1
|
Sun H, Ma X, Ma H, Li S, Xia Y, Yao L, Wang Y, Pang X, Zhong J, Yao G, Liu X, Zhang M. High glucose levels accelerate atherosclerosis via NLRP3-IL/ MAPK/NF-κB-related inflammation pathways. Biochem Biophys Res Commun 2024; 704:149702. [PMID: 38422898 DOI: 10.1016/j.bbrc.2024.149702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND As a chronic inflammatory disease, diabetes mellitus (DM) contributes to the development of atherosclerosis (AS). However, how the NLRP3 inflammasome participates in diabetes-related AS remains unclear. Therefore, this study aimed to elucidate the mechanism through which NLRP3 uses high glucose (HG) levels to promote AS. METHODS Serum and coronary artery tissues were collected from coronary artery disease (CAD) patients with and without DM, respectively. The expression of NLRP3 was detected, and the effects of this inflammasome on diabetes-associated AS were evaluated using streptozotocin (STZ)-induced diabetic apoE-/- mice injected with Adenovirus-mediated NLRP3 interference (Ad-NLRP3i). To elucidate the potential mechanism involved, ox-LDL-irritated human aortic smooth muscle cells were divided into the control, high-glucose, Si-NC, and Si-NLRP3 groups to observe the changes induced by downregulating NLRP3 expression. For up-regulating NLRP3, control and plasmid contained NLRP3 were used. TNF-α, IL-1β, IL-6, IL-18, phosphorylated and total p38, JNK, p65, and IκBα expression levels were detected following the downregulation or upregulation of NLRP3 expression. RESULTS Patients with comorbid CAD and DM showed higher serum levels and expression of NLRP3 in the coronary artery than those with only CAD. Moreover, mice in the Ad-NLRP3i group showed markedly smaller and more stable atherosclerotic lesions compared to those in other DM groups. These mice had decreased inflammatory cytokine production and improved glucose tolerance, which demonstrated the substantial effects of NLRP3 in the progression of diabetes-associated AS. Furthermore, using the siRNA or plasmid to downregulate or upregulate NLRP3 expression in vitro altered cytokines and the MAPK/NF-κB pathway. CONCLUSIONS NLRP3 expression was significantly increased under hyperglycemia. Additionally, it accelerated AS by promoting inflammation via the IL/MAPK/NF-κB pathway.
Collapse
Affiliation(s)
- Hui Sun
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaotian Ma
- Department of Medicine Experimental Center, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Hong Ma
- Qingdao Branch of Shandong Public Health Clinical Center, Qingdao, China
| | - Shuen Li
- Department of Pathology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yan Xia
- Department of Pathology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Lijie Yao
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Yingcui Wang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xuelian Pang
- Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Jingquan Zhong
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Guihua Yao
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China; Department of Cardiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Xiaoling Liu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| | - Mei Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
2
|
Kodi T, Sankhe R, Gopinathan A, Nandakumar K, Kishore A. New Insights on NLRP3 Inflammasome: Mechanisms of Activation, Inhibition, and Epigenetic Regulation. J Neuroimmune Pharmacol 2024; 19:7. [PMID: 38421496 PMCID: PMC10904444 DOI: 10.1007/s11481-024-10101-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/06/2023] [Indexed: 03/02/2024]
Abstract
Inflammasomes are important modulators of inflammation. Dysregulation of inflammasomes can enhance vulnerability to conditions such as neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Among various inflammasomes, Nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is the best-characterized inflammasome related to inflammatory and neurodegenerative diseases. NLRP3 is an intracellular sensor that recognizes pathogen-associated molecular patterns and damage-associated patterns resulting in the assembly and activation of NLRP3 inflammasome. The NLRP3 inflammasome includes sensor NLRP3, adaptor apoptosis-associated speck-like protein (ASC), and effector cysteine protease procaspase-1 that plays an imperative role in caspase-1 stimulation which further initiates a secondary inflammatory response. Regulation of NLRP3 inflammasome ameliorates NLRP3-mediated diseases. Much effort has been invested in studying the activation, and exploration of specific inhibitors and epigenetic mechanisms controlling NLRP3 inflammasome. This review gives an overview of the established NLRP3 inflammasome assembly, its brief molecular mechanistic activations as well as a current update on specific and non-specific NLRP3 inhibitors that could be used in NLRP3-mediated diseases. We also focused on the recently discovered epigenetic mechanisms mediated by DNA methylation, histone alterations, and microRNAs in regulating the activation and expression of NLRP3 inflammasome, which has resulted in a novel method of gaining insight into the mechanisms that modulate NLRP3 inflammasome activity and introducing potential therapeutic strategies for CNS disorders.
Collapse
Affiliation(s)
- Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Runali Sankhe
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Adarsh Gopinathan
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Krishnadas Nandakumar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
3
|
Alizadehmoghaddam S, Pourabdolhossein F, Najafzadehvarzi H, Sarbishegi M, Saleki K, Nouri HR. Crocin attenuates the lipopolysaccharide-induced neuroinflammation via expression of AIM2 and NLRP1 inflammasome in an experimental model of Parkinson's disease. Heliyon 2024; 10:e25523. [PMID: 38356604 PMCID: PMC10864986 DOI: 10.1016/j.heliyon.2024.e25523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024] Open
Abstract
The underlying mechanisms of inflammasome activation and the following dopaminergic neuron loss caused by chronic neuroinflammation remain entirely unclear. Therefore, this study aimed to investigate the impact of crocin on the inflammasome complex within an experimental model of Parkinson's disease (PD) using male Wistar rats. PD was induced by the stereotaxic injection of lipopolysaccharide (LPS), and crocin was intraperitoneally administrated one week before the lesion, and then treatment continued for 21 days. Open field (OF) and elevated plus maze tests were applied for behavioral assays. Furthermore, hematoxylin and eosin (H&E) and immunostaining were performed on whole brain tissue, while dissected substantia nigra (SN) was used for immunoblotting and real-time PCR to evaluate compartments involved in PD. The time spent in the center of test was diminished in the LPS group, while treatment with 30 mg/kg of crocin significantly increased it. H&E staining showed a significant increase in cell infiltration at the site of LPS injection, which was ameliorated upon crocin treatment. Notably, crocin-treated animals showed a reduced number of caspase-1 and IL-1β positive cells, whereas the number of positive cells was increased in the LPS group (P < 0.05). A significant decrease in tyrosine hydroxylase (TH) expression was also found in the LPS group, while crocin treatment significantly elevated its expression. IL-1β, IL-18, NLRP1, and AIM2 genes expression significantly increased in the LPS group. On the other hand, treatment with 30 mg/kg of crocin significantly downregulated the expression levels of these genes along with NLRP1 (P < 0.05). In summary, our findings suggest that crocin reduces neuroinflammation in PD by diminishing IL-1β and caspase-1 levels, potentially by inhibiting the expression of AIM2 and NLRP1 genes.
Collapse
Affiliation(s)
- Solmaz Alizadehmoghaddam
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fereshteh Pourabdolhossein
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Najafzadehvarzi
- Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Sarbishegi
- Cellular and Molecular Research Center and Department of Anatomy, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kiarash Saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Hamid Reza Nouri
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Kumari S, Dhapola R, Sharma P, Singh SK, Reddy DH. Implicative role of Cytokines in Neuroinflammation mediated AD and associated signaling pathways: Current Progress in molecular signaling and therapeutics. Ageing Res Rev 2023; 92:102098. [PMID: 39492425 DOI: 10.1016/j.arr.2023.102098] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 11/05/2024]
Abstract
Alzheimer's Disease (AD) is one of the most devastating age-related disorder causing significant social and economic burden worldwide. It affects the cognitive and social behavior of individuals and characterized by accumulation of Aβ, phosphorylated tau and cytokines formation. The synthesis and release of cytokines are regulated by specific groups of immune and non-immune cells in response to microglia or astrocyte activation through multiple pathways. Physiologically, microglia assert an anti-inflammatory, quiescent state with minimal cytokine expression and little phagocytic activity in motion to carry out their housekeeping role to eliminate pathogens, aggregated Aβ and tau protein. However, they develop a phagocytic nature and overexpress cytokine gene modules in response to certain stimuli in AD. Microglia and astrocytes upon chronic activation release an enormous amount of inflammatory cytokines due to interaction with formed Aβ and neurofibrillary tangle. Gut microbiota dysbiosis also stimulates the release of inflammatory cytokines contributing to AD pathogenesis. In addition, the dysregulation of few signaling pathways significantly influences the development of disease, and the pace of advancement also rises with age. This review sheds light on multiple pathways results into neuroinflammation triggered by activated cytokines worsening AD pathology and making it an appropriate target for AD treatment. This review also included drugs targeting different neuroinflammation pathways under clinical and preclinical studies that are found to be effective in attenuating the disease pathology.
Collapse
Affiliation(s)
- Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda-151401, Punjab, India
| | - Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda-151401, Punjab, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda-151401, Punjab, India
| | - Sunil K Singh
- Department of Zoology, School of Biological Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| | - Dibbanti HariKrishna Reddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda-151401, Punjab, India.
| |
Collapse
|
5
|
Mamsa R, Prabhavalkar KS, Bhatt LK. Crosstalk between NLRP3 inflammasome and calpain in Alzheimer's disease. Eur J Neurosci 2023; 58:3719-3731. [PMID: 37652164 DOI: 10.1111/ejn.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/12/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023]
Abstract
Amyloid plaques are considered to be the pathological hallmark of Alzheimer's disease (AD). Neuroinflammation further aggravates the pathogenesis of Alzheimer's disease. Calpains and NOD-like receptor protein-3 (NLRP3) inflammasomes are involved in the neuroinflammatory pathway and affect the progression of Alzheimer's disease. Hyperactivation of calpains is responsible for the activation of NLRP3 inflammasome, thereby affecting each other's molecular mechanism and causing astrogliosis, microgliosis, and neuronal dysfunction. Further, calpain hyperactivation is also associated with calcium homeostasis that acts as one of the triggers in the activation of NLRP3 inflammasome. Calpain activity is required for the maturation of interleukin-1β, a key mediator of neuroinflammatory responses. The membrane potential/calcium/calpain/caspase-1 axis acts as an unconventional regulator of inflammasomes. The complex crosstalk between NLRP3 inflammasome and calpain leads to a series of events. Targeting the molecular mechanism associated with calpain-NLRP3 inflammasome activation and regulation can be a therapeutic and prophylactic perspective towards Alzheimer's disease. This review discusses calpains and NLRP3 inflammasome crosstalk in the pathogenesis of AD.
Collapse
Affiliation(s)
- Rumaiza Mamsa
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Kedar S Prabhavalkar
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Lokesh Kumar Bhatt
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
6
|
Balasubramaniam A, Srinivasan S. Role of stimulator of interferon genes (STING) in the enteric nervous system in health and disease. Neurogastroenterol Motil 2023:e14603. [PMID: 37094068 DOI: 10.1111/nmo.14603] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
Stimulator of Interferon Genes (STING) is a crucial protein that controls the immune system's reaction to bacterial and viral infections. As a pattern-recognition receptor, STING is found in immune cells as well as in neurons and glia in the enteric nervous system (ENS). Recent studies have linked STING to the pathogenesis of several neurological disorders like multiple sclerosis (MS), Alzheimer's disease (AD), and gastrointestinal disorders, including irritable bowel syndrome (IBS) and inflammatory bowel disease (IBD), which are characterized by chronic inflammation and dysregulation of the enteric nervous system (ENS) in the digestive tract. STING plays a crucial role in the pathway that induces the production of interferon in response to viral infection in the central nervous system (CNS). A new study by Dharshika et al. in the current issue of Neurogastroenterology and Motility has demonstrated distinct roles for STING in enteric neurons and glia, namely activation of STING leads to IFN-β production in enteric neurons but not in glia and reducing STING activation in enteric glia does not modulate the severity of Dextran sulfate sodium (DSS) colitis or subsequent loss of enteric neurons. Rather, the role of STING in enteric glia is related to enhancing autophagy. STING can influence gastrointestinal motility and barrier function and therefore be involved in the pathophysiology of IBS and IBD. This mini review highlights the current knowledge of STING in the pathophysiology of CNS and gastrointestinal diseases as well as these newly uncovered roles STING in enteric neurons and glia.
Collapse
Affiliation(s)
- Arun Balasubramaniam
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| | - Shanthi Srinivasan
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
- Atlanta Veterans Affairs Health Care System, Decatur, Georgia, USA
| |
Collapse
|
7
|
Zhang Y, Liu K, Li Y, Ma Y, Wang Y, Fan Z, Li Y, Qi J. D-beta-hydroxybutyrate protects against microglial activation in lipopolysaccharide-treated mice and BV-2 cells. Metab Brain Dis 2022; 38:1115-1126. [PMID: 36543978 DOI: 10.1007/s11011-022-01146-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
Microglial activation is a key event in neuroinflammation, which, in turn, is a central process in neurological disorders. In this study, we investigated the protective effects of D-beta-hydroxybutyrate (BHB) against microglial activation in lipopolysaccharide (LPS)-treated mice and BV-2 cells. The effects of BHB in mice were assessed using behavioral testing, morphological analysis and immunofluorescence labeling for the microglial marker ionizing calcium-binding adaptor molecule 1 (IBA-1) and the inflammatory cytokine interleukin-6 (IL-6) in the hippocampus. Moreover, we examined the levels of the inflammatory IL-6 and tumor necrosis factor-α (TNF-α), as well as those of the neuroprotective brain-derived neurotrophic factor (BDNF) and transforming growth factor-β (TGF-β) in the brain. In addition, we examined the effects of BHB on IL-6, TNF-α, BDNF, TGF-β, reactive oxygen species (ROS) level and cell viability in LPS-stimulated BV-2 cells. BHB treatments attenuated behavioral abnormalities, reduced the number of IBA-1-positive cells and the intensity of IL-6 fluorescence in the hippocampus, with amelioration of microglia morphological changes in the LPS-treated mice. Furthermore, BHB inhibited IL-6 and TNF-α generation, but promoted BDNF and TGF-β production in the brain of LPS-treated mice. In vitro, BHB inhibited IL-6 and TNF-α generation, increased BDNF and TGF-β production, reduced ROS level, ameliorated morphological changes and elevated cell viability of LPS-stimulated BV-2 cells. Together, our findings suggest that BHB exerts protective effects against microglial activation in vitro and in vivo, thereby reducing neuroinflammation.
Collapse
Affiliation(s)
- Yuping Zhang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Kun Liu
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yunpeng Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yujie Ma
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yu Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Zihan Fan
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| | - Jinsheng Qi
- Department of Biochemistry, College of Integrated Chinese and Western Medicine, Hebei Medical University, No. 361 East Zhongshan Road, Shijiazhuang, 050017, Hebei, People's Republic of China.
| |
Collapse
|
8
|
Elzinga SE, Henn R, Murdock BJ, Kim B, Hayes JM, Mendelson F, Webber-Davis I, Teener S, Pacut C, Lentz SI, Feldman EL. cGAS/STING and innate brain inflammation following acute high-fat feeding. Front Immunol 2022; 13:1012594. [PMID: 36248795 PMCID: PMC9556783 DOI: 10.3389/fimmu.2022.1012594] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Obesity, prediabetes, and diabetes are growing in prevalence worldwide. These metabolic disorders are associated with neurodegenerative diseases, particularly Alzheimer's disease and Alzheimer's disease related dementias. Innate inflammatory signaling plays a critical role in this association, potentially via the early activation of the cGAS/STING pathway. To determine acute systemic metabolic and inflammatory responses and corresponding changes in the brain, we used a high fat diet fed obese mouse model of prediabetes and cognitive impairment. We observed acute systemic changes in metabolic and inflammatory responses, with impaired glucose tolerance, insulin resistance, and alterations in peripheral immune cell populations. Central inflammatory changes included microglial activation in a pro-inflammatory environment with cGAS/STING activation. Blocking gap junctions in neuron-microglial co-cultures significantly decreased cGAS/STING activation. Collectively these studies suggest a role for early activation of the innate immune system both peripherally and centrally with potential inflammatory crosstalk between neurons and glia.
Collapse
Affiliation(s)
- Sarah E. Elzinga
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Rosemary Henn
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Benjamin J. Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Bhumsoo Kim
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - John M. Hayes
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Faye Mendelson
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Ian Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Sam Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Pacut
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| | - Stephen I. Lentz
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, United States
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
9
|
Ye J, Li L, Wang M, Ma Q, Tian Y, Zhang Q, Liu J, Li B, Zhang B, Liu H, Sun G. Diabetes Mellitus Promotes the Development of Atherosclerosis: The Role of NLRP3. Front Immunol 2022; 13:900254. [PMID: 35844498 PMCID: PMC9277049 DOI: 10.3389/fimmu.2022.900254] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Atherosclerosis is one of the main complications of diabetes mellitus, involving a variety of pathogenic factors. Endothelial dysfunction, inflammation, and oxidative stress are hallmarks of diabetes mellitus and atherosclerosis. Although the ability of diabetes to promote atherosclerosis has been demonstrated, a deeper understanding of the underlying biological mechanisms is critical to identifying new targets. NLRP3 plays an important role in both diabetes and atherosclerosis. While the diversity of its activation modes is one of the underlying causes of complex effects in the progression of diabetes and atherosclerosis, it also provides many new insights for targeted interventions in metabolic diseases.
Collapse
Affiliation(s)
- Jingxue Ye
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lanfang Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiuxiao Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiushi Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bengang Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| | - Guibo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Haitao Liu,
| |
Collapse
|
10
|
Regulation of Neuroinflammatory Signaling by PPARγ Agonist in Mouse Model of Diabetes. Int J Mol Sci 2022; 23:ijms23105502. [PMID: 35628311 PMCID: PMC9141386 DOI: 10.3390/ijms23105502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023] Open
Abstract
Many relevant studies, as well as clinical practice, confirm that untreated diabetes predisposes the development of neuroinflammation and cognitive impairment. Having regard for the fact that PPARγ are widely distributed in the brain and PPARγ ligands may regulate the inflammatory process, the anti-inflammatory potential of the PPARγ agonist, pioglitazone, was assessed in a mouse model of neuroinflammation related with diabetes. In this regard, the biochemical and molecular indicators of neuroinflammation were determined in the hippocampus and prefrontal cortex of diabetes mice. The levels of cytokines (IL-1β, IL-6, and TNF) and the expression of genes (Tnfrsf1a and Cav1) were measured. In addition, behavioral tests such as the open field test, the hole-board test, and the novel object recognition test were conducted. A 14-day treatment with pioglitazone significantly decreased IL-6 and TNFα levels in the prefrontal cortex and led to the downregulation of Tnfrsf1a expression and the upregulation of Cav1 expression in both brain regions of diabetic mice. Pioglitazone, by targeting neuroinflammatory signaling, improved memory and exploratory activity in behavioral tests. The present study provided a potential theoretical basis and therapeutic target for the treatment of neuroinflammation associated with diabetes. Pioglitazone may provide a promising therapeutic strategy in diabetes patients with muffled of behavioral activity.
Collapse
|
11
|
Lu J, Wang X, Wu A, Cao Y, Dai X, Liang Y, Li X. Ginsenosides in central nervous system diseases: Pharmacological actions, mechanisms, and therapeutics. Phytother Res 2022; 36:1523-1544. [PMID: 35084783 DOI: 10.1002/ptr.7395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/04/2022] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
The nervous system is one of the most complex physiological systems, and central nervous system diseases (CNSDs) are serious diseases that affect human health. Ginseng (Panax L.), the root of Panax species, are famous Chinese herbs that have been used for various diseases in China, Japan, and Korea since ancient times, and remain a popular natural medicine used worldwide in modern times. Ginsenosides are the main active components of ginseng, and increasing evidence has demonstrated that ginsenosides can prevent CNSDs, including neurodegenerative diseases, memory and cognitive impairment, cerebral ischemia injury, depression, brain glioma, multiple sclerosis, which has been confirmed in numerous studies. Therefore, this review summarizes the potential pathways by which ginsenosides affect the pathogenesis of CNSDs mainly including antioxidant effects, anti-inflammatory effects, anti-apoptotic effects, and nerve protection, which provides novel ideas for the treatment of CNSDs.
Collapse
Affiliation(s)
- Jing Lu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xian Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Anxin Wu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yi Cao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Dai
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
12
|
Lun P, Ji T, Wan DH, Liu X, Chen XD, Yu S, Sun P. HOTTIP downregulation reduces neuronal damage and microglial activation in Parkinson's disease cell and mouse models. Neural Regen Res 2021; 17:887-897. [PMID: 34472490 PMCID: PMC8530116 DOI: 10.4103/1673-5374.322475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
HOXA transcript at the distal tip (HOTTIP), a newly identified long noncoding RNA, has been shown to exhibit anti-inflammatory effects and inhibit oxygen-glucose deprivation-induced neuronal apoptosis. However, its role in Parkinson’s disease (PD) remains unclear. 1-Methyl-4-phenylpyridium (MPP+) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were used to establish PD models in SH-SY5Y and BV2 cells and in C57BL/6 male mice, respectively. In vitro, after HOTTIP knockdown by sh-HOTTIP transfection, HOTTIP and FOXO1 overexpression promoted SH-SY5Y apoptosis, BV2 microglial activation, proinflammatory cytokine expression, and nuclear factor kappa-B and NACHT, LRR and PYD domains-containing protein 3 inflammasome activation. Overexpression of miR-615-3p inhibited MPP+-induced neuronal apoptosis and microglial inflammation and ameliorated HOTTIP- and FOXO1-mediated nerve injury and inflammation. In vivo, HOTTIP knockdown alleviated motor dysfunction in PD mice and reduced neuronal apoptosis and microglial activation in the substantia nigra. These findings suggest that inhibition of HOTTIP mitigates neuronal apoptosis and microglial activation in PD models by modulating miR-615-3p/FOXO1. This study was approved by the Ethics Review Committee of the Affiliated Hospital of Qingdao University, China (approval No. UDX-2018-042) in June 2018.
Collapse
Affiliation(s)
- Peng Lun
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Tao Ji
- Department of Neurosurgery, Laiyang People's Hospital, Yantai, Shandong Province, China
| | - De-Hong Wan
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xia Liu
- Department of Endocrine and Metabolic Diseases, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiao-Dong Chen
- Emergency Department, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Shuai Yu
- Emergency Department, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Peng Sun
- Department of Neurosurgery, the Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
13
|
Zheng R, Ruan Y, Yan Y, Lin Z, Xue N, Yan Y, Tian J, Yin X, Pu J, Zhang B. Melatonin Attenuates Neuroinflammation by Down-Regulating NLRP3 Inflammasome via a SIRT1-Dependent Pathway in MPTP-Induced Models of Parkinson's Disease. J Inflamm Res 2021; 14:3063-3075. [PMID: 34267535 PMCID: PMC8275196 DOI: 10.2147/jir.s317672] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/25/2021] [Indexed: 12/15/2022] Open
Abstract
Background Inflammasome-induced neuroinflammation is a key contributor to the pathology of Parkinson's disease (PD). NLR family pyrin domain-containing 3 (NLRP3) inflammasome activation has been implicated in PD in postmortem human PD brains, indicating it as a potential target for PD treatment. Melatonin, a multitasking molecule, has been found to have anti-inflammatory activities, mediated by silence information regulator 1 (SIRT1). However, whether and how melatonin is involved in inflammasome-induced neuroinflammation in PD pathogenesis remains unclear. Methods We investigated the potential anti-inflammatory effects of melatonin in vitro and in vivo, using 1-methyl-4-phenylpyridinium (MPP+)-simulated BV2 and primary microglia cell models, and a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced murine PD model, with or without melatonin treatment. Rotarod, grip strength, and open-field tests were performed to measure the effects of melatonin on MPTP-induced motor disorders. Degeneration of dopaminergic neurons was evaluated by immunofluorescence. Changes in microglia were examined by immunofluorescence and Western blotting, and the expression levels of the involved signaling molecules were assessed by Western blotting and enzyme-linked immunosorbent assay (ELISA). Intracellular reactive oxygen species (ROS) was detected using fluorescent probes via flow cytometry. Results We found that melatonin significantly alleviated motor dysfunction and prevented MPTP-induced neurotoxicity in dopaminergic neurons. Additionally, melatonin reduced MPTP-induced microglial activation and suppressed NLRP3 inflammasome activity, and also inhibited IL-1β secretion. Moreover, in MPP+-primed BV2 cells, melatonin markedly restored the downregulation of SIRT1 and attenuated the activation of the NLRP3 inflammasome. This was reversed by SIRT1 inhibitor treatment. Conclusion In conclusion, our data demonstrated that melatonin attenuates neuroinflammation by negatively regulating NLRP3 inflammasome activation via a SIRT1-dependent pathway in MPTP-induced PD models. These findings provide novel insights into the mechanism underlying the anti-inflammatory effects of melatonin in PD.
Collapse
Affiliation(s)
- Ran Zheng
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Yang Ruan
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Yiqun Yan
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Zhihao Lin
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Naijia Xue
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Yaping Yan
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Jun Tian
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Xinzhen Yin
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Jiali Pu
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| | - Baorong Zhang
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, People's Republic of China
| |
Collapse
|
14
|
Asslih S, Damri O, Agam G. Neuroinflammation as a Common Denominator of Complex Diseases (Cancer, Diabetes Type 2, and Neuropsychiatric Disorders). Int J Mol Sci 2021; 22:ijms22116138. [PMID: 34200240 PMCID: PMC8201050 DOI: 10.3390/ijms22116138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
The term neuroinflammation refers to inflammation of the nervous tissue, in general, and in the central nervous system (CNS), in particular. It is a driver of neurotoxicity, it is detrimental, and implies that glial cell activation happens prior to neuronal degeneration and, possibly, even causes it. The inflammation-like glial responses may be initiated in response to a variety of cues such as infection, traumatic brain injury, toxic metabolites, or autoimmunity. The inflammatory response of activated microglia engages the immune system and initiates tissue repair. Through translational research the role played by neuroinflammation has been acknowledged in different disease entities. Intriguingly, these entities include both those directly related to the CNS (commonly designated neuropsychiatric disorders) and those not directly related to the CNS (e.g., cancer and diabetes type 2). Interestingly, all the above-mentioned entities belong to the same group of "complex disorders". This review aims to summarize cumulated data supporting the hypothesis that neuroinflammation is a common denominator of a wide variety of complex diseases. We will concentrate on cancer, type 2 diabetes (T2DM), and neuropsychiatric disorders (focusing on mood disorders).
Collapse
|
15
|
Shao SY, Zhang F, Yang YN, Feng ZM, Jiang JS, Zhang PC. Neuroprotective and anti-inflammatory phenylethanoidglycosides from the fruits of Forsythia suspensa. Bioorg Chem 2021; 113:105025. [PMID: 34082247 DOI: 10.1016/j.bioorg.2021.105025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
Neuroinflammation is emerging as a crucial reason of major neurodegenerative diseases in recent years. Increasingly evidences have supported that bioactive natural products from traditional Chinese medicines have efficiency for neuroinflammation. Forsythia suspensa, a typical medicinal herb, showed potential neuroprotective and anti-inflammatory properties in previous pharmacological studies. In our research to obtain neuroprotective and anti-inflammatory natural products, three unprecedented C6-C7'/C6-C16' linked phenylethanoidglycoside dimers (1-3), three new phenylethanoidglycosides (4-6), and six known compounds (7-12) were isolated from the fruits of Forsythia suspensa. Their structures were determined by comprehensive spectroscopic data and comparison to the literature data. All isolated compounds were evaluated their neuroprotective and anti-inflammatory activities. Compounds 1 and 10 exhibited significant neuroprotective activities with the cell viability values of 75.24 ± 8.05% and 93.65 ± 10.17%, respectively, for the serum-deprivation and rotenone induced pheochromocytoma (PC12) cell injury. Meanwhile, compound 1 exhibited excellent anti-inflammatory activity against tumor necrosis factor (TNF)-α expression in LPS induced RAW264.7 cells with the IC50 value of 1.30 μM. This study revealed that the bioactive phenylethanoidglycosides may attenuate neuroinflammation through their neuroprotective and anti-inflammatory activities.
Collapse
Affiliation(s)
- Si-Yuan Shao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Fan Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya-Nan Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zi-Meng Feng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jian-Shuang Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pei-Cheng Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
16
|
Xu Z, Yang D, Huang X, Huang H. Astragaloside IV Protects 6-Hydroxydopamine-Induced SH-SY5Y Cell Model of Parkinson's Disease via Activating the JAK2/STAT3 Pathway. Front Neurosci 2021; 15:631501. [PMID: 33833662 PMCID: PMC8021720 DOI: 10.3389/fnins.2021.631501] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/04/2021] [Indexed: 12/20/2022] Open
Abstract
Objectives Astragaloside IV (AS-IV), the main active component of Astragalus membranaceus, bears anti-inflammatory, antioxidant, and neuroprotective activity. Parkinson’s disease (PD) is a common neurodegenerative disease. This study explored the protective effect of AS-IV on the cell model of PD. Materials and Methods SH-SY5Y cells were incubated with different concentrations (10, 50, 100, 150, and 200 μM) of 6-hydroxydopamine (6-OHDA) for 0, 3, 6, 12, 24, and 48 h to establish the PD cell model. Different concentrations (0, 25, 50, 100, 150, and 200 μM) of AS-IV or 15 mM JAK2/STAT3 pathway inhibitor SC99 was added for intervention 2 h before 6-OHDA treatment. The viability and morphological damage of 6-OHDA-treated SH-SY5Y cells were measured using MTT assay and Hoechst 33258 staining. The expression of microtubule associated protein 2 (MAP2) was detected by immunofluorescence staining. The levels of inflammation and oxidative stress were measured using ELISA. Apoptosis of 6-OHDA-treated SH-SY5Y cells was detected using flow cytometry, and phosphorylation level of JAK2 and STAT3 were detected using Western blot analysis. Results The survival rate of SH-SY5Y cells treated with 100 μM 6-OHDA for 24 h was about 50%. AS-IV (25–100 μM) significantly improved the viability (all p < 0.01), increased MAP2 expression, and repaired the morphological damage induced by 6-OHDA. AS-IV inhibited IL-1β, IL-6, and TNF-α level (all p < 0.05), reduced MDA and ROS content and increased SOD concentration, thereby reducing inflammation and oxidative stress (all p < 0.01) in 6-OHDA-treated SH-SY5Y cells. Moreover, AS-IV decreased apoptosis rate and Bax/Bcl-2 ratio induced by 6-OHDA (all p < 0.05). Mechanically, AS-IV significantly increased the phosphorylation of JAK2 and STAT3 (p < 0.01); the addition of SC99 decreased the cell viability, increased the apoptosis rate, enhanced the levels of inflammatory factors and oxidative stress. Conclusion AS-IV enhanced the cell viability, and inhibited apoptosis, inflammation and oxidative stress of 6-OHDA-treated SH-SY5Y cells via activating the JAK2/STAT3 signaling pathway. This study may confer novel insights for the management of PD.
Collapse
Affiliation(s)
- ZhengHu Xu
- Department of Neurosurgery, Hebei PetroChina Central Hospital, Langfang, China
| | - Dongfeng Yang
- Department of Neurosurgery, Hebei PetroChina Central Hospital, Langfang, China
| | - Xiaojing Huang
- Department of Neurology, Hebei PetroChina Central Hospital, Langfang, China
| | - Huai Huang
- Department of Neurology, Hebei PetroChina Central Hospital, Langfang, China
| |
Collapse
|
17
|
Ettcheto M, Busquets O, Cano A, Sánchez-Lopez E, Manzine PR, Espinosa-Jimenez T, Verdaguer E, Sureda FX, Olloquequi J, Castro-Torres RD, Auladell C, Folch J, Casadesús G, Camins A. Pharmacological Strategies to Improve Dendritic Spines in Alzheimer's Disease. J Alzheimers Dis 2021; 82:S91-S107. [PMID: 33325386 PMCID: PMC9853464 DOI: 10.3233/jad-201106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
To deeply understand late onset Alzheimer's disease (LOAD), it may be necessary to change the concept that it is a disease exclusively driven by aging processes. The onset of LOAD could be associated with a previous peripheral stress at the level of the gut (changes in the gut microbiota), obesity (metabolic stress), and infections, among other systemic/environmental stressors. The onset of LOAD, then, may result from the generation of mild peripheral inflammatory processes involving cytokine production associated with peripheral stressors that in a second step enter the brain and spread out the process causing a neuroinflammatory brain disease. This hypothesis could explain the potential efficacy of Sodium Oligomannate (GV-971), a mixture of acidic linear oligosaccharides that have shown to remodel gut microbiota and slowdown LOAD. However, regardless of the origin of the disease, the end goal of LOAD-related preventative or disease modifying therapies is to preserve dendritic spines and synaptic plasticity that underlay and support healthy cognition. Here we discuss how systemic/environmental stressors impact pathways associated with the regulation of spine morphogenesis and synaptic maintenance, including insulin receptor and the brain derived neurotrophic factor signaling. Spine structure remodeling is a plausible mechanism to maintain synapses and provide cognitive resilience in LOAD patients. Importantly, we also propose a combination of drugs targeting such stressors that may be able to modify the course of LOAD by acting on preventing dendritic spines and synapsis loss.
Collapse
Affiliation(s)
- Miren Ettcheto
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Oriol Busquets
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Amanda Cano
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Elena Sánchez-Lopez
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, Barcelona, Spain
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
| | - Patricia R. Manzine
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Gerontology, Federal University of São Carlos (UFSCar), São Carlos, Brazil
| | - Triana Espinosa-Jimenez
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
| | - Ester Verdaguer
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Departamento de Biología Celular y Molecular, Laboratorio de Neurobiología de laneurotransmisión, C.U.C.B.A, Universidad de Guadalajara, Jalisco, México
| | - Francesc X. Sureda
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
| | - Jordi Olloquequi
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| | - Ruben D. Castro-Torres
- Departamento de Biología Celular y Molecular, Laboratorio de Neurobiología de laneurotransmisión, C.U.C.B.A, Universidad de Guadalajara, Jalisco, México
| | - Carme Auladell
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Folch
- Department of Biochemistry and Biotechnology, Faculty of Medicine and Life Science, University Rovira i Virgili, Reus, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gemma Casadesús
- Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - Antoni Camins
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centre in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Institute of Neuroscience, University of Barcelona, Barcelona, Spain
- Laboratory of Cellular and Molecular Pathology, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca, Chile
| |
Collapse
|
18
|
Franzke B, Schwingshackl L, Wagner KH. Chromosomal damage measured by the cytokinesis block micronucleus cytome assay in diabetes and obesity - A systematic review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108343. [DOI: 10.1016/j.mrrev.2020.108343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/18/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
|
19
|
Söderbom G. Status and future directions of clinical trials in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 154:153-188. [PMID: 32739003 DOI: 10.1016/bs.irn.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel therapies are needed to treat Parkinson's disease (PD) in which the clinical unmet need is pressing. Currently, no clinically available therapeutic strategy can either retard or reverse PD or repair its pathological consequences. l-DOPA (levodopa) is still the gold standard therapy for motor symptoms yet symptomatic therapies for both motor and non-motor symptoms are improving. Many on-going, intervention trials cover a broad range of targets, including cell replacement and gene therapy approaches, quality of life improving technologies, and disease-modifying strategies (e.g., controlling aberrant α-synuclein accumulation and regulating cellular/neuronal bioenergetics). Notably, the repurposing of glucagon-like peptide-1 analogues with potential disease-modifying effects based on metabolic pathology associated with PD has been promising. Nevertheless, there is a clear need for improved therapeutic and diagnostic options, disease progression tracking and patient stratification capabilities to deliver personalized treatment and optimize trial design. This review discusses some of the risk factors and consequent pathology associated with PD and particularly the metabolic aspects of PD, novel therapies targeting these pathologies (e.g., mitochondrial and lysosomal dysfunction, oxidative stress, and inflammation/neuroinflammation), including the repurposing of metabolic therapies, and unmet needs as potential drivers for future clinical trials and research in PD.
Collapse
|