1
|
Choi HK, Chen M, Goldston LL, Lee KB. Extracellular vesicles as nanotheranostic platforms for targeted neurological disorder interventions. NANO CONVERGENCE 2024; 11:19. [PMID: 38739358 DOI: 10.1186/s40580-024-00426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Central Nervous System (CNS) disorders represent a profound public health challenge that affects millions of people around the world. Diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and traumatic brain injury (TBI) exemplify the complexities and diversities that complicate their early detection and the development of effective treatments. Amid these challenges, the emergence of nanotechnology and extracellular vesicles (EVs) signals a new dawn for treating and diagnosing CNS ailments. EVs are cellularly derived lipid bilayer nanosized particles that are pivotal in intercellular communication within the CNS and have the potential to revolutionize targeted therapeutic delivery and the identification of novel biomarkers. Integrating EVs with nanotechnology amplifies their diagnostic and therapeutic capabilities, opening new avenues for managing CNS diseases. This review focuses on examining the fascinating interplay between EVs and nanotechnology in CNS theranostics. Through highlighting the remarkable advancements and unique methodologies, we aim to offer valuable perspectives on how these approaches can bring about a revolutionary change in disease management. The objective is to harness the distinctive attributes of EVs and nanotechnology to forge personalized, efficient interventions for CNS disorders, thereby providing a beacon of hope for affected individuals. In short, the confluence of EVs and nanotechnology heralds a promising frontier for targeted and impactful treatments against CNS diseases, which continue to pose significant public health challenges. By focusing on personalized and powerful diagnostic and therapeutic methods, we might improve the quality of patients.
Collapse
Affiliation(s)
- Hye Kyu Choi
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, The State University of New Jersey, 123 Bevier Road, Rutgers, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Wang W, Yong J, Marciano P, O’Hare Doig R, Mao G, Clark J. The Translation of Nanomedicines in the Contexts of Spinal Cord Injury and Repair. Cells 2024; 13:569. [PMID: 38607008 PMCID: PMC11011097 DOI: 10.3390/cells13070569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/16/2024] [Accepted: 03/20/2024] [Indexed: 04/13/2024] Open
Abstract
PURPOSE OF THIS REVIEW Manipulating or re-engineering the damaged human spinal cord to achieve neuro-recovery is one of the foremost challenges of modern science. Addressing the restricted permission of neural cells and topographically organised neural tissue for self-renewal and spontaneous regeneration, respectively, is not straightforward, as exemplified by rare instances of translational success. This review assembles an understanding of advances in nanomedicine for spinal cord injury (SCI) and related clinical indications of relevance to attempts to design, engineer, and target nanotechnologies to multiple molecular networks. RECENT FINDINGS Recent research provides a new understanding of the health benefits and regulatory landscape of nanomedicines based on a background of advances in mRNA-based nanocarrier vaccines and quantum dot-based optical imaging. In relation to spinal cord pathology, the extant literature details promising advances in nanoneuropharmacology and regenerative medicine that inform the present understanding of the nanoparticle (NP) biocompatibility-neurotoxicity relationship. In this review, the conceptual bases of nanotechnology and nanomaterial chemistry covering organic and inorganic particles of sizes generally less than 100 nm in diameter will be addressed. Regarding the centrally active nanotechnologies selected for this review, attention is paid to NP physico-chemistry, functionalisation, delivery, biocompatibility, biodistribution, toxicology, and key molecular targets and biological effects intrinsic to and beyond the spinal cord parenchyma. SUMMARY The advance of nanotechnologies for the treatment of refractory spinal cord pathologies requires an in-depth understanding of neurobiological and topographical principles and a consideration of additional complexities involving the research's translational and regulatory landscapes.
Collapse
Affiliation(s)
- Wenqian Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Joel Yong
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Paul Marciano
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Ryan O’Hare Doig
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia; (W.W.); (J.Y.); (G.M.)
| | - Jillian Clark
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5005, Australia; (P.M.); (R.O.D.)
- Neil Sachse Centre for Spinal Cord Research, Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
3
|
Zang C, Liu H, Ning J, Chen Q, Jiang Y, Shang M, Yang Y, Ma J, Dong Y, Wang J, Li F, Bao X, Zhang D. Emerging role and mechanism of HACE1 in the pathogenesis of neurodegenerative diseases: A promising target. Biomed Pharmacother 2024; 172:116204. [PMID: 38364733 DOI: 10.1016/j.biopha.2024.116204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024] Open
Abstract
HACE1 is a member of the HECT domain-containing E3 ligases with 909 amino acid residues, containing N-terminal ankyrin-repeats (ANK) and C-terminal HECT domain. Previously, it was shown that HACE1 is inactive in human tumors and plays a crucial role in the initiation, progression, and invasion of malignant tumors. Recent studies indicated that HACE1 might be closely involved in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Huntington's disease. HACE1 interacts with its substrates, including Ras-related C3 botulinum toxin substrate 1 (Rac1), nuclear factor erythroid 2-related factor 2 (Nrf2), tumor necrosis factor receptor (TNFR), and optineurin (OPTN), through which participates in several pathophysiological processes, such as oxidative stress, autophagy and inflammation. Therefore, in this review, we elaborately describe the essential substrates of HACE1 and illuminate the pathophysiological processes by which HACE1 is involved in neurodegenerative diseases. We provide a new molecular target for neurodegenerative diseases.
Collapse
Affiliation(s)
- Caixia Zang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Hui Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jingwen Ning
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Qiuzhu Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yueqi Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meiyu Shang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jingwei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Yirong Dong
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Jinrong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Fangfang Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuqi Bao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Dan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
4
|
Zhiguo F, Ji W, Shenyuan C, Guoyou Z, Chen K, Hui Q, Wenrong X, Zhai X. A swift expanding trend of extracellular vesicles in spinal cord injury research: a bibliometric analysis. J Nanobiotechnology 2023; 21:289. [PMID: 37612689 PMCID: PMC10463993 DOI: 10.1186/s12951-023-02051-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
Extracellular vesicles (EVs) in the field of spinal cord injury (SCI) have garnered significant attention for their potential applications in diagnosis and therapy. However, no bibliometric assessment has been conducted to evaluate the scientific progress in this area. A search of articles in Web of Science (WoS) from January 1, 1991, to May 1, 2023, yielded 359 papers that were analyzed using various online analysis tools. These articles have been cited 10,842 times with 30.2 times per paper. The number of publications experienced explosive growth starting in 2015. China and the United States led this research initiative. Keywords were divided into 3 clusters, including "Pathophysiology of SCI", "Bioactive components of EVs", and "Therapeutic effects of EVs in SCI". By integrating the average appearing year (AAY) of keywords in VoSviewer with the time zone map of the Citation Explosion in CiteSpace, the focal point of research has undergone a transformative shift. The emphasis has moved away from pathophysiological factors such as "axon", "vesicle", and "glial cell" to more mechanistic and applied domains such as "activation", "pathways", "hydrogels" and "therapy". In conclusions, institutions are expected to allocate more resources towards EVs-loaded hydrogel therapy and the utilization of innovative materials for injury mitigation.
Collapse
Affiliation(s)
- Fan Zhiguo
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Wu Ji
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Chen Shenyuan
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Zhang Guoyou
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China
| | - Kai Chen
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
| | - Qian Hui
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Xu Wenrong
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Xiao Zhai
- Department of Orthopedics, Shanghai Changhai Hospital, Shanghai, 200433, China.
| |
Collapse
|
5
|
Fu C, Yu L, Miao Y, Liu X, Yu Z, Wei M. Peptide-drug conjugates (PDCs): a novel trend of research and development on targeted therapy, hype or hope? Acta Pharm Sin B 2023; 13:498-516. [PMID: 36873165 PMCID: PMC9978859 DOI: 10.1016/j.apsb.2022.07.020] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/16/2022] [Accepted: 07/11/2022] [Indexed: 11/01/2022] Open
Abstract
Peptide-drug conjugates (PDCs) are the next generation of targeted therapeutics drug after antibody-drug conjugates (ADCs), with the core benefits of enhanced cellular permeability and improved drug selectivity. Two drugs are now approved for market by US Food and Drug Administration (FDA), and in the last two years, the pharmaceutical companies have been developing PDCs as targeted therapeutic candidates for cancer, coronavirus disease 2019 (COVID-19), metabolic diseases, and so on. The therapeutic benefits of PDCs are significant, but poor stability, low bioactivity, long research and development time, and slow clinical development process as therapeutic agents of PDC, how can we design PDCs more effectively and what is the future direction of PDCs? This review summarises the components and functions of PDCs for therapeutic, from drug target screening and PDC design improvement strategies to clinical applications to improve the permeability, targeting, and stability of the various components of PDCs. This holds great promise for the future of PDCs, such as bicyclic peptide‒toxin coupling or supramolecular nanostructures for peptide-conjugated drugs. The mode of drug delivery is determined according to the PDC design and current clinical trials are summarised. The way is shown for future PDC development.
Collapse
Affiliation(s)
- Chen Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Lifeng Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Yuxi Miao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| | - Xinli Liu
- Department of Digestive Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang 110042, China
| | - Zhaojin Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China.,Liaoning Key Laboratory of Molecular Targeted Anti-Tumor Drug Development and Evaluation, China Medical University, Shenyang 110122, China.,Liaoning Medical Diagnosis and Treatment Center, Shenyang 110000, China
| |
Collapse
|
6
|
Pineles B, Mani A, Sura L, Rossignol C, Albayram M, Weiss MD, Goetzl L. Neuronal exosome proteins: novel biomarkers for predicting neonatal response to therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed 2022; 107:60-64. [PMID: 34021027 DOI: 10.1136/archdischild-2020-321096] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Central nervous system (CNS) derived exosomes can be purified from peripheral blood and have been used widely in adult neurological disease. Application to neonatal neurological disease deserves investigation in the setting of hypoxic-ischaemic encephalopathy (HIE). DESIGN Observational cohort. SETTING Level III neonatal intensive care unit. PARTICIPANTS Term/near-term neonates undergoing therapeutic hypothermia (TH) for HIE. INTERVENTIONS Blood samples were collected at 0-6, 12, 24, 48 and 96 hours of life. MAIN OUTCOMES AND MEASURES CNS exosomes were purified from serum using previously described methods. Biomarker protein levels were quantified using standard ELISA methods and normalised to exosome marker CD-81. The slope of change for biomarker levels was calculated for each time interval. Our primary outcome was MRI basal ganglia/watershed score of ≥3. RESULTS 26 subjects were included (umbilical artery pH range 6.6-7.29; 35% seizures). An increasing MRI injury score was significantly associated with decreasing levels of synaptopodin between 0-6 and 12 hours (p=0.03) and increasing levels of lipocalin-2 (NGAL) between 12 and 48 hours (p<0.0001). Neuronal pentraxin was not significant. The negative predictive values for increasing synaptopodin and decreasing NGAL was 70.0% and 90.9%, respectively. CONCLUSIONS AND RELEVANCE Our results indicate that CNS exosome cargo has the potential to act as biomarkers of the severity of brain injury and response to TH as well as quantify pharmacological response to neuroactive therapeutic/adjuvant agents. Rigorous prospective trials are critical to evaluate potential clinical use of exosome biomarkers.
Collapse
Affiliation(s)
- Beth Pineles
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Arunmani Mani
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| | - Livia Sura
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Candace Rossignol
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Mehmet Albayram
- Department of Radiology, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Michael David Weiss
- Department of Pediatrics, University of Florida Health Science Center, Gainesville, Florida, USA
| | - Laura Goetzl
- Department of Obstetrics, Gynecology and Reproductive Sciences, The University of Texas Health Science Center at Houston John P and Katherine G McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
7
|
Mendonça MCP, Kont A, Aburto MR, Cryan JF, O'Driscoll CM. Advances in the Design of (Nano)Formulations for Delivery of Antisense Oligonucleotides and Small Interfering RNA: Focus on the Central Nervous System. Mol Pharm 2021; 18:1491-1506. [PMID: 33734715 PMCID: PMC8824433 DOI: 10.1021/acs.molpharmaceut.0c01238] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
RNA-based therapeutics have emerged
as one of the most powerful
therapeutic options used for the modulation of gene/protein expression
and gene editing with the potential to treat neurodegenerative diseases.
However, the delivery of nucleic acids to the central nervous system
(CNS), in particular by the systemic route, remains a major hurdle.
This review will focus on the strategies for systemic delivery of
therapeutic nucleic acids designed to overcome these barriers. Pathways
and mechanisms of transport across the blood–brain barrier
which could be exploited for delivery are described, focusing in particular
on smaller nucleic acids including antisense oligonucleotides (ASOs)
and small interfering RNA (siRNA). Approaches used to enhance delivery
including chemical modifications, nanocarrier systems, and target
selection (cell-specific delivery) are critically analyzed. Learnings
achieved from a comparison of the successes and failures reported
for CNS delivery of ASOs versus siRNA will help identify opportunities
for a wider range of nucleic acids and accelerate the clinical translation
of these innovative therapies.
Collapse
Affiliation(s)
- Monique C P Mendonça
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Ayse Kont
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| | - Maria Rodriguez Aburto
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, T12 XF62 Cork, Ireland
| | - Caitriona M O'Driscoll
- Pharmacodelivery Group, School of Pharmacy, University College Cork, T12 YT20 Cork, Ireland
| |
Collapse
|
8
|
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel Therapeutic Delivery of Nanocurcumin in Central Nervous System Related Disorders. NANOMATERIALS 2020; 11:nano11010002. [PMID: 33374979 PMCID: PMC7822042 DOI: 10.3390/nano11010002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023]
Abstract
Nutraceuticals represent complementary or alternative beneficial products to the expensive and high-tech therapeutic tools in modern medicine. Nowadays, their medical or health benefits in preventing or treating different types of diseases is widely accepted, due to fewer side effects than synthetic drugs, improved bioavailability and long half-life. Among herbal and natural compounds, curcumin is a very attractive herbal supplement considering its multipurpose properties. The potential effects of curcumin on glia cells and its therapeutic and protective properties in central nervous system (CNS)-related disorders is relevant. However, curcumin is unstable and easily degraded or metabolized into other forms posing limits to its clinical development. This is particularly important in brain pathologies determined blood brain barrier (BBB) obstacle. To enhance the stability and bioavailability of curcumin, many studies focused on the design and development of curcumin nanodelivery systems (nanoparticles, micelles, dendrimers, and diverse nanocarriers). These nanoconstructs can increase curcumin stability, solubility, in vivo uptake, bioactivity and safety. Recently, several studies have reported on a curcumin exosome-based delivery system, showing great therapeutical potential. The present work aims to review the current available data in improving bioactivity of curcumin in treatment or prevention of neurological disorders.
Collapse
Affiliation(s)
- Elisa Panzarini
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefania Mariano
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Stefano Tacconi
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Elisabetta Carata
- Departament of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy; (E.P.); (S.M.); (S.T.); (E.C.)
| | - Ada Maria Tata
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
| | - Luciana Dini
- Departament of Biology and Biotechnology “C. Darwin”, Sapienza University of Rome, 00185 Rome, Italy;
- CNR Nanotec, Campus Ecotekne, University of Salento, 73100 Lecce, Italy
- Correspondence:
| |
Collapse
|
9
|
Rehman S, Nabi B, Pottoo FH, Baboota S, Ali J. Nanoparticle Based Gene Therapy Approach: A Pioneering Rebellion in the Management of Psychiatric Disorders. Curr Gene Ther 2020; 20:164-173. [PMID: 32515310 DOI: 10.2174/1566523220666200607185903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 12/17/2022]
Abstract
The neuropsychiatric illnesses have been enigmatic, with no effective treatment to date. The complexity and heterogeneity of psychiatric disorders are daunting for the development of novel treatment modalities. The conventional treatment approaches are less effective and are associated with several side effects, thus creating the need for the development of more innovative strategies. Since psychiatric disorders are known to exhibit genetic linkage, gene therapy has created an interest among the researchers worldwide. The delivery of nucleic acids is a complex process requiring the transport of genetic material across various intracellular and extracellular barriers to reach the target cells eliciting the transfection process. Therefore, the identification or development of the delivery system for nucleic acid delivery still remains the challenge. Viral vectors are quite effective but are associated with toxicity and side effects. With the rapid advancement in the field of nanotechnology, nanosized materials were identified to be the perfect candidate for nonviral vectors in gene delivery. The biggest advantage of nanoparticles is that their surface can be engineered in many possible ways to deliver the drugs directly to the target site. Although gene therapy has already been established as an innovative treatment modality for several neurological diseases, its use in psychiatry still warrants more investigations for its translation into clinical use. The present manuscript discusses the prospects of gene therapy in psychiatric disorders, their benefits, and pitfalls. The review embarks upon the importance of nanoparticle-based gene therapy for effective management of psychiatric disorders.
Collapse
Affiliation(s)
- Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O.BOX 1982, Dammam, 31441, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi- 110062, India
| |
Collapse
|
10
|
Grasso G. Innovation in Neurosurgery: Integration Between Cutting-Edge Devices and “Old-Fashioned” Surgical Technique. World Neurosurg 2019; 131:311-312. [DOI: 10.1016/j.wneu.2019.06.225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 01/28/2023]
|
11
|
Diana A, Gaido G, Murtas D. MicroRNA Signature in Human Normal and Tumoral Neural Stem Cells. Int J Mol Sci 2019; 20:ijms20174123. [PMID: 31450858 PMCID: PMC6747235 DOI: 10.3390/ijms20174123] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs, also called miRNAs or simply miR-, represent a unique class of non-coding RNAs that have gained exponential interest during recent years because of their determinant involvement in regulating the expression of several genes. Despite the increasing number of mature miRNAs recognized in the human species, only a limited proportion is engaged in the ontogeny of the central nervous system (CNS). miRNAs also play a pivotal role during the transition of normal neural stem cells (NSCs) into tumor-forming NSCs. More specifically, extensive studies have identified some shared miRNAs between NSCs and neural cancer stem cells (CSCs), namely miR-7, -124, -125, -181 and miR-9, -10, -130. In the context of NSCs, miRNAs are intercalated from embryonic stages throughout the differentiation pathway in order to achieve mature neuronal lineages. Within CSCs, under a different cellular context, miRNAs perform tumor suppressive or oncogenic functions that govern the homeostasis of brain tumors. This review will draw attention to the most characterizing studies dealing with miRNAs engaged in neurogenesis and in the tumoral neural stem cell context, offering the reader insight into the power of next generation miRNA-targeted therapies against brain malignances.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| | - Giuseppe Gaido
- Department of Surgery, Cottolengo Mission Hospital Charia, 60200 Meru, Kenya
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato (Cagliari), Italy.
| |
Collapse
|
12
|
Tang BL. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res Bull 2018; 143:123-131. [DOI: 10.1016/j.brainresbull.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
13
|
Osier N, Motamedi V, Edwards K, Puccio A, Diaz-Arrastia R, Kenney K, Gill J. Exosomes in Acquired Neurological Disorders: New Insights into Pathophysiology and Treatment. Mol Neurobiol 2018; 55:9280-9293. [PMID: 29663285 DOI: 10.1007/s12035-018-1054-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
Abstract
Exosomes are endogenous nanovesicles that play critical roles in intercellular signaling by conveying functional genetic information and proteins between cells. Exosomes readily cross the blood-brain barrier and have promise as therapeutic delivery vehicles that have the potential to specifically deliver molecules to the central nervous system (CNS). This unique feature also makes exosomes attractive as biomarkers in diagnostics, prognostics, and therapeutics in the context of multiple significant public health conditions, including acquired neurological disorders. The purpose of this review is to summarize the state of the science surrounding the relevance of extracellular vesicles (EVs), particularly exosomes, to acquire neurological disorders, specifically traumatic brain injury (TBI), spinal cord injury (SCI), and ischemic stroke. In total, ten research articles were identified that examined exosomes in the context of TBI, SCI, or stroke; these manuscripts were reviewed and synthesized to further understand the current role of exosomes in the context of acquired neurological disorders. Of the ten published studies, four focused exclusively on TBI, one on both TBI and SCI, and five on ischemic stroke; notably, eight of the ten studies were limited to pre-clinical samples. The present review is the first to discuss the current body of knowledge surrounding the role of exosomes in the pathophysiology, diagnosis, and prognosis, as well as promising therapeutic strategies in TBI, SCI, and stroke research.
Collapse
Affiliation(s)
- Nicole Osier
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Ct, Bethesda, MD, 20814, USA. .,University of Texas at Austin, Austin, TX, USA.
| | - Vida Motamedi
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Ct, Bethesda, MD, 20814, USA
| | - Katie Edwards
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Ct, Bethesda, MD, 20814, USA.,Healthcare Genetics Doctoral Program, Clemson University School of Nursing, 508 Edwards, Clemson, SC, 29631, USA
| | - Ava Puccio
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Suite B-400, Pittsburgh, PA, 15213, USA
| | - Ramon Diaz-Arrastia
- University of Pennsylvania School of Medicine, Suite 205 Medical Office Building, 51 N 39TH ST, Philadelphia, PA, 19104, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Building 51, Room 2306, 4860 South Palmer Road, Bethesda, MD, 20889-5649, USA
| | - Jessica Gill
- National Institutes of Health, National Institute of Nursing Research, 1 Cloister Ct, Bethesda, MD, 20814, USA
| |
Collapse
|
14
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|