1
|
Przewoźny S, Rogaliński J, de Mezer M, Markowska A, Markowska J, Żurawski J. Estrogen Receptor (ER) and Progesterone Receptor (PgR) Expression in Endometrial Cancer-An Immunohistochemical Assessment. Diagnostics (Basel) 2024; 14:322. [PMID: 38337838 PMCID: PMC10855223 DOI: 10.3390/diagnostics14030322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Endometrial cancer (EC) is one of the most common types of cancer in Poland and worldwide. Many risk factors lead to the pathogenesis of this disease, such as lifestyle choices, BMI, the medicines used in breast cancer therapy, and Lynch syndrome. EC cells show the expression of estrogen receptors (ERs) and progesterone receptors (PgR). These receptors occur in multiple isoforms and have a significant influence on the operation of cells. The loss of ER and PgR expression is associated with a poor prognosis. We assessed tissue slides that were obtained from 103 women with EC diagnoses of various grades, stages, and histological types. In this study, we used computer image analyses to increase the objectivity of the assessment. We proved that, in the tissue of patients with high-grade (G3) EC, the expression of PgR is significantly lower than that in the tissues of patients with low-grade EC. We also observed that PgR is significantly expressed in EC with a low FIGO stage and in the endometroid type of EC (which rarely becomes malignant compared to serous type). The expression of ERb1 was lower in patients with EC at the IV FIGO stage than in patients with stage III EC. These findings confirm that the loss of ER and PgR expression is connected with a poor prognosis.
Collapse
Affiliation(s)
- Stanisław Przewoźny
- Department of Immunobiology, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Jan Rogaliński
- Department of Immunobiology, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Mateusz de Mezer
- Department of Immunobiology, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| | - Anna Markowska
- Department of Perinatology and Women’s Diseases, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznan, Poland
| | - Jakub Żurawski
- Department of Immunobiology, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland
| |
Collapse
|
2
|
Yan C, Xing C, Wei T, Zhou H, Wang H, Liu T, Gao J. Impact of estrogen and progesterone receptor expression on the incidence of endometrial polyps. Biomark Med 2023; 17:881-887. [PMID: 38230984 DOI: 10.2217/bmm-2023-0411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
Aim: We studied the association of estrogen receptor (ER) and progesterone receptor (PR) with endometrial polyp (EP) formation. Methods: A total of 129 EP patients and an equal number of disease-free women were evaluated for ER and PR expression in endometrial tissues. Correlation with EP incidence was analyzed, as well as diagnostic value via receiver operating characteristic curve. Results: ER expression was higher and PR was lower in patients than in controls (p < 0.01). ER levels positively correlated with EP incidence, and PR negatively (p < 0.01). Receiver operating characteristic curves gave ER an area under the curve of 0.6168 (95% CI: 0.5479-0.6856; p < 0.0001) and PR 0.739 (95% CI: 0.6776-0.8003; p < 0.0001). Conclusion: Imbalance in ER and PR expression associates with EPs formation, offering clinical insights into EP pathology.
Collapse
Affiliation(s)
- Cuiyun Yan
- Department of Anesthesiology, TISCO General Hospital, Taiyuan, Shanxi, 030000, China
| | - Chunping Xing
- Department of Anesthesiology, TISCO General Hospital, Taiyuan, Shanxi, 030000, China
| | - Tao Wei
- Department of Anesthesiology, TISCO General Hospital, Taiyuan, Shanxi, 030000, China
| | - Hui Zhou
- Department of Anesthesiology, TISCO General Hospital, Taiyuan, Shanxi, 030000, China
| | - Hua Wang
- Department of Anesthesiology, TISCO General Hospital, Taiyuan, Shanxi, 030000, China
| | - Tao Liu
- Department of Anesthesiology, TISCO General Hospital, Taiyuan, Shanxi, 030000, China
| | - Jiefang Gao
- Department of Anesthesiology, TISCO General Hospital, Taiyuan, Shanxi, 030000, China
| |
Collapse
|
3
|
Roberson EC, Tran NK, Godambe AN, Mark H, Nguimtsop M, Rust T, Ung E, Barker LJ, Fitch RD, Wallingford JB. Hedgehog signaling is required for endometrial remodeling and myometrial homeostasis in the cycling mouse uterus. iScience 2023; 26:107993. [PMID: 37810243 PMCID: PMC10551904 DOI: 10.1016/j.isci.2023.107993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/24/2023] [Accepted: 09/16/2023] [Indexed: 10/10/2023] Open
Abstract
Decades of work demonstrate that the mammalian estrous cycle is controlled by cycling steroid hormones. However, the signaling mechanisms that act downstream, linking hormonal action to the physical remodeling of the cycling uterus, remain unclear. To address this issue, we analyzed gene expression at all stages of the mouse estrous cycle. Strikingly, we found that several genetic programs well-known to control tissue morphogenesis in developing embryos displayed cyclical patterns of expression. We find that most of the genetic architectures of Hedgehog signaling (ligands, receptors, effectors, and transcription factors) are transcribed cyclically in the uterus, and that conditional disruption of the Hedgehog receptor smoothened not only elicits a failure of normal cyclical thickening of the endometrial lining but also induces aberrant deformation of the uterine smooth muscle. Together, our data shed light on the mechanisms underlying normal uterine remodeling specifically and cyclical gene expression generally.
Collapse
Affiliation(s)
- Elle C. Roberson
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - Ngan Kim Tran
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Anushka N. Godambe
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Harrison Mark
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Michelle Nguimtsop
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Trinity Rust
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - Elizabeth Ung
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - LeCaine J. Barker
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - Rebecca D. Fitch
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Lee SB, Jung SH, Lee H, Lee SM, Jung JE, Kim N, Lee JY. Maternal vitamin D deficiency in early pregnancy and perinatal and long-term outcomes. Heliyon 2023; 9:e19367. [PMID: 37809851 PMCID: PMC10558340 DOI: 10.1016/j.heliyon.2023.e19367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
Background Vitamin D deficiency is common in pregnant women. Some studies have linked vitamin D deficiency to obstetric complications such as gestational hypertension, gestational diabetes, and preterm birth. Therefore, the objective of this study is to investigate the potential impact of vitamin D deficiency during pregnancy on both perinatal and long-term outcomes. Methods In this retrospective study, conducted between 2017 and 2021, we analyzed the data of 1079 singleton pregnant women with no medical or surgical complications prior to pregnancy. We evaluated obstetric and perinatal outcomes, as well as neurodevelopmental outcomes using Bayley-III tests, Gross Motor Function Measure, or chart review. Results The maternal serum vitamin D level in the first trimester was 18.2 ± 9.0 ng/mL. Vitamin D deficiency (<20 ng/mL) was found in 308 (62.0%) women in the first trimester, of which 288 women (26.7%) were in the very deficient group (<10 ng/mL). There were no differences in maternal age, body mass index, and previous preterm birth between the group with vitamin D < 10 ng/mL and ≥10 ng/mL group. There were also no differences in the rates of gestational hypertension, gestational diabetes, and preterm birth between the two groups, except for the rate of preterm birth before 37 weeks of gestation, which was significantly higher in the very deficient group (adjusted odds ratios [aOR] = 7.78, 95%CI [2.23-27.12], p = 0.001). In the very deficient group, the risk of developmental delay was also higher (aOR = 4.28, 95%CI [1.40-13.05], p = 0.011). Conclusions This is the first study to analyze the effects of maternal vitamin D deficiency during pregnancy on both long-term developmental outcomes and perinatal prognosis. Vitamin D deficiency, defined as a level lower than 10 ng/mL in the first trimester, may increase the risk of preterm birth and developmental delay in children.
Collapse
Affiliation(s)
- Soo Bin Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sang Hee Jung
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Hanna Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Sae Mi Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Jae Eun Jung
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Nari Kim
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| | - Ji Yeon Lee
- Department of Obstetrics and Gynecology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, South Korea
| |
Collapse
|
5
|
Arrowsmith S. Multiple pregnancies, the myometrium and the role of mechanical factors in the timing of labour. Curr Res Physiol 2023; 6:100105. [PMID: 38107788 PMCID: PMC10724211 DOI: 10.1016/j.crphys.2023.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/17/2023] [Accepted: 08/23/2023] [Indexed: 12/19/2023] Open
Abstract
Multiple pregnancy remains a relatively common occurrence, but it is associated with increased risks of adverse outcomes for the mother and her babies and presents unique challenges to healthcare providers. This review will briefly discuss multiple pregnancies, their aetiology and their problems, including preterm birth, before reviewing the processes leading to normal labour onset and how they may be different in a multiple pregnancy. The mechanisms by which mechanical factors i.e., uterine distension or 'stretch' contribute to uterine excitability and the timing of labour onset will be the major focus, and how over distention may pre-dispose multiple pregnancies to preterm birth. This includes current thinking around the role of mechano (stretch) sensitive ion channels in the myometrium and changes to other important regulators of excitability and contraction which have been identified from studies using in vitro and in vivo models of uterine stretch. Physiological stimuli arising from the fetus(es) and placenta(s) will also be discussed. In reviewing what we know about the myometrium in multiple pregnancy in humans, the focus will be on twin pregnancy as it is the most common type of multiple pregnancy and has been the most studied.
Collapse
Affiliation(s)
- Sarah Arrowsmith
- Department of Life Sciences, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK
| |
Collapse
|
6
|
Wang J, Xu P, Zou G, Che X, Jiang X, Liu Y, Mao X, Zhang X. Integrating Spatial Transcriptomics and Single-nucleus RNA Sequencing Reveals the Potential Therapeutic Strategies for Uterine Leiomyoma. Int J Biol Sci 2023; 19:2515-2530. [PMID: 37215998 PMCID: PMC10197899 DOI: 10.7150/ijbs.83510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Uterine leiomyoma is the most common gynecological tumor in reproductive women. Tumor-host interface is a complex ecosystem with intimate cell-cell communications and a critical scenario for tumor pathogenesis and progression. The pseudocapsule is the main tumor-host interface of uterine leiomyoma, but its cellular spatial disposition and gene expression are poorly explored. This study mapped the cellular architecture and corresponding gene profiles of the leiomyoma and its surrounding pseudocapsule by integrating spatial transcriptomics and single-nucleus RNA-sequencing at the first time. Here, we reported that estrogen receptor alpha and progesterone receptor mediated the occurrence and development of uterine leiomyoma and that estrogen receptor beta involved in the angiogenesis, which explained the effectiveness of hormonotherapy. Therapeutic targets including ERK1/ERK2 pathway and IGF1-IGF1R were found and might be applied for non-hormonal therapy of uterine leiomyoma. Furthermore, the injection of prostaglandin E2 was initially presented for bleeding control during myomectomy, injection site should be located at the junction between pseudocapsule and leiomyoma, and surrounding pseudocapsule should not be eliminated. Collectively, a single-cell and spatially resolved atlas of human uterine leiomyoma and its surrounding pseudocapsule was established. The results revealed potentially feasible strategies for hormonotherapy, non-hormonal targeted therapy and bleeding control during myomectomy.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China, 310006
| | - Ping Xu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Gen Zou
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xuan Che
- Department of Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang, P.R. China, 314000
| | - Xiaohong Jiang
- Department of Gynecology, Jiaxing University Affiliated Women and Children Hospital, Jiaxing, Zhejiang, P.R. China, 314000
| | - Yuanmeng Liu
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xinqi Mao
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
| | - Xinmei Zhang
- Department of Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, P.R. China, 310006
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China, 310006
| |
Collapse
|
7
|
Meher A. Role of Transcription Factors in the Management of Preterm Birth: Impact on Future Treatment Strategies. Reprod Sci 2022; 30:1408-1420. [PMID: 36131222 DOI: 10.1007/s43032-022-01087-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Preterm birth is defined as the birth of a neonate before 37 weeks of gestation and is considered as a leading cause of the under five deaths of neonates. Neonates born preterm are known to have higher perinatal mortality and morbidity with associated risks of low birth weight, respiratory distress syndrome, gastrointestinal, immunologic, central nervous system, hearing, and vision problems, cerebral palsy, and delayed development. India leads the list of countries with the greatest number of preterm births. The studies focusing on the molecular mechanisms related to the etiology of preterm birth have described the role of different transcription factors. With respect to this, transcription factors like peroxisome proliferator activated receptors (PPAR), nuclear factor kappa β (NF-kβ), nuclear erythroid 2-related factor 2 (Nrf2), and progesterone receptor (PR) are known to be associated with preterm labor. All these transcription factors are linked together with a common cascade involving inflammatory processes. Thus, the current review describes the possible cross-talk between these transcription factors and their therapeutic potential to prevent or manage preterm labor.
Collapse
Affiliation(s)
- Akshaya Meher
- Central Research Laboratory, Dr. Vasantrao Pawar Medical College, Hospital and Research Centre, Nashik, Maharashtra, India, 422003.
| |
Collapse
|
8
|
Goad J, Rudolph J, Zandigohar M, Tae M, Dai Y, Wei JJ, Bulun SE, Chakravarti D, Rajkovic A. Single-cell sequencing reveals novel cellular heterogeneity in uterine leiomyomas. Hum Reprod 2022; 37:2334-2349. [PMID: 36001050 PMCID: PMC9802286 DOI: 10.1093/humrep/deac183] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/29/2022] [Indexed: 01/07/2023] Open
Abstract
STUDY QUESTION What are the cellular composition and single-cell transcriptomic differences between myometrium and leiomyomas as defined by single-cell RNA sequencing? SUMMARY ANSWER We discovered cellular heterogeneity in smooth muscle cells (SMCs), fibroblast and endothelial cell populations in both myometrium and leiomyoma tissues. WHAT IS KNOWN ALREADY Previous studies have shown the presence of SMCs, fibroblasts, endothelial cells and immune cells in myometrium and leiomyomas. However, there is no information on the cellular heterogeneity in these tissues and the transcriptomic differences at the single-cell level between these tissues. STUDY DESIGN, SIZE, DURATION We collected five leiomyoma and five myometrium samples from a total of eight patients undergoing hysterectomy. We then performed single-cell RNA sequencing to generate a cell atlas for both tissues. We utilized our single-cell sequencing data to define cell types, compare cell types by tissue type (leiomyoma versus myometrium) and determine the transcriptional changes at a single-cell resolution between leiomyomas and myometrium. Additionally, we performed MED12-variant analysis at the single-cell level to determine the genotype heterogeneity within leiomyomas. PARTICIPANTS/MATERIALS, SETTING, METHODS We collected five MED12-variant positive leiomyomas and five myometrium samples from a total of eight patients. We then performed single-cell RNA sequencing on freshly isolated single-cell preparations. Histopathological assessment confirmed the identity of the samples. Sanger sequencing was performed to confirm the presence of the MED12 variant in leiomyomas. MAIN RESULTS AND ROLE OF CHANCE Our data revealed previously unknown heterogeneity in the SMC, fibroblast cell and endothelial cell populations of myometrium and leiomyomas. We discovered the presence of two different lymphatic endothelial cell populations specific to uterine leiomyomas. We showed that both myometrium and MED12-variant leiomyomas are relatively similar in cellular composition but differ in cellular transcriptomic profiles. We found that fibroblasts influence the leiomyoma microenvironment through their interactions with endothelial cells, immune cells and SMCs. Variant analysis at the single-cell level revealed the presence of both MED12 variants as well as the wild-type MED12 allele in SMCs of leiomyomatous tissue. These results indicate genotype heterogeneity of cellular composition within leiomyomas. LARGE SCALE DATA The datasets are available in the NCBI Gene Expression Omnibus (GEO) using GSE162122. LIMITATIONS, REASONS FOR CAUTION Our study focused on MED12-variant positive leiomyomas for single-cell RNA sequencing analyses. Leiomyomas carrying other genetic rearrangements may differ in their cellular composition and transcriptomic profiles. WIDER IMPLICATIONS FOR THE FINDINGS Our study provides a cellular atlas for myometrium and MED12-variant positive leiomyomas as defined by single-cell RNA sequencing. Our analysis provides significant insight into the differences between myometrium and leiomyomas at the single-cell level and reveals hitherto unknown genetic heterogeneity in multiple cell types within human leiomyomas. Our results will be important for future studies into the origin and growth of human leiomyomas. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by funding from the National Institute of Child Health and Human Development (HD098580 and HD088629). The authors declare no competing interests.
Collapse
Affiliation(s)
- Jyoti Goad
- Correspondence address. Department of Pathology, HSW-518, 513 Parnassus Ave, San Francisco, CA 94143, USA. Tel: +415-502-4961; E-mail: (A.R.); Tel: +415-514-4687, E-mail: (J.G.)
| | - Joshua Rudolph
- Department of Medicine, Lung Biology Center, University of California, San Francisco, CA, USA
| | - Mehrdad Zandigohar
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew Tae
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, USA
| | - Jian-Jun Wei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Aleksandar Rajkovic
- Correspondence address. Department of Pathology, HSW-518, 513 Parnassus Ave, San Francisco, CA 94143, USA. Tel: +415-502-4961; E-mail: (A.R.); Tel: +415-514-4687, E-mail: (J.G.)
| |
Collapse
|
9
|
Wu SP, Wang T, Yao ZC, Peavey MC, Li X, Zhou L, Larina IV, DeMayo FJ. Myometrial progesterone receptor determines a transcription program for uterine remodeling and contractions during pregnancy. PNAS NEXUS 2022; 1:pgac155. [PMID: 36120506 PMCID: PMC9470376 DOI: 10.1093/pnasnexus/pgac155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/30/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023]
Abstract
The uterine myometrium expands and maintains contractile quiescence before parturition. While the steroid hormone progesterone blocks labor, the role of progesterone signaling in myometrial expansion remains elusive. This study investigated the myometrial functions of the progesterone receptor, PGR. Pgr ablation in mouse smooth muscle leads to subfertility, oviductal embryo retention, and impaired myometrial adaptation to pregnancy. While gross morphology between mutant and control uteri are comparable, mutant uteri manifest a decrease of 76.6% oxytocin-stimulated contractility in a pseudopregnant context with a reduced expression of intracellular calcium homeostasis genes including Pde5a and Plcb4. At mid-pregnancy, the mutant myometrium exhibits discontinuous myofibers and disarrayed extracellular matrix at the conceptus site. Transcriptome of the mutant mid-pregnant uterine wall manifests altered muscle and extracellular matrix profiles and resembles that of late-pregnancy control tissues. A survey of PGR occupancy, H3K27ac histone marks, and chromatin looping annotates cis-acting elements that may direct gene expression of mid-pregnancy uteri for uterine remodeling. Further analyses suggest that major muscle and matrix regulators Myocd and Ccn2 and smooth muscle building block genes are PGR direct downstream targets. Cataloging enhancers that are topologically associated with progesterone downstream genes reveals distinctive patterns of transcription factor binding motifs in groups of enhancers and identifies potential regulatory partners of PGR outside its occupying sites. Finally, conserved correlations are found between estimated PGR activities and RNA abundance of downstream muscle and matrix genes in human myometrial tissues. In summary, PGR is pivotal to direct the molecular program for the uterus to remodel and support pregnancy.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Zheng-Chen Yao
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mary C Peavey
- Department of Obstetrics & Gynecology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Xilong Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Irina V Larina
- Department of Molecular Physiology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
10
|
Progesterone Receptor Signaling in the Uterus Is Essential for Pregnancy Success. Cells 2022; 11:cells11091474. [PMID: 35563781 PMCID: PMC9104461 DOI: 10.3390/cells11091474] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/25/2022] Open
Abstract
The uterus plays an essential role in the reproductive health of women and controls critical processes such as embryo implantation, placental development, parturition, and menstruation. Progesterone receptor (PR) regulates key aspects of the reproductive function of several mammalian species by directing the transcriptional program in response to progesterone (P4). P4/PR signaling controls endometrial receptivity and decidualization during early pregnancy and is critical for the establishment and outcome of a successful pregnancy. PR is also essential throughout gestation and during labor, and it exerts critical roles in the myometrium, mainly by the specialized function of its two isoforms, progesterone receptor A (PR-A) and progesterone receptor B (PR-B), which display distinct and separate roles as regulators of transcription. This review summarizes recent studies related to the roles of PR function in the decidua and myometrial tissues. We discuss how PR acquired key features in placental mammals that resulted in a highly specialized and dynamic role in the decidua. We also summarize recent literature that evaluates the myometrial PR-A/PR-B ratio at parturition and discuss the efficacy of current treatment options for preterm birth.
Collapse
|
11
|
Kadivnik M, Kralik K, Muller-Vranješ A, Vučemilović-Jurić V, Šijanović S, Wagner J. Progesterone receptor genetic variants in pregnant women and fetuses as possible predictors of spontaneous premature birth: A preliminary case-control study. J Obstet Gynaecol Res 2022; 48:1099-1109. [PMID: 35178856 DOI: 10.1111/jog.15194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/24/2022] [Accepted: 02/05/2022] [Indexed: 11/27/2022]
Abstract
AIM To evaluate the roles of four selected genetic variations in fetal and maternal progesterone receptor gene (PGR) and to identify women who may have higher or lower odds for spontaneous premature birth compared to the general population. METHODS A preliminary case-control study with two groups of pregnant women (with term and premature delivery, 218 in total) and two groups of newborns (term and preterm, 218 in total) was performed. Four single nucleotide polymorphisms (SNPs) of the progesterone receptor gene (rs1042838, rs1042839, rs10895068, and rs1942836) were genotyped. RESULTS There was statistically significant difference between cases and controls in the distribution of newborns' allele frequency of minor C allele of the PGR SNP rs1942836 (p = 0.03, Fishers' exact test) in favor of premature birth. A statistically significant difference between the frequency of the mothers' minor T allele of rs1042838 (p = 0.005; chi-squared test) and the mothers' minor T allele of rs1042839 (p = 0.005; chi-squared test) in favor of extremely premature birth has been found. There was a statistically significant difference between the frequency of the newborns' minor C allele of rs1942836 (p = 0.03; chi-squared test) and newborns' heterozygotes CT genotype of rs1942836 (p = 0.03; Fishers' exact test) when comparing the group of term births and the group of early premature birth. CONCLUSION Our study suggests that patients with selected genetic variants of the progesterone receptor gene could have greater odds for premature birth compared to term birth. Replication studies with a larger population and different ethnicity are needed in order to confirm these findings.
Collapse
Affiliation(s)
- Mirta Kadivnik
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, Osijek, Croatia.,Department of Obstetrics and Gynecology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Kristina Kralik
- Department of Medical Statistics and Informatics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Andrijana Muller-Vranješ
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, Osijek, Croatia.,Department of Obstetrics and Gynecology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Valentina Vučemilović-Jurić
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Siniša Šijanović
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, Osijek, Croatia.,Department of Obstetrics and Gynecology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| |
Collapse
|
12
|
Ashour H, Gamal SM, Sadek NB, Rashed LA, Hussein RE, Kamar SS, Ateyya H, Mehesen MN, ShamsEldeen AM. Vitamin D Supplementation Improves Uterine Receptivity in a Rat Model of Vitamin D Deficiency: A Possible Role of HOXA-10/FKBP52 Axis. Front Physiol 2021; 12:744548. [PMID: 34899377 PMCID: PMC8655728 DOI: 10.3389/fphys.2021.744548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/03/2022] Open
Abstract
Synchronized uterine receptivity with the time of implantation is crucial for pregnancy continuity. Vitamin D (VD) deficiency has been linked to the failure of implantation. Therefore, we tested the link between the Homeobox transcription factor-10/immunophilin FK506-binding protein 52 (HOXA-10/FKBP52) axis and the uterine receptivity in VD-deficient rats. The effect of VD supplementation at different doses was also investigated. Forty-eight pregnant rats were divided into six groups (eight/group); normal control rats fed with standard chow (control), control rats supplemented with VD (equivalent dose of 400 IU/day) (control-D400). VD-deficient group (DEF) and the three VD deficiency groups with VD supplementation were equivalent to 400, 4,000, and 10,000 IU/day (DEF-D400, DEF-D4000, and DEF-D10000, respectively). The expression levels of HOXA-10/FKBP52, progesterone level, and histological evaluation of decidualization using osteopontin (OSN) and progesterone receptor (PGR) were estimated. An assessment of the uterine contractility was conducted for all rats. This study showed the downregulation of HOXA-10/FKBP52 together with increased amplitude and frequency of the uterine contractility in the DEF group compared to control. VD dose-dependent supplementation restored progesterone/receptor competency, upregulated the expressional response of HOXA-10 and its downstream FKBP52, and improved uterine receptivity and endometrial decidualization at the time of implantation that was documented by increased area% of OSN and the number of implantation beads.
Collapse
Affiliation(s)
- Hend Ashour
- Department of Physiology, Faculty of Medicine, King Khalid University, Abha, Saudi Arabia
- Department of Physiology, Kasralainy Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sara Mahmoud Gamal
- Department of Physiology, Kasralainy Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nermeen Bakr Sadek
- Department of Physiology, Kasralainy Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry and Molecular Biology, Kasralainy Faculty of Medicine, Cairo University, Giza, Egypt
| | - Rania Elsayed Hussein
- Department of Biochemistry and Molecular Biology, Kasralainy Faculty of Medicine, Cairo University, Giza, Egypt
| | - Samaa Samir Kamar
- Department of Histology and Cell Biology, Kasralainy Faculty of Medicine, Cairo University, Giza, Egypt
- Armed Forces College of Medicine, Cairo, Egypt
| | - Hayam Ateyya
- Department of Pharmacy Practice and Clinical Pharmacy, Faculty of Pharmacy, Future University in Egypt, Cairo, Egypt
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Marwa Nagi Mehesen
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
13
|
Yang H, Fu L, Luo Q, Li L, Zheng F, Wen J, Luo X, Li C, Zhao Z, Xu H, Wang G. Comparative analysis of differentially expressed miRNAs related to uterine involution in the ovine ovary and uterus. Arch Anim Breed 2021; 64:167-175. [PMID: 34084915 PMCID: PMC8161056 DOI: 10.5194/aab-64-167-2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/26/2021] [Indexed: 11/11/2022] Open
Abstract
To examine the possible miRNA molecular regulatory mechanisms during maternal uterine involution after delivery, we selected ovary and uterus tissues that are structurally connected as experimental materials. We employed Illumina HiSeq sequencing to screen and analyze the quantity and characteristics of miRNA in postpartum ewes in the methylergometrine-treated group and physiological saline control group. Results showed that 16 miRNAs were identified in the ovary libraries, including 4 known miRNAs and 12 novel miRNAs. In the uterus libraries, 54 miRNAs were identified, which included 5 known miRNAs and 49 novel miRNAs. At the same time, target gene prediction, GO annotation, and KEGG signaling pathway enrichment analysis were employed. We found that maternal uterine involution after delivery may involve two miRNA-target gene pairs, i.e., miRNA-200a-ZEB1 and YAP1. The YAP1/Hippo signaling pathway is used to construct an ovary-uterine axial regulatory mechanism to regulate the restoration of postpartum maternal uterine morphology and function. In view of this, the identification of miRNAs with significant differences in this study fills a gap in research on miRNAs associated with regulation of postpartum uterine recovery in ewes and provided an important reference for comprehensive understanding and in-depth research on the regulatory molecular network mechanism for postpartum uterine involution in small ruminants.
Collapse
Affiliation(s)
- Heng Yang
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Rongchang 402460, Chongqing, China
| | - Lin Fu
- Chongqing academy of animal sciences, Rongchang 402460, Chongqing, China
| | - Qifeng Luo
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Licai Li
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Fangling Zheng
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Jiayu Wen
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Xingxiu Luo
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Chenjing Li
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Huihao Xu
- College of Veterinary Medicine, Southwest University, Rongchang 402460, Chongqing, China
| | - Gaofu Wang
- Chongqing academy of animal sciences, Rongchang 402460, Chongqing, China
| |
Collapse
|
14
|
Khader N, Shchuka VM, Shynlova O, Mitchell JA. Transcriptional control of parturition: insights from gene regulation studies in the myometrium. Mol Hum Reprod 2021; 27:gaab024. [PMID: 33823545 PMCID: PMC8126590 DOI: 10.1093/molehr/gaab024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/09/2021] [Indexed: 12/19/2022] Open
Abstract
The onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for foetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e. myometrium) undergo a transition from quiescent to contractile phenotypes. Here, we present the current understanding of the roles transcription factors play in critical labour-associated gene expression changes as part of the molecular mechanistic basis for this transition. Consideration is given to both transcription factors that have been well-studied in a myometrial context, i.e. activator protein 1, progesterone receptors, oestrogen receptors, and nuclear factor kappa B, as well as additional transcription factors whose gestational event-driving contributions have been demonstrated more recently. These transcription factors may form pregnancy- and labour-associated transcriptional regulatory networks in the myometrium to modulate the timing of labour onset. A more thorough understanding of the transcription factor-mediated, labour-promoting regulatory pathways holds promise for the development of new therapeutic treatments that can be used for the prevention of preterm labour in at-risk women.
Collapse
Affiliation(s)
- Nawrah Khader
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Virlana M Shchuka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Oksana Shynlova
- Lunenfeld Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics & Gynaecology, University of Toronto, ON, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
15
|
Guerra DD, Bok R, Breen K, Vyas V, Jiang H, MacLean KN, Hurt KJ. Estrogen Regulates Local Cysteine Metabolism in Mouse Myometrium. Reprod Sci 2021; 28:79-90. [PMID: 32820455 DOI: 10.1007/s43032-020-00284-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/02/2020] [Indexed: 02/07/2023]
Abstract
Sulfur amino acid metabolism influences reproductive physiology, and transsulfuration in particular may be critical for normal cellular function. The sex hormone estrogen (E2) modulates gene expression and redox balance in some tissues by inducing the transsulfuration enzymes cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE). The role of sex hormones in sulfur amino acid metabolism by uterine smooth muscle is not known. Here, we show that CBS and CSE proteins increase in the mouse myometrium during estrus and diestrus, respectively, suggesting that E2 reciprocally regulates myometrial CBS and CSE expression. In ovariectomized mice, exogenous E2 upregulates CBS and downregulates CSE levels. E2 promotes CBS mRNA and protein expression but attenuates CSE protein expression without affecting CSE mRNA. This pattern of E2-stimulated changes in transsulfuration enzyme expression is specific to the uterine smooth muscle. E2 does not change vaginal or cervical expression of CBS or CSE significantly, and E2 decreases expression of CSE in the liver without affecting CBS. E2 also downregulates myometrial cysteinesulfinic acid decarboxylase (CSAD) and decreases myometrial biochemical synthesis of the gaso-transmitter hydrogen sulfide (H2S). These findings suggest that myometrial sulfur amino acid metabolism may regulate uterine redox homeostasis, with implications for the source and metabolism of myometrial cysteine in high E2 states such as estrus and pregnancy.
Collapse
Affiliation(s)
- Damian D Guerra
- Department of Biology , University of Louisville , 2301 South 3rd Street, Louisville, Kentucky, 40292, USA
| | - Rachael Bok
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Kelsey Breen
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Vibhuti Vyas
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Hua Jiang
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - Kenneth N MacLean
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA
| | - K Joseph Hurt
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Aurora, CO, 80045, USA.
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, Mail Stop 8613, Aurora, CO, 80045, USA.
| |
Collapse
|
16
|
Rokas A, Mesiano S, Tamam O, LaBella A, Zhang G, Muglia L. Developing a theoretical evolutionary framework to solve the mystery of parturition initiation. eLife 2020; 9:e58343. [PMID: 33380346 PMCID: PMC7775106 DOI: 10.7554/elife.58343] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Eutherian mammals have characteristic lengths of gestation that are key for reproductive success, but relatively little is known about the processes that determine the timing of parturition, the process of birth, and how they are coordinated with fetal developmental programs. This issue remains one of biology's great unsolved mysteries and has significant clinical relevance because preterm birth is the leading cause of infant and under 5 year old child mortality worldwide. Here, we consider the evolutionary influences and potential signaling mechanisms that maintain or end pregnancy in eutherian mammals and use this knowledge to formulate general theoretical evolutionary models. These models can be tested through evolutionary species comparisons, studies of experimental manipulation of gestation period and birth timing, and human clinical studies. Understanding how gestation time and parturition are determined will shed light on this fundamental biological process and improve human health through the development of therapies to prevent preterm birth.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, United States
| | - Ortal Tamam
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben Gurion University, Beer Sheva, Israel
| | - Abigail LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, United States
| | - Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics. University of Cincinnati College of Medicine, Cincinnati, United States
| | - Louis Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center and Department of Pediatrics. University of Cincinnati College of Medicine, Cincinnati, United States
- Burroughs Wellcome Fund, Research Triangle Park, Durham, United States
| |
Collapse
|
17
|
Marquardt RM, Lee K, Kim TH, Lee B, DeMayo FJ, Jeong JW. Interleukin-13 receptor subunit alpha-2 is a target of progesterone receptor and steroid receptor coactivator-1 in the mouse uterus†. Biol Reprod 2020; 103:760-768. [PMID: 32558878 DOI: 10.1093/biolre/ioaa110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
The endometrium, composed of epithelial and stromal cell compartments, is tightly regulated by the ovarian steroid hormones estrogen (E2) and progesterone (P4) during early pregnancy. Through the progesterone receptor (PGR), steroid receptor coactivators, and other transcriptional coregulators, progesterone inhibits E2-induced cell proliferation and induces the differentiation of stromal cells in a process called decidualization to promote endometrial receptivity. Although interleukin-13 receptor subunit alpha-2 (Il13ra2) is expressed in the human and mouse endometrium, its potential role in the steroid hormone regulation of the endometrium has not been thoroughly examined. In this study, we employed PGR knockout mice and steroid receptor coactivator-1 knockout mice (SRC-1-/-) to profile the expression of Il13ra2 in the murine endometrium and determine the role of these transcriptional regulators in the hormone-responsiveness of Il13ra2 expression. Furthermore, we utilized a well-established decidualization-inducing steroidogenic cocktail and a siRNA-based knockdown of IL13RA2 to determine the importance of IL13RA2 in the decidualization of primary human endometrial stromal cells. Our findings demonstrate that Il13ra2 is expressed in the subepithelial stroma of the murine endometrium in response to ovarian steroid hormones and during early pregnancy in a PGR- and SRC-1-dependent manner. Furthermore, we show that knockdown of IL13RA2 before in vitro decidualization of primary human endometrial stromal cells partially compromises the full decidualization response. We conclude that Il13ra2 is a downstream target of progesterone through PGR and SRC-1 and plays a role in mediating the stromal action of ovarian steroid hormones.
Collapse
Affiliation(s)
- Ryan M Marquardt
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Cell and Molecular Biology Program, Michigan State University, East Lansing, MI, USA
| | - Kevin Lee
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, USA
| | - Tae Hoon Kim
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| | - Brandon Lee
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA.,Program of Neuroscience, Bowdoin College, Brunswick, ME, USA
| | - Francesco J DeMayo
- Reproductive and Development Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, College of Human Medicine, Grand Rapids, MI, USA
| |
Collapse
|
18
|
Yaw AM, Duong TV, Nguyen D, Hoffmann HM. Circadian rhythms in the mouse reproductive axis during the estrous cycle and pregnancy. J Neurosci Res 2020; 99:294-308. [PMID: 32128870 DOI: 10.1002/jnr.24606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/17/2020] [Accepted: 02/12/2020] [Indexed: 12/26/2022]
Abstract
Molecular and behavioral timekeeping is regulated by the circadian system which includes the brain's suprachiasmatic nucleus (SCN) that translates environmental light information into neuronal and endocrine signals aligning peripheral tissue rhythms to the time of day. Despite the critical role of circadian rhythms in fertility, it remains unexplored how circadian rhythms change within reproductive tissues during pregnancy. To determine how estrous cycle and pregnancy impact phase relationships of reproductive tissues, we used PER2::Luciferase (PER2::LUC) circadian reporter mice and determined the time of day of PER2::LUC peak (phase) in the SCN, pituitary, uterus, and ovary. The relationships between reproductive tissue PER2::LUC phases changed throughout the estrous cycle and late pregnancy and were accompanied by changes to PER2::LUC period in the SCN, uterus, and ovary. To determine if the phase relationship adaptations were driven by sex steroids, we asked if progesterone, a hormone involved in estrous cyclicity and pregnancy, could regulate Per2-luciferase expression. Using an in vitro transfection assay, we found that progesterone increased Per2-luciferase expression in immortalized SCN (SCN2.2) and arcuate nucleus (KTAR) cells. In addition, progesterone shortened PER2::LUC period in ex vivo uterine tissue recordings collected during pregnancy. As progesterone dramatically increases during pregnancy, we evaluated wheel-running patterns in PER2::LUC mice. We confirmed that activity levels decrease during pregnancy and found that activity onset was delayed. Although SCN, but not arcuate nucleus, PER2::LUC period changed during late pregnancy, onset of locomotor activity did not correlate with SCN or arcuate nucleus PER2::LUC period.
Collapse
Affiliation(s)
- Alexandra M Yaw
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Thu V Duong
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Duong Nguyen
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| | - Hanne M Hoffmann
- Department of Animal Science and the Reproductive and Developmental Science Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
19
|
Abstract
Pregnancy is a complex process that involves crosstalk among multiple cell types in both the endometrial and myometrial compartments at the maternal side to support the fetus. Genetic engineered mouse models have served as a major platform to dissect the convolute genetic interactions in a physiological context. Combining with various applications of next generation sequencing and genome editing, functional assays by mouse models have expanded the spectrum to include both coding and noncoding genome. The present review will highlight recent findings that are primarily based on studies of mouse models with emphasis on pathways for endometrial receptivity and myometrial contraction. Emerging novel technologies that may advance the research in these two aspects will also be discussed.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Olivia M Emery
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709
| |
Collapse
|
20
|
Wu SP, Anderson ML, Wang T, Zhou L, Emery OM, Li X, DeMayo FJ. Dynamic transcriptome, accessible genome, and PGR cistrome profiles in the human myometrium. FASEB J 2019; 34:2252-2268. [PMID: 31908010 DOI: 10.1096/fj.201902654r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 02/04/2023]
Abstract
The myometrium undergoes structural and functional remodeling during pregnancy. We hypothesize that myometrial genomic elements alter correspondingly in preparation for parturition. Human myometrial tissues from nonpregnant (NP) and term pregnant (TP) human subjects were examined by RNAseq, ATACseq, and PGR ChIPseq assays to profile transcriptome, assessible genome, and PGR occupancy. NP and TP specimens exhibit 2890 differentially expressed genes, reflecting an increase of metabolic, inflammatory, and PDGF signaling, among others, in adaptation to pregnancy. At the epigenome level, patterns of accessible genome change between NP and TP myometrium, leading to the altered enrichment of binding motifs for hormone and muscle regulators such as the progesterone receptor (PGR), Krüppel-like factors, and MEF2A transcription factors. PGR genome occupancy exhibits a significant difference between the two stages of the myometrium, concomitant with distinct transcriptomic profiles including genes such as ENO1, LHDA, and PLCL1 in the glycolytic and calcium signaling pathways. Over-representation of SRF, MYOD, and STAT binding motifs in PGR occupying sites further suggests interactions between PGR and major muscle regulators for myometrial gene expression. In conclusion, changes in accessible genome and PGR occupancy are part of the myometrial remodeling process and may serve as mechanisms to formulate the state-specific transcriptome profiles.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Matthew L Anderson
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine and Moffitt Cancer Center, Tampa, FL
| | - Tianyuan Wang
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Lecong Zhou
- Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Olivia M Emery
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Xilong Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX
| | - Francesco J DeMayo
- Reproductive & Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| |
Collapse
|
21
|
Hai L, Szwarc MM, He B, Lonard DM, Kommagani R, DeMayo FJ, Lydon JP. Uterine function in the mouse requires speckle-type poz protein. Biol Reprod 2019; 98:856-869. [PMID: 29546395 DOI: 10.1093/biolre/ioy060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/06/2018] [Indexed: 12/19/2022] Open
Abstract
Speckle-type poz protein (SPOP) is an E3-ubiquitin ligase adaptor for turnover of a diverse number of proteins involved in key cellular processes such as chromatin remodeling, transcriptional regulation, and cell signaling. Genomic analysis revealed that SPOP somatic mutations are found in a subset of endometrial cancers, suggesting that these mutations act as oncogenic drivers of this gynecologic malignancy. These studies also raise the question as to the role of wild-type SPOP in normal uterine function. To address this question, we generated a mouse model (Spopd/d) in which SPOP is ablated in uterine cells that express the PGR. Fertility studies demonstrated that SPOP is required for embryo implantation and for endometrial decidualization. Molecular analysis revealed that expression levels of the PGR at the protein and transcript level are significantly reduced in the Spopd/d uterus. While this result was unexpected, this finding explains in part the dysfunctional phenotype of the Spopd/d uterus. Moderate increased levels of the ESR1, GATA2, and SRC2 were detected in the Spopd/d uterus, suggesting that SPOP is required to maintain the proteome for normal uterine function. With age, the Spopd/d endometrium exhibits large glandular cysts with foci of epithelial proliferation, further supporting a role for SPOP in maintaining a healthy uterus. Collectively, studies on the Spopd/d mouse support an important role for SPOP in normal uterine function and suggest that this mouse model may prove useful to study the role of SPOP-loss-of-function mutations in the etiopathogenesis of endometrial cancer.
Collapse
Affiliation(s)
- Lan Hai
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Maria M Szwarc
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Bin He
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Ramakrishna Kommagani
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
22
|
Shah NM, Lai PF, Imami N, Johnson MR. Progesterone-Related Immune Modulation of Pregnancy and Labor. Front Endocrinol (Lausanne) 2019; 10:198. [PMID: 30984115 PMCID: PMC6449726 DOI: 10.3389/fendo.2019.00198] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/11/2019] [Indexed: 12/17/2022] Open
Abstract
Pregnancy involves a complex interplay between maternal neuroendocrine and immunological systems in order to establish and sustain a growing fetus. It is thought that the uterus at pregnancy transitions from quiescent to laboring state in response to interactions between maternal and fetal systems at least partly via altered neuroendocrine signaling. Progesterone (P4) is a vital hormone in maternal reproductive tissues and immune cells during pregnancy. As such, P4 is widely used in clinical interventions to improve the chance of embryo implantation, as well as reduce the risk of miscarriage and premature labor. Here we review research to date that focus on the pathways through which P4 mediates its actions on both the maternal reproductive and immune system. We will dissect the role of P4 as a modulator of inflammation, both systemic and intrinsic to the uterus, during human pregnancy and labor.
Collapse
Affiliation(s)
- Nishel M. Shah
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Pei F. Lai
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Nesrina Imami
- Department of Medicine, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| | - Mark R. Johnson
- Department of Surgery and Cancer, Chelsea and Westminster Hospital, Imperial College London, London, United Kingdom
| |
Collapse
|
23
|
Boelig RC, Della Corte L, Ashoush S, McKenna D, Saccone G, Rajaram S, Berghella V. Oral progesterone for the prevention of recurrent preterm birth: systematic review and metaanalysis. Am J Obstet Gynecol MFM 2019; 1:50-62. [PMID: 31172132 PMCID: PMC6547359 DOI: 10.1016/j.ajogmf.2019.03.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
OBJECTIVE DATA The purpose of this study was to perform a systematic review and metaanalysis of randomized controlled trials on oral progesterone compared with placebo or other interventions for preterm birth prevention in singleton pregnancies with previous spontaneous preterm birth. The primary outcome was preterm birth at <37 weeks gestation; the secondary outcomes included preterm birth rate at <34 weeks gestation, neonatal morbidity/death, and maternal side-effects. STUDY Searches were performed in PubMed, Scopus, ClinicalTrials.gov, PROSPERO, EMBASE, and the Cochrane Register with the use of a combination of words related to "preterm birth," "preterm delivery," "progesterone," "progestogens," and "oral" from inception of each database to April 2018. Additionally, systematic reviews on progesterone for preterm birth prevention that were identified in our search were also reviewed for additional studies. We included all randomized trials of asymptomatic singleton gestations with previous spontaneous singleton preterm birth that had been randomized to prophylactic treatment with oral progesterone vs placebo, no treatment, or other preterm birth intervention. Exclusion criteria included quasirandomized trials, trials that involved women with preterm labor/membrane rupture at the time of randomization or multiple gestations. STUDY APPRAISAL AND SYNTHESIS METHODS The risk of bias and quality of evidence were assessed for each study. All analyses were done with an intention-to-treat approach. The primary outcome was incidence of preterm birth at <37 weeks gestation; the secondary outcomes included preterm birth at <34 and <28 weeks gestation, maternal adverse events, maternal serum progesterone level, and neonatal morbidity and death. Summary measures were reported as relative risk or mean difference. I2 >30% was used to identify heterogeneity. RESULTS The search strategy identified 79 distinct studies. Three trials on oral progesterone vs placebo (involved 386 patients: 196 in oral progesterone and 190 in placebo) met the inclusion criteria; there were no studies on oral progesterone vs other intervention that met inclusion criteria. Metaanalysis demonstrated a significantly decreased risk of preterm birth at <37 weeks gestation (42% vs 63%; P=.0005; relative risk, 0.68; 95% confidence interval, 0.55-0.84), preterm birth at <34 weeks gestation (29% vs 53%; P<.00001; relative risk, 0.55; 95% confidence interval, 0.43-0.71), and increased gestational age of delivery (mean difference, 1.71 weeks; 95% confidence interval, 1.11-2.30) with oral progesterone compared with placebo. There was a significantly lower rate of perinatal death (5% vs 17%; P=.001; relative risk 0.32; 95% confidence interval, 0.16-0.63), neonatal intensive care admission (relative risk, 0.39; 95% confidence interval, 0.25-0.61), respiratory distress syndrome (relative risk, 0.21; 95% confidence interval, 0.05-0.93), and higher birthweight (mean difference, 435.06 g; 95% confidence interval, 324.59-545.52) with oral progesterone. There was a higher rate of maternal adverse effects with oral progesterone that included dizziness (relative risk, 2.95; 95% confidence interval, 1.47-5.90), somnolence (relative risk, 2.06; 95% confidence interval, 1.29-3.30), and vaginal dryness (relative risk, 2.37; 95% confidence interval, 1.10-5.11); no serious adverse effects were noted. CONCLUSION Oral progesterone appears to be effective for the prevention of recurrent preterm birth and a reduction in perinatal morbidity and mortality rates in asymptomatic singleton gestations with a history of previous spontaneous preterm birth compared with placebo. There were also increased adverse effects with oral progesterone therapy compared with placebo, although none were serious. Further randomized study on oral progesterone compared with other established therapies for the prevention of recurrent preterm birth are warranted.
Collapse
Affiliation(s)
- Rupsa C Boelig
- Maternal Fetal Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Luigi Della Corte
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Sherif Ashoush
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - David McKenna
- Maternal Fetal Medicine, Wright State University, Dayton, OH
| | - Gabriele Saccone
- Department of Neuroscience, Reproductive Sciences and Dentistry, University of Naples Federico II, Naples, Italy
| | - Shalini Rajaram
- Department of Obstetrics and Gynecology, University College of Medical Sciences & Guru Teg Bahadur Hospital, Delhi, India
| | | |
Collapse
|
24
|
Alvites-Misajel K, García-Gutiérrez M, Miranda-Rodríguez C, Ramos-Escudero F. Organically vs conventionally-grown dark and white chia seeds ( Salvia hispanica L.): fatty acid composition, antioxidant activity and techno-functional properties. GRASAS Y ACEITES 2019. [DOI: 10.3989/gya.0462181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effects of organic and conventional crop systems on chemical composition, antioxidant activity and functional properties were evaluated in white and dark chia (Salvia hispanica L.) seeds. The organic system reduced the total protein content, and increased the total carbohydrates but did not change polyunsaturated fatty acids, total phenolic or flavonoids. Organic white chia seeds showed the best techno-functional properties. The antioxidant capacity of chia extracts varied in relation to the chemical complexity and differential rate kinetics of different assays. Extractable total phenolic acids and antioxidant capacity were better in organic white chia seeds. In this first approach, we have demonstrated that the organic white chia seed has a better total antioxidant capacity measured by direct quencher approaches than its conventionally-grown counterpart. To summarize, we conclude that the organic white chia seed could be a dietary source of antioxidants with a potential to promote health benefits in systemic functions and/or microbiota and the use of its techno-functional properties for the food industry.
Collapse
|
25
|
Tadotsu D, Kawate N, Tamada H. Rescue of the fetal damage associated with high intrauterine pressure by 17β-estradiol injection in ovariectomized progesterone-treated pregnant mice. Endocr J 2018; 65:1219-1224. [PMID: 30232307 DOI: 10.1507/endocrj.ej18-0302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The present study examined the effects of progesterone (P) and 17β-estradiol (E2) on fetal damage and intrauterine pressure in ovariectomized pregnant mice. The mice were ovariectomized on gestational day (GD) 9 (copulation plug = GD 0), and daily subcutaneous injection of various doses of P (2, 3 or 4 mg) or 4 mg P plus E2 (0.05 or 0.1 μg) was given thereafter. Although P alone increased percentage of normal fetuses on GD 17 dose-dependently, fetal injury with edematous hematomata on their extremities was frequently observed. In the group treated with 4 mg P, the injured fetus was found at the highest percentage (18%) and intrauterine pressure was significantly higher than that in intact pregnant mice (controls). No injured fetus on GD 17 was found by the treatment with 4 mg P plus 0.05 or 0.1 μg E2, and the treatments decreased the intrauterine pressure to the level of controls. Percentage of normal fetuses in the ovariectomized mice treated with 4 mg P plus 0.05 μg E2 was similar to that of controls, while that in the ovariectomized mice treated with 4 mg P plus 0.1 μg E2 markedly decreased. The results suggest that estrogen decreases intrauterine pressure to defend fetal damage in ovariectomized P-treated mice, and a high estrogen level interrupted pregnancy while keeping this estrogen action.
Collapse
Affiliation(s)
- Daisuke Tadotsu
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Noritoshi Kawate
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| | - Hiromichi Tamada
- Department of Advanced Pathobiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka 598-8531, Japan
| |
Collapse
|
26
|
Abstract
This article is a comprehensive review of diabetic gastroparesis, defined as delayed or disordered gastric emptying, including basic principles and current trends in management. This review includes sections on anatomy and physiology, diagnosis and differential diagnosis as well as management and current guidelines for treatment of diabetic gastroparesis. Diabetic gastroparesis (DGp) is a component of autonomic neuropathy resulting from long-standing poorly controlled type 1 and type 2 diabetes. The diagnostic workup of DGp first excludes obstruction and other causes including medications that may mimic delayed/disordered gastric emptying. Targeting nutrition, hydration, symptomatic relief and glycemic control are mainstays of treatment for DGp. Additionally, optimal treatment of DGp includes good glycemic management, often involving customizing insulin delivery using basal-bolus insulin and technology, including sensor-augmented pumps and continuous glucose monitoring systems. Prokinetic medications may be helpful in DGp symptoms, although only limited number of medications is currently available in the USA. Selected medication-refractory patients with DGp may benefit from gastric neuromodulation, and some from surgical interventions including pyloric therapies that can also be done endoscopically. As is true of any of the diabetic complications, prevention of DGp by early and optimal glycemic control is more cost-effective.Funding: Hansa Medcell, India.
Collapse
Affiliation(s)
- Sathya Krishnasamy
- Division of Endocrinology, Metabolism, and Diabetes, University of Louisville, Louisville, KY, USA
| | - Thomas L Abell
- Division of Gastroenterology, Hepatology, and Nutrition, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
27
|
Wu SP, Li R, DeMayo FJ. Progesterone Receptor Regulation of Uterine Adaptation for Pregnancy. Trends Endocrinol Metab 2018; 29:481-491. [PMID: 29705365 PMCID: PMC6004243 DOI: 10.1016/j.tem.2018.04.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/01/2018] [Accepted: 04/03/2018] [Indexed: 01/01/2023]
Abstract
Progesterone acts through the progesterone receptor to direct physiological adaption of the uterus in preparation and completion of pregnancy. Genome-wide transcriptome and cistrome analyses have uncovered new members and novel modifiers of the progesterone signaling pathway. Genetically engineered mice allow functional assessment of newly identified genes in vivo and provide insights on the impact of progesterone receptor-dependent molecular mechanisms on pregnancy at the organ system level. Progesterone receptor isoforms collectively mediate progesterone signaling via their distinct and common downstream target genes, which makes the stoichiometry of isoforms relevant in modifying the progesterone activity. This review discusses recent advances on the discovery of the progesterone receptor network, with special focus on the endometrium at early pregnancy and myometrium during parturition.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Rong Li
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA
| | - Francesco J DeMayo
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
28
|
Kawarai Y, Tanaka H, Kobayashi T, Shozu M. Progesterone as a Postnatal Prophylactic Agent for Encephalopathy Caused by Prenatal Hypoxic Ischemic Insult. Endocrinology 2018; 159:2264-2274. [PMID: 29648595 PMCID: PMC5946846 DOI: 10.1210/en.2018-00148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
Abstract
Brain damage caused by hypoxic ischemic insult during the perinatal period causes hypoxic ischemic encephalopathies (HIEs). Therapeutic hypothermia is indicated for HIE, but because the therapeutic burden is large for its limited therapeutic effectiveness, another strategy is needed. Progesterone (P4) plays a neuroprotective role through the actions of its metabolite, allopregnanolone (Allo), on P4 receptor, γ-aminobutyric acid type A receptors or both. We examined the therapeutic potential of P4 using a newborn rat model of HIE. Fetal rats were exposed to transient ischemic hypoxia by 30-minute bilateral uterine artery clamping on gestational day 18. After spontaneous birth, newborn pups were subcutaneously injected with P4 (0.10 or 0.01 mg), medroxyprogesterone acetate (MPA; 0.12 mg), or Allo (0.10 mg) through postnatal days (PDs) 1 to 9. Brain damage in the rats was assessed using the rotarod test at PD50. The HIE insult reduced the rats' ability in the rotarod task, which was completely reversed by P4 and Allo, but not by MPA. Histological examination revealed that the HIE insult decreased neuronal (the cortex and the hippocampal CA1 region) and oligodendroglial cell density (the corpus callosum) through PD0 to PD50. The axon fiber density and myelin sheath thickness in the corpus callosum were also reduced at PD50. The time-course study revealed that P4 restored oligodendroglial cells by PD5, which was followed by neuroprotective action of P4 that lasted long over the injection period. These results suggest that P4 protects the neonatal brain from HIE insult via restoration of oligodendroglial cells.
Collapse
Affiliation(s)
- Yoshimasa Kawarai
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hirokazu Tanaka
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Obstetrics and Gynecology, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Tatsuya Kobayashi
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Makio Shozu
- Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
- Correspondence: Makio Shozu, MD, PhD, Department of Reproductive Medicine, Graduate School of Medicine, Chiba University, Japan, 1-8-1 Inohana, Chuo-ku, Chiba-shi, Chiba 260-8670, Japan. E-mail:
| |
Collapse
|
29
|
Intrauterine inflammatory activation, functional progesterone withdrawal, and the timing of term and preterm birth. J Reprod Immunol 2018; 125:89-99. [DOI: 10.1016/j.jri.2017.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 12/17/2017] [Accepted: 12/21/2017] [Indexed: 01/19/2023]
|