1
|
Volkov OM, Pylypovskyi OV, Porrati F, Kronast F, Fernandez-Roldan JA, Kákay A, Kuprava A, Barth S, Rybakov FN, Eriksson O, Lamb-Camarena S, Makushko P, Mawass MA, Shakeel S, Dobrovolskiy OV, Huth M, Makarov D. Three-dimensional magnetic nanotextures with high-order vorticity in soft magnetic wireframes. Nat Commun 2024; 15:2193. [PMID: 38467623 PMCID: PMC10928081 DOI: 10.1038/s41467-024-46403-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Additive nanotechnology enable curvilinear and three-dimensional (3D) magnetic architectures with tunable topology and functionalities surpassing their planar counterparts. Here, we experimentally reveal that 3D soft magnetic wireframe structures resemble compact manifolds and accommodate magnetic textures of high order vorticity determined by the Euler characteristic, χ. We demonstrate that self-standing magnetic tetrapods (homeomorphic to a sphere; χ = + 2) support six surface topological solitons, namely four vortices and two antivortices, with a total vorticity of + 2 equal to its Euler characteristic. Alternatively, wireframe structures with one loop (homeomorphic to a torus; χ = 0) possess equal number of vortices and antivortices, which is relevant for spin-wave splitters and 3D magnonics. Subsequent introduction of n holes into the wireframe geometry (homeomorphic to an n-torus; χ < 0) enables the accommodation of a virtually unlimited number of antivortices, which suggests their usefulness for non-conventional (e.g., reservoir) computation. Furthermore, complex stray-field topologies around these objects are of interest for superconducting electronics, particle trapping and biomedical applications.
Collapse
Affiliation(s)
- Oleksii M Volkov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
| | - Oleksandr V Pylypovskyi
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
- Kyiv Academic University, 03142, Kyiv, Ukraine.
| | - Fabrizio Porrati
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany.
| | - Florian Kronast
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Jose A Fernandez-Roldan
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Attila Kákay
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Alexander Kuprava
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Sven Barth
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Filipp N Rybakov
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
| | - Olle Eriksson
- Department of Physics and Astronomy, Uppsala University, Box-516, Uppsala, SE-751 20, Sweden
- Wallenberg Initiative Materials Science for Sustainability, Uppsala University, 75121, Uppsala, Sweden
| | - Sebastian Lamb-Camarena
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
- University of Vienna, Vienna Doctoral School in Physics, Boltzmanngasse 5, A-1090, Vienna, Austria
| | - Pavlo Makushko
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Mohamad-Assaad Mawass
- Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
- Department of Interface Science, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4 - 6, 14195, Berlin, Germany
| | - Shahrukh Shakeel
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany
| | - Oleksandr V Dobrovolskiy
- University of Vienna, Faculty of Physics, Nanomagnetism and Magnonics, Superconductivity and Spintronics Laboratory, Währinger Str. 17, 1090, Vienna, Austria
| | - Michael Huth
- Physikalisches Institut, Johann Wolfgang Goethe-Universität Frankfurt am Main, Max-von-Laue-Str. 1, 60438, Frankfurt am Main, Germany
| | - Denys Makarov
- Helmholtz-Zentrum Dresden-Rossendorf e.V., Institute of Ion Beam Physics and Materials Research, Bautzner Landstr. 400, 01328, Dresden, Germany.
| |
Collapse
|
2
|
Fedorov P, Soldatov I, Neu V, Schäfer R, Schmidt OG, Karnaushenko D. Self-assembly of Co/Pt stripes with current-induced domain wall motion towards 3D racetrack devices. Nat Commun 2024; 15:2048. [PMID: 38448405 PMCID: PMC10918081 DOI: 10.1038/s41467-024-46185-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Modification of the magnetic properties under the induced strain and curvature is a promising avenue to build three-dimensional magnetic devices, based on the domain wall motion. So far, most of the studies with 3D magnetic structures were performed in the helixes and nanowires, mainly with stationary domain walls. In this study, we demonstrate the impact of 3D geometry, strain and curvature on the current-induced domain wall motion and spin-orbital torque efficiency in the heterostructure, realized via a self-assembly rolling technique on a polymeric platform. We introduce a complete 3D memory unit with write, read and store functionality, all based on the field-free domain wall motion. Additionally, we conducted a comparative analysis between 2D and 3D structures, particularly addressing the influence of heat during the electric current pulse sequences. Finally, we demonstrated a remarkable increase of 30% in spin-torque efficiency in 3D configuration.
Collapse
Affiliation(s)
- Pavel Fedorov
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany.
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany.
| | - Ivan Soldatov
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Volker Neu
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
| | - Rudolf Schäfer
- Leibniz Institute for Solid State and Materials Research, 01069, Dresden, Germany
- Institute for Materials Science, TU Dresden, 01062, Dresden, Germany
| | - Oliver G Schmidt
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany.
- Material Systems for Nanoelectronics, Chemnitz University of Technology, 09107, Chemnitz, Germany.
- Nanophysics, Faculty of Physics, TU Dresden, 01062, Dresden, Germany.
| | - Daniil Karnaushenko
- Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, 09126, Chemnitz, Germany.
| |
Collapse
|
3
|
Yoon J, Moon JH, Chung J, Kim YJ, Kim K, Kang HS, Jeon YS, Oh E, Lee SH, Han K, Lee D, Lee CH, Kim YK, Lee D. Exploring the Magnetic Properties of Individual Barcode Nanowires using Wide-Field Diamond Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304129. [PMID: 37264689 DOI: 10.1002/smll.202304129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/22/2023] [Indexed: 06/03/2023]
Abstract
A barcode magnetic nanowire typically comprises a multilayer magnetic structure in a single body with more than one segment type. Interestingly, due to selective functionalization and novel interactions between the layers, it has attracted significant attention, particularly in bioengineering. However, analyzing the magnetic properties at the individual nanowire level remains challenging. Herein, the characterization of a single magnetic nanowire is investigated at room temperature under ambient conditions based on magnetic images obtained via wide-field quantum microscopy with nitrogen-vacancy centers in diamond. Consequently, critical magnetic properties of a single nanowire can be extracted, such as saturation magnetization and coercivity, by comparing the experimental result with that of micromagnetic simulation. This study opens up the possibility for a versatile in situ characterization method suited to individual magnetic nanowires.
Collapse
Affiliation(s)
- Jungbae Yoon
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Jun Hwan Moon
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jugyeong Chung
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Yu Jin Kim
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Kihwan Kim
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hee Seong Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yoo Sang Jeon
- Center for Hydrogen∙Fuel Cell Research, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Eunsoo Oh
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Sun Hwa Lee
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Kihoon Han
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Neuroscience, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Dongmin Lee
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Anatomy, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Chul-Ho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Keun Kim
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
- Institute for High Technology Materials and Devices, Korea University, Seoul, 02841, Republic of Korea
| | - Donghun Lee
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
4
|
Monaico EV, Morari V, Kutuzau M, Ursaki VV, Nielsch K, Tiginyanu IM. Magnetic Properties of GaAs/NiFe Coaxial Core-Shell Structures. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15186262. [PMID: 36143574 PMCID: PMC9502629 DOI: 10.3390/ma15186262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 06/12/2023]
Abstract
Uniform nanogranular NiFe layers with Ni contents of 65%, 80%, and 100% have been electroplated in the potentiostatic deposition mode on both planar substrates and arrays of nanowires prepared by the anodization of GaAs substrates. The fabricated planar and coaxial core-shell ferromagnetic structures have been investigated by means of scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). To determine the perspectives for applications, a comparative analysis of magnetic properties, in terms of the saturation and remanence moment, the squareness ratio, and the coercivity, was performed for structures with different Ni contents.
Collapse
Affiliation(s)
- Eduard V. Monaico
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova
| | - Vadim Morari
- Institute of Electronic Engineering and Nanotechnologies “D. Ghitu”, 2028 Chisinau, Moldova
| | - Maksim Kutuzau
- Institute for Metallic Materials (IMW), Leibniz Institute of Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Veaceslav V. Ursaki
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova
- Academy of Sciences of Moldova, 2001 Chisinau, Moldova
| | - Kornelius Nielsch
- Institute for Metallic Materials (IMW), Leibniz Institute of Solid State and Materials Research (IFW Dresden), Helmholtzstrasse 20, 01069 Dresden, Germany
| | - Ion M. Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova
- Academy of Sciences of Moldova, 2001 Chisinau, Moldova
| |
Collapse
|
5
|
Electroless Deposits of ZnO and Hybrid ZnO/Ag Nanoparticles on Mg-Ca0.3 Alloy Surface: Multiscale Characterization. COATINGS 2022. [DOI: 10.3390/coatings12081109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
ZnO and hybrid of ZnO/Ag structures in the nanometer size were electroless deposited on the Mg-Ca0.3 alloy surface, achieved from aqueous solutions (10−3 M at 21 °C) of ZnO (suspension), Zn(NO3)2 and AgNO3. The surface characterization of the deposits was carried out by Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), X-Ray Photoelectron Spectroscopy (XPS), Fourier transform infrared (FTIR), UV-Visible and Raman spectroscopy. The nanoparticles (NPs) area size distribution analysis revealed that the average of ZnO-NPs was ~85 nm. Likewise, the Ag-NPs of electroless deposits had an average area size of ~100 nm and nucleated in the vicinity of ZnO-NPs as Ag+ ions have been attracted by the negatively charged O2− atoms of the Zn-O dipole. The ZnO-NPs had the wurtzite structure, as indicated by Raman spectroscopy analysis and XRD complementary analysis. The UV-Visible spectroscopy analysis gave a peak at ~320 nm associated with the decrease in the imaginary part (k) of the refractive index of Ag-NPs. On the Mg-Ca0.3 surface, MgO, Mg(OH)2 and MgCO3 are present due to the Mg-matrix. XRD spectra of Ag-NPs indicated the presence of planes arranged with the FCC hexagonal structure. The reported hybrid ZnO/Ag electroless deposits of NPs are of interest for temporary implant devices, providing antibacterial properties to Mg-Ca0.3 surface, a widely used biodegradable material.
Collapse
|
6
|
Fernández-González C, Guedeja-Marrón A, Rodilla BL, Arché-Nuñez A, Corcuera R, Lucas I, González MT, Varela M, de la Presa P, Aballe L, Pérez L, Ruiz-Gómez S. Electrodeposited Magnetic Nanowires with Radial Modulation of Composition. NANOMATERIALS 2022; 12:nano12152565. [PMID: 35893533 PMCID: PMC9370789 DOI: 10.3390/nano12152565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
In the last few years, magnetic nanowires have gained attention due to their potential implementation as building blocks in spintronics applications and, in particular, in domain-wall- based devices. In these devices, the control of the magnetic properties is a must. Cylindrical magnetic nanowires can be synthesized rather easily by electrodeposition and the control of their magnetic properties can be achieved by modulating the composition of the nanowire along the axial direction. In this work, we report the possibility of introducing changes in the composition along the radial direction, increasing the degrees of freedom to harness the magnetization. In particular, we report the synthesis, using template-assisted deposition, of FeNi (or Co) magnetic nanowires, coated with a Au/Co (Au/FeNi) bilayer. The diameter of the nanowire as well as the thickness of both layers can be tuned at will. In addition to a detailed structural characterization, we report a preliminary study on the magnetic properties, establishing the role of each layer in the global collective behavior of the system.
Collapse
Affiliation(s)
- Claudia Fernández-González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Alejandra Guedeja-Marrón
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Beatriz L. Rodilla
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Ana Arché-Nuñez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Rubén Corcuera
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Irene Lucas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Teresa González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Maria Varela
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Patricia de la Presa
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Instituto de Magnetismo Aplicado, 28230 Las Rozas, Spain
| | - Lucía Aballe
- Alba Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Spain;
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Surface Science and Magnetism of Low Dimensional Systems, UCM, Unidad Asociada al IQFR-CSIC, 28040 Madrid, Spain
- Correspondence: (L.P.); (S.R.-G.)
| | - Sandra Ruiz-Gómez
- Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
- Correspondence: (L.P.); (S.R.-G.)
| |
Collapse
|
7
|
Scholzen P, Lang G, Andreev AS, Quintana A, Malloy J, Jensen CJ, Liu K, d'Espinose de Lacaillerie JB. Magnetic structure and internal field nuclear magnetic resonance of cobalt nanowires. Phys Chem Chem Phys 2022; 24:11898-11909. [PMID: 35510687 DOI: 10.1039/d1cp05164d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The magnetic properties of cobalt metal nanowires grown by electrodeposition in porous membranes depend largely on the synthesis conditions. Here, we focus on the role of electrolyte additives on the magnetic anisotropy of the electrodeposited nanowires. Through magnetometry and internal field nuclear magnetic resonance (IF NMR) studies, we compared both the magnetic and crystalline structures of 50 and 200 nm diameter Co nanowires synthesized in the presence or absence of organic additives. The spectral characteristics of IF NMR were compared structurally to X-ray diffraction patterns, and the anisotropy of the NMR enhancement factor in ferromagnetic multidomain structures to magnetometry results. While the magnetic behavior of the 50 nm nanowires was dominated, as expected, by shape anisotropy with magnetic domains oriented on axis, the analysis of the 200 nm proved to be more complex. 59Co IF NMR revealed that the determining difference between the samples electrodeposited in the presence or in absence of organic additives was not the dominant crystalline system (fcc or hcp) but the coherent domain sizes and boundaries. In the presence of organic additives, the cobalt crystal domains are smaller and with defective grain boundaries, as revealed by resonances below 210 MHz. This prevented the development in the Co hcp part of the sample of the strong magnetocrystalline anisotropy that was observed in the absence of organic additives. In the presence of organic additives, even in nanowires as wide as 200 nm, the magnetic behavior remained determined by the shape anisotropy with a positive effective magnetic anisotropy and strong anisotropy of the NMR enhancement factor.
Collapse
Affiliation(s)
- Pascal Scholzen
- Soft Matter Science and Engineering, SIMM, ESPCI Paris, Université PSL, UMR CNRS 7615, Sorbonne Université, 10 Rue Vauquelin, 75005 Paris, France.
| | - Guillaume Lang
- Laboratoire de Physique et d'Étude des Matériaux, UMR CNRS 8213, ESPCI Paris, Université PSL, Sorbonne Université, 75005 Paris, France
| | - Andrey S Andreev
- TotalEnergies One Tech Belgium (TEOTB), Zone Industrielle C, 7181 Feluy, Belgium
| | - Alberto Quintana
- Physics Department, Georgetown University, Washington, DC 20057, USA
| | - James Malloy
- Physics Department, Georgetown University, Washington, DC 20057, USA
| | | | - Kai Liu
- Physics Department, Georgetown University, Washington, DC 20057, USA
| | | |
Collapse
|
8
|
Monaico EV, Morari V, Ursaki VV, Nielsch K, Tiginyanu IM. Core–Shell GaAs-Fe Nanowire Arrays: Fabrication Using Electrochemical Etching and Deposition and Study of Their Magnetic Properties. NANOMATERIALS 2022; 12:nano12091506. [PMID: 35564215 PMCID: PMC9104038 DOI: 10.3390/nano12091506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023]
Abstract
The preparation of GaAs nanowire templates with the cost-effective electrochemical etching of (001) and (111)B GaAs substrates in a 1 M HNO3 electrolyte is reported. The electrochemical etching resulted in the obtaining of GaAs nanowires with both perpendicular and parallel orientations with respect to the wafer surface. Core–shell GaAs-Fe nanowire arrays have been prepared by galvanostatic Fe deposition into these templates. The fabricated arrays have been investigated by means of scanning electron microscopy (SEM) and vibrating sample magnetometry (VSM). The magnetic properties of the polycrystalline Fe nanotubes constituting the shells of the cylindrical structures, such as the saturation and remanence moment, squareness ratio, and coercivity, were analyzed in relation to previously reported data on ferromagnetic nanowires and nanotubes.
Collapse
Affiliation(s)
- Eduard V. Monaico
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova; (V.V.U.); (I.M.T.)
- Correspondence:
| | - Vadim Morari
- Institute of Electronic Engineering and Nanotechnologies “D. Ghitu”, 2028 Chisinau, Moldova;
| | - Veaceslav V. Ursaki
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova; (V.V.U.); (I.M.T.)
- Academy of Sciences of Moldova, 2001 Chisinau, Moldova
| | - Kornelius Nielsch
- Institute for Metallic Materials (IMW), Leibniz Institute of Solid State and Materials Research (IFW Dresden), Helmholtzstr. 20, 01069 Dresden, Germany;
| | - Ion M. Tiginyanu
- National Center for Materials Study and Testing, Technical University of Moldova, 2004 Chisinau, Moldova; (V.V.U.); (I.M.T.)
- Academy of Sciences of Moldova, 2001 Chisinau, Moldova
| |
Collapse
|
9
|
Novel Magnetic Properties in Curved Geometries. NANOMATERIALS 2022; 12:nano12071175. [PMID: 35407293 PMCID: PMC9000637 DOI: 10.3390/nano12071175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023]
|
10
|
Template-Assisted Iron Nanowire Formation at Different Electrolyte Temperatures. MATERIALS 2021; 14:ma14154080. [PMID: 34361274 PMCID: PMC8348010 DOI: 10.3390/ma14154080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 11/17/2022]
Abstract
We studied the morphology, structure, and magnetic properties of Fe nanowires that were electrodeposited as a function of the electrolyte temperature. The nucleation mechanism followed instantaneous growth. At low temperatures, we observed an increase of the total charge reduced into the templates, thus suggesting a significant increase in the degree of pore filling. Scanning electron microscopy images revealed smooth nanowires without any characteristic features that would differentiate their morphology as a function of the electrolyte temperature. X-ray photoelectron spectroscopy studies indicated the presence of a polycarbonate coating that covered the nanowires and protected them against oxidation. The X-ray diffraction measurements showed peaks coming from the polycrystalline Fe bcc structure without any traces of the oxide phases. The crystallite size decreased with an increasing electrolyte temperature. The transmission electron microscopy measurements proved the fine-crystalline structure and revealed elongated crystallite shapes with a columnar arrangement along the nanowire. Mössbauer studies indicated a deviation in the magnetization vector from the normal direction, which agrees with the SQUID measurements. An increase in the electrolyte temperature caused a rise in the out of the membrane plane coercivity. The studies showed the oxidation resistance of the Fe nanowires deposited at elevated electrolyte temperatures.
Collapse
|
11
|
Bran C, Fernandez-Roldan JA, del Real RP, Asenjo A, Chubykalo-Fesenko O, Vazquez M. Magnetic Configurations in Modulated Cylindrical Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:600. [PMID: 33670880 PMCID: PMC7997473 DOI: 10.3390/nano11030600] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 11/18/2022]
Abstract
Cylindrical magnetic nanowires show great potential for 3D applications such as magnetic recording, shift registers, and logic gates, as well as in sensing architectures or biomedicine. Their cylindrical geometry leads to interesting properties of the local domain structure, leading to multifunctional responses to magnetic fields and electric currents, mechanical stresses, or thermal gradients. This review article is summarizing the work carried out in our group on the fabrication and magnetic characterization of cylindrical magnetic nanowires with modulated geometry and anisotropy. The nanowires are prepared by electrochemical methods allowing the fabrication of magnetic nanowires with precise control over geometry, morphology, and composition. Different routes to control the magnetization configuration and its dynamics through the geometry and magnetocrystalline anisotropy are presented. The diameter modulations change the typical single domain state present in cubic nanowires, providing the possibility to confine or pin circular domains or domain walls in each segment. The control and stabilization of domains and domain walls in cylindrical wires have been achieved in multisegmented structures by alternating magnetic segments of different magnetic properties (producing alternative anisotropy) or with non-magnetic layers. The results point out the relevance of the geometry and magnetocrystalline anisotropy to promote the occurrence of stable magnetochiral structures and provide further information for the design of cylindrical nanowires for multiple applications.
Collapse
Affiliation(s)
- Cristina Bran
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain; (J.A.F.-R.); (R.P.d.R.); (A.A.); (O.C.-F.); (M.V.)
| | - Jose Angel Fernandez-Roldan
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain; (J.A.F.-R.); (R.P.d.R.); (A.A.); (O.C.-F.); (M.V.)
- Department of Physics, University of Oviedo, 33007 Oviedo, Spain
| | - Rafael P. del Real
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain; (J.A.F.-R.); (R.P.d.R.); (A.A.); (O.C.-F.); (M.V.)
| | - Agustina Asenjo
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain; (J.A.F.-R.); (R.P.d.R.); (A.A.); (O.C.-F.); (M.V.)
| | - Oksana Chubykalo-Fesenko
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain; (J.A.F.-R.); (R.P.d.R.); (A.A.); (O.C.-F.); (M.V.)
| | - Manuel Vazquez
- Instituto de Ciencia de Materiales de Madrid, CSIC, 28049 Madrid, Spain; (J.A.F.-R.); (R.P.d.R.); (A.A.); (O.C.-F.); (M.V.)
| |
Collapse
|
12
|
Magén C, Pablo-Navarro J, De Teresa JM. Focused-Electron-Beam Engineering of 3D Magnetic Nanowires. NANOMATERIALS 2021; 11:nano11020402. [PMID: 33557442 PMCID: PMC7914621 DOI: 10.3390/nano11020402] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/27/2021] [Accepted: 01/30/2021] [Indexed: 11/25/2022]
Abstract
Focused-electron-beam-induced deposition (FEBID) is the ultimate additive nanofabrication technique for the growth of 3D nanostructures. In the field of nanomagnetism and its technological applications, FEBID could be a viable solution to produce future high-density, low-power, fast nanoelectronic devices based on the domain wall conduit in 3D nanomagnets. While FEBID has demonstrated the flexibility to produce 3D nanostructures with almost any shape and geometry, the basic physical properties of these out-of-plane deposits are often seriously degraded from their bulk counterparts due to the presence of contaminants. This work reviews the experimental efforts to understand and control the physical processes involved in 3D FEBID growth of nanomagnets. Co and Fe FEBID straight vertical nanowires have been used as benchmark geometry to tailor their dimensions, microstructure, composition and magnetism by smartly tuning the growth parameters, post-growth purification treatments and heterostructuring.
Collapse
Affiliation(s)
- César Magén
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Correspondence: ; Tel.: +34-876-555369; Fax: +34-976-762-776
| | - Javier Pablo-Navarro
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain; (J.P.-N.); (J.M.D.T.)
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
13
|
Altbir D, Fonseca JM, Chubykalo-Fesenko O, Corona RM, Moreno R, Carvalho-Santos VL, Ivanov YP. Tuning domain wall dynamics by shaping nanowires cross-sections. Sci Rep 2020; 10:21911. [PMID: 33318527 PMCID: PMC7736886 DOI: 10.1038/s41598-020-78761-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/25/2020] [Indexed: 11/09/2022] Open
Abstract
The understanding of the domain wall (DW) dynamics along magnetic nanowires is crucial for spintronic applications. In this work, we perform a detailed analysis of the transverse DW motion along nanowires with polygonal cross-sections. If the DW displaces under a magnetic field above the Walker limit, the oscillatory motion of the DW is observed. The amplitude, the frequency of oscillations, and the DW velocity depend on the number of sides of the nanowire cross-section, being the DW velocity in a wire with a triangular cross-section one order of magnitude larger than that in a circular nanowire. The decrease in the nanowire cross-section area yields a DW behavior similar to the one presented in a cylindrical nanowire, which is explained using an analytical model based on the general kinetic momentum theorem. Micromagnetic simulations reveal that the oscillatory behavior of the DW comes from energy changes due to deformations of the DW shape during the rotation around the nanowire.
Collapse
Affiliation(s)
- Dora Altbir
- Departamento de Física, CEDENNA, Universidad de Santiago de Chile, Avda. Ecuador, 3493, Santiago, Chile
| | - Jakson M Fonseca
- Departamento de Física, Universidade Federal de Viçosa, Avda. Peter Henry Rolfs s/n, Viçosa, MG, 36570-000, Brazil
| | | | - Rosa M Corona
- Departamento de Física, CEDENNA, Universidad de Santiago de Chile, Avda. Ecuador, 3493, Santiago, Chile
| | - Roberto Moreno
- Earth and Planetary Science, School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FE, UK
| | - Vagson L Carvalho-Santos
- Departamento de Física, Universidade Federal de Viçosa, Avda. Peter Henry Rolfs s/n, Viçosa, MG, 36570-000, Brazil.
| | - Yurii P Ivanov
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK.,School of Natural Sciences, Far Eastern Federal University, 690950, Vladivostok, Russia
| |
Collapse
|
14
|
Relation of the average interaction field with the coercive and interaction field distributions in First order reversal curve diagrams of nanowire arrays. Sci Rep 2020; 10:21396. [PMID: 33288826 PMCID: PMC7721885 DOI: 10.1038/s41598-020-78279-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022] Open
Abstract
First-order reversal curve diagrams, or FORC diagrams, have been studied to determine if the widths of their distributions along the interaction and coercivity axes can be related to the mean-field magnetization dependent interaction field (MDIF). Arrays of nanowires with diameters ranging from 18 up to 100 nm and packing fractions varying from 0.4 to 12% have been analyzed. The mean-field MDIF has been measured using the remanence curves and used as a measuring scale on the FORC diagrams. Based on these measurements, the full width of the interaction field distribution and the full width at half maximum (FWHM) of the FORC distribution profile along the interaction field direction are shown to be proportional to the MDIF, and the relation between them is found. Moreover, by interpreting the full width of the coercive field distribution in terms of the dipolar induced shearing, a simple relation is found between the width of this distribution and the MDIF. Furthermore, we show that the width of the FORC distribution along the coercive field axis is equal to the width of the switching field distribution obtained by the derivation of the DC remanence curve. This was further verified with the switching field distribution determined using in-field magnetic force microscopy (MFM) for very low density nanowires. The results are further supported by the good agreement found between the experiments and the values calculated using the mean-field model, which provides analytical expressions for both FORC distributions.
Collapse
|
15
|
Bran C, Fernandez-Roldan JA, P Del Real R, Asenjo A, Chen YS, Zhang J, Zhang X, Fraile Rodríguez A, Foerster M, Aballe L, Chubykalo-Fesenko O, Vazquez M. Unveiling the Origin of Multidomain Structures in Compositionally Modulated Cylindrical Magnetic Nanowires. ACS NANO 2020; 14:12819-12827. [PMID: 32970409 DOI: 10.1021/acsnano.0c03579] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
CoNi/Ni multisegmented cylindrical nanowires were synthesized via an electrochemical route. The wires are 140 nm in diameter, with 1000 nm long Ni segments and CoNi segments between 600 and 1400 nm in length. The magnetic configuration was imaged by XMCD-PEEM in the demagnetized state and at remanence after magnetizing axially and perpendicularly. Ni segments, with cubic crystal symmetry, show an axial magnetic configuration with a small curling component at the surface. In turn, CoNi segments, with hexagonal crystal symmetry and a strong magnetocrystalline anisotropy perpendicular to the nanowires, show a single vortex state in the shorter segments and multivortex or multitransverse magnetic configurations in medium and long segments, respectively. A detailed study by micromagnetic simulations reveals that the magnetic configuration is determined mainly by the coupling between soft Ni and harder CoNi segments. For short CoNi segments, Ni segments are magnetostatically coupled and the chirality of the single vortex formed in CoNi remains the same as that of the curling in neighboring Ni segments. For longer CoNi segments, the remanent state is either the multivortex or multitransverse state depending on whether the previously applied field was parallel or perpendicular to the magnetocrystalline axis. The results point out the relevance of the cylindrical geometry to promote the occurrence of complex magneto-chiral effects and provide key information for the design of cylindrical magnetic nanowires for multiple applications.
Collapse
Affiliation(s)
- Cristina Bran
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
| | - Jose Angel Fernandez-Roldan
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
- Department of Physics, University of Oviedo, Oviedo 33007, Spain
| | - Rafael P Del Real
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
| | - Agustina Asenjo
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
| | - Yu-Shen Chen
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
- Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan
| | - Junli Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Xixiang Zhang
- Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Arantxa Fraile Rodríguez
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona 08028, Spain
- Institut de Nanociencia i Nanotecnologia (IN2UB), Universitat de Barcelona, Barcelona 08028, Spain
| | | | - Lucia Aballe
- ALBA Synchrotron Light Facility, CELLS, Barcelona 08290, Spain
| | | | - Manuel Vazquez
- Instituto de Ciencia de Materiales de Madrid, CSIC, Madrid 28049, Spain
| |
Collapse
|
16
|
Giordano MC, Baumgaertl K, Escobar Steinvall S, Gay J, Vuichard M, Fontcuberta I Morral A, Grundler D. Plasma-Enhanced Atomic Layer Deposition of Nickel Nanotubes with Low Resistivity and Coherent Magnetization Dynamics for 3D Spintronics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40443-40452. [PMID: 32805802 DOI: 10.1021/acsami.0c06879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report plasma-enhanced atomic layer deposition (ALD) to prepare conformal nickel thin films and nanotubes using nickelocene as a precursor, water as the oxidant agent, and an in-cycle plasma-enhanced reduction step with hydrogen. The optimized ALD pulse sequence, combined with a post-processing annealing treatment, allowed us to prepare 30 nm-thick metallic Ni layers with a resistivity of 8 μΩ cm at room temperature and good conformality both on the planar substrates and nanotemplates. Thus, we fabricated several micrometers-long nickel nanotubes with diameters ranging from 120 to 330 nm. We report the correlation between ALD growth and functional properties of individual Ni nanotubes characterized in terms of magnetotransport and the confinement of spin-wave modes. The findings offer novel perspectives for Ni-based spintronics and magnonic devices operated in the GHz frequency regime with 3D device architectures.
Collapse
Affiliation(s)
| | | | - S Escobar Steinvall
- Laboratory of Semiconductor Materials, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | | | - A Fontcuberta I Morral
- Laboratory of Semiconductor Materials, Institute of Materials, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Institute of Physics, School of Basic Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - D Grundler
- Institute of Microengineering (IMT), School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Fernández-Pacheco A, Skoric L, De Teresa JM, Pablo-Navarro J, Huth M, Dobrovolskiy OV. Writing 3D Nanomagnets Using Focused Electron Beams. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3774. [PMID: 32859076 PMCID: PMC7503546 DOI: 10.3390/ma13173774] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/10/2020] [Accepted: 08/20/2020] [Indexed: 12/18/2022]
Abstract
Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping and specialized applications compatible with low throughputs. In this focused review, we discuss recent developments of this technique for applications in 3D nanomagnetism, namely the substantial progress on FEBID computational methods, and new routes followed to tune the magnetic properties of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena, curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important role FEBID is likely to have in the coming years in the study of new phenomena involving 3D magnetic nanostructures.
Collapse
Affiliation(s)
- Amalio Fernández-Pacheco
- SUPA, School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - Luka Skoric
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, UK;
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
| | - Javier Pablo-Navarro
- Laboratorio de Microscopías Avanzadas (LMA) and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Michael Huth
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Oleksandr V. Dobrovolskiy
- Institute of Physics, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany;
- Faculty of Physics, University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
18
|
Sanz-Hernández D, Hierro-Rodriguez A, Donnelly C, Pablo-Navarro J, Sorrentino A, Pereiro E, Magén C, McVitie S, de Teresa JM, Ferrer S, Fischer P, Fernández-Pacheco A. Artificial Double-Helix for Geometrical Control of Magnetic Chirality. ACS NANO 2020; 14:8084-8092. [PMID: 32633492 PMCID: PMC7497658 DOI: 10.1021/acsnano.0c00720] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 06/26/2020] [Indexed: 05/06/2023]
Abstract
Chirality plays a major role in nature, from particle physics to DNA, and its control is much sought-after due to the scientific and technological opportunities it unlocks. For magnetic materials, chiral interactions between spins promote the formation of sophisticated swirling magnetic states such as skyrmions, with rich topological properties and great potential for future technologies. Currently, chiral magnetism requires either a restricted group of natural materials or synthetic thin-film systems that exploit interfacial effects. Here, using state-of-the-art nanofabrication and magnetic X-ray microscopy, we demonstrate the imprinting of complex chiral spin states via three-dimensional geometric effects at the nanoscale. By balancing dipolar and exchange interactions in an artificial ferromagnetic double-helix nanostructure, we create magnetic domains and domain walls with a well-defined spin chirality, determined solely by the chiral geometry. We further demonstrate the ability to create confined 3D spin textures and topological defects by locally interfacing geometries of opposite chirality. The ability to create chiral spin textures via 3D nanopatterning alone enables exquisite control over the properties and location of complex topological magnetic states, of great importance for the development of future metamaterials and devices in which chirality provides enhanced functionality.
Collapse
Affiliation(s)
- Dédalo Sanz-Hernández
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- Unité
Mixte de Physique, CNRS, Thales, Université
Paris-Saclay, 91767 Palaiseau, France
| | - Aurelio Hierro-Rodriguez
- SUPA,
School of Physics and Astronomy, University
of Glasgow, Glasgow G12 8QQ, U.K.
- Departamento
de Física, Universidad de Oviedo, 33007 Oviedo, Spain
- CINN
(CSIC-Universidad de Oviedo), 33940 El Entrego, Spain
| | - Claire Donnelly
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Javier Pablo-Navarro
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | | | - Eva Pereiro
- ALBA
Synchrotron, 08290 Cerdanyola del Vallès, Spain
| | - César Magén
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Departamento de Física de la Materia Condensada, 50009 Zaragoza, Spain
| | - Stephen McVitie
- SUPA,
School of Physics and Astronomy, University
of Glasgow, Glasgow G12 8QQ, U.K.
| | - José María de Teresa
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, Departamento de Física de la Materia Condensada, 50009 Zaragoza, Spain
| | | | - Peter Fischer
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Physics
Department, University of California Santa
Cruz, Santa
Cruz, California 95064, United States
| | - Amalio Fernández-Pacheco
- Cavendish
Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
- SUPA,
School of Physics and Astronomy, University
of Glasgow, Glasgow G12 8QQ, U.K.
| |
Collapse
|
19
|
Marchal N, da Câmara Santa Clara Gomes T, Abreu Araujo F, Piraux L. Large Spin-Dependent Thermoelectric Effects in NiFe-based Interconnected Nanowire Networks. NANOSCALE RESEARCH LETTERS 2020; 15:137. [PMID: 32602034 PMCID: PMC7324447 DOI: 10.1186/s11671-020-03343-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/06/2020] [Indexed: 06/09/2023]
Abstract
NiFe alloy and NiFe/Cu multilayered nanowire (NW) networks were grown using a template-assisted electrochemical synthesis method. The NiFe alloy NW networks exhibit large thermopower, which is largely preserved in the current perpendicular-to-plane geometry of the multilayered NW structure. Giant magneto-thermopower (MTP) effects have been demonstrated in multilayered NiFe/Cu NWs with a value of 25% at 300 K and reaching 60% around 100 K. A large spin-dependent Seebeck coefficient of -12.3 μV/K was obtained at room temperature. The large MTP effects demonstrate a magnetic approach to control thermoelectric properties of flexible devices based on NW networks.
Collapse
Affiliation(s)
- Nicolas Marchal
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Croix du Sud 1, Louvain-la-Neuve, 1348, Belgium
| | | | - Flavio Abreu Araujo
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Croix du Sud 1, Louvain-la-Neuve, 1348, Belgium
| | - Luc Piraux
- Institute of Condensed Matter and Nanosciences, Université catholique de Louvain, Place Croix du Sud 1, Louvain-la-Neuve, 1348, Belgium.
| |
Collapse
|
20
|
Abstract
Magnetic nanowires are attractive materials because of their morphology-dependent remarkable properties suitable for various advanced technologies in sensing, data storage, spintronics, biomedicine and microwave devices, etc. The recent advances in synthetic strategies and approaches for the fabrication of complex structures, such as parallel arrays and 3D networks of one-dimensional nanostructures, including nanowires, nanotubes, and multilayers, are presented. The simple template-assisted electrodeposition method enables the fabrication of different nanowire-based architectures with excellent control over geometrical features, morphology and chemical composition, leading to tunable magnetic, magneto-transport and thermoelectric properties. This review article summarizing the work carried out at UCLouvain focuses on the magnetic and spin-dependent transport properties linked to the material and geometrical characteristics.
Collapse
|
21
|
Hunt M, Taverne M, Askey J, May A, Van Den Berg A, Ho YLD, Rarity J, Ladak S. Harnessing Multi-Photon Absorption to Produce Three-Dimensional Magnetic Structures at the Nanoscale. MATERIALS 2020; 13:ma13030761. [PMID: 32046068 PMCID: PMC7041506 DOI: 10.3390/ma13030761] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Three-dimensional nanostructured magnetic materials have recently been the topic of intense interest since they provide access to a host of new physical phenomena. Examples include new spin textures that exhibit topological protection, magnetochiral effects and novel ultrafast magnetic phenomena such as the spin-Cherenkov effect. Two-photon lithography is a powerful methodology that is capable of realising 3D polymer nanostructures on the scale of 100 nm. Combining this with postprocessing and deposition methodologies allows 3D magnetic nanostructures of arbitrary geometry to be produced. In this article, the physics of two-photon lithography is first detailed, before reviewing the studies to date that have exploited this fabrication route. The article then moves on to consider how non-linear optical techniques and post-processing solutions can be used to realise structures with a feature size below 100 nm, before comparing two-photon lithography with other direct write methodologies and providing a discussion on future developments.
Collapse
Affiliation(s)
- Matthew Hunt
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
| | - Mike Taverne
- Department of Electrical Engineering, University of Bristol, Bristol BS8 1TH, UK; (M.T.); (Y.-L.D.H.); (J.R.)
| | - Joseph Askey
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
| | - Andrew May
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
| | - Arjen Van Den Berg
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
| | - Ying-Lung Daniel Ho
- Department of Electrical Engineering, University of Bristol, Bristol BS8 1TH, UK; (M.T.); (Y.-L.D.H.); (J.R.)
- Department of Mathematics, Physics and Electrical Engineering, Northumbria University, Newcastle NE1 8ST, UK
| | - John Rarity
- Department of Electrical Engineering, University of Bristol, Bristol BS8 1TH, UK; (M.T.); (Y.-L.D.H.); (J.R.)
| | - Sam Ladak
- School of Physics and Astronomy, Cardiff University, Cardiff CF10 3AT, UK; (M.H.); (J.A.); (A.M.); (A.V.D.B.)
- Correspondence:
| |
Collapse
|
22
|
Magnetic Materials and Systems: Domain Structure Visualization and Other Characterization Techniques for the Application in the Materials Science and Biomedicine. INORGANICS 2020. [DOI: 10.3390/inorganics8010006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Magnetic structures have attracted a great interest due to their multiple applications, from physics to biomedicine. Several techniques are currently employed to investigate magnetic characteristics and other physicochemical properties of magnetic structures. The major objective of this review is to summarize the current knowledge on the usage, advances, advantages, and disadvantages of a large number of techniques that are currently available to characterize magnetic systems. The present review, aiming at helping in the choice of the most suitable method as appropriate, is divided into three sections dedicated to characterization techniques. Firstly, the magnetism and magnetization (hysteresis) techniques are introduced. Secondly, the visualization methods of the domain structures by means of different probes are illustrated. Lastly, the characterization of magnetic nanosystems in view of possible biomedical applications is discussed, including the exploitation of magnetism in imaging for cell tracking/visualization of pathological alterations in living systems (mainly by magnetic resonance imaging, MRI).
Collapse
|
23
|
Nana ABA, Marimuthu T, Kondiah PPD, Choonara YE, Du Toit LC, Pillay V. Multifunctional Magnetic Nanowires: Design, Fabrication, and Future Prospects as Cancer Therapeutics. Cancers (Basel) 2019; 11:E1956. [PMID: 31817598 PMCID: PMC6966456 DOI: 10.3390/cancers11121956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 11/27/2022] Open
Abstract
Traditional cancer therapeutics are limited by factors such as multi-drug resistance and a plethora of adverse effect. These limitations need to be overcome for the progression of cancer treatment. In order to overcome these limitations, multifunctional nanosystems have recently been introduced into the market. The employment of multifunctional nanosystems provide for the enhancement of treatment efficacy and therapeutic effect as well as a decrease in drug toxicity. However, in addition to these effects, magnetic nanowires bring specific advantages over traditional nanoparticles in multifunctional systems in terms of the formulation and application into a therapeutic system. The most significant of which is its larger surface area, larger net magnetic moment compared to nanoparticles, and interaction under a magnetic field. This results in magnetic nanowires producing a greater drug delivery and therapeutic platform with specific regard to magnetic drug targeting, magnetic hyperthermia, and magnetic actuation. This, in turn, increases the potential of magnetic nanowires for decreasing adverse effects and improving patient therapeutic outcomes. This review focuses on the design, fabrication, and future potential of multifunctional magnetic nanowire systems with the emphasis on improving patient chemotherapeutic outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | - Viness Pillay
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, University of the Witwatersrand, Johannesburg, 7 York Road, Parktown 2193, South Africa; (A.B.A.N.); (T.M.); (P.P.D.K.); (Y.E.C.); (L.C.D.T.)
| |
Collapse
|
24
|
Wang DS, Mukhtar A, Wu KM, Gu L, Cao X. Multi-Segmented Nanowires: A High Tech Bright Future. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3908. [PMID: 31779229 PMCID: PMC6927002 DOI: 10.3390/ma12233908] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
In the last couple of decades, there has been a lot of progress in the synthesis methods of nano-structural materials, but still the field has a large number of puzzles to solve. Metal nanowires (NWs) and their alloys represent a sub category of the 1-D nano-materials and there is a large effort to study the microstructural, physical and chemical properties to use them for further industrial applications. Due to technical limitations of single component NWs, the hetero-structured materials gained attention recently. Among them, multi-segmented NWs are more diverse in applications, consisting of two or more segments that can perform multiple function at a time, which confer their unique properties. Recent advancement in characterization techniques has opened up new opportunities for understanding the physical properties of multi-segmented structures of 1-D nanomaterials. Since the multi-segmented NWs needs a reliable response from an external filed, numerous studies have been done on the synthesis of multi-segmented NWs to precisely control the physical properties of multi-segmented NWs. This paper highlights the electrochemical synthesis and physical properties of multi-segmented NWs, with a focus on the mechanical and magnetic properties by explaining the shape, microstructure, and composition of NWs.
Collapse
Affiliation(s)
| | - Aiman Mukhtar
- The State Key Laboratory of Refractories and Metallurgy, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China; (D.-S.W.); ; (L.G.)
| | - Kai-Ming Wu
- The State Key Laboratory of Refractories and Metallurgy, International Research Institute for Steel Technology, Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China; (D.-S.W.); ; (L.G.)
| | | | | |
Collapse
|
25
|
Lai S, Du Y. Magnetic Behavior in TiS 3 Nanoribbon. MATERIALS 2019; 12:ma12213501. [PMID: 31731449 PMCID: PMC6862672 DOI: 10.3390/ma12213501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022]
Abstract
The electronic structure, magnetic properties and strain response of N-a-TiS3 nanoribbons are investigated by first-principles calculations. We find that the magnetic ground state is strongly dependent on width of a-TiS3. When N equals an odd number the ground state is a ferromagnetic (FM) metal, meanwhile, when N equals an even number the ground state is an anti-ferromagnetic (AFM) metal. More interestingly, a tensile strain as large as 6% can tune the 9-a-TiS3 nanoribbon from a FM metal to a half metal. A 4% tensile strain also causes a phase transition from AFM to FM ground state for 10-a-TiS3 nanoribbon. Our findings show that N-a-TiS3 is a promising candidate for spintronic and electronic applications.
Collapse
Affiliation(s)
- Shengqiang Lai
- The School of Physics, Nanjing University, Nanjing 210093, China;
| | - Yongping Du
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
- Correspondence:
| |
Collapse
|