1
|
Orvieto R, Shamir C, Aizer A. Does extreme psychological burden (Hamas terrorist attack on October 7th, 2023) affect in vitro fertilization outcome? J Assist Reprod Genet 2024; 41:1585-1588. [PMID: 38520617 PMCID: PMC11224205 DOI: 10.1007/s10815-024-03099-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
OBJECTIVE We aim to investigate the effect of extreme emotional and psychological trauma following Hamas terrorist attack on October 7th, 2023, on IVF cycle outcome. PATIENTS AND METHODS The study population consisted of all couples undergoing 2 consecutive IVF attempts with ovum pick-up in our institute, before and during the week of October 8th to 12th, 2023. Embryological/ laboratory variables of the IVF cycles were assessed and compared between the patients' IVF cycle before and those that underwent OPU during the spoken week. RESULTS Twenty-three couples were eligible for analysis. There were no differences between the cycles in the length of ovarian stimulation, total dose of gonadotropin used, and the peak estradiol and progesterone levels. Furthermore, while no differences were observed in the number of oocytes and mature oocytes retrieved or fertilization rate, the mean number of top-quality embryos per OPU (1.1 ± 1.7 vs. 2.2 ± 2.9; p < 0.02) and ratio of top-quality embryos per number of fertilized oocytes (0.5 ± 0.3 vs. 0.7 ± 0.2; p < 0.01) were significantly lower during the spoken week. Semen total motile count was significantly reduced during the spoken week. CONCLUSIONS In the present study, we are witness to the effect of acute emotional and psychological trauma on IVF outcome, as reflected by its detrimental effect on sperm and embryo quality.
Collapse
Affiliation(s)
- Raoul Orvieto
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.
- Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel.
| | - Coral Shamir
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel
| | - Adva Aizer
- Infertility and IVF Unit, Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Faculty of Medical and Health Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Hu S, Li X, Yang L. Effects of physical activity in child and adolescent depression and anxiety: role of inflammatory cytokines and stress-related peptide hormones. Front Neurosci 2023; 17:1234409. [PMID: 37700748 PMCID: PMC10493323 DOI: 10.3389/fnins.2023.1234409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/08/2023] [Indexed: 09/14/2023] Open
Abstract
Depression and anxiety are the most common mental illnesses affecting children and adolescents, significantly harming their well-being. Research has shown that regular physical activity can promote cognitive, emotional, fundamental movement skills, and motor coordination, as a preventative measure for depression while reducing the suicide rate. However, little is known about the potential role of physical activity in adolescent depression and anxiety. The studies reviewed in this paper suggest that exercise can be an effective adjunctive treatment to improve depressive and anxiety symptoms in adolescents, although research on its neurobiological effects remains limited.
Collapse
Affiliation(s)
- Shaojuan Hu
- College of Physical Education and Sports Science, Hengyang Normal University, Hengyang, China
| | - Xinyuan Li
- College of Physical Education and Sports Science, Hengyang Normal University, Hengyang, China
| | - Luodan Yang
- College of Physical Education and Sport Science, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Simone JJ, Green MR, McCormick CM. Endocannabinoid system contributions to sex-specific adolescent neurodevelopment. Prog Neuropsychopharmacol Biol Psychiatry 2022; 113:110438. [PMID: 34534603 DOI: 10.1016/j.pnpbp.2021.110438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/13/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023]
Abstract
With an increasing number of countries and states adopting legislation permitting the use of cannabis for medical purposes, there is a growing interest among health and research professionals into the system through which cannabinoids principally act, the endocannabinoid system (ECS). Much of the seminal research into the ECS dates back only 30 years and, although there has been tremendous development within the field during this time, many questions remain. More recently, investigations have emerged examining the contributions of the ECS to normative development and the effect of altering this system during important critical periods. One such period is adolescence, a unique period during which brain and behaviours are maturing and reorganizing in preparation for adulthood, including shifts in endocannabinoid biology. The purpose of this review is to discuss findings to date regarding the maturation of the ECS during adolescence and the consequences of manipulations of the ECS during this period to normative neurodevelopmental processes, as well as highlight sex differences in ECS function, important technical considerations, and future directions. Because most of what we know is derived from preclinical studies on rodents, we provide relevant background of this model and some commentary on the translational relevance of the research in this area.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Huxley Health Inc., 8820 Jane St., Concord, ON, L4K 2M9, Canada; eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Matthew R Green
- eCB Consulting Inc., PO Box 652, 3 Cameron St. W., Cannington, ON L0E 1E0, Canada; Medical Cannabis Canada, 601-3500 Lakeshore Rd. W., Oakville, ON L6L 0B4, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Centre for Neuroscience, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada; Department of Psychology, 1812 Sir Isaac Brock Way, Brock University, St. Catharines, ON L2S 3A1, Canada.
| |
Collapse
|
4
|
Simone JJ, Baumbach JL, McPherson J, McCormick CM. Adolescent CB1 receptor antagonism influences subsequent social interactions and neural activity in female rats. Int J Dev Neurosci 2020; 80:319-333. [PMID: 32220094 DOI: 10.1002/jdn.10028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/05/2023] Open
Abstract
We previously demonstrated that repeated exposure to the CB1 receptor antagonist/inverse agonist AM251 in adolescence (PND 30-44) increased social interactions in female rats when tested 48 h after the final exposure to the antagonist. Here, we investigated whether the increased sociality would be present after a longer drug washout period (5 days) in both male and female rats (experiment 1), and sought to identify candidate brain regions that may explain the observed differences in social behaviours between AM251 and vehicle-treated female rats (experiment 2). While drug-free, adolescent AM251 treatment increased social interactions in females and not in males. AM251 female rats had increased neural activity (as measured by the expression of early growth response protein-1; EGR-1) in the nucleus accumbens shell and cingulate gyrus of the medial prefrontal cortex, with no observed differences in EGR-1 expression in the dorsal hippocampus, nucleus accumbens core, or prelimbic and infralimbic subdivisions of the medial prefrontal cortex relative to vehicle rats. Together, these results demonstrate a sex-specific role of adolescent endocannabinoid signalling in the normative development of social behaviours and provide further support for adolescence as a vulnerable period for the effects of altered endocannabinoid signalling.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, St. Catharines, ON, Canada
| | | | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, St. Catharines, ON, Canada.,Department of Psychology, Brock University, St. Catharines, ON, Canada.,Centre for Neuroscience, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
5
|
Navarrete F, García-Gutiérrez MS, Jurado-Barba R, Rubio G, Gasparyan A, Austrich-Olivares A, Manzanares J. Endocannabinoid System Components as Potential Biomarkers in Psychiatry. Front Psychiatry 2020; 11:315. [PMID: 32395111 PMCID: PMC7197485 DOI: 10.3389/fpsyt.2020.00315] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022] Open
Abstract
The high heterogeneity of psychiatric disorders leads to a lack of diagnostic precision. Therefore, the search of biomarkers is a fundamental aspect in psychiatry to reach a more personalized medicine. The endocannabinoid system (ECS) has gained increasing interest due to its involvement in many different functional processes in the brain, including the regulation of emotions, motivation, and cognition. This article reviews the role of the main components of the ECS as biomarkers in certain psychiatric disorders. Studies carried out in rodents evaluating the effects of pharmacological and genetic manipulation of cannabinoid receptors or endocannabinoids (eCBs) degrading enzymes were included. Likewise, the ECS-related alterations occurring at the molecular level in animal models reproducing some behavioral and/or neuropathological aspects of psychiatric disorders were reviewed. Furthermore, clinical studies evaluating gene or protein alterations in post-mortem brain tissue or in vivo blood, plasma, and cerebrospinal fluid (CSF) samples were analyzed. Also, the results from neuroimaging studies using positron emission tomography (PET) or functional magnetic resonance (fMRI) were included. This review shows the close involvement of cannabinoid receptor 1 (CB1r) in stress regulation and the development of mood disorders [anxiety, depression, bipolar disorder (BD)], in post-traumatic stress disorder (PTSD), as well as in the etiopathogenesis of schizophrenia, attention deficit hyperactivity disorder (ADHD), or eating disorders (i.e. anorexia and bulimia nervosa). On the other hand, recent results reveal the potential therapeutic action of the endocannabinoid tone manipulation by inhibition of eCBs degrading enzymes, as well as by the modulation of cannabinoid receptor 2 (CB2r) activity on anxiolytic, antidepressive, or antipsychotic associated effects. Further clinical research studies are needed; however, current evidence suggests that the components of the ECS may become promising biomarkers in psychiatry to improve, at least in part, the diagnosis and pharmacological treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Salud García-Gutiérrez
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rosa Jurado-Barba
- Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Departamento de Psicología, Facultad de Educación y Salud, Universidad Camilo José Cela, Madrid, Spain
| | - Gabriel Rubio
- Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.,Instituto de Investigación i+12, Hospital Universitario 12 de Octubre, Madrid, Spain.,Servicio de Psiquiatría, Hospital Universitario 12 de Octubre, Madrid, Spain.,Department of Psychiatry, Complutense University of Madrid, Madrid, Spain
| | - Ani Gasparyan
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | | | - Jorge Manzanares
- Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, Alicante, Spain.,Red Temática de Investigación Cooperativa en Salud (RETICS), Red de Trastornos Adictivos, Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| |
Collapse
|
6
|
Dow-Edwards D, MacMaster FP, Peterson BS, Niesink R, Andersen S, Braams BR. Experience during adolescence shapes brain development: From synapses and networks to normal and pathological behavior. Neurotoxicol Teratol 2019; 76:106834. [PMID: 31505230 DOI: 10.1016/j.ntt.2019.106834] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/27/2019] [Accepted: 09/06/2019] [Indexed: 12/20/2022]
Abstract
Adolescence is a period of dramatic neural reorganization creating a period of vulnerability and the possibility for the development of psychopathology. The maturation of various neural circuits during adolescence depends, to a large degree, on one's experiences both physical and psychosocial. This occurs through a process of plasticity which is the structural and functional adaptation of the nervous system in response to environmental demands, physiological changes and experiences. During adolescence, this adaptation proceeds upon a backdrop of structural and functional alterations imparted by genetic and epigenetic factors and experiences both prior to birth and during the postnatal period. Plasticity entails an altering of connections between neurons through long-term potentiation (LTP) (which alters synaptic efficiency), synaptogenesis, axonal sprouting, dendritic remodeling, neurogenesis and recruitment (Skaper et al., 2017). Although most empirical evidence for plasticity derives from studies of the sensory systems, recent studies have suggested that during adolescence, social, emotional, and cognitive experiences alter the structure and function of the networks subserving these domains of behavior. Each of these neural networks exhibits heightened vulnerability to experience-dependent plasticity during the sensitive periods which occur in different circuits and different brain regions at specific periods of development. This report will summarize some examples of adaptation which occur during adolescence and some evidence that the adolescent brain responds differently to stimuli compared to adults and children. This symposium, "Experience during adolescence shapes brain development: from synapses and networks to normal and pathological behavior" occurred during the Developmental Neurotoxicology Society/Teratology Society Annual Meeting in Clearwater Florida, June 2018. The sections will describe the maturation of the brain during adolescence as studied using imaging technologies, illustrate how plasticity shapes the structure of the brain using examples of pathological conditions such as Tourette's' syndrome and attention deficit hyperactivity disorder, and a review of the key molecular systems involved in this plasticity and how some commonly abused substances alter brain development. The role of stimulants used in the treatment of attention deficit hyperactivity disorder (ADHD) in the plasticity of the reward circuit is then described. Lastly, clinical data promoting an understanding of peer-influences on risky behavior in adolescents provides evidence for the complexity of the roles that peers play in decision making, a phenomenon different from that in the adult. Imaging studies have revealed that activation of the social network by the presence of peers at times of decision making is unique in the adolescent. Since normal brain development relies on experiences which alter the functional and structural connections between cells within circuits and networks to ultimately alter behavior, readers can be made aware of the myriad of ways normal developmental processes can be hijacked. The vulnerability of developing adolescent brain places the adolescent at risk for the development of a life time of abnormal behaviors and mental disorders.
Collapse
Affiliation(s)
- Diana Dow-Edwards
- Department of Physiology & Pharmacology, State University of New York, Downstate Medical Center, Brooklyn, NY, United States of America.
| | - Frank P MacMaster
- Departments of Psychiatry & Pediatrics, University of Calgary, Addiction and Mental Health Strategic Clinical Network, Calgary, Alberta, Canada
| | - Bradley S Peterson
- Children's Hospital Los Angeles, The Keck School of Medicine at the University of Southern California, Los Angeles, CA, United States of America
| | - Raymond Niesink
- Trimbos Institute, Netherlands Institute of Mental Health and Addiction, Utrecht, the Netherlands; Faculty of Management, Science and Technology, School of Science, Open University of the Netherlands, Heerlen, the Netherlands
| | - Susan Andersen
- McLean Hospital, Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - B R Braams
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, United States of America
| |
Collapse
|
7
|
Vangopoulou C, Bourmpoula MT, Koupourtidou C, Giompres P, Stamatakis A, Kouvelas ED, Mitsacos A. Effects of an early life experience on rat brain cannabinoid receptors in adolescence and adulthood. IBRO Rep 2018; 5:1-9. [PMID: 30135950 PMCID: PMC6095101 DOI: 10.1016/j.ibror.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/14/2018] [Accepted: 05/26/2018] [Indexed: 12/17/2022] Open
Abstract
Neonatal handling is an experimental model of early life experience associated with resilience in later life challenges, altering the ability of animals to respond to stress. The endocannabinoid system of the brain modulates the neuroendocrine and behavioral effects of stress, while this system is also capable of being modulated by stress exposure itself. The present study has addressed the question of whether neonatal handling in rats could affect cannabinoid receptors, in an age- and sex-dependent manner, using in situ hybridization and receptor binding techniques. Different effects of neonatal handling were observed in adolescent and adult brain on CB1 receptor mRNA and [3H]CP55,940 binding levels, which in some cases were sexually dimorphic. Neonatal handling interfered in the developmental trajectories of CB1 receptor mRNA levels in striatum and amygdaloid nuclei, as well as of [3H]CP55,940 binding levels in almost all regions studied. Adult handled rats showed reduced [3H]CP55,940 binding levels in the prefrontal cortex, striatum, nucleus accumbens and basolateral amygdala, while binding levels in prefrontal cortex of adolescent handled rats were increased. Finally, handling resulted in decreases in female [3H]CP55,940 binding levels in the striatum, nucleus accumbens, CA3 and DG of dorsal hippocampus and basolateral amygdala. Our results suggest that a brief and repeated maternal separation during the neonatal period induces changes on cannabinoid receptors differently manifested between adolescence and adulthood, male and female brain, which could be correlated to their stress response.
Collapse
Key Words
- 2-AG, 2-arachidonoylglycerol
- ANOVA, analysis of variance
- Adolescence
- BLA, basolateral nucleus of amygdala
- BSA, bovine serum albumin
- CA1, dorsal field 1 of Ammon’s horn
- CA3, dorsal field 3 of Ammon’s horn
- CB1 cannabinoid receptors
- CB1, cannabinoid receptor 1
- CPu-DL, dorsolateral striatum
- CPu-VM, ventromedial striatum
- CeA, central amygdaloid nucleus
- Cg1, anterior cingulate cortex
- DG, dentate gyrus
- Female rat brain
- GR, glucocorticoid receptors
- GrDG, dentate gyrus granule cell layer
- HPA, hypothalamic-pituitary-adrenal
- IL, infralimbic cortex
- LTD, long-term depression
- MO, medial orbital cortex
- Male rat brain
- Maternal separation
- MoDG, dentate gyrus molecular layer
- NAc, nucleus accumbens
- NS, not significant
- Neonatal handling
- PFC, prefrontal cortex
- PND, postnatal day
- PrL, prelimbic cortex
- ROD, relative optical density
- RT, room temperature
- eCB, endocannabinoid
- mPFC, medial prefrontal cortex
Collapse
Affiliation(s)
- Chara Vangopoulou
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | - Maria T. Bourmpoula
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | | | - Panagiotis Giompres
- Laboratory of Human and Animal Physiology, Department of Biology, University of Patras, 265040, Patras, Greece
| | - Antonios Stamatakis
- Laboratory of Biology-Biochemistry, Faculty of Nursing, University of Athens, 11527, Athens, Greece
| | - Elias D. Kouvelas
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| | - Ada Mitsacos
- Laboratory of Physiology, Medical School, University of Patras, 26500, Patras, Greece
| |
Collapse
|
8
|
Simone JJ, Baumbach JL, McCormick CM. Sex-specific effects of CB1 receptor antagonism and stress in adolescence on anxiety, corticosterone concentrations, and contextual fear in adulthood in rats. Int J Dev Neurosci 2018; 69:119-131. [PMID: 30063953 DOI: 10.1016/j.ijdevneu.2018.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
There is a paucity of research regarding the role of endogenous cannabinoid signalling in adolescence on brain and behaviour development. We previously demonstrated effects of repeated CB1 receptor antagonism in adolescence on socioemotional behaviours and neural protein expression 24-48 h after the last drug administration in female rats, with no effect in males. Here we investigate whether greater effects would be manifested after a lengthier delay. In Experiment 1, male and female rats were administered either 1 mg / kg of the CB1 receptor-selective antagonist AM251, vehicle (VEH), or did not receive injections (NoINJ) daily on postnatal days (PND) 30-44 either alone (no adolescent confinement stress; noACS), or in tandem with 1 h ACS. On PND 70, adolescent AM251 exposure reduced anxiety in an elevated plus maze in males, irrespective of ACS, with no effects in females. On PND 73, there were no group differences in either sex in plasma corticosterone concentrations before or after 30 min of restraint stress, although injection stress resulted in higher baseline concentrations in males. Brains were collected on PND 74, with negligible effects of either AM251 or ACS on protein markers of synaptic plasticity and of the endocannabinoid system in the hippocampus and medial prefrontal cortex. In Experiment 2, rats from both sexes were treated with vehicle or AM251 on PND 30-44 and were tested for contextual fear conditioning and extinction in adulthood. AM251 females had greater fear recall than VEH females 24 h after conditioning, with no group differences in within- or between-session fear extinction. There were no group differences in long-term extinction memory, although AM251 females froze more during a reconditioning trial compared with VEH females. There were no group differences on any of the fear conditioning measures in males. Together, these findings indicate a modest, sex-specific role of CB1 receptor signalling in adolescence on anxiety-like behaviour in males and conditioned fear behaviour in females.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada; Center for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
9
|
Simone JJ, Baumbach JL, McCormick CM. Effects of CB1 receptor antagonism and stress exposures in adolescence on socioemotional behaviours, neuroendocrine stress responses, and expression of relevant proteins in the hippocampus and prefrontal cortex in rats. Neuropharmacology 2017; 128:433-447. [PMID: 29092785 DOI: 10.1016/j.neuropharm.2017.10.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 10/12/2017] [Accepted: 10/23/2017] [Indexed: 01/07/2023]
Abstract
Little is known about the consequences of altered endocannabinoid signalling in adolescence. We hypothesized that CB1 receptor antagonism (AM251, 1 mg/kg) and stress exposures (1 h confinement stress) in adolescence (daily, postnatal days 30-44) would interact to increase neuroendocrine stress responses and anxiety when investigated a minimum of 24 h after drug and stress treatments; these treatment effects were independent of each other. Changes in homecage behaviour and in weight gain confirmed that both males and females were sensitive to the treatments. Nevertheless, in males, repeated AM251 administration was without effect on any of the measures investigated in days post-treatment. Males had reduced corticosterone release to the repeated stress and had increased GAD67 expression in the ventral hippocampus under baseline conditions. In females, AM251 also reduced weight gain and increased stereotypic behaviours in the homecage; these same females showed increased sociality, reduced CB1 receptor expression in the dorsal hippocampus, and increased GAD67 expression in the prefrontal cortex. Further, females exposed to repeated stress had enhanced recovery to baseline corticosterone concentrations after stress. The inclusion of a non-injected comparison group also revealed stress of injection effects in both sexes that otherwise would have been masked. Together, the findings demonstrate effects of CB1 receptor antagonism and stress that were more evident in females than males, suggesting that females may be more vulnerable to the consequences of disrupted endocannabinoid signalling during adolescence.
Collapse
Affiliation(s)
- Jonathan J Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Jennet L Baumbach
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada
| | - Cheryl M McCormick
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada; Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada; Centre for Neuroscience, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario L2S 3A1, Canada.
| |
Collapse
|
10
|
Levine A, Clemenza K, Rynn M, Lieberman J. Evidence for the Risks and Consequences of Adolescent Cannabis Exposure. J Am Acad Child Adolesc Psychiatry 2017; 56:214-225. [PMID: 28219487 DOI: 10.1016/j.jaac.2016.12.014] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
OBJECTIVE This review of the scientific literature examines the potential adult sequelae of exposure to cannabis and related synthetic cannabinoids in adolescence. We examine the four neuropsychiatric outcomes that are likely most vulnerable to alteration by early cannabinoid use, as identified within both the clinical and preclinical research: cognition, emotional functioning, risk for psychosis, and addiction. METHOD A literature search was conducted through PubMed, PsychInfo, and Google Scholar with no publication date restrictions. The search terms used were "adolescent" and "adult," and either "cannabis," "marijuana," "delta-9-tetra-hydrocannabinol," or "cannabinoid," which was then crossed with one or more of the following terms: "deficit," "impairment," "alteration," "long-term," "persistent," "development," "maturation," and "pubescent." RESULTS The majority of the clinical and preclinical data point to a strong correlation between adolescent cannabinoid exposure and persistent, adverse neuropsychiatric outcomes in adulthood. Although the literature supports the hypothesis that adolescent cannabis use is connected to impaired cognition and mental health in adults, it does not conclusively demonstrate that cannabis consumption alone is sufficient to cause these deficits in humans. The animal literature, however, clearly indicates that adolescent-onset exposure to cannabinoids can catalyze molecular processes that lead to persistent functional deficits in adulthood, deficits that are not found to follow adult-onset exposure and that model some of the adverse outcomes reported in humans among adult populations of early-onset cannabis users. CONCLUSION Based on the data in the current literature, a strong association is found between early, frequent, and heavy adolescent cannabis exposure and poor cognitive and psychiatric outcomes in adulthood, yet definite conclusions cannot yet be made as to whether cannabis use alone has a negative impact on the human adolescent brain. Future research will require animal models and longitudinal studies to be carefully designed with a focus on integrating assessments of molecular, structural, and behavioral outcomes in order to elucidate the full range of potential adverse and long-term consequences of cannabinoid exposure in adolescence.
Collapse
Affiliation(s)
- Amir Levine
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY.
| | | | - Moira Rynn
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY; New York Presbyterian Hospital-Columbia University Medical Center, New York
| | - Jeffrey Lieberman
- College of Physicians and Surgeons, Columbia University, and the New York State Psychiatric Institute, New York, NY; New York Presbyterian Hospital-Columbia University Medical Center, New York
| |
Collapse
|
11
|
Clarke DJ, Stuart J, McGregor IS, Arnold JC. Endocannabinoid dysregulation in cognitive and stress-related brain regions in the Nrg1 mouse model of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2017; 72:9-15. [PMID: 27521758 DOI: 10.1016/j.pnpbp.2016.08.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/09/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023]
Abstract
The endocannabinoid system is dysregulated in schizophrenia. Mice with heterozygous deletion of neuregulin 1 (Nrg1 HET mice) provide a well-characterised animal model of schizophrenia, and display enhanced sensitivity to stress and cannabinoids during adolescence. However, no study has yet determined whether these mice have altered brain endocannabinoid concentrations. Nrg1 application to hippocampal slices decreased 2-arachidonoylglycerol (2-AG) signalling and disrupted long-term depression, a form of synaptic plasticity critical to spatial learning. Therefore we specifically aimed to examine whether Nrg1 HET mice exhibit increased 2-AG concentrations and disruption of spatial learning. As chronic stress influences brain endocannabinoids, we also sought to examine whether Nrg1 deficiency moderates adolescent stress-induced alterations in brain endocannabinoids. Adolescent Nrg1 HET and wild-type (WT) mice were submitted to chronic restraint stress and brain endocannabinoid concentrations were analysed. A separate cohort of WT and Nrg1 HET mice was also assessed for spatial learning performance in the Morris Water Maze. Partial genetic deletion of Nrg1 increased anandamide concentrations in the amygdala and decreased 2-AG concentrations in the hypothalamus. Further, Nrg1 HET mice exhibited increased 2-AG concentrations in the hippocampus and impaired spatial learning performance. Chronic adolescent stress increased anandamide concentrations in the amygdala, however, Nrg1 disruption did not influence this stress-induced change. These results demonstrate for the first time in vivo interplay between Nrg1 and endocannabinoids in the brain. Our results demonstrate that aberrant Nrg1 and endocannabinoid signalling may cooperate in the hippocampus to impair cognition, and that Nrg1 deficiency alters endocannabinoid signalling in brain stress circuitry.
Collapse
Affiliation(s)
- David J Clarke
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Jordyn Stuart
- Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Iain S McGregor
- Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; Brain and Mind Centre, University of Sydney, Sydney, Australia; Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia.
| |
Collapse
|
12
|
Lee TTY, Hill MN, Lee FS. Developmental regulation of fear learning and anxiety behavior by endocannabinoids. GENES, BRAIN, AND BEHAVIOR 2016; 15:108-24. [PMID: 26419643 PMCID: PMC4713313 DOI: 10.1111/gbb.12253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/03/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.
Collapse
Affiliation(s)
- Tiffany T.-Y. Lee
- Dept. of Psychology, University of British Columbia, Vancouver, Canada, V6T 1Z4
| | - Matthew N. Hill
- Hotchkiss Brain Institute and Mathison Center for Mental Health Research and Education, Departments of Cell Biology and Anatomy & Psychiatry, University of Calgary, Calgary AB, Canada T2N4N1
| | - Francis S. Lee
- Department of Psychiatry, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
- Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, New York 10065, USA
| |
Collapse
|