, China.
| |
Collapse
|
3
|
Sobkowiak A, Fluks M, Kosyl E, Milewski R, Szpila M, Tamborski S, Szkulmowski M, Ajduk A. The number of nuclei in compacted embryos, assessed by optical coherence microscopy, is a non-invasive and robust marker of mouse embryo quality. Mol Hum Reprod 2024; 30:gaae012. [PMID: 38407286 PMCID: PMC10978378 DOI: 10.1093/molehr/gaae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Optical coherence microscopy (OCM) visualizes nuclei in live, unlabeled cells. As most cells are uninucleated, the number of nuclei in embryos may serve as a proxy of the cell number, providing important information on developmental status of the embryo. Importantly, no other non-invasive method currently allows for the cell number count in compacted embryos. We addressed the question of whether OCM, by providing the number of nuclei in compacted mouse embryos, may help evaluate embryo quality. We subjected compacted embryonic Day 3 (E3.0: 72 h after onset of insemination) mouse embryos to OCM scanning and correlated nuclei number and developmental potential. Implantation was assessed using an outgrowth assay (in vitro model meant to reflect embryonic ability to implant in vivo). Embryos with more cells at E3.0 (>18 cells) were more likely to reach the blastocyst stage by E4.0 and E5.0 (P ≪ 0.001) and initiate hatching by E5.0 (P < 0.05) than those with fewer cells (<12 cells). Moreover, the number of cells at E3.0 strongly correlated with the total number of cells in E4.0 and E5.0 embryos (ρ = 0.71, P ≪ 0.001 and ρ = 0.61, P ≪ 0.001, respectively), also when only E4.0 and E5.0 blastocysts were considered (ρ = 0.58, P ≪ 0.001 and ρ = 0.56, P ≪ 0.001, respectively). Additionally, we observed a strong correlation between the number of cells at E3.0 and the number of trophectoderm cells in E4.0 and E5.0 blastocysts (ρ = 0.59, P ≪ 0.001 and ρ = 0.57, P ≪ 0.001, respectively). Importantly, embryos that had more cells at E3.0 (>18 cells) were also more likely to implant in vitro than their counterparts with fewer cells (<12 cells; P ≪ 0.001). Finally, we tested the safety of OCM imaging, demonstrating that OCM scanning affected neither the amount of reactive oxygen species nor mitochondrial activity in the embryos. OCM also did not hinder their preimplantation development, ability to implant in vitro, or to develop to term after transfer to recipient females. Our data indicate that OCM imaging provides important information on embryo quality. As the method seems to be safe for embryos, it could be a valuable addition to the current repertoire of embryo evaluation methods. However, our study was conducted only on mouse embryos, so the proposed protocol would require optimization in order to be applied in other species.
Collapse
Affiliation(s)
- Aleksandra Sobkowiak
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewa Kosyl
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Milewski
- Department of Biostatistics and Medical Informatics, Medical University of Bialystok, Białystok, Poland
| | - Marcin Szpila
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Szymon Tamborski
- Department of Biophotonics and Optical Engineering, Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Maciej Szkulmowski
- Department of Biophotonics and Optical Engineering, Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
4
|
Ju LF, Xu HJ, Yang YG, Yang Y. Omics Views of Mechanisms for Cell Fate Determination in Early Mammalian Development. GENOMICS, PROTEOMICS & BIOINFORMATICS 2023; 21:950-961. [PMID: 37075831 PMCID: PMC10928378 DOI: 10.1016/j.gpb.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 04/21/2023]
Abstract
During mammalian preimplantation development, a totipotent zygote undergoes several cell cleavages and two rounds of cell fate determination, ultimately forming a mature blastocyst. Along with compaction, the establishment of apicobasal cell polarity breaks the symmetry of an embryo and guides subsequent cell fate choice. Although the lineage segregation of the inner cell mass (ICM) and trophectoderm (TE) is the first symbol of cell differentiation, several molecules have been shown to bias the early cell fate through their inter-cellular variations at much earlier stages, including the 2- and 4-cell stages. The underlying mechanisms of early cell fate determination have long been an important research topic. In this review, we summarize the molecular events that occur during early embryogenesis, as well as the current understanding of their regulatory roles in cell fate decisions. Moreover, as powerful tools for early embryogenesis research, single-cell omics techniques have been applied to both mouse and human preimplantation embryos and have contributed to the discovery of cell fate regulators. Here, we summarize their applications in the research of preimplantation embryos, and provide new insights and perspectives on cell fate regulation.
Collapse
Affiliation(s)
- Lin-Fang Ju
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Heng-Ji Xu
- University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Yun-Gui Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ying Yang
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci 2023; 24:13655. [PMID: 37686459 PMCID: PMC10563085 DOI: 10.3390/ijms241713655] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
During early mammalian embryonic development, fertilized one-cell embryos develop into pre-implantation blastocysts and subsequently establish three germ layers through gastrulation during post-implantation development. In recent years, stem cells have emerged as a powerful tool to study embryogenesis and gastrulation without the need for eggs, allowing for the generation of embryo-like structures known as synthetic embryos or embryoids. These in vitro models closely resemble early embryos in terms of morphology and gene expression and provide a faithful recapitulation of early pre- and post-implantation embryonic development. Synthetic embryos can be generated through a combinatorial culture of three blastocyst-derived stem cell types, such as embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm cells, or totipotent-like stem cells alone. This review provides an overview of the progress and various approaches in studying in vitro embryogenesis and gastrulation in mice and humans using stem cells. Furthermore, recent findings and breakthroughs in synthetic embryos and gastruloids are outlined. Despite ethical considerations, synthetic embryo models hold promise for understanding mammalian (including humans) embryonic development and have potential implications for regenerative medicine and developmental research.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (S.Y.O.); (S.B.N.); (Y.K.K.)
| |
Collapse
|
6
|
Wafriy CI, Kamsani YS, Nor-Ashikin MNK. Inflammation and oxidative stress impair preimplantation embryonic morphogenesis in allergic asthma model. Cells Dev 2023; 175:203864. [PMID: 37321350 DOI: 10.1016/j.cdev.2023.203864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/16/2023] [Accepted: 06/11/2023] [Indexed: 06/17/2023]
Abstract
The incidence of allergic asthma has been increasing worldwide in recent decades. Also, an increasing number of women are suffering from poor pregnancy outcome. However, the causal relationship between allergic asthma and embryonic growth in terms of cell morphogenesis has not been well elucidated. Here, we investigated the impact of allergic asthma on the morphogenesis of preimplantation embryos. Twenty-four female BALB/c were randomly divided into control (PBS), 50-μg (OVA1), 100-μg (OVA2) and 150-μg (OVA3). On Days-0 and -14, mice were induced intraperitoneally (i.p) with ovalbumin (OVA). On Days-21 until -23, mice were challenged with OVA via intranasal instillation (i.n). Control animals were sensitized and challenged with PBS. At the end of treatment (Day-25), 2-cell embryos were retrieved and cultured in vitro until the blastocysts hatched. Results showed reduced number of preimplantation embryos at all developing stages in all treated groups (p ≤ 0.0001). Uneven blastomere size, partial compaction- and cavitation-activity, low formation of trophectoderm (TE), as well as cell fragmentation were noted in all the treated groups. Maternal serum interleukin (IL)-4, immunoglobulin (Ig)-E and 8-hydroxydeoxyguanosine (8-OHdG) were notably high (p ≤ 0.0001, p ≤ 0.01) in contrast with low total antioxidant capacity (TAOC) (p ≤ 0.0001). Our findings indicated that OVA-induced allergic asthma had compromised cell morphogenesis through reduced blastomere cleavage division, partial compaction and cavitation-activity, impairment of TE production, and cell fragmentation leading to embryonic cell death via OS mechanism.
Collapse
Affiliation(s)
- Che Ismail Wafriy
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia; Institute of Medical Molecular Biotechnology (IMMB), Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| | - Yuhaniza Shafinie Kamsani
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia; Maternofetal and Embryo (MatE) Research Group, Universiti Teknologi Mara, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia.
| | - Mohamed Noor Khan Nor-Ashikin
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia; Maternofetal and Embryo (MatE) Research Group, Universiti Teknologi Mara, Sungai Buloh Campus, Jalan Hospital, Sungai Buloh, Selangor 47000, Malaysia
| |
Collapse
|
7
|
Bissiere S, Hernandez B, Rubio C, Simón C, Plachta N. Updates on preimplantation embryo research. Fertil Steril 2023; 120:467-472. [PMID: 37150393 DOI: 10.1016/j.fertnstert.2023.04.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Preimplantation development is the only stage of human development that can be studied outside the body in real time, as human embryos can be produced by in vitro fertilization and cultured in the laboratory as self-contained structures until the blastocyst stage. Here, we focus some of the key cellular and morphogenetic processes by which the 1-cell embryo is transformed gradually into a blastocyst ready for implantation. Although most of our knowledge about the dynamic series of events patterning preimplantation human development derives from work in mouse embryos, we discuss key differences that could exist with humans. Furthermore, we highlight how new approaches may enable to reveal many of the unknown processes driving human preimplantation development, particularly using noninvasive imaging and genetic technologies.
Collapse
Affiliation(s)
- Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Blake Hernandez
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Carlos Simón
- Department of Pediatrics Obstetrics & Gynecology, University of Valencia, & INCLIVA, Valencia, Spain; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
8
|
Ko CI, Biesiada J, Zablon HA, Zhang X, Medvedovic M, Puga A. The aryl hydrocarbon receptor directs the differentiation of murine progenitor blastomeres. Cell Biol Toxicol 2023; 39:1657-1676. [PMID: 36029422 PMCID: PMC10425484 DOI: 10.1007/s10565-022-09755-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Key regulatory decisions during cleavage divisions in mammalian embryogenesis determine the fate of preimplantation embryonic cells. Single-cell RNA sequencing of early-stage-2-cell, 4-cell, and 8-cell-blastomeres show that the aryl hydrocarbon receptor (AHR), traditionally considered as an environmental sensor, directs blastomere differentiation. Disruption of AHR functions in Ahr knockout embryos or in embryos from dams exposed to dioxin, the prototypic xenobiotic AHR agonist, significantly impairs blastocyst formation, causing repression and loss of transcriptional heterogeneity of OCT4 and CDX2 and incidence of nonspecific downregulation of pluripotency. Trajectory-the path of differentiation-and gene variability analyses further confirm that deregulation of OCT4 functions and changes of transcriptional heterogeneity resulting from disruption of AHR functions restrict the emergence of differentiating blastomeres in 4-cell embryos. It appears that AHR directs the differentiation of progenitor blastomeres and that disruption of preimplantation AHR functions may significantly perturb embryogenesis leading to long-lasting conditions at the heart of disease in offspring's adulthood.
Collapse
Affiliation(s)
- Chia-I Ko
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA.
| | - Jacek Biesiada
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Center for Biostatistics, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Hesbon A Zablon
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
| | - Xiang Zhang
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Genomics, Epigenomics, and Sequencing Core, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Mario Medvedovic
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
- Center for Biostatistics, 160 Panzeca Way, Cincinnati, OH, 45267, USA
| | - Alvaro Puga
- Department of Environmental and Public Health Sciences and Center for Environmental Genetics, University of Cincinnati, Cincinnati, OH, 45267, USA
| |
Collapse
|
9
|
Domingo-Muelas A, Skory RM, Moverley AA, Ardestani G, Pomp O, Rubio C, Tetlak P, Hernandez B, Rhon-Calderon EA, Navarro-Sánchez L, García-Pascual CM, Bissiere S, Bartolomei MS, Sakkas D, Simón C, Plachta N. Human embryo live imaging reveals nuclear DNA shedding during blastocyst expansion and biopsy. Cell 2023; 186:3166-3181.e18. [PMID: 37413989 PMCID: PMC11170958 DOI: 10.1016/j.cell.2023.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Proper preimplantation development is essential to assemble a blastocyst capable of implantation. Live imaging has uncovered major events driving early development in mouse embryos; yet, studies in humans have been limited by restrictions on genetic manipulation and lack of imaging approaches. We have overcome this barrier by combining fluorescent dyes with live imaging to reveal the dynamics of chromosome segregation, compaction, polarization, blastocyst formation, and hatching in the human embryo. We also show that blastocyst expansion mechanically constrains trophectoderm cells, causing nuclear budding and DNA shedding into the cytoplasm. Furthermore, cells with lower perinuclear keratin levels are more prone to undergo DNA loss. Moreover, applying trophectoderm biopsy, a mechanical procedure performed clinically for genetic testing, increases DNA shedding. Thus, our work reveals distinct processes underlying human development compared with mouse and suggests that aneuploidies in human embryos may not only originate from chromosome segregation errors during mitosis but also from nuclear DNA shedding.
Collapse
Affiliation(s)
- Ana Domingo-Muelas
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Igenomix Foundation and Carlos Simon Foundation, Spain
| | - Robin M Skory
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam A Moverley
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; University College London, London WC1E 6BT, UK
| | | | - Oz Pomp
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Piotr Tetlak
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Blake Hernandez
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric A Rhon-Calderon
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Stephanie Bissiere
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Carlos Simón
- Igenomix Foundation and Carlos Simon Foundation, Spain; Department of Pediatrics Obstetrics & Gynecology, University of Valencia, Valencia 46010, Spain; INCLIVA Health Research Institute, Valencia 46010, Spain; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
10
|
Lowther KM, Bartolucci AF, Massey RE, Brown J, Peluso JJ. Supplementing culture medium with the weak acid, 5,5-dimethyl-2,4-oxazolidinedione (DMO) limits the development of aneuploid mouse embryos through a Trp53-dependent mechanism. J Assist Reprod Genet 2023; 40:1215-1223. [PMID: 37058262 PMCID: PMC10239418 DOI: 10.1007/s10815-023-02788-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
PURPOSE This study was designed to determine if DMO limits in vitro development of aneuploid-enriched mouse embryos by activating a Trp53-dependent mechanism. METHODS Mouse cleavage-stage embryos were treated with reversine to induce aneuploidy or vehicle to generate controls, and then cultured in media supplemented with DMO to reduce the pH of the culture media. Embryo morphology was assessed by phase microscopy. Cell number, mitotic figures, and apoptotic bodies were revealed by staining fixed embryos with DAPI. mRNA levels of Trp53, Oct-4, and Cdx2 were monitored by quantitative polymerase chain reactions (qPCRs). The effect of Trp53 on the expression of Oct-4 and Cdx2 was assessed by depleting Trp53 using Trp53 siRNA. RESULTS Aneuploid-enriched late-stage blastocysts were morphologically indistinguishable from control blastocysts but had fewer cells and reduced mRNA levels of Oct-4 and Cdx2. Adding 1 mM DMO to the culture media during the 8-cell to blastocyst transition reduced the formation of aneuploid-enriched late-stage blastocysts but not control blastocysts and further suppressed the levels of Oct-4 and Cdx2 mRNA. Trp53 RNA levels in aneuploid-enriched embryos that were exposed to DMO were > twofold higher than controls, and Trp53 siRNA levels reduced the levels of Trp53 and increased levels of Oct-4 and Cdx2 mRNA by > twofold. CONCLUSION These studies suggest that the development of morphologically normal aneuploid-enriched mouse blastocysts can be inhibited by adding low amounts of DMO to the culture media, which results in elevated levels of Trp53 mRNA that suppresses Oct-4 and Cdx2 expression.
Collapse
Affiliation(s)
- Katie M Lowther
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., CT, 06030, Farmington, USA
| | - Alison F Bartolucci
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, 06030, USA
- The Center for Advanced Reproductive Services, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | | | - Judy Brown
- Institute for Systems Genomics, UCONN, Storrs, CT, 06268, USA
| | - John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., CT, 06030, Farmington, USA.
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
11
|
Hur C, Nanavaty V, Yao M, Desai N. The presence of partial compaction patterns is associated with lower rates of blastocyst formation, sub-optimal morphokinetic parameters and poorer morphologic grade. Reprod Biol Endocrinol 2023; 21:12. [PMID: 36709281 PMCID: PMC9883889 DOI: 10.1186/s12958-023-01059-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/10/2023] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Compaction is an important marker of embryonic genome activation and marks a critical step in the development to blastocyst. The objective of our study was to determine whether visualization of the embryonic compaction process through time-lapse imaging (TL) can assist in predicting the kinetics of embryo development as well as the likelihood for blastocyst formation, grade, or ploidy. METHODS This study is a retrospective review of prospectively collected datafrom a single academic institution. Couples included were thosewho underwent preimplantation genetic testing for aneuploidy (PGT-A) following in vitro fertilization between Januaryand December 2020. Embryos were cultured in the Embrysocope. Embryo morphokinetic data was prospectively collected and analyzed.TL videos werelater reviewed in detail for compaction pattern. Embryo compaction patterns (CP) were categorized as follows: 1) full compaction (CP-F), 2) partial compaction with cell extrusion (P-ext), 3) partial compactionwith cell exclusion (P-exc) and 4) partial compactionwith both cell extrusion and exclusion (P-both). Assessment of embryo decompaction and re-compaction was evaluated. The association between CP, morphokinetic parameters,blastocyst formation, grade and ploidy were then analyzed. RESULTS A total of 349 embryos were studied. Amongst embryos which progressed to morula (n = 281), the distribution of compaction patterns were: CP-F 45.6%, P-ext12.5%, P-exc29.5% and P-both 12.5%. Embryos exhibiting a CP-F were more likely to proceed to blastocyst compared with those that demonstrated partial compaction patterns (p = 0.006). When compared to CP-F, partial compaction patterns were significantly associated with poorer ICM and TE grades (P < 0.001). Of the 281 morula, 59.8% (n = 168) demonstrated at least one episode of decompaction and re-compaction. Of the 249 blastocysts formed, 200 were cryopreserved for future use after undergoing PGT-A evaluation. Of those, 42.5% were diagnosed as euploid, 39.0% as aneuploid, 9.0% as mosaic and 9.5% had no result. When compared to CP-F, partialCPs exhibited a significantly greater percentage of mosaic embryos (3.6% v. 15.6%, p = 0.032). Additionally, we found that a greater percentage of embryos demonstrating CP-F exhibited morphokinetics that fell into optimal ranges for embryo development when compared to those with partial compaction patterns. CONCLUSION Time-lapse visualization of compaction patterns identified exclusions and/or extrusions as negative indicators of blastocyst formation and blastocyst grade. When compared to full compaction patterns, partial compaction patterns were associated with delayed embryonic development as well as lower rates of optimal kinetic development.
Collapse
Affiliation(s)
- Christine Hur
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Division of Reproductive Endocrinology and Infertility, 26900 Cedar Road, Beachwood, OH, 44122, USA.
| | - Vaani Nanavaty
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Division of Reproductive Endocrinology and Infertility, 26900 Cedar Road, Beachwood, OH, 44122, USA
| | - Meng Yao
- Quantitative Health Sciences, Cleveland Clinic, 9500 Euclid Ave. JJN3, Cleveland, OH, 44195, USA
| | - Nina Desai
- Department of Obstetrics and Gynecology, Women's Health Institute, Cleveland Clinic, Division of Reproductive Endocrinology and Infertility, 26900 Cedar Road, Beachwood, OH, 44122, USA
| |
Collapse
|
12
|
Canse C, Yildirim E, Yaba A. Overview of junctional complexes during mammalian early embryonic development. Front Endocrinol (Lausanne) 2023; 14:1150017. [PMID: 37152932 PMCID: PMC10158982 DOI: 10.3389/fendo.2023.1150017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/28/2023] [Indexed: 05/09/2023] Open
Abstract
Cell-cell junctions form strong intercellular connections and mediate communication between blastomeres during preimplantation embryonic development and thus are crucial for cell integrity, polarity, cell fate specification and morphogenesis. Together with cell adhesion molecules and cytoskeletal elements, intercellular junctions orchestrate mechanotransduction, morphokinetics and signaling networks during the development of early embryos. This review focuses on the structure, organization, function and expressional pattern of the cell-cell junction complexes during early embryonic development. Understanding the importance of dynamic junction formation and maturation processes will shed light on the molecular mechanism behind developmental abnormalities of early embryos during the preimplantation period.
Collapse
Affiliation(s)
- Ceren Canse
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Ecem Yildirim
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
| | - Aylin Yaba
- Department of Histology and Embryology, Yeditepe University Faculty of Medicine, Istanbul, Türkiye
- *Correspondence: Aylin Yaba,
| |
Collapse
|
13
|
Tokuoka Y, Yamada TG, Mashiko D, Ikeda Z, Kobayashi TJ, Yamagata K, Funahashi A. An explainable deep learning-based algorithm with an attention mechanism for predicting the live birth potential of mouse embryos. Artif Intell Med 2022; 134:102432. [PMID: 36462898 DOI: 10.1016/j.artmed.2022.102432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/13/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
In assisted reproductive technology (ART), embryos produced by in vitro fertilization (IVF) are graded according to their live birth potential, and high-grade embryos are preferentially transplanted. However, rates of live birth following clinical ART remain low worldwide. Grading is based on the embryo shape at a limited number of stages and does not consider the shape of embryos and intracellular structures, e.g., nuclei, at various stages important for normal embryogenesis. Here, we developed a Normalized Multi-View Attention Network (NVAN) that directly predicts live birth potential from the nuclear structure in live-cell fluorescence images of mouse embryos from zygote to across a wide range of stages. The input is morphological features of cell nuclei, which were extracted as multivariate time-series data by using the segmentation algorithm for mouse embryos. The classification accuracy of our method (83.87%) greatly exceeded that of existing machine-learning methods and that of visual inspection by embryo culture specialists. Our method also has a new attention mechanism that allows us to determine which values of multivariate time-series data, used to describe nuclear morphology, were the basis for the prediction. By visualizing the features that contributed most to the prediction of live birth potential, we found that the size and shape of the nucleus at the morula stage and at the time of cell division were important for live birth prediction. We anticipate that our method will help ART and developmental engineering as a new basic technology for IVF embryo selection.
Collapse
Affiliation(s)
- Yuta Tokuoka
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan
| | - Takahiro G Yamada
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan; Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan
| | - Daisuke Mashiko
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Zenki Ikeda
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Kazuo Yamagata
- Faculty of Biology-Oriented Science and Technology, Kindai University, 930 Nishimitani, Kinokawa, Wakayama, 649-6493, Japan
| | - Akira Funahashi
- Center for Biosciences and Informatics, Graduate School of Fundamental Science and Technology, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan; Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kouhoku-ku, Yokohama, 223-8522, Japan.
| |
Collapse
|
14
|
Alarcon VB, Marikawa Y. Trophectoderm formation: regulation of morphogenesis and gene expressions by RHO, ROCK, cell polarity, and HIPPO signaling. Reproduction 2022; 164:R75-R86. [PMID: 35900353 PMCID: PMC9398960 DOI: 10.1530/rep-21-0478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/14/2022] [Indexed: 11/08/2022]
Abstract
In brief Trophectoderm is the first tissue to differentiate in the early mammalian embryo and is essential for hatching, implantation, and placentation. This review article discusses the roles of Ras homolog family members (RHO) and RHO-associated coiled-coil containing protein kinases (ROCK) in the molecular and cellular regulation of trophectoderm formation. Abstract The trophectoderm (TE) is the first tissue to differentiate during the preimplantation development of placental mammals. It constitutes the outer epithelial layer of the blastocyst and is responsible for hatching, uterine attachment, and placentation. Thus, its formation is the key initial step that enables the viviparity of mammals. Here, we first describe the general features of TE formation at the morphological and molecular levels. Prospective TE cells form an epithelial layer enclosing an expanding fluid-filled cavity by establishing the apical-basal cell polarity, intercellular junctions, microlumen, and osmotic gradient. A unique set of genes is expressed in TE that encode the transcription factors essential for the development of trophoblasts of the placenta upon implantation. TE-specific gene expressions are driven by the inhibition of HIPPO signaling, which is dependent on the prior establishment of the apical-basal polarity. We then discuss the specific roles of RHO and ROCK as essential regulators of TE formation. RHO and ROCK modulate the actomyosin cytoskeleton, apical-basal polarity, intercellular junctions, and HIPPO signaling, thereby orchestrating the epithelialization and gene expressions in TE. Knowledge of the molecular mechanisms underlying TE formation is crucial for assisted reproductive technologies in human and farm animals, as it provides foundation to help improve procedures for embryo handling and selection to achieve better reproductive outcomes.
Collapse
Affiliation(s)
- Vernadeth B. Alarcon
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| | - Yusuke Marikawa
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI 96813, USA
| |
Collapse
|
15
|
Sharma J, Madan P. Differential regulation of Hippo signaling pathway components between 8-cell and blastocyst stages of bovine preimplantation embryogenesis. Mol Reprod Dev 2022; 89:146-161. [PMID: 35243707 DOI: 10.1002/mrd.23564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 02/12/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022]
Abstract
The Hippo signaling pathway is an important regulator of lineage segregation (trophectoderm and inner cell mass) during blastocyst formation in the mouse embryos. However, the role and regulation of Hippo signaling pathway components during bovine embryonic development is not completely understood. This study was thus designed to interpret the roles of Hippo cell signaling pathway components using two different yet specific chemical inhibitors (Cerivastatin and XMU-MP-1). A significant decrease in the blastocyst rates were observed on treatment with Cerivastatin and XMU-MP-1 inhibitors for the treatment groups, in comparison to the control groups. At the 8-cell stage, a significant decrease was observed in the gene expression and nuclear protein localization of YAP1 (Yes Associated Protein 1) and pYAP1 components of Hippo signaling pathway. However, no such effect of Cerivastatin treatment was observed on the localization of TAZ at this cell stage. On the contrary, during bovine blastocyst formation a significant decrease in the gene expression and nuclear localization of both YAP1 and TAZ suggest differences in the regulation of these components at 8-cell and blastocyst stages of embryonic development. Furthermore, XMU-MP-1 mediated chemical inhibition of Mst1 at the blastocyst stage also suggests differences in the regulation of Yap1 and Taz components of Hippo signaling pathway. Overall, this study indicates novel differences in the regulation of Hippo signaling transcript levels and protein localization between the 8-cell and blastocyst stages of bovine preimplantation embryonic development.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Pavneesh Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
16
|
Filimonow K, de la Fuente R. Specification and role of extraembryonic endoderm lineages in the periimplantation mouse embryo. Theriogenology 2021; 180:189-206. [PMID: 34998083 DOI: 10.1016/j.theriogenology.2021.12.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022]
Abstract
During mammalian embryo development, the correct formation of the first extraembryonic endoderm lineages is fundamental for successful development. In the periimplantation blastocyst, the primitive endoderm (PrE) is formed, which gives rise to the parietal endoderm (PE) and visceral endoderm (VE) during further developmental stages. These PrE-derived lineages show significant differences in both their formation and roles. Whereas differentiation of the PE as a migratory lineage has been suggested to represent the first epithelial-to-mesenchymal transition (EMT) in development, organisation of the epithelial VE is of utmost importance for the correct axis definition and patterning of the embryo. Despite sharing a common origin, the striking differences between the VE and PE are indicative of their distinct roles in early development. However, there is a significant disparity in the current knowledge of each lineage, which reflects the need for a deeper understanding of their respective specification processes. In this review, we will discuss the origin and maturation of the PrE, PE, and VE during the periimplantation period using the mouse model as an example. Additionally, we consider the latest findings regarding the role of the PrE-derived lineages and early embryo morphogenesis, as obtained from the most recent in vitro models.
Collapse
Affiliation(s)
- Katarzyna Filimonow
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| | - Roberto de la Fuente
- Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology of the Polish Academy of Sciences, Jastrzębiec, Poland.
| |
Collapse
|
17
|
Cell fate determination and Hippo signaling pathway in preimplantation mouse embryo. Cell Tissue Res 2021; 386:423-444. [PMID: 34586506 DOI: 10.1007/s00441-021-03530-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
First cell fate determination plays crucial roles in cell specification during early phases of embryonic development. Three classical concepts have been proposed to explain the lineage specification mechanism of the preimplantation embryo: inside-outside, pre-patterning, and polarity models. Transcriptional effectors of the Hippo signal pathway are YAP and TAZ activators that can create a shuttle between the cytoplasm and the nucleus. Despite different localizations of YAP in the cell, it determines the fate of ICM and TE. How the decisive cue driving factors that determine YAP localization are coordinated remains a central unanswered question. How can an embryonic cell find its position? The objective of this review is to summarize the molecular and mechanical aspects in cell fate decision during mouse preimplantation embryonic development. The findings will reveal the relationship between cell-cell adhesion, cell polarity, and determination of cell fate during early embryonic development in mice and elucidate the inducing/inhibiting mechanisms that are involved in cell specification following zygotic genome activation and compaction processes. With future studies, new biophysical and chemical cues in the cell fate determination will impart significant spatiotemporal effects on early embryonic development. The achieved knowledge will provide important information to the development of new approaches to be used in infertility treatment and increase the success of pregnancy.
Collapse
|
18
|
Zhu M, Shahbazi M, Martin A, Zhang C, Sozen B, Borsos M, Mandelbaum RS, Paulson RJ, Mole MA, Esbert M, Titus S, Scott RT, Campbell A, Fishel S, Gradinaru V, Zhao H, Wu K, Chen ZJ, Seli E, de Los Santos MJ, Zernicka Goetz M. Human embryo polarization requires PLC signaling to mediate trophectoderm specification. eLife 2021; 10:65068. [PMID: 34569938 PMCID: PMC8514238 DOI: 10.7554/elife.65068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/25/2021] [Indexed: 12/30/2022] Open
Abstract
Apico-basal polarization of cells within the embryo is critical for the segregation of distinct lineages during mammalian development. Polarized cells become the trophectoderm (TE), which forms the placenta, and apolar cells become the inner cell mass (ICM), the founding population of the fetus. The cellular and molecular mechanisms leading to polarization of the human embryo and its timing during embryogenesis have remained unknown. Here, we show that human embryo polarization occurs in two steps: it begins with the apical enrichment of F-actin and is followed by the apical accumulation of the PAR complex. This two-step polarization process leads to the formation of an apical domain at the 8-16 cell stage. Using RNA interference, we show that apical domain formation requires Phospholipase C (PLC) signaling, specifically the enzymes PLCB1 and PLCE1, from the eight-cell stage onwards. Finally, we show that although expression of the critical TE differentiation marker GATA3 can be initiated independently of embryo polarization, downregulation of PLCB1 and PLCE1 decreases GATA3 expression through a reduction in the number of polarized cells. Therefore, apical domain formation reinforces a TE fate. The results we present here demonstrate how polarization is triggered to regulate the first lineage segregation in human embryos.
Collapse
Affiliation(s)
- Meng Zhu
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom.,Blavatnik Institute, Harvard Medical School, Department of Genetics, Boston, United States
| | - Marta Shahbazi
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom.,MRC Laboratory of Molecular Biology. Francis Crick Avenue, Biomedical Campus., Cambridge, United Kingdom
| | - Angel Martin
- IVIRMA Valencia, IVI Foundation, Valencia, Spain
| | - Chuanxin Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Berna Sozen
- Developmental Plasticity and Self-Organization Group, California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States.,Yale School of Medicine, Department of Genetics, New Haven, CT, United States
| | - Mate Borsos
- California Institute of Technology, Division of Biology and Biological Engineering,, Pasadena, United States
| | - Rachel S Mandelbaum
- USC Fertility, University of Southern California, Keck School of Medicine, Los Angeles, United Kingdom
| | - Richard J Paulson
- USC Fertility, University of Southern California, Keck School of Medicine, Los Angeles, United Kingdom
| | - Matteo A Mole
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom
| | - Marga Esbert
- IVIRMA New Jersey, Basking Ridge, NJ, United States
| | - Shiny Titus
- IVIRMA New Jersey, Basking Ridge, NJ, United States
| | | | - Alison Campbell
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham, United Kingdom
| | - Simon Fishel
- CARE Fertility Group, John Webster House, 6 Lawrence Drive, Nottingham Business Park, Nottingham, United Kingdom.,School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Viviana Gradinaru
- MRC Laboratory of Molecular Biology. Francis Crick Avenue, Biomedical Campus., Cambridge, United Kingdom
| | - Han Zhao
- Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Keliang Wu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
| | - Emre Seli
- IVIRMA New Jersey, Basking Ridge, NJ, United States.,Yale School of Medicine, Department of Obstetrics, Gynecology, and Reproductive Sciences, New Haven, CT, United States
| | | | - Magdalena Zernicka Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, United Kingdom.,Developmental Plasticity and Self-Organization Group, California Institute of Technology, Division of Biology and Biological Engineering, Pasadena, United States
| |
Collapse
|
19
|
Tao P, Zhou W, Yan X, Wu R, Cheng L, Ye Y, Wang Z, Li Y. Effect of sequential versus single-step culture medium on IVF treatments, including embryo and clinical outcomes: a prospective randomized study. Arch Gynecol Obstet 2021; 305:757-765. [PMID: 34510243 DOI: 10.1007/s00404-021-06219-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Sequential media G5 series (Vitrolife) and single-step medium Continuous Single Culture Complete (CSC-C) (Irvine Scientific) are two different culture media. We want to examine difference between culturing effects of the two media. METHODS To compare the fertilization and early embryo development, a prospective randomized controlled trial with sibling oocytes in infertile patients, aged ≤ 45 years with ≥ 8 oocytes (226 cycles) was conducted. Each half of the retrieved oocytes from the same patient were randomly allocated to two culture media separately. The remaining fresh cycles were randomly assigned to two culture media during the same period (179 cycles). We compared the clinical outcomes based on the total fresh ET cycles in this periods, in which the transferred embryos were only from one culture medium. RESULTS Embryo outcomes: 226 cycles, included 176 IVF and 50 ICSI cycles, were analyzed, which correspond to 3518 inseminated or micro-injected oocytes. Clinical outcomes: 71 (CSC-C) and 71 (G5 series) fresh ET cycles were compared. There were no significant differences in clinical outcomes and general fertilization rate. However, the fertilization rate was superior in the CSC-C when compared with G5 in ICSI cycles (76.51% vs. 67.25%, P = 0.008). In addition, the compacted embryo development rate was significantly higher in CSC-C on day 3. The cycles that had compacted embryos on day 3 demonstrated better outcomes both in embryos as well as clinically. CONCLUSIONS CSC-C had higher fertilization rates than G5 series in ICSI cycles. In addition, the compaction rates of day 3 embryos were significantly higher in CSC-C.
Collapse
Affiliation(s)
- Ping Tao
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Weidong Zhou
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Xiaohong Yan
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Rongfeng Wu
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Ling Cheng
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Yuanyuan Ye
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China
| | - Zhanxiang Wang
- Department of Neurosurgery, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China.
| | - Youzhu Li
- Reproductive Medicine Centre, First Affiliated Hospital of Xiamen University, 55# Zhenhai Road, Xiamen, 361000, Fujian, People's Republic of China.
| |
Collapse
|
20
|
Sharpley MS, Chi F, Hoeve JT, Banerjee U. Metabolic plasticity drives development during mammalian embryogenesis. Dev Cell 2021; 56:2329-2347.e6. [PMID: 34428399 DOI: 10.1016/j.devcel.2021.07.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/26/2021] [Accepted: 07/28/2021] [Indexed: 01/09/2023]
Abstract
Mammalian preimplantation embryos follow a stereotypic pattern of development from zygotes to blastocysts. Here, we use labeled nutrient isotopologue analysis of small numbers of embryos to track downstream metabolites. Combined with transcriptomic analysis, we assess the capacity of the embryo to reprogram its metabolism through development. Early embryonic metabolism is rigid in its nutrient requirements, sensitive to reductive stress and has a marked disequilibrium between two halves of the TCA cycle. Later, loss of maternal LDHB and transcription of zygotic products favors increased activity of bioenergetic shuttles, fatty-acid oxidation and equilibration of the TCA cycle. As metabolic plasticity peaks, blastocysts can develop without external nutrients. Normal developmental metabolism of the early embryo is distinct from cancer metabolism. However, similarities emerge upon reductive stress. Increased metabolic plasticity with maturation is due to changes in redox control mechanisms and to transcriptional reprogramming of later-stage embryos during homeostasis or upon adaptation to environmental changes.
Collapse
Affiliation(s)
- Mark S Sharpley
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA 90095, USA.
| | - Fangtao Chi
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA 90095, USA; Molecular Biology Institute, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA 90095, USA
| | - Johanna Ten Hoeve
- UCLA Metabolomics Center, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Utpal Banerjee
- Department of Molecular, Cell and Developmental Biology, Los Angeles, CA 90095, USA; Molecular Biology Institute, Los Angeles, CA 90095, USA; Department of Biological Chemistry, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Los Angeles, CA 90095, USA.
| |
Collapse
|
21
|
Zhu M, Zernicka-Goetz M. Principles of Self-Organization of the Mammalian Embryo. Cell 2021; 183:1467-1478. [PMID: 33306953 DOI: 10.1016/j.cell.2020.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Early embryogenesis is a conserved and self-organized process. In the mammalian embryo, the potential for self-organization is manifested in its extraordinary developmental plasticity, allowing a correctly patterned embryo to arise despite experimental perturbation. The underlying mechanisms enabling such regulative development have long been a topic of study. In this Review, we summarize our current understanding of the self-organizing principles behind the regulative nature of the early mammalian embryo. We argue that geometrical constraints, feedback between mechanical and biochemical factors, and cellular heterogeneity are all required to ensure the developmental plasticity of mammalian embryo development.
Collapse
Affiliation(s)
- Meng Zhu
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Present address: Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK; Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA.
| |
Collapse
|
22
|
Springer C, Wolf E, Simmet K. A New Toolbox in Experimental Embryology-Alternative Model Organisms for Studying Preimplantation Development. J Dev Biol 2021; 9:15. [PMID: 33918361 PMCID: PMC8167745 DOI: 10.3390/jdb9020015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Preimplantation development is well conserved across mammalian species, but major differences in developmental kinetics, regulation of early lineage differentiation and implantation require studies in different model organisms, especially to better understand human development. Large domestic species, such as cattle and pig, resemble human development in many different aspects, i.e., the timing of zygotic genome activation, mechanisms of early lineage differentiations and the period until blastocyst formation. In this article, we give an overview of different assisted reproductive technologies, which are well established in cattle and pig and make them easily accessible to study early embryonic development. We outline the available technologies to create genetically modified models and to modulate lineage differentiation as well as recent methodological developments in genome sequencing and imaging, which form an immense toolbox for research. Finally, we compare the most recent findings in regulation of the first lineage differentiations across species and show how alternative models enhance our understanding of preimplantation development.
Collapse
Affiliation(s)
- Claudia Springer
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, 85764 Oberschleissheim, Germany; (C.S.); (E.W.)
| |
Collapse
|
23
|
Sharma J, Antenos M, Madan P. A Comparative Analysis of Hippo Signaling Pathway Components during Murine and Bovine Early Mammalian Embryogenesis. Genes (Basel) 2021; 12:281. [PMID: 33669396 PMCID: PMC7920285 DOI: 10.3390/genes12020281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/08/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
The time required for successful blastocyst formation varies among multiple species. The formation of a blastocyst is governed by numerous molecular cell signaling pathways, such as the Hippo signaling pathway. The Hippo signaling pathway is initiated by increased cell-cell contact and via apical polarity proteins (AMOT, PARD6, and NF2) during the period of preimplantation embryogenesis. Cell-cell contact and cell polarity activate (phosphorylates) the core cascade components of the pathway (mammalian sterile twenty like 1 and 2 (MST1/2) and large tumor suppressor 1 and 2 (LATS1/2)), which in turn phosphorylate the downstream effectors of the pathway (YAP1/TAZ). The Hippo pathway remains inactive with YAP1 (Yes Associated protein 1) present inside the nucleus in the trophectoderm (TE) cells (polar blastomeres) of the mouse blastocyst. In the inner cell mass (ICM) cells (apolar blastomeres), the pathway is activated with p-YAP1 present in the cytoplasm. On the contrary, during bovine embryogenesis, p-YAP1 is exclusively present in the nucleus in both TE and ICM cells. Contrary to mouse embryos, transcription co activator with PDZ-binding motif (TAZ) (also known as WWTR1) is also predominantly present in the cytoplasm in all the blastomeres during bovine embryogenesis. This review outlines the major differences in the localization and function of Hippo signaling pathway components of murine and bovine preimplantation embryos, suggesting significant differences in the regulation of this pathway in between the two species. The variance observed in the Hippo signaling pathway between murine and bovine embryos confirms that both of these early embryonic models are quite distinct. Moreover, based on the similarity of the Hippo signaling pathway between bovine and human early embryo development, bovine embryos could be an alternate model for understanding the regulation of the Hippo signaling pathway in human embryos.
Collapse
Affiliation(s)
| | | | - Pavneesh Madan
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (J.S.); (M.A.)
| |
Collapse
|
24
|
Nie ZW, Niu YJ, Zhou W, Zhou DJ, Kim JY, Cui XS. AGS3-dependent trans-Golgi network membrane trafficking is essential for compaction in mouse embryos. J Cell Sci 2020; 133:jcs.243238. [PMID: 33148610 DOI: 10.1242/jcs.243238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 10/26/2020] [Indexed: 11/20/2022] Open
Abstract
Activator of G-protein signaling 3 (AGS3, also known as GPSM1) regulates the trans-Golgi network. The AGS3 GoLoco motif binds to Gαi and thereby regulates the transport of proteins to the plasma membrane. Compaction of early embryos is based on the accumulation of E-cadherin (Cdh1) at cell-contacted membranes. However, how AGS3 regulates the transport of Cdh1 to the plasma membrane remains undetermined. To investigate this, AGS3 was knocked out using the Cas9-sgRNA system. Both trans-Golgi network protein 46 (TGN46, also known as TGOLN2) and transmembrane p24-trafficking protein 7 (TMED7) were tracked in early mouse embryos by tagging these proteins with a fluorescent protein label. We observed that the majority of the AGS3-edited embryos were developmentally arrested and were fragmented after the four-cell stage, exhibiting decreased accumulation of Cdh1 at the membrane. The trans-Golgi network and TMED7-positive vesicles were also dispersed and were not polarized near the membrane. Additionally, increased Gαi1 (encoded by GNAI1) expression could rescue AGS3-overexpressed embryos. In conclusion, AGS3 reinforces the dynamics of the trans-Golgi network and the transport of TMED7-positive cargo containing Cdh1 to the cell-contact surface during early mouse embryo development.
Collapse
Affiliation(s)
- Zheng-Wen Nie
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ying-Jie Niu
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Wenjun Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Dong-Jie Zhou
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Ju-Yeon Kim
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Sciences, Chungbuk National University, Chungbuk, Cheongju 361-763, Republic of Korea
| |
Collapse
|
25
|
Hu K. On Mammalian Totipotency: What Is the Molecular Underpinning for the Totipotency of Zygote? Stem Cells Dev 2020; 28:897-906. [PMID: 31122174 PMCID: PMC6648208 DOI: 10.1089/scd.2019.0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mammalian zygote is described as a totipotent cell in the literature, but this characterization is elusive ignoring the molecular underpinnings. Totipotency can connote genetic totipotency, epigenetic totipotency, or the reprogramming capacity of a cell to epigenetic totipotency. Here, the implications of these concepts are discussed in the context of the properties of the zygote. Although genetically totipotent as any diploid somatic cell is, a zygote seems not totipotent transcriptionally, epigenetically, or functionally. Yet, a zygote may retain most of the key factors from its parental oocyte to reprogram an implanted differentiated genome or the zygote genome toward totipotency. This totipotent reprogramming process may extend to blastomeres in the two-cell-stage embryo. Thus, a revised alternative model of mammalian cellular totipotency is proposed, in which an epigenetically totipotent cell exists after the major embryonic genome activation and before the separation of the first two embryonic lineages.
Collapse
Affiliation(s)
- Kejin Hu
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Alternative patterns of partial embryo compaction: prevalence, morphokinetic history and possible implications. Reprod Biomed Online 2020; 40:347-354. [DOI: 10.1016/j.rbmo.2019.11.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 12/11/2022]
|
27
|
D'Occhio MJ, Campanile G, Zicarelli L, Visintin JA, Baruselli PS. Adhesion molecules in gamete transport, fertilization, early embryonic development, and implantation-role in establishing a pregnancy in cattle: A review. Mol Reprod Dev 2020; 87:206-222. [PMID: 31944459 DOI: 10.1002/mrd.23312] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
Cell-cell adhesion molecules have critically important roles in the early events of reproduction including gamete transport, sperm-oocyte interaction, embryonic development, and implantation. Major adhesion molecules involved in reproduction include cadherins, integrins, and disintegrin and metalloprotease domain-containing (ADAM) proteins. ADAMs on the surface of sperm adhere to integrins on the oocyte in the initial stages of sperm-oocyte interaction and fusion. Cadherins act in early embryos to organize the inner cell mass and trophectoderm. The trophoblast and uterine endometrial epithelium variously express cadherins, integrins, trophinin, and selectin, which achieve apposition and attachment between the elongating conceptus and uterine epithelium before implantation. An overview of the major cell-cell adhesion molecules is presented and this is followed by examples of how adhesion molecules help shape early reproductive events. The argument is made that a deeper understanding of adhesion molecules and reproduction will inform new strategies that improve embryo survival and increase the efficiency of natural mating and assisted breeding in cattle.
Collapse
Affiliation(s)
- Michael J D'Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Luigi Zicarelli
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - José A Visintin
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Pietro S Baruselli
- Department of Animal Reproduction, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
28
|
Molè MA, Weberling A, Zernicka-Goetz M. Comparative analysis of human and mouse development: From zygote to pre-gastrulation. Curr Top Dev Biol 2019; 136:113-138. [PMID: 31959285 DOI: 10.1016/bs.ctdb.2019.10.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Development of the mammalian embryo begins with formation of the totipotent zygote during fertilization. This initial cell is able to give rise to every embryonic tissue of the developing organism as well as all extra-embryonic lineages, such as the placenta and the yolk sac, which are essential for the initial patterning and support growth of the fetus until birth. As the embryo transits from pre- to post-implantation, major structural and transcriptional changes occur within the embryonic lineage to set up the basis for the subsequent phase of gastrulation. Fine-tuned coordination of cell division, morphogenesis and differentiation is essential to ultimately promote assembly of the future fetus. Here, we review the current knowledge of mammalian development of both mouse and human focusing on morphogenetic processes leading to the onset of gastrulation, when the embryonic anterior-posterior axis becomes established and the three germ layers start to be specified.
Collapse
|
29
|
Motegi F, Plachta N, Viasnoff V. Novel approaches to link apicobasal polarity to cell fate specification. Curr Opin Cell Biol 2019; 62:78-85. [PMID: 31731147 DOI: 10.1016/j.ceb.2019.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/19/2019] [Accepted: 09/26/2019] [Indexed: 12/26/2022]
Abstract
Understanding the development of apicobasal polarity (ABP) is a long-standing problem in biology. The molecular components involved in the development and maintenance of APB have been largely identified and are known to have ubiquitous roles across organisms. Our knowledge of the functional consequences of ABP establishment and maintenance is far less comprehensive. Recent studies using novel experimental approaches and cellular models have revealed a growing link between ABP and the genetic program of cell lineage. This mini-review describes some of the most recent advances in this new field, highlighting examples from Caenorhabditis elegans and mouse embryos, human pluripotent stem cells, and epithelial cells. We also speculate on the most interesting and challenging avenues that can be explored.
Collapse
Affiliation(s)
- Fumio Motegi
- Department of Biological Sciences, National University of Singapore, 117583, Singapore; Mechanobiology Institute, National University of Singapore, 117 411, Singapore; Temasek Life-sciences Laboratory, 117604, Singapore; Contributed equally
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, ASTAR, Singapore; Contributed equally
| | - Virgile Viasnoff
- Department of Biological Sciences, National University of Singapore, 117583, Singapore; Mechanobiology Institute, National University of Singapore, 117 411, Singapore; CNRS, 117411, Singapore; Contributed equally.
| |
Collapse
|
30
|
Silva TP, Cotovio JP, Bekman E, Carmo-Fonseca M, Cabral JMS, Fernandes TG. Design Principles for Pluripotent Stem Cell-Derived Organoid Engineering. Stem Cells Int 2019; 2019:4508470. [PMID: 31149014 PMCID: PMC6501244 DOI: 10.1155/2019/4508470] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/12/2019] [Accepted: 02/24/2019] [Indexed: 12/17/2022] Open
Abstract
Human morphogenesis is a complex process involving distinct microenvironmental and physical signals that are manipulated in space and time to give rise to complex tissues and organs. Advances in pluripotent stem cell (PSC) technology have promoted the in vitro recreation of processes involved in human morphogenesis. The development of organoids from human PSCs represents one reliable source for modeling a large spectrum of human disorders, as well as a promising approach for drug screening and toxicological tests. Based on the "self-organization" capacity of stem cells, different PSC-derived organoids have been created; however, considerable differences between in vitro-generated PSC-derived organoids and their in vivo counterparts have been reported. Advances in the bioengineering field have allowed the manipulation of different components, including cellular and noncellular factors, to better mimic the in vivo microenvironment. In this review, we focus on different examples of bioengineering approaches used to promote the self-organization of stem cells, including assembly, patterning, and morphogenesis in vitro, contributing to tissue-like structure formation.
Collapse
Affiliation(s)
- Teresa P. Silva
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - João P. Cotovio
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Evguenia Bekman
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Maria Carmo-Fonseca
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av Prof Egas Moniz, Edificio Egas Moniz, 1649-028 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Lisbon Campus, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
31
|
White MD, Zenker J, Bissiere S, Plachta N. Instructions for Assembling the Early Mammalian Embryo. Dev Cell 2018; 45:667-679. [DOI: 10.1016/j.devcel.2018.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 01/23/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022]
|
32
|
Abstract
At the time of implantation, the mouse blastocyst has developed three cell lineages: the epiblast (Epi), the primitive endoderm (PrE), and the trophectoderm (TE). The PrE and TE are extraembryonic tissues but their interactions with the Epi are critical to sustain embryonic growth, as well as to pattern the embryo. We review here the cellular and molecular events that lead to the production of PrE and Epi lineages and discuss the different hypotheses that are proposed for the induction of these cell types. In the second part, we report the current knowledge about the epithelialization of the PrE.
Collapse
|
33
|
Transcriptional Regulation and Genes Involved in First Lineage Specification During Preimplantation Development. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2018; 229:31-46. [PMID: 29177763 DOI: 10.1007/978-3-319-63187-5_4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The successful development from a single-cell zygote into a complex multicellular organism requires precise coordination of multiple cell-fate decisions. The very first of these is lineage specification into the inner cell mass (ICM) and trophectoderm (TE) during mammalian preimplantation development. In mouse embryos, transcription factors (TFs) such as Oct4, Sox2, and Nanog are enriched in cells of ICM, which gives rise to the fetus and yolk sac. Conversely, TFs such as Cdx2 and Eomes become highly upregulated in TE, which contribute to the placenta. Here, we review the current understanding of key transcriptional control mechanisms and genes responsible for these distinct differences during the first cell lineage specification. In particular, we highlight recent insights gained through advances in genome manipulation, live imaging, single-cell transcriptomics, and loss-of-function studies.
Collapse
|
34
|
|
35
|
Bissiere S, Gasnier M, Alvarez YD, Plachta N. Cell Fate Decisions During Preimplantation Mammalian Development. Curr Top Dev Biol 2017; 128:37-58. [PMID: 29477170 DOI: 10.1016/bs.ctdb.2017.11.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The early mouse embryo offers a phenomenal system to dissect how changes in the mechanisms controlling cell fate are integrated with morphogenetic events at the single-cell level. New technologies based on live imaging have enabled the discovery of dynamic changes in the regulation of single genes, transcription factors, and epigenetic mechanisms directing early cell fate decision in the early embryo. Here, we review recent progress in linking molecular dynamic events occurring at the level of the single cell in vivo, to some of the key morphogenetic changes regulating early mouse development.
Collapse
Affiliation(s)
| | - Maxime Gasnier
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore
| | - Yanina D Alvarez
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Conicet, Buenos Aires, Argentina
| | - Nicolas Plachta
- Institute of Molecular and Cell Biology, A*STAR, Singapore, Singapore; National University of Singapore, Singapore, Singapore.
| |
Collapse
|
36
|
Jukam D, Shariati SAM, Skotheim JM. Zygotic Genome Activation in Vertebrates. Dev Cell 2017; 42:316-332. [PMID: 28829942 PMCID: PMC5714289 DOI: 10.1016/j.devcel.2017.07.026] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/25/2017] [Accepted: 07/28/2017] [Indexed: 12/12/2022]
Abstract
The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features.
Collapse
Affiliation(s)
- David Jukam
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - S Ali M Shariati
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
37
|
Forceful patterning in mouse preimplantation embryos. Semin Cell Dev Biol 2017; 71:129-136. [PMID: 28577924 DOI: 10.1016/j.semcdb.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 12/22/2022]
Abstract
The generation of a functional organism from a single, fertilized ovum requires the spatially coordinated regulation of diverse cell identities. The establishment and precise arrangement of differentiated cells in developing embryos has, historically, been extensively studied by geneticists and developmental biologists. While chemical gradients and genetic regulatory networks are widely acknowledged to play significant roles in embryo patterning, recent studies have highlighted that mechanical forces generated by, and exerted on, embryos are also crucial for the proper control of cell differentiation and morphogenesis. Here we review the most recent findings in murine preimplantation embryogenesis on the roles of cortical tension in the coupling of cell-fate determination and cell positioning in 8-16-cell-stage embryos. These basic principles of mechanochemical coupling in mouse embryos can be applied to other pattern formation phenomena that rely on localized modifications of cell polarity proteins and actin cytoskeletal components and activities.
Collapse
|
38
|
Simunovic M, Brivanlou AH. Embryoids, organoids and gastruloids: new approaches to understanding embryogenesis. Development 2017; 144:976-985. [PMID: 28292844 PMCID: PMC5358114 DOI: 10.1242/dev.143529] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cells have an intrinsic ability to self-assemble and self-organize into complex and functional tissues and organs. By taking advantage of this ability, embryoids, organoids and gastruloids have recently been generated in vitro, providing a unique opportunity to explore complex embryological events in a detailed and highly quantitative manner. Here, we examine how such approaches are being used to answer fundamental questions in embryology, such as how cells self-organize and assemble, how the embryo breaks symmetry, and what controls timing and size in development. We also highlight how further improvements to these exciting technologies, based on the development of quantitative platforms to precisely follow and measure subcellular and molecular events, are paving the way for a more complete understanding of the complex events that help build the human embryo.
Collapse
Affiliation(s)
- Mijo Simunovic
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| | - Ali H Brivanlou
- Laboratory of Stem Cell Biology and Molecular Embryology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|