1
|
Teufel R. Oxygen-transfer reactions by enzymatic flavin-N 5 oxygen adducts-Oxidation is not a must. Curr Opin Chem Biol 2024; 80:102464. [PMID: 38739969 DOI: 10.1016/j.cbpa.2024.102464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/16/2024]
Abstract
Flavoenzymes catalyze numerous redox reactions including the transfer of an O2-derived oxygen atom to organic substrates, while the other one is reduced to water. Investigation of some of these monooxygenases led to a detailed understanding of their catalytic cycle, which involves the flavin-C4α-(hydro)peroxide as hallmark oxygenating species, and newly discovered flavoprotein monooxygenases were generally assumed to operate similarly. However, discoveries in recent years revealed a broader mechanistic versatility, including enzymes that utilize flavin-N5 oxygen adducts for catalysis in the form of the flavin-N5-(hydro)peroxide and the flavin-N5-oxide species. In this review, I will highlight recent developments in that area, including noncanonical flavoenzymes from natural product biosynthesis and sulfur metabolism that provide first insights into the chemical properties of these species. Remarkably, some enzymes may even combine the flavin-N5-peroxide and the flavin-N5-oxide species for consecutive oxygen-transfers to the same substrate and thereby in essence operate as dioxygenases.
Collapse
Affiliation(s)
- Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
2
|
Baratto MC, Pogni R. Special Issue on Biotechnological Applications of Oxidoreductases. Int J Mol Sci 2024; 25:1758. [PMID: 38339033 PMCID: PMC10855645 DOI: 10.3390/ijms25031758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
This Special Issue was launched in conjunction with the 10th edition of the OxiZymes meeting in Siena (Italy) in 2022 [...].
Collapse
Affiliation(s)
| | - Rebecca Pogni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy;
| |
Collapse
|
3
|
Khan MW, Murali A. Normal mode analysis and comparative study of intrinsic dynamics of alcohol oxidase enzymes from GMC protein family. J Biomol Struct Dyn 2023; 42:10075-10090. [PMID: 37676256 DOI: 10.1080/07391102.2023.2255275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Glucose-Methanol-Choline (GMC) family enzymes are very important in catalyzing the oxidation of a wide range of structurally diverse substrates. Enzymes that constitute the GMC family, share a common tertiary fold but < 25% sequence identity. Cofactor FAD, FAD binding signature motif, and similar structural scaffold of the active site are common features of oxidoreductase enzymes of the GMC family. Protein functionality mainly depends on protein three-dimensional structures and dynamics. In this study, we used the normal mode analysis method to search the intrinsic dynamics of GMC family enzymes. We have explored the dynamical behavior of enzymes with unique substrate catabolism and active site characteristics from different classes of the GMC family. Analysis of individual enzymes and comparative ensemble analysis of enzymes from different classes has shown conserved dynamic motion at FAD binding sites. The present study revealed that GMC enzymes share a strong dynamic similarity (Bhattacharyya coefficient >90% and root mean squared inner product >52%) despite low sequence identity across the GMC family enzymes. The study predicts that local deformation energy between atoms of the enzyme may be responsible for the catalysis of different substrates. This study may help that intrinsic dynamics can be used to make meaningful classifications of proteins or enzymes from different organisms.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Wahab Khan
- Department of Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India
| | - Ayaluru Murali
- Department of Bioinformatics, School of Life Science, Pondicherry University, Puducherry, India
| |
Collapse
|
4
|
Anghel L, Rada S, Erhan RV. Structural Factors and Electron Transfer Mechanisms in Flavoenzymes. ANAL LETT 2023. [DOI: 10.1080/00032719.2023.2174131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Lilia Anghel
- Laboratory Physical and Quantum Chemistry, Institute of Chemistry, Chisinau, Republic of Moldova
| | - Simona Rada
- INCDTIM Cluj-Napoca, Cluj-Napoca, Romania
- Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Raul-Victor Erhan
- Department of Nuclear Physics, Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Magurele-Ilfov, Romania
| |
Collapse
|
5
|
Zhang L, Toplak M, Saleem-Batcha R, Höing L, Jakob R, Jehmlich N, von Bergen M, Maier T, Teufel R. Bacterial Dehydrogenases Facilitate Oxidative Inactivation and Bioremediation of Chloramphenicol. Chembiochem 2023; 24:e202200632. [PMID: 36353978 DOI: 10.1002/cbic.202200632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Antimicrobial resistance represents a major threat to human health and knowledge of the underlying mechanisms is therefore vital. Here, we report the discovery and characterization of oxidoreductases that inactivate the broad-spectrum antibiotic chloramphenicol via dual oxidation of the C3-hydroxyl group. Accordingly, chloramphenicol oxidation either depends on standalone glucose-methanol-choline (GMC)-type flavoenzymes, or on additional aldehyde dehydrogenases that boost overall turnover. These enzymes also enable the inactivation of the chloramphenicol analogues thiamphenicol and azidamfenicol, but not of the C3-fluorinated florfenicol. Notably, distinct isofunctional enzymes can be found in Gram-positive (e. g., Streptomyces sp.) and Gram-negative (e. g., Sphingobium sp.) bacteria, which presumably evolved their selectivity for chloramphenicol independently based on phylogenetic analyses. Mechanistic and structural studies provide further insights into the catalytic mechanisms of these biotechnologically interesting enzymes, which, in sum, are both a curse and a blessing by contributing to the spread of antibiotic resistance as well as to the bioremediation of chloramphenicol.
Collapse
Affiliation(s)
- Lei Zhang
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Marina Toplak
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Raspudin Saleem-Batcha
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | - Lars Höing
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| | - Roman Jakob
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research UFZ GmbH, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Martin von Bergen
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research UFZ GmbH, Leipzig, Germany.,German Centre for Integrative Biodiversity Research, (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103, Leipzig, Germany.,University of Leipzig, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, 04103, Leipzig, Germany
| | - Timm Maier
- Biozentrum, University of Basel, Spitalstrasse 41, 4056, Basel, Switzerland
| | - Robin Teufel
- Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|
6
|
Liang Z, Yan Y, Zhang W, Luo H, Yao B, Huang H, Tu T. Review of glucose oxidase as a feed additive: production, engineering, applications, growth-promoting mechanisms, and outlook. Crit Rev Biotechnol 2022:1-18. [PMID: 35723581 DOI: 10.1080/07388551.2022.2057275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The regulation and prohibition of antibiotics used as growth promoters (AGP) in the feed field are increasing because they cause antimicrobial resistance and drug residue issues and threaten community health. Recently, glucose oxidase (GOx) has attracted increasing interest in the feed industry as an alternative to antibiotics. GOx specifically catalyzes the production of gluconic acid (GA) and hydrogen peroxide (H2O2) by consuming molecular oxygen, and plays an important role in relieving oxidative stress, preserving health, and promoting animal growth. To expand the application of GOx in the feed field, considerable efforts have been made to mine new genetic resources. Efforts have also been made to heterologously overexpress relevant genes to reduce production costs and to engineer proteins by modifying enzyme properties, both of which are bottleneck problems that limit industrial feed applications. Herein, the: different sources, diverse biochemical properties, distinct structural features, and various strategies of GOx engineering and heterologous overexpression are summarized. The mechanism through which GOx promotes growth in animal production, including the improvement of antioxidant capacity, maintenance of intestinal microbiota homeostasis, and enhancement of gut function, are also systematically addressed. Finally, a new perspective is provided for the future development of GOx applications in the feed field.
Collapse
Affiliation(s)
- Ziqi Liang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yaru Yan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
7
|
Trisrivirat D, Sutthaphirom C, Pimviriyakul P, Chaiyen P. Dual activities of oxidation and oxidative decarboxylation by flavoenzymes. Chembiochem 2022; 23:e202100666. [PMID: 35040514 DOI: 10.1002/cbic.202100666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/17/2022] [Indexed: 11/07/2022]
Abstract
Specific flavoenzyme oxidases catalyze oxidative decarboxylation in addition to their classical oxidation reactions in the same active sites. The mechanisms underlying oxidative decarboxylation by these enzymes and how they control their two activities are not clearly known. This article reviews the current state of knowledge of four enzymes from the l-amino acid oxidase and l-hydroxy acid oxidase families, including l-tryptophan 2-monooxygenase, l-phenylalanine 2-oxidase and l-lysine oxidase/monooxygenase and lactate monooxygenase which catalyze substrate oxidation and oxidative decarboxylation. Apart from specific interactions to allow substrate oxidation by the flavin cofactor, specific binding of oxidized product in the active sites appears to be important for enabling subsequent decarboxylation by these enzymes. Based on recent findings of l-lysine oxidase/monooxygenase, we propose that nucleophilic attack of H2O2 on the imino acid product is the mechanism enabling oxidative decarboxylation.
Collapse
Affiliation(s)
- Duangthip Trisrivirat
- VISTEC: Vidyasirimedhi Institute of Science and Technology, Biomolecular Science and Engineering, THAILAND
| | - Chalermroj Sutthaphirom
- VISTEC: Vidyasirimedhi Institute of Science and Technology, Biomolecular Science and Engineering, THAILAND
| | | | - Pimchai Chaiyen
- Vidyasirimedhi Institute of Science and Technology (VISTEC), School of Biomolecular Science and Engineering, 555 Moo 1 Payupnai, 21210, Wangchan District, THAILAND
| |
Collapse
|
8
|
Wang J, Ma S, Ding W, Chen T, Zhang Q. Mechanistic Study of Oxidoreductase
AprQ
Involved in Biosynthesis of Aminoglycoside Antibiotic Apramycin. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinxiu Wang
- State Key Laboratory of Cryospheric Science, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of Sciences Lanzhou Gansu 730000 China
- Department of Chemistry, Fudan University Shanghai 200433 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Suze Ma
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Northwest Institute of Eco‐Environment and Resources, Chinese Academy of Sciences Lanzhou Gansu 730000 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
9
|
Pecularities and applications of aryl-alcohol oxidases from fungi. Appl Microbiol Biotechnol 2021; 105:4111-4126. [PMID: 33997930 PMCID: PMC8140971 DOI: 10.1007/s00253-021-11337-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022]
Abstract
Abstract Aryl-alcohol oxidases (AAOs) are FAD-containing enzymes that oxidize a broad range of aromatic as well as aliphatic allylic alcohols to aldehydes. Their broad substrate spectrum accompanied by the only need for molecular oxygen as cosubstrate and production of hydrogen peroxide as sole by-product makes these enzymes very promising biocatalysts. AAOs were used in the synthesis of flavors, fragrances, and other high-value-added compounds and building blocks as well as in dye decolorization and pulp biobleaching. Furthermore, AAOs offer a huge potential as efficient suppliers of hydrogen peroxide for peroxidase- and peroxygenase-catalyzed reactions. A prerequisite for application as biocatalysts at larger scale is the production of AAOs in sufficient amounts. Heterologous expression of these predominantly fungal enzymes is, however, quite challenging. This review summarizes different approaches aiming at enhancing heterologous expression of AAOs and gives an update on substrates accepted by these promising enzymes as well as potential fields of their application. Key points • Aryl-alcohol oxidases (AAOs) supply ligninolytic peroxidases with H2O2. • AAOs accept a broad spectrum of aromatic and aliphatic allylic alcohols. • AAOs are potential biocatalysts for the production of high-value-added bio-based chemicals.
Collapse
|
10
|
Phylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases. Catalysts 2020. [DOI: 10.3390/catal10091072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
Collapse
|