1
|
Lowe SA, Wilson AD, Aughey GN, Banerjee A, Goble T, Simon-Batsford N, Sanderson A, Kratschmer P, Balogun M, Gao H, Aw SS, Jepson JEC. Modulation of a critical period for motor development in Drosophila by BK potassium channels. Curr Biol 2024; 34:3488-3505.e3. [PMID: 39053467 DOI: 10.1016/j.cub.2024.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Critical periods are windows of heightened plasticity occurring during neurodevelopment. Alterations in neural activity during these periods can cause long-lasting changes in the structure, connectivity, and intrinsic excitability of neurons, which may contribute to the pathology of neurodevelopmental disorders. However, endogenous regulators of critical periods remain poorly defined. Here, we study this issue using a fruit fly (Drosophila) model of an early-onset movement disorder caused by BK potassium channel gain of function (BK GOF). Deploying a genetic method to place robust expression of GOF BK channels under spatiotemporal control, we show that adult-stage neuronal expression of GOF BK channels minimally disrupts fly movement. In contrast, limiting neuronal expression of GOF BK channels to a short window during late neurodevelopment profoundly impairs locomotion and limb kinematics in resulting adult flies. During this critical period, BK GOF perturbs synaptic localization of the active zone protein Bruchpilot and reduces excitatory neurotransmission. Conversely, enhancing neural activity specifically during development rescues motor defects in BK GOF flies. Collectively, our results reveal a critical developmental period for limb control in Drosophila that is influenced by BK channels and suggest that BK GOF causes movement disorders by disrupting activity-dependent aspects of synaptic development.
Collapse
Affiliation(s)
- Simon A Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Abigail D Wilson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Animesh Banerjee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Talya Goble
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Department of Cell and Developmental Biology, University College London, London, UK
| | - Nell Simon-Batsford
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Angelina Sanderson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Patrick Kratschmer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maryam Balogun
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hao Gao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sherry S Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
2
|
Echeverría F, Gonzalez-Sanabria N, Alvarado-Sanchez R, Fernández M, Castillo K, Latorre R. Large conductance voltage-and calcium-activated K + (BK) channel in health and disease. Front Pharmacol 2024; 15:1373507. [PMID: 38584598 PMCID: PMC10995336 DOI: 10.3389/fphar.2024.1373507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/12/2024] [Indexed: 04/09/2024] Open
Abstract
Large Conductance Voltage- and Calcium-activated K+ (BK) channels are transmembrane pore-forming proteins that regulate cell excitability and are also expressed in non-excitable cells. They play a role in regulating vascular tone, neuronal excitability, neurotransmitter release, and muscle contraction. Dysfunction of the BK channel can lead to arterial hypertension, hearing disorders, epilepsy, and ataxia. Here, we provide an overview of BK channel functioning and the implications of its abnormal functioning in various diseases. Understanding the function of BK channels is crucial for comprehending the mechanisms involved in regulating vital physiological processes, both in normal and pathological conditions, controlled by BK. This understanding may lead to the development of therapeutic interventions to address BK channelopathies.
Collapse
Affiliation(s)
- Felipe Echeverría
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Naileth Gonzalez-Sanabria
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sanchez
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Miguel Fernández
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Karen Castillo
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso, Instituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Tang X, Zhong H, Xu C, Sun Y, Lou Y, Zhao Y, Liang Y, Guo X, Pan C, Sun J, Sun J. Downregulation of KCNMA1 in mice accelerates auditory hair cells senescence via ferroptosis. Neurobiol Aging 2024; 134:115-125. [PMID: 38056217 DOI: 10.1016/j.neurobiolaging.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 12/08/2023]
Abstract
KCNMA1 encodes the K+ potassium channel α-subunit that plays a significant role in the auditory system. Our previous studies indicated that KCNMA1 is associated with age-related hearing loss(AHL). However, the detailed mechanism of KCNMA1 involvement in auditory age-related degradation has not been fully clarified. Therefore, we explored the expression of KCNMA1 in the peripheral auditory of 2-month-old and 12-month-old mice by Western blotting and immunofluorescence. The results of animal experiments showed that KCNMA1 expression was decreased in 12-month-old mice compared with 2-month-old mice, whereas the ferroptosis level was increased. To verify the role of KCNMA1 in AHL, we downregulated KCNMA1 in HEI-OC1 cells by transfecting shRNA. After downregulation, the ferroptosis level was increased and the aging process was accelerated. Furthermore, the aging process was affected by the expression of ferroptosis. In conclusion, these results revealed that KCNMA1 is associated with the aging process in auditory hair cells by regulating ferroptosis, which deepens our understanding of age-related hearing loss.
Collapse
Affiliation(s)
- Xiaomin Tang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Haoyue Zhong
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Chenyu Xu
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yuxuan Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yuxiang Lou
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yi Zhao
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Yue Liang
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Xiaotao Guo
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Chunchen Pan
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China
| | - Jiaqiang Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| | - Jingwu Sun
- Departments of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, Anhui Province 230001, PR China.
| |
Collapse
|
4
|
Chen AL, Wu TH, Shi L, Clusin WT, Kao PN. Calcium-Activated Big-Conductance (BK) Potassium Channels Traffic through Nuclear Envelopes into Kinocilia in Ray Electrosensory Cells. Cells 2023; 12:2125. [PMID: 37681857 PMCID: PMC10486799 DOI: 10.3390/cells12172125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/15/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Electroreception through ampullae of Lorenzini in the little skate, Leucoraja erinacea, involves functional coupling between voltage-activated calcium channels (CaV1.3, cacna1d) and calcium-activated big-conductance potassium (BK) channels (BK, kcnma1). Whole-mount confocal microscopy was used to characterize the pleiotropic expression of BK and CaV1.3 in intact ampullae. BK and CaV1.3 are co-expressed in electrosensory cell plasma membranes, nuclear envelopes and kinocilia. Nuclear localization sequences (NLS) were predicted in BK and CaV1.3 by bioinformatic sequence analyses. The BK NLS is bipartite, occurs at an alternative splice site for the mammalian STREX exon and contains sequence targets for post-translational phosphorylation. Nuclear localization of skate BK channels was characterized in heterologously transfected HEK293 cells. Double-point mutations in the bipartite NLS (KR to AA or SVLS to AVLA) independently attenuated BK channel nuclear localization. These findings support the concept that BK partitioning between the electrosensory cell plasma membrane, nucleus and kinocilium may be regulated through a newly identified bipartite NLS.
Collapse
Affiliation(s)
- Abby L. Chen
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| | - Ting-Hsuan Wu
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lingfang Shi
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| | - William T. Clusin
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Peter N. Kao
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (A.L.C.); (T.-H.W.); (L.S.)
| |
Collapse
|
5
|
Jiang L, Li J, Reilly S, Xin H, Guo N, Zhang X. Role of organellar Ca2+-activated K+ channels in disease development. Life Sci 2023; 316:121433. [PMID: 36708987 DOI: 10.1016/j.lfs.2023.121433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023]
Abstract
The organellar Ca2+-activated K+ channels share a similar ability to transfer the alteration of Ca2+ concentration to membrane conductance of potassium. Multiple effects of Ca2+-activated K+ channels on cell metabolism and complex signaling pathways during organ development have been explored. The organellar Ca2+-activated K+ channels are able to control the ionic equilibrium and are always associated with oxidative stress in different organelles and the whole cells. Some drugs targeting Ca2+-activated K+ channels have been tested for various diseases in clinical trials. In this review, the known roles of organellar Ca2+-activated K+ channels were described, and their effects on different diseases, particularly on diabetes, cardiovascular diseases, and neurological diseases were discussed. It was attempted to summarize the currently known operational modes with the involvement of organellar Ca2+-activated K+ channels. This review may assist scholars to more comprehensively understand organellar Ca2+-activated K+ channels and related diseases.
Collapse
Affiliation(s)
- Lan Jiang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Jiawei Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Svetlana Reilly
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hong Xin
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Nan Guo
- Department of Pharmacy, Minhang hospital, Fudan University, Shanghai, China.
| | - Xuemei Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ancatén-González C, Segura I, Alvarado-Sánchez R, Chávez AE, Latorre R. Ca 2+- and Voltage-Activated K + (BK) Channels in the Nervous System: One Gene, a Myriad of Physiological Functions. Int J Mol Sci 2023; 24:3407. [PMID: 36834817 PMCID: PMC9967218 DOI: 10.3390/ijms24043407] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 02/11/2023] Open
Abstract
BK channels are large conductance potassium channels characterized by four pore-forming α subunits, often co-assembled with auxiliary β and γ subunits to regulate Ca2+ sensitivity, voltage dependence and gating properties. BK channels are abundantly expressed throughout the brain and in different compartments within a single neuron, including axons, synaptic terminals, dendritic arbors, and spines. Their activation produces a massive efflux of K+ ions that hyperpolarizes the cellular membrane. Together with their ability to detect changes in intracellular Ca2+ concentration, BK channels control neuronal excitability and synaptic communication through diverse mechanisms. Moreover, increasing evidence indicates that dysfunction of BK channel-mediated effects on neuronal excitability and synaptic function has been implicated in several neurological disorders, including epilepsy, fragile X syndrome, mental retardation, and autism, as well as in motor and cognitive behavior. Here, we discuss current evidence highlighting the physiological importance of this ubiquitous channel in regulating brain function and its role in the pathophysiology of different neurological disorders.
Collapse
Affiliation(s)
- Carlos Ancatén-González
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ignacio Segura
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Rosangelina Alvarado-Sánchez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
- Doctorado en Ciencias Mención Biofísica y Biología Computacional, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Andrés E. Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| | - Ramon Latorre
- Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Instituto de Neurociencias, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
7
|
Potassium channelopathies associated with epilepsy-related syndromes and directions for therapeutic intervention. Biochem Pharmacol 2023; 208:115413. [PMID: 36646291 DOI: 10.1016/j.bcp.2023.115413] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
A number of mutations to members of several CNS potassium (K) channel families have been identified which result in rare forms of neonatal onset epilepsy, or syndromes of which one prominent characteristic is a form of epilepsy. Benign Familial Neonatal Convulsions or Seizures (BFNC or BFNS), also referred to as Self-Limited Familial Neonatal Epilepsy (SeLNE), results from mutations in 2 members of the KV7 family (KCNQ) of K channels; while generally self-resolving by about 15 weeks of age, these mutations significantly increase the probability of generalized seizure disorders in the adult, in some cases they result in more severe developmental syndromes. Epilepsy of Infancy with Migrating Focal Seizures (EIMSF), or Migrating Partial Seizures of Infancy (MMPSI), is a rare severe form of epilepsy linked primarily to gain of function mutations in a member of the sodium-dependent K channel family, KCNT1 or SLACK. Finally, KCNMA1 channelopathies, including Liang-Wang syndrome (LIWAS), are rare combinations of neurological symptoms including seizure, movement abnormalities, delayed development and intellectual disabilities, with Liang-Wang syndrome an extremely serious polymalformative syndrome with a number of neurological sequelae including epilepsy. These are caused by mutations in the pore-forming subunit of the large-conductance calcium-activated K channel (BK channel) KCNMA1. The identification of these rare but significant channelopathies has resulted in a resurgence of interest in their treatment by direct pharmacological or genetic modulation. We will briefly review the genetics, biophysics and pharmacology of these K channels, their linkage with the 3 syndromes described above, and efforts to more effectively target these syndromes.
Collapse
|
8
|
Methods of Measuring Mitochondrial Potassium Channels: A Critical Assessment. Int J Mol Sci 2022; 23:ijms23031210. [PMID: 35163132 PMCID: PMC8835872 DOI: 10.3390/ijms23031210] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
In this paper, the techniques used to study the function of mitochondrial potassium channels are critically reviewed. The majority of these techniques have been known for many years as a result of research on plasma membrane ion channels. Hence, in this review, we focus on the critical evaluation of techniques used in the studies of mitochondrial potassium channels, describing their advantages and limitations. Functional analysis of mitochondrial potassium channels in comparison to that of plasmalemmal channels presents additional experimental challenges. The reliability of functional studies of mitochondrial potassium channels is often affected by the need to isolate mitochondria and by functional properties of mitochondria such as respiration, metabolic activity, swelling capacity, or high electrical potential. Three types of techniques are critically evaluated: electrophysiological techniques, potassium flux measurements, and biochemical techniques related to potassium flux measurements. Finally, new possible approaches to the study of the function of mitochondrial potassium channels are presented. We hope that this review will assist researchers in selecting reliable methods for studying, e.g., the effects of drugs on mitochondrial potassium channel function. Additionally, this review should aid in the critical evaluation of the results reported in various articles on mitochondrial potassium channels.
Collapse
|
9
|
González-Sanabria N, Echeverría F, Segura I, Alvarado-Sánchez R, Latorre R. BK in Double-Membrane Organelles: A Biophysical, Pharmacological, and Functional Survey. Front Physiol 2021; 12:761474. [PMID: 34764886 PMCID: PMC8577798 DOI: 10.3389/fphys.2021.761474] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 12/04/2022] Open
Abstract
In the 1970s, calcium-activated potassium currents were recorded for the first time. In 10years, this Ca2+-activated potassium channel was identified in rat skeletal muscle, chromaffin cells and characterized in skeletal muscle membranes reconstituted in lipid bilayers. This calcium- and voltage-activated potassium channel, dubbed BK for “Big K” due to its large ionic conductance between 130 and 300 pS in symmetric K+. The BK channel is a tetramer where the pore-forming α subunit contains seven transmembrane segments. It has a modular architecture containing a pore domain with a highly potassium-selective filter, a voltage-sensor domain and two intracellular Ca2+ binding sites in the C-terminus. BK is found in the plasma membrane of different cell types, the inner mitochondrial membrane (mitoBK) and the nuclear envelope’s outer membrane (nBK). Like BK channels in the plasma membrane (pmBK), the open probability of mitoBK and nBK channels are regulated by Ca2+ and voltage and modulated by auxiliary subunits. BK channels share common pharmacology to toxins such as iberiotoxin, charybdotoxin, paxilline, and agonists of the benzimidazole family. However, the precise role of mitoBK and nBK remains largely unknown. To date, mitoBK has been reported to play a role in protecting the heart from ischemic injury. At the same time, pharmacology suggests that nBK has a role in regulating nuclear Ca2+, membrane potential and expression of eNOS. Here, we will discuss at the biophysical level the properties and differences of mitoBK and nBK compared to those of pmBK and their pharmacology and function.
Collapse
Affiliation(s)
- Naileth González-Sanabria
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Felipe Echeverría
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ignacio Segura
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Rosangelina Alvarado-Sánchez
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Ramon Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
10
|
Kulawiak B, Bednarczyk P, Szewczyk A. Multidimensional Regulation of Cardiac Mitochondrial Potassium Channels. Cells 2021; 10:1554. [PMID: 34205420 PMCID: PMC8235349 DOI: 10.3390/cells10061554] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Mitochondria play a fundamental role in the energetics of cardiac cells. Moreover, mitochondria are involved in cardiac ischemia/reperfusion injury by opening the mitochondrial permeability transition pore which is the major cause of cell death. The preservation of mitochondrial function is an essential component of the cardioprotective mechanism. The involvement of mitochondrial K+ transport in this complex phenomenon seems to be well established. Several mitochondrial K+ channels in the inner mitochondrial membrane, such as ATP-sensitive, voltage-regulated, calcium-activated and Na+-activated channels, have been discovered. This obliges us to ask the following question: why is the simple potassium ion influx process carried out by several different mitochondrial potassium channels? In this review, we summarize the current knowledge of both the properties of mitochondrial potassium channels in cardiac mitochondria and the current understanding of their multidimensional functional role. We also critically summarize the pharmacological modulation of these proteins within the context of cardiac ischemia/reperfusion injury and cardioprotection.
Collapse
Affiliation(s)
- Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| | - Piotr Bednarczyk
- Department of Physics and Biophysics, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland;
| |
Collapse
|
11
|
Mozolewski P, Jeziorek M, Schuster CM, Bading H, Frost B, Dobrowolski R. The role of nuclear Ca2+ in maintaining neuronal homeostasis and brain health. J Cell Sci 2021; 134:jcs254904. [PMID: 33912918 PMCID: PMC8084578 DOI: 10.1242/jcs.254904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nuclear Ca2+ has emerged as one of the most potent mediators of the dialogue between neuronal synapses and the nucleus that regulates heterochromatin states, transcription factor activity, nuclear morphology and neuronal gene expression induced by synaptic activity. Recent studies underline the importance of nuclear Ca2+ signaling in long-lasting, activity-induced adaptation and maintenance of proper brain function. Diverse forms of neuroadaptation require transient nuclear Ca2+ signaling and cyclic AMP-responsive element-binding protein (CREB1, referred to here as CREB) as its prime target, which works as a tunable switch to drive and modulate specific gene expression profiles associated with memory, pain, addiction and neuroprotection. Furthermore, a reduction of nuclear Ca2+ levels has been shown to be neurotoxic and a causal factor driving the progression of neurodegenerative disorders, as well as affecting neuronal autophagy. Because of its central role in the brain, deficits in nuclear Ca2+ signaling may underlie a continuous loss of neuroprotection in the aging brain, contributing to the pathophysiology of Alzheimer's disease. In this Review, we discuss the principles of the 'nuclear calcium hypothesis' in the context of human brain function and its role in controlling diverse forms of neuroadaptation and neuroprotection. Furthermore, we present the most relevant and promising perspectives for future studies.
Collapse
Affiliation(s)
- Pawel Mozolewski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Maciej Jeziorek
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Christoph M. Schuster
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 345 and INF 366, 69120 Heidelberg, Germany
| | - Hilmar Bading
- Department of Neurobiology, Interdisciplinary Center for Neurosciences (IZN), Heidelberg University, INF 345 and INF 366, 69120 Heidelberg, Germany
| | - Bess Frost
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Cell Systems and Anatomy, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
| | - Radek Dobrowolski
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health, San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Song A, Wang J, Tong Y, Fang J, Zhang Y, Zhang H, Ruan H, Wang K, Liu Y. BKCa channels regulate the immunomodulatory properties of WJ-MSCs by affecting the exosome protein profiles during the inflammatory response. Stem Cell Res Ther 2020; 11:440. [PMID: 33059770 PMCID: PMC7560248 DOI: 10.1186/s13287-020-01952-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
Background Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) from the human umbilical cord have been studied extensively due to their immunomodulatory functions. Large-conductance Ca2+-activated K+ (BKCa channels) channels are involved in many inflammatory responses, but their involvement in the anti-inflammatory activity of WJ-MSCs is unknown. The underlying molecular mechanism, through which BKCa channels mediate the immunomodulation of WJ-MSC, which may include changes in exosomes proteomics, has not yet been clarified. Methods Alizarin staining, Oil Red O staining, and flow cytometry were used to identify WJ-MSCs, which were isolated from human umbilical cord Wharton’s jelly. BKCa channels were detected in WJ-MSCs using western blotting, real-time polymerase chain reaction (real-time PCR), and electrophysiology, and cytokine expression was examined using real-time PCR and enzyme-linked immunosorbent assays (ELISAs). Exosomes were characterized using transmission electron microscopy and nanoparticle tracking analysis. Proteomics analysis was performed to explore exosomal proteomic profiles. Results The cells derived from human umbilical cord Wharton’s jelly were identified as MSCs. BKCa channels were detected in the isolated WJ-MSCs, and the expression of these channels increased after lipopolysaccharide (LPS) stimulation. BKCa channels blockade in LPS-treated WJ-MSCs induced apoptosis and decreased interleukin-6 (IL-6) expression. Furthermore, THP-1 cells (human monocytic cell line) stimulated with LPS/interferon gamma (IFN-γ) produced more anti-inflammatory cytokines after treatment with exosomes derived from BKCa channel-knockdown WJ-MSCs (si-exo). We also observed altered expression of mitochondrial ATP synthase alpha subunit (ATP5A1), filamin B, and other proteins in si-exo, which might increase the anti-inflammatory activity of macrophages. Conclusions Our study described the functional expression of BKCa channels in WJ-MSCs, and BKCa channels regulated the immunomodulatory properties of WJ-MSCs by affecting the exosomal protein profiles during the inflammatory response.
Collapse
Affiliation(s)
- Ahui Song
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | - Jingjing Wang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | - Yan Tong
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | - Junyan Fang
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China
| | - Yi Zhang
- Shanghai Applied Protein Technology Co., Ltd.,Research & Development Center, 58 Yuanmei Road, Shanghai, People's Republic of China
| | - Huiping Zhang
- Shanghai Applied Protein Technology Co., Ltd.,Research & Development Center, 58 Yuanmei Road, Shanghai, People's Republic of China
| | - Hongqiang Ruan
- Shanghai Applied Protein Technology Co., Ltd.,Research & Development Center, 58 Yuanmei Road, Shanghai, People's Republic of China
| | - Kai Wang
- The Clinical and Translational Research Center Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yingli Liu
- Department of Nephrology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Loss-of-function BK channel mutation causes impaired mitochondria and progressive cerebellar ataxia. Proc Natl Acad Sci U S A 2020; 117:6023-6034. [PMID: 32132200 DOI: 10.1073/pnas.1920008117] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite a growing number of ion channel genes implicated in hereditary ataxia, it remains unclear how ion channel mutations lead to loss-of-function or death of cerebellar neurons. Mutations in the gene KCNMA1, encoding the α-subunit of the BK channel have emerged as responsible for a variety of neurological phenotypes. We describe a mutation (BKG354S) in KCNMA1, in a child with congenital and progressive cerebellar ataxia with cognitive impairment. The mutation in the BK channel selectivity filter dramatically reduced single-channel conductance and ion selectivity. The BKG354S channel trafficked normally to plasma, nuclear, and mitochondrial membranes, but caused reduced neurite outgrowth, cell viability, and mitochondrial content. Small interfering RNA (siRNA) knockdown of endogenous BK channels had similar effects. The BK activator, NS1619, rescued BKG354S cells but not siRNA-treated cells, by selectively blocking the mutant channels. When expressed in cerebellum via adenoassociated virus (AAV) viral transfection in mice, the mutant BKG354S channel, but not the BKWT channel, caused progressive impairment of several gait parameters consistent with cerebellar dysfunction from 40- to 80-d-old mice. Finally, treatment of the patient with chlorzoxazone, a BK/SK channel activator, partially improved motor function, but ataxia continued to progress. These studies indicate that a loss-of-function BK channel mutation causes ataxia and acts by reducing mitochondrial and subsequently cellular viability.
Collapse
|
14
|
Yang X, Wang G, Cao T, Zhang L, Ma Y, Jiang S, Teng X, Sun X. Large-conductance calcium-activated potassium channels mediate lipopolysaccharide-induced activation of murine microglia. J Biol Chem 2019; 294:12921-12932. [PMID: 31296663 DOI: 10.1074/jbc.ra118.006425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/02/2019] [Indexed: 12/28/2022] Open
Abstract
Large-conductance calcium-activated potassium (BK) channels are ubiquitously expressed in most cell types where they regulate many cellular, organ, and organismal functions. Although BK currents have been recorded specifically in activated murine and human microglia, it is not yet clear whether and how the function of this channel is related to microglia activation. Here, using patch-clamping, Griess reaction, ELISA, immunocytochemistry, and immunoblotting approaches, we show that specific inhibition of the BK channel with paxilline (10 μm) or siRNA-mediated knockdown of its expression significantly suppresses lipopolysaccharide (LPS)-induced (100 ng/ml) BV-2 and primary mouse microglial cell activation. We found that membrane BK current is activated by LPS at a very early stage through Toll-like receptor 4 (TLR4), leading to nuclear translocation of NF-κB and to production of inflammatory cytokines. Furthermore, we noted that BK channels are also expressed intracellularly, and their nuclear expression significantly increases in late stages of LPS-mediated microglia activation, possibly contributing to production of nitric oxide, tumor necrosis factor-α, and interleukin-6. Of note, a specific TLR4 inhibitor suppressed BK channel expression, whereas an NF-κB inhibitor did not. Taken together, our findings indicate that BK channels participate in both the early and the late stages of LPS-stimulated murine microglia activation involving both membrane-associated and nuclear BK channels.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Guiqin Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ting Cao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Li Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yunzhi Ma
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shuhui Jiang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinchen Teng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiaohui Sun
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Collaborative Innovation Center for Brain Science, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
15
|
Bukiya AN, Dopico AM. Regulation of BK Channel Activity by Cholesterol and Its Derivatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:53-75. [DOI: 10.1007/978-3-030-04278-3_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Dopico AM, Bukiya AN, Jaggar JH. Calcium- and voltage-gated BK channels in vascular smooth muscle. Pflugers Arch 2018; 470:1271-1289. [PMID: 29748711 DOI: 10.1007/s00424-018-2151-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
Ion channels in vascular smooth muscle regulate myogenic tone and vessel contractility. In particular, activation of calcium- and voltage-gated potassium channels of large conductance (BK channels) results in outward current that shifts the membrane potential toward more negative values, triggering a negative feed-back loop on depolarization-induced calcium influx and SM contraction. In this short review, we first present the molecular basis of vascular smooth muscle BK channels and the role of subunit composition and trafficking in the regulation of myogenic tone and vascular contractility. BK channel modulation by endogenous signaling molecules, and paracrine and endocrine mediators follows. Lastly, we describe the functional changes in smooth muscle BK channels that contribute to, or are triggered by, common physiological conditions and pathologies, including obesity, diabetes, and systemic hypertension.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA.
| | - Anna N Bukiya
- Department of Pharmacology, College of Medicine, The University of Tennessee Health Science Center, 71 South Manassas St., Memphis, TN, 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
17
|
Voltage-Sensitive Potassium Channels of the BK Type and Their Coding Genes Are Alcohol Targets in Neurons. Handb Exp Pharmacol 2017; 248:281-309. [PMID: 29204711 DOI: 10.1007/164_2017_78] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Among all members of the voltage-gated, TM6 ion channel superfamily, the proteins that constitute calcium- and voltage-gated potassium channels of large conductance (BK) and their coding genes are unique for their involvement in ethanol-induced disruption of normal physiology and behavior. Moreover, in vitro studies document that BK activity is modified by ethanol with an EC50~23 mM, which is near blood alcohol levels considered legal intoxication in most states of the USA (0.08 g/dL = 17.4 mM). Following a succinct introduction to our current understanding of BK structure and function in central neurons, with a focus on neural circuits that contribute to the neurobiology of alcohol use disorders (AUD), we review the modifications in organ physiology by alcohol exposure via BK and the different molecular elements that determine the ethanol response of BK in alcohol-naïve systems, including the role of an ethanol-recognizing site in the BK-forming slo1 protein, modulation of accessory BK subunits, and their coding genes. The participation of these and additional elements in determining the response of a system or an organism to protracted ethanol exposure is consequently analyzed, with insights obtained from invertebrate and vertebrate models. Particular emphasis is put on the role of BK and coding genes in different forms of tolerance to alcohol exposure. We finally discuss genetic results on BK obtained in invertebrate organisms and rodents in light of possible extrapolation to human AUD.
Collapse
|