1
|
Toner CM, Hoitsma NM, Weerawarana S, Luger K. Characterization of Medusavirus encoded histones reveals nucleosome-like structures and a unique linker histone. Nat Commun 2024; 15:9138. [PMID: 39443461 PMCID: PMC11500106 DOI: 10.1038/s41467-024-53364-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
The organization of DNA into nucleosomes is a ubiquitous and ancestral feature that was once thought to be exclusive to the eukaryotic domain of life. Intriguingly, several representatives of the Nucleocytoplasmic Large DNA Viruses (NCLDV) encode histone-like proteins that in Melbournevirus were shown to form nucleosome-like particles. Medusavirus medusae (MM), a distantly related giant virus, encodes all four core histone proteins and, unique amongst most giant viruses, a putative acidic protein with two domains resembling eukaryotic linker histone H1. Here, we report the structure of nucleosomes assembled with MM histones and highlight similarities and differences with eukaryotic and Melbournevirus nucleosomes. Our structure provides insight into how variations in histone tail and loop lengths are accommodated within the context of the nucleosome. We show that MM-histones assemble into tri-nucleosome arrays, and that the putative linker histone H1 does not function in chromatin compaction. These findings expand our limited understanding of chromatin organization by virus-encoded histones.
Collapse
Affiliation(s)
- Chelsea M Toner
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
| | - Nicole M Hoitsma
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Sashi Weerawarana
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, 80309, Boulder, CO, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Aboulache BL, Hoitsma NM, Luger K. Phosphorylation regulates the chromatin remodeler SMARCAD1 in nucleosome binding, ATP hydrolysis, and histone exchange. J Biol Chem 2024; 300:107893. [PMID: 39424143 DOI: 10.1016/j.jbc.2024.107893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Maintaining the dynamic structure of chromatin is critical for regulating the cellular processes that require access to the DNA template, such as DNA damage repair, transcription, and replication. Histone chaperones and ATP-dependent chromatin remodeling factors facilitate transitions in chromatin structure by assembling and positioning nucleosomes through a variety of enzymatic activities. SMARCAD1 is a unique chromatin remodeler that combines the ATP-dependent ability to exchange histones, with the chaperone-like activity of nucleosome deposition. We have shown previously that phosphorylated SMARCAD1 exhibits reduced binding to nucleosomes. However, it is unknown how phosphorylation affects SMARCAD1's ability to perform its various enzymatic activities. Here we use mutational analysis, activity assays, and mass spectrometry, to probe SMARCAD1 regulation and to investigate the role of its flexible N-terminal region. We show that phosphorylation affects SMARCAD1 binding to nucleosomes, DNA, and histones H2A-H2B, as well as ATP hydrolysis and histone exchange. Conversely, we report only a marginal effect of phosphorylation for histone H3-H4 binding and nucleosome assembly. In addition, the SMARCAD1 N-terminal region is revealed to be critical for nucleosome assembly and histone exchange. Together, this work examines the intricacies of how phosphorylation governs SMARCAD1 activity and provides insight into its complex regulation and diverse activities.
Collapse
Affiliation(s)
- Briana L Aboulache
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Nicole M Hoitsma
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, Colorado, USA; Howard Hughes Medical Institute, Chevy Chase, Maryland, USA.
| |
Collapse
|
3
|
Bacic L, Gaullier G, Mohapatra J, Mao G, Brackmann K, Panfilov M, Liszczak G, Sabantsev A, Deindl S. Asymmetric nucleosome PARylation at DNA breaks mediates directional nucleosome sliding by ALC1. Nat Commun 2024; 15:1000. [PMID: 38307862 PMCID: PMC10837151 DOI: 10.1038/s41467-024-45237-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break. To dissect the consequences of such asymmetry, we generate nucleosomes with a defined ADP-ribosylated H2B tail on one side only. The cryo-electron microscopy structure of ALC1 bound to such an asymmetric nucleosome indicates preferential engagement on one side. Using single-molecule FRET, we demonstrate that this asymmetric recruitment gives rise to directed sliding away from the DNA linker closest to the ADP-ribosylation site. Our data suggest a mechanism by which ALC1 slides nucleosomes away from a DNA break to render it more accessible to repair factors.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
- Department of Chemistry - Ångström, Uppsala University, 75120, Uppsala, Sweden
| | - Jugal Mohapatra
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Guanzhong Mao
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Mikhail Panfilov
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden
| | - Glen Liszczak
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|
4
|
McGregor LA, Deckard CE, Smolen JA, Porter GM, Sczepanski JT. Thymine DNA glycosylase mediates chromatin phase separation in a DNA methylation-dependent manner. J Biol Chem 2023; 299:104907. [PMID: 37307918 PMCID: PMC10404674 DOI: 10.1016/j.jbc.2023.104907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/14/2023] Open
Abstract
Thymine DNA glycosylase (TDG) is an essential enzyme involved in numerous biological pathways, including DNA repair, DNA demethylation, and transcriptional activation. Despite these important functions, the mechanisms surrounding the actions and regulation of TDG are poorly understood. In this study, we demonstrate that TDG induces phase separation of DNA and nucleosome arrays under physiologically relevant conditions in vitro and show that the resulting chromatin droplets exhibited behaviors typical of phase-separated liquids, supporting a liquid-liquid phase separation model. We also provide evidence that TDG has the capacity to form phase-separated condensates in the cell nucleus. The ability of TDG to induce chromatin phase separation is dependent on its intrinsically disordered N- and C-terminal domains, which in isolation, promote the formation of chromatin-containing droplets having distinct physical properties, consistent with their unique mechanistic roles in the phase separation process. Interestingly, DNA methylation alters the phase behavior of the disordered domains of TDG and compromises formation of chromatin condensates by full-length TDG, indicating that DNA methylation regulates the assembly and coalescence of TDG-mediated condensates. Overall, our results shed new light on the formation and physical nature of TDG-mediated chromatin condensates, which have broad implications for the mechanism and regulation of TDG and its associated genomic processes.
Collapse
Affiliation(s)
- Lauren A McGregor
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Justin A Smolen
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | - Gabriela M Porter
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | |
Collapse
|
5
|
Rouillon C, Eckhardt BV, Kollenstart L, Gruss F, Verkennis AE, Rondeel I, Krijger PHL, Ricci G, Biran A, van Laar T, Delvaux de Fenffe CM, Luppens G, Albanese P, Sato K, Scheltema RA, de Laat W, Knipscheer P, Dekker N, Groth A, Mattiroli F. CAF-1 deposits newly synthesized histones during DNA replication using distinct mechanisms on the leading and lagging strands. Nucleic Acids Res 2023; 51:3770-3792. [PMID: 36942484 PMCID: PMC10164577 DOI: 10.1093/nar/gkad171] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/23/2023] Open
Abstract
During every cell cycle, both the genome and the associated chromatin must be accurately replicated. Chromatin Assembly Factor-1 (CAF-1) is a key regulator of chromatin replication, but how CAF-1 functions in relation to the DNA replication machinery is unknown. Here, we reveal that this crosstalk differs between the leading and lagging strand at replication forks. Using biochemical reconstitutions, we show that DNA and histones promote CAF-1 recruitment to its binding partner PCNA and reveal that two CAF-1 complexes are required for efficient nucleosome assembly under these conditions. Remarkably, in the context of the replisome, CAF-1 competes with the leading strand DNA polymerase epsilon (Polϵ) for PCNA binding. However, CAF-1 does not affect the activity of the lagging strand DNA polymerase Delta (Polδ). Yet, in cells, CAF-1 deposits newly synthesized histones equally on both daughter strands. Thus, on the leading strand, chromatin assembly by CAF-1 cannot occur simultaneously to DNA synthesis, while on the lagging strand these processes may be coupled. We propose that these differences may facilitate distinct parental histone recycling mechanisms and accommodate the inherent asymmetry of DNA replication.
Collapse
Affiliation(s)
- Clément Rouillon
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bruna V Eckhardt
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Leonie Kollenstart
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Gruss
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Inge Rondeel
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Giulia Ricci
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alva Biran
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Theo van Laar
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | | | - Georgiana Luppens
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pascal Albanese
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard A Scheltema
- Utrecht Institute for Pharmaceutical Sciences, Utrecht University, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Nynke H Dekker
- Kavli Institute of Nanoscience Delft, TU Delft, The Netherlands
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research (CPR), University of Copenhagen, Copenhagen, Denmark
- Biotech Research and Innovation Center, University of Copenhagen, Copenhagen, Denmark
| | - Francesca Mattiroli
- Hubrecht Institute-KNAW & University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Sun G, Wei Y, Zhou B, Wang M, Luan R, Bai Y, Li H, Wang S, Zheng D, Wang C, Wang S, Zeng K, Liu S, Lin L, He M, Zhang Q, Zhao Y. BAP18 facilitates CTCF-mediated chromatin accessible to regulate enhancer activity in breast cancer. Cell Death Differ 2023; 30:1260-1278. [PMID: 36828916 PMCID: PMC10154423 DOI: 10.1038/s41418-023-01135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/26/2023] Open
Abstract
The estrogen receptor alpha (ERα) signaling pathway is a crucial target for ERα-positive breast cancer therapeutic strategies. Co-regulators and other transcription factors cooperate for effective ERα-related enhancer activation. Recent studies demonstrate that the transcription factor CTCF is essential to participate in ERα/E2-induced enhancer transactivation. However, the mechanism of how CTCF is achieved remains unknown. Here, we provided evidence that BAP18 is required for CTCF recruitment on ERα-enriched enhancers, facilitating CTCF-mediated chromatin accessibility to promote enhancer RNAs transcription. Consistently, GRO-seq demonstrates that the enhancer activity is positively correlated with BAP18 enrichment. Furthermore, BAP18 interacts with SMARCA1/BPTF to accelerate the recruitment of CTCF to ERα-related enhancers. Interestingly, BAP18 is involved in chromatin accessibility within enhancer regions, thereby increasing enhancer transactivation and enhancer-promoter looping. BAP18 depletion increases the sensitivity of anti-estrogen and anti-enhancer treatment in MCF7 cells. Collectively, our study indicates that BAP18 coordinates with CTCF to enlarge the transactivation of ERα-related enhancers, providing a better understanding of BAP18/CTCF coupling chromatin remodeling and E-P looping in the regulation of enhancer transcription.
Collapse
Affiliation(s)
- Ge Sun
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Yuntao Wei
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, 110042, Liaoning Province, China
| | - Baosheng Zhou
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Manlin Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Ruina Luan
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Yu Bai
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Hao Li
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shan Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Dantong Zheng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Chunyu Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shengli Wang
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Kai Zeng
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Shuchang Liu
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Lin Lin
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Mingcong He
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, 110042, Liaoning Province, China
| | - Yue Zhao
- Department of Cell Biology, Key Laboratory of Medical Cell Biology, Ministry of Education, School of Life Sciences, China Medical University, Shenyang City, 110122, Liaoning Province, China.
| |
Collapse
|
7
|
Kumar J, Mohammad G, Alka K, Kowluru RA. Mitochondrial Genome-Encoded Long Noncoding RNA and Mitochondrial Stability in Diabetic Retinopathy. Diabetes 2023; 72:520-531. [PMID: 36563021 PMCID: PMC10033250 DOI: 10.2337/db22-0744] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Mitochondria experience genomic and functional instability in diabetes, and mitochondrial dysfunction has a critical role in the development of diabetic retinopathy. Diabetes also alters expressions of many long noncoding RNAs (LncRNAs), the RNAs with >200 nucleotides and no open reading frame. LncRNAs are mainly encoded by the nuclear genome, but mtDNA also encodes three LncRNAs. Our goal was to investigate the effect of hyperglycemia on mtDNA-encoded LncRNA cytochrome B (LncCytB) in mtDNA stability in diabetic retinopathy. Retinal endothelial cells, transfected with LncCytB-overexpressing plasmids or siRNA, incubated in 5 mmol/L d-glucose (normal glucose [NG]) or 20 mmol/L d-glucose (high glucose [HG]) for 4 days, were analyzed for LncCytB expression by strand-specific PCR and its mitochondrial localization by RNA fluorescence in situ hybridization. Damage-sensitive mtDNA regions were examined by micrococcal nuclease (MNase) digestion sequencing and LncCytB occupancy at mtDNA by chromatin isolation by RNA purification. Protective nucleoids in mtDNA were analyzed by SYBR Green-MitoTracker Red staining and confirmed in isolated mitochondria by flow cytometry. Compared with NG, HG downregulated LncCytB by >50% but had no significant effect on the other mtDNA-encoded LncRNAs. mtDNA packaging was impaired, MNase sensitivity was increased, and LncCytB occupancy at mtDNA was decreased. While LncCytB overexpression ameliorated mtDNA damage and decrease in nucleoids and copy numbers, LncCytB-siRNA exacerbated damage and further reduced nucleoids. Retinal microvessels from streptozotocin-induced diabetic mice and human donors with diabetic retinopathy presented a similar decrease in LncCytB and mtDNA nucleoids. Thus, LncCytB has a major role in maintaining mitochondrial genomic stability, and its downregulation in the hyperglycemic milieu contributes to increased vulnerability of mtDNA to damage. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
| | | | | | - Renu A. Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, Detroit, MI
| |
Collapse
|
8
|
Rudolph J, Luger K. Analyzing PARP1 Activity: Small Molecule Reactants and Attached Chains of Poly (ADP-Ribose). Methods Mol Biol 2022; 2609:61-73. [PMID: 36515829 DOI: 10.1007/978-1-0716-2891-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We describe a method for analyzing multiple products of PARylation by PARP1 and/or PARP2 using high-pressure liquid chromatography. The method quantitates the small molecules NAD+ (the substrate), nicotinamide (the byproduct of PARylation or hydrolysis of NAD+), and ADPR, the product of NAD+ hydrolysis. The method also quantitates the products of PARylation following digestion of the PAR chains into "ends," "middles," and "branches." This method is useful for dissecting both the activity and the partitioning of PARylation products between different outcomes (i.e., long chains vs. short chains, PARylation vs. hydrolysis).
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
9
|
Corbeski I, Guo X, Eckhardt BV, Fasci D, Wiegant W, Graewert MA, Vreeken K, Wienk H, Svergun DI, Heck AJR, van Attikum H, Boelens R, Sixma TK, Mattiroli F, van Ingen H. Chaperoning of the histone octamer by the acidic domain of DNA repair factor APLF. SCIENCE ADVANCES 2022; 8:eabo0517. [PMID: 35895815 PMCID: PMC9328677 DOI: 10.1126/sciadv.abo0517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/10/2022] [Indexed: 05/26/2023]
Abstract
Nucleosome assembly requires the coordinated deposition of histone complexes H3-H4 and H2A-H2B to form a histone octamer on DNA. In the current paradigm, specific histone chaperones guide the deposition of first H3-H4 and then H2A-H2B. Here, we show that the acidic domain of DNA repair factor APLF (APLFAD) can assemble the histone octamer in a single step and deposit it on DNA to form nucleosomes. The crystal structure of the APLFAD-histone octamer complex shows that APLFAD tethers the histones in their nucleosomal conformation. Mutations of key aromatic anchor residues in APLFAD affect chaperone activity in vitro and in cells. Together, we propose that chaperoning of the histone octamer is a mechanism for histone chaperone function at sites where chromatin is temporarily disrupted.
Collapse
Affiliation(s)
- Ivan Corbeski
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Xiaohu Guo
- Division of Biochemistry and Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Bruna V. Eckhardt
- Hubrecht Institute—KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Domenico Fasci
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Wouter Wiegant
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Melissa A. Graewert
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Kees Vreeken
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Hans Wienk
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory (EMBL), Hamburg Unit, DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, Netherlands
| | - Rolf Boelens
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Titia K. Sixma
- Division of Biochemistry and Oncode Institute, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, Netherlands
| | - Francesca Mattiroli
- Hubrecht Institute—KNAW & University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
10
|
Li S, Edwards G, Radebaugh CA, Luger K, A Stargell L. Spn1 and its dynamic interactions with Spt6, histones and nucleosomes. J Mol Biol 2022; 434:167630. [PMID: 35595162 DOI: 10.1016/j.jmb.2022.167630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 11/25/2022]
Abstract
Histone chaperones facilitate the assembly and disassembly of nucleosomes and regulate DNA accessibility for critical cellular processes. Spn1 is an essential, highly conserved histone chaperone that functions in transcription initiation and elongation in a chromatin context. Here we demonstrate that Spn1 binds H3-H4 with low nanomolar affinity, residues 85-99 within the acidic N-terminal region of Spn1 are required for H3-H4 binding, and Spn1 binding to H3-H4 dimers does not impede (H3-H4)2 tetramer formation. Previous work has shown the central region of Spn1 (residues 141-305) is important for interaction with Spt6, another conserved and essential histone chaperone. We show that the C-terminal region of Spn1 also contributes to Spt6 binding and is critical for Spn1 binding to nucleosomes. We also show Spt6 preferentially binds H3-H4 tetramers and Spt6 competes with nucleosomes for Spn1 binding. Combined with previous results, this indicates the Spn1-Spt6 complex does not bind nucleosomes. In contrast to nucleosome binding, we found that the Spn1-Spt6 complex can bind H3-H4 dimers and tetramers and H2A-H2B to form ternary complexes. These important results provide new information about the functions of Spn1, Spt6, and the Spn1-Spt6 complex, two essential and highly conserved histone chaperones.
Collapse
Affiliation(s)
- Sha Li
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA; Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Garrett Edwards
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado, Boulder, CO, 80309, USA; Howard Hughes Medical Institute, University of Colorado, Boulder, CO, 80309, USA
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA
| |
Collapse
|
11
|
Zhou K, Gebala M, Woods D, Sundararajan K, Edwards G, Krzizike D, Wereszczynski J, Straight AF, Luger K. CENP-N promotes the compaction of centromeric chromatin. Nat Struct Mol Biol 2022; 29:403-413. [PMID: 35422519 PMCID: PMC9010303 DOI: 10.1038/s41594-022-00758-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 12/14/2022]
Abstract
The histone variant CENP-A is the epigenetic determinant for the centromere, where it is interspersed with canonical H3 to form a specialized chromatin structure that nucleates the kinetochore. How nucleosomes at the centromere arrange into higher order structures is unknown. Here we demonstrate that the human CENP-A-interacting protein CENP-N promotes the stacking of CENP-A-containing mononucleosomes and nucleosomal arrays through a previously undefined interaction between the α6 helix of CENP-N with the DNA of a neighboring nucleosome. We describe the cryo-EM structures and biophysical characterization of such CENP-N-mediated nucleosome stacks and nucleosomal arrays and demonstrate that this interaction is responsible for the formation of densely packed chromatin at the centromere in the cell. Our results provide first evidence that CENP-A, together with CENP-N, promotes specific chromatin higher order structure at the centromere.
Collapse
Affiliation(s)
- Keda Zhou
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Magdalena Gebala
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Dustin Woods
- Department of Chemistry and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | | | - Garrett Edwards
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Dan Krzizike
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Jeff Wereszczynski
- Department of Physics and the Center for Molecular Study of Condensed Soft Matter, Illinois Institute of Technology, Chicago, IL, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University, Stanford, CA, USA.
| | - Karolin Luger
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA.
- Howard Hughes Medical Institute, University of Colorado at Boulder, Boulder, CO, USA.
| |
Collapse
|
12
|
Burger M, Kaelin S, Leroux J. The TFAMoplex-Conversion of the Mitochondrial Transcription Factor A into a DNA Transfection Agent. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104987. [PMID: 35038234 PMCID: PMC8922101 DOI: 10.1002/advs.202104987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 06/14/2023]
Abstract
Non-viral gene delivery agents, such as cationic lipids, polymers, and peptides, mainly rely on charge-based and hydrophobic interactions for the condensation of DNA molecules into nanoparticles. The human protein mitochondrial transcription factor A (TFAM), on the other hand, has evolved to form nanoparticles with DNA through highly specific protein-protein and protein-DNA interactions. Here, the properties of TFAM are repurposed to create a DNA transfection agent by means of protein engineering. TFAM is covalently fused to Listeria monocytogenes phospholipase C (PLC), an enzyme that lyses lipid membranes under acidic conditions, to enable endosomal escape and human vaccinia-related kinase 1 (VRK1), which is intended to protect the DNA from cytoplasmic defense mechanisms. The TFAM/DNA complexes (TFAMoplexes) are stabilized by cysteine point mutations introduced rationally in the TFAM homodimerization site, resulting in particles, which show maximal activity when formed in 80% serum and transfect HeLa cells in vitro after 30 min of incubation under challenging cell culture conditions. The herein developed TFAM-based DNA scaffolds combine interesting characteristics in an easy-to-use system and can be readily expanded with further protein factors. This makes the TFAMoplex a promising tool in protein-based gene delivery.
Collapse
Affiliation(s)
- Michael Burger
- Swiss Federal Institute of Technology Zurich (ETHZ)Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesVladimir‐Prelog‐Weg 3Zurich8093Switzerland
| | - Seraina Kaelin
- Swiss Federal Institute of Technology Zurich (ETHZ)Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesVladimir‐Prelog‐Weg 3Zurich8093Switzerland
| | - Jean‐Christophe Leroux
- Swiss Federal Institute of Technology Zurich (ETHZ)Department of Chemistry and Applied BiosciencesInstitute of Pharmaceutical SciencesVladimir‐Prelog‐Weg 3Zurich8093Switzerland
| |
Collapse
|
13
|
Rudolph J, Muthurajan UM, Palacio M, Mahadevan J, Roberts G, Erbse AH, Dyer PN, Luger K. The BRCT domain of PARP1 binds intact DNA and mediates intrastrand transfer. Mol Cell 2021; 81:4994-5006.e5. [PMID: 34919819 PMCID: PMC8769213 DOI: 10.1016/j.molcel.2021.11.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022]
Abstract
PARP1 is a key player in the response to DNA damage and is the target of clinical inhibitors for the treatment of cancers. Binding of PARP1 to damaged DNA leads to activation wherein PARP1 uses NAD+ to add chains of poly(ADP-ribose) onto itself and other nuclear proteins. PARP1 also binds abundantly to intact DNA and chromatin, where it remains enzymatically inactive. We show that intact DNA makes contacts with the PARP1 BRCT domain, which was not previously recognized as a DNA-binding domain. This binding mode does not result in the concomitant reorganization and activation of the catalytic domain. We visualize the BRCT domain bound to nucleosomal DNA by cryogenic electron microscopy and identify a key motif conserved from ancestral BRCT domains for binding phosphates on DNA and phospho-peptides. Finally, we demonstrate that the DNA-binding properties of the BRCT domain contribute to the "monkey-bar mechanism" that mediates DNA transfer of PARP1.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Uma M Muthurajan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Megan Palacio
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Annette H Erbse
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Pamela N Dyer
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
14
|
Markert J, Zhou K, Luger K. SMARCAD1 is an ATP-dependent histone octamer exchange factor with de novo nucleosome assembly activity. SCIENCE ADVANCES 2021; 7:eabk2380. [PMID: 34652950 PMCID: PMC8519567 DOI: 10.1126/sciadv.abk2380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The adenosine 5′-triphosphate (ATP)–dependent chromatin remodeler SMARCAD1 acts on nucleosomes during DNA replication, repair, and transcription, but despite its implication in disease, information on its function and biochemical activities is scarce. Chromatin remodelers use the energy of ATP hydrolysis to slide nucleosomes, evict histones, or exchange histone variants. Here, we show that SMARCAD1 transfers the entire histone octamer from one DNA segment to another in an ATP-dependent manner but is also capable of de novo nucleosome assembly from histone octamer because of its ability to simultaneously bind all histones. We present a low-resolution cryo–electron microscopy structure of SMARCAD1 in complex with a nucleosome and show that the adenosine triphosphatase domains engage their substrate unlike any other chromatin remodeler. Our biochemical and structural data provide mechanistic insights into SMARCAD1-induced nucleosome disassembly and reassembly.
Collapse
Affiliation(s)
- Jonathan Markert
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Keda Zhou
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
- Corresponding author.
| |
Collapse
|
15
|
Galloy M, Lachance C, Cheng X, Distéfano-Gagné F, Côté J, Fradet-Turcotte A. Approaches to Study Native Chromatin-Modifying Complex Activities and Functions. Front Cell Dev Biol 2021; 9:729338. [PMID: 34604228 PMCID: PMC8481805 DOI: 10.3389/fcell.2021.729338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 11/13/2022] Open
Abstract
The modification of histones-the structural components of chromatin-is a central topic in research efforts to understand the mechanisms regulating genome expression and stability. These modifications frequently occur through associations with multisubunit complexes, which contain active enzymes and additional components that orient their specificity and read the histone modifications that comprise epigenetic signatures. To understand the functions of these modifications it is critical to study the enzymes and substrates involved in their native contexts. Here, we describe experimental approaches to purify native chromatin modifiers complexes from mammalian cells and to produce recombinant nucleosomes that are used as substrates to determine the activity of the complex. In addition, we present a novel approach, similar to the yeast anchor-away system, to study the functions of essential chromatin modifiers by quickly inducing their depletion from the nucleus. The step-by-step protocols included will help standardize these approaches in the research community, enabling convincing conclusions about the specificities and functions of these crucial regulators of the eukaryotic genome.
Collapse
Affiliation(s)
- Maxime Galloy
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Catherine Lachance
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Xue Cheng
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Félix Distéfano-Gagné
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Jacques Côté
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| | - Amelie Fradet-Turcotte
- St-Patrick Research Group in Basic Oncology, Oncology Division, Centre Hospitalier Universitaire (CHU) de Québec-Université Laval Research Center, Québec, QC, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
16
|
Bacic L, Gaullier G, Sabantsev A, Lehmann LC, Brackmann K, Dimakou D, Halic M, Hewitt G, Boulton SJ, Deindl S. Structure and dynamics of the chromatin remodeler ALC1 bound to a PARylated nucleosome. eLife 2021; 10:e71420. [PMID: 34486521 PMCID: PMC8463071 DOI: 10.7554/elife.71420] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022] Open
Abstract
The chromatin remodeler ALC1 is recruited to and activated by DNA damage-induced poly(ADP-ribose) (PAR) chains deposited by PARP1/PARP2/HPF1 upon detection of DNA lesions. ALC1 has emerged as a candidate drug target for cancer therapy as its loss confers synthetic lethality in homologous recombination-deficient cells. However, structure-based drug design and molecular analysis of ALC1 have been hindered by the requirement for PARylation and the highly heterogeneous nature of this post-translational modification. Here, we reconstituted an ALC1 and PARylated nucleosome complex modified in vitro using PARP2 and HPF1. This complex was amenable to cryo-EM structure determination without cross-linking, which enabled visualization of several intermediate states of ALC1 from the recognition of the PARylated nucleosome to the tight binding and activation of the remodeler. Functional biochemical assays with PARylated nucleosomes highlight the importance of nucleosomal epitopes for productive remodeling and suggest that ALC1 preferentially slides nucleosomes away from DNA breaks.
Collapse
Affiliation(s)
- Luka Bacic
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Guillaume Gaullier
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Anton Sabantsev
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Laura C Lehmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Klaus Brackmann
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Despoina Dimakou
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| | - Mario Halic
- Department of Structural Biology, St Jude Children's Research HospitalMemphisUnited States
| | | | | | - Sebastian Deindl
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala UniversityUppsalaSweden
| |
Collapse
|
17
|
Mauney AW, Muthurajan UM, Luger K, Pollack L. Solution structure(s) of trinucleosomes from contrast variation SAXS. Nucleic Acids Res 2021; 49:5028-5037. [PMID: 34009316 PMCID: PMC8136820 DOI: 10.1093/nar/gkab290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 11/13/2022] Open
Abstract
Nucleosomes in all eukaryotic cells are organized into higher order structures that facilitate genome compaction. Visualizing these organized structures is an important step in understanding how genomic DNA is efficiently stored yet remains accessible to information-processing machinery. Arrays of linked nucleosomes serve as useful models for understanding how the properties of both DNA and protein partners affect their arrangement. A number of important questions are also associated with understanding how the spacings between nucleosomes are affected by the histone proteins, chromatin remodelers, or other chromatin-associated protein partners. Contrast variation small angle X-ray scattering (CVSAXS) reports the DNA conformation within protein-DNA complexes and here is applied to measure the conformation(s) of trinucleosomes in solution, with specific sensitivity to the distance between and relative orientation of linked nucleosomes. These data are interpreted in conjunction with DNA models that account for its sequence dependent mechanical properties, and Monte-Carlo techniques that generate realistic structures for comparison with measured scattering profiles. In solution, trinucleosomes segregate into two dominant populations, with the flanking nucleosomes stacked or nearly equilaterally separated, e.g. with roughly equal distance between all pairs of nucleosomes. These populations are consistent with previously observed magnesium-dependent structures of trinucleosomes with shorter linkers.
Collapse
Affiliation(s)
- Alexander W Mauney
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| | - Uma M Muthurajan
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Endo Y, Takemori N, Nagy SK, Okimune KI, Kamakaka R, Onouchi H, Takasuka TE. De novo reconstitution of chromatin using wheat germ cell-free protein synthesis. FEBS Open Bio 2021; 11:1552-1564. [PMID: 33960726 PMCID: PMC8167859 DOI: 10.1002/2211-5463.13178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 01/12/2023] Open
Abstract
DNA is packaged with histones to form chromatin that impinges on all nuclear processes, including transcription, replication and repair, in the eukaryotic nucleus. A complete understanding of these molecular processes requires analysis of chromatin context in vitro. Here, Drosophila four core histones were produced in a native and unmodified form using wheat germ cell‐free protein synthesis. In the assembly reaction, four unpurified core histones and three chromatin assembly factors (dNAP‐1, dAcf1 and dISWI) were incubated with template DNA. We then assessed stoichiometry with the histones, nucleosome arrays, supercoiling and the ability of the chromatin to serve as a substrate for histone‐modifying enzymes. Overall, our method provides a new avenue to produce chromatin that can be useful in a wide range of chromatin research.
Collapse
Affiliation(s)
- Yaeta Endo
- Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Nobuaki Takemori
- Division of Proteomics Research Proteo-Science Center, Ehime University, Toon, Japan
| | - Szilvia K Nagy
- Department of Molecular Biology, Institute of Biochemistry and Molecular Biology, Semmelweis University, Budapest, Hungary.,Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kei-Ichi Okimune
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Rohinton Kamakaka
- Department of Molecular Cell and Developmental Biology, University of California at Santa Cruz, CA, USA
| | - Hitoshi Onouchi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Taichi E Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| |
Collapse
|
19
|
Deckard CE, Sczepanski JT. Reversible chromatin condensation by the DNA repair and demethylation factor thymine DNA glycosylase. Nucleic Acids Res 2021; 49:2450-2459. [PMID: 33733652 PMCID: PMC7969020 DOI: 10.1093/nar/gkab040] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 11/23/2022] Open
Abstract
Chromatin structures (and modulators thereof) play a central role in genome organization and function. Herein, we report that thymine DNA glycosylase (TDG), an essential enzyme involved in DNA repair and demethylation, has the capacity to alter chromatin structure directly through its physical interactions with DNA. Using chemically defined nucleosome arrays, we demonstrate that TDG induces decompaction of individual chromatin fibers upon binding and promotes self-association of nucleosome arrays into higher-order oligomeric structures (i.e. condensation). Chromatin condensation is mediated by TDG’s disordered polycationic N-terminal domain, whereas its C-terminal domain antagonizes this process. Furthermore, we demonstrate that TDG-mediated chromatin condensation is reversible by growth arrest and DNA damage 45 alpha (GADD45a), implying that TDG cooperates with its binding partners to dynamically control chromatin architecture. Finally, we show that chromatin condensation by TDG is sensitive to the methylation status of the underlying DNA. This new paradigm for TDG has specific implications for associated processes, such as DNA repair, DNA demethylation, and transcription, and general implications for the role of DNA modification ‘readers’ in controlling chromatin organization.
Collapse
Affiliation(s)
- Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | |
Collapse
|
20
|
Rudolph J, Roberts G, Muthurajan UM, Luger K. HPF1 and nucleosomes mediate a dramatic switch in activity of PARP1 from polymerase to hydrolase. eLife 2021; 10:65773. [PMID: 33683197 PMCID: PMC8012059 DOI: 10.7554/elife.65773] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/07/2021] [Indexed: 12/13/2022] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) is an important player in the response to DNA damage. Recently, Histone PARylation Factor (HPF1) was shown to be a critical modulator of the activity of PARP1 by facilitating PARylation of histones and redirecting the target amino acid specificity from acidic to serine residues. Here, we investigate the mechanism and specific consequences of HPF1-mediated PARylation using nucleosomes as both activators and substrates for PARP1. HPF1 provides that catalytic base Glu284 to substantially redirect PARylation by PARP1 such that the histones in nucleosomes become the primary recipients of PAR chains. Surprisingly, HPF1 partitions most of the reaction product to free ADP-ribose (ADPR), resulting in much shorter PAR chains compared to reactions in the absence of HPF1. This HPF1-mediated switch from polymerase to hydrolase has important implications for the PARP1-mediated response to DNA damage and raises interesting new questions about the role of intracellular ADPR and depletion of NAD+.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, United States
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, United States
| | - Uma M Muthurajan
- Department of Biochemistry, University of Colorado Boulder, Boulder, United States
| | - Karolin Luger
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| |
Collapse
|
21
|
Rudolph J, Roberts G, Luger K. Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs. Nat Commun 2021; 12:736. [PMID: 33531508 PMCID: PMC7854685 DOI: 10.1038/s41467-021-20998-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/05/2021] [Indexed: 01/30/2023] Open
Abstract
Poly-(ADP-ribose) polymerase 1 and 2 (PARP1 and PARP2) are key enzymes in the DNA damage response. Four different inhibitors (PARPi) are currently in the clinic for treatment of ovarian and breast cancer. Recently, histone PARylation Factor 1 (HPF1) has been shown to play an essential role in the PARP1- and PARP2-dependent poly-(ADP-ribosylation) (PARylation) of histones, by forming a complex with both enzymes and altering their catalytic properties. Given the proximity of HPF1 to the inhibitor binding site both PARPs, we hypothesized that HPF1 may modulate the affinity of inhibitors toward PARP1 and/or PARP2. Here we demonstrate that HPF1 significantly increases the affinity for a PARP1 - DNA complex of some PARPi (i.e., olaparib), but not others (i.e., veliparib). This effect of HPF1 on the binding affinity of Olaparib also holds true for the more physiologically relevant PARP1 - nucleosome complex but does not extend to PARP2. Our results have important implications for the interpretation of PARP inhibition by current PARPi as well as for the design and analysis of the next generation of clinically relevant PARP inhibitors.
Collapse
Affiliation(s)
- Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, 80309, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
22
|
Gaullier G, Roberts G, Muthurajan UM, Bowerman S, Rudolph J, Mahadevan J, Jha A, Rae PS, Luger K. Bridging of nucleosome-proximal DNA double-strand breaks by PARP2 enhances its interaction with HPF1. PLoS One 2020; 15:e0240932. [PMID: 33141820 PMCID: PMC7608914 DOI: 10.1371/journal.pone.0240932] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) Polymerase 2 (PARP2) is one of three DNA-dependent PARPs involved in the detection of DNA damage. Upon binding to DNA double-strand breaks, PARP2 uses nicotinamide adenine dinucleotide to synthesize poly(ADP-ribose) (PAR) onto itself and other proteins, including histones. PAR chains in turn promote the DNA damage response by recruiting downstream repair factors. These early steps of DNA damage signaling are relevant for understanding how genome integrity is maintained and how their failure leads to genome instability or cancer. There is no structural information on DNA double-strand break detection in the context of chromatin. Here we present a cryo-EM structure of two nucleosomes bridged by human PARP2 and confirm that PARP2 bridges DNA ends in the context of nucleosomes bearing short linker DNA. We demonstrate that the conformation of PARP2 bound to damaged chromatin provides a binding platform for the regulatory protein Histone PARylation Factor 1 (HPF1), and that the resulting HPF1•PARP2•nucleosome complex is enzymatically active. Our results contribute to a structural view of the early steps of the DNA damage response in chromatin.
Collapse
Affiliation(s)
- Guillaume Gaullier
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Genevieve Roberts
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Uma M. Muthurajan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Samuel Bowerman
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Johannes Rudolph
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| | - Jyothi Mahadevan
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Asmita Jha
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Purushka S. Rae
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
| | - Karolin Luger
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, United States of America
- Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, United States of America
| |
Collapse
|
23
|
Banerjee DR, Deckard CE, Zeng Y, Sczepanski JT. Acetylation of the histone H3 tail domain regulates base excision repair on higher-order chromatin structures. Sci Rep 2019; 9:15972. [PMID: 31685935 PMCID: PMC6828659 DOI: 10.1038/s41598-019-52340-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023] Open
Abstract
Despite recent evidence suggesting that histone lysine acetylation contributes to base excision repair (BER) in cells, their exact mechanistic role remains unclear. In order to examine the influence of histone acetylation on the initial steps of BER, we assembled nucleosome arrays consisting of homogeneously acetylated histone H3 (H3K18 and H3K27) and measured the repair of a site-specifically positioned 2′-deoxyuridine (dU) residue by uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE1). We find that H3K18ac and H3K27ac differentially influence the combined activities of UDG/APE1 on compact chromatin, suggesting that acetylated lysine residues on the H3 tail domain play distinct roles in regulating the initial steps of BER. In addition, we show that the effects of H3 tail domain acetylation on UDG/APE1 activity are at the nucleosome level and do not influence higher-order chromatin folding. Overall, these results establish a novel regulatory role for histone H3 acetylation during the initiation of BER on chromatin.
Collapse
Affiliation(s)
- Deb Ranjan Banerjee
- Department of Chemistry, National Institute of Technology, Durgapur, West Bengal, India
| | - Charles E Deckard
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yu Zeng
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas, 77843, United States
| | - Jonathan T Sczepanski
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States.
| |
Collapse
|
24
|
Tauran Y, Kumemura M, Tarhan MC, Perret G, Perret F, Jalabert L, Collard D, Fujita H, Coleman AW. Direct measurement of the mechanical properties of a chromatin analog and the epigenetic effects of para-sulphonato-calix[4]arene. Sci Rep 2019; 9:5816. [PMID: 30967623 PMCID: PMC6456576 DOI: 10.1038/s41598-019-42267-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 03/25/2019] [Indexed: 02/06/2023] Open
Abstract
By means of Silicon Nano Tweezers (SNTs) the effects on the mechanical properties of λ-phage DNA during interaction with calf thymus nucleosome to form an artificial chromatin analog were measured. At a concentration of 100 nM, a nucleosome solution induced a strong stiffening effect on DNA (1.1 N m-1). This can be compared to the effects of the histone proteins, H1, H2A, H3 where no changes in the mechanical properties of DNA were observed and the complex of the H3/H4 proteins where a smaller increase in the stiffness is observed (0.2 N m-1). Para-sulphonato-calix[4]arene, SC4, known for epigenetic activity by interacting specifically with the lysine groups of histone proteins, was studied for its effect on an artificial chromatin. Using a microfluidic SNT device, SC4 was titrated against the artificial chromatin, at a concentration of 1 mM in SC4 a considerable increase in stiffness, 15 N m-1, was observed. Simultaneously optical microscopy showed a physical change in the DNA structure between the tips of the SNT device. Electronic and Atomic Force microscopy confirmed this structural re-arrangement. Negative control experiments confirmed that these mechanical and physical effects were induced neither by the acidity of SC4 nor through nonspecific interactions of SC4 on DNA.
Collapse
Affiliation(s)
- Yannick Tauran
- LMI CNRS UMR 5615, Université Lyon 1, Villeurbanne, 69622, France.
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan.
| | - Momoko Kumemura
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- CIRMM, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Fukuoka, 808-0196, Japan
| | - Mehmet C Tarhan
- Univ. Lille, CNRS, Centrale Lille, ISEN, Univ. Valenciennes, UMR 8520-IEMN, Lille, F59000, France
- CNRS/IIS/COL/Lille 1 SMMiL-E project, 59046, Lille Cedex, France
| | - Grégoire Perret
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- CNRS/IIS/COL/Lille 1 SMMiL-E project, 59046, Lille Cedex, France
| | - Florent Perret
- ICBMS, CNRS UMR 5246, Université Lyon 1, Villeurbanne, 69622, France
| | - Laurent Jalabert
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- CIRMM, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Dominique Collard
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- CNRS/IIS/COL/Lille 1 SMMiL-E project, 59046, Lille Cedex, France
| | - Hiroyuki Fujita
- LIMMS/CNRS-IIS UMI 2820, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
- CIRMM, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Anthony W Coleman
- CIRMM, Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| |
Collapse
|
25
|
Banerjee DR, Deckard CE, Elinski MB, Buzbee ML, Wang WW, Batteas JD, Sczepanski JT. Plug-and-Play Approach for Preparing Chromatin Containing Site-Specific DNA Modifications: The Influence of Chromatin Structure on Base Excision Repair. J Am Chem Soc 2018; 140:8260-8267. [PMID: 29883113 DOI: 10.1021/jacs.8b04063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The genomic DNA of eukaryotic cells exists in the form of chromatin, the structure of which controls the biochemical accessibility of the underlying DNA to effector proteins. In order to gain an in depth molecular understanding of how chromatin structure regulates DNA repair, detailed in vitro biochemical and biophysical studies are required. However, because of challenges associated with reconstituting nucleosome arrays containing site-specifically positioned DNA modifications, such studies have been limited to the use of mono- and dinucleosomes as model in vitro substrates, which are incapable of folding into native chromatin structures. To address this issue, we developed a straightforward and general approach for assembling chemically defined oligonucleosome arrays (i.e., designer chromatin) containing site-specifically modified DNA. Our method takes advantage of nicking endonucleases to excise short fragments of unmodified DNA, which are subsequently replaced with synthetic oligonucleotides containing the desired modification. Using this approach, we prepared several oligonucleosome substrates containing precisely positioned 2'-deoxyuridine (dU) residues and examined the efficiency of base excision repair (BER) within several distinct chromatin architectures. We show that, depending on the translational position of the lesion, the combined catalytic activities of uracil DNA glycosylase (UDG) and apurinic/apyrimidinic endonuclease 1 (APE1) can be either inhibited by as much as 20-fold or accelerated by more than 5-fold within compact chromatin (i.e., the 30 nm fiber) relative to naked DNA. Moreover, we demonstrate that digestion of dU by UDG/APE1 proceeds much more rapidly in mononucleosomes than in compacted nucleosome arrays, thereby providing the first direct evidence that internucleosome interactions play an important role in regulating BER within higher-order chromatin structures. Overall, this work highlights the value of performing detailed biochemical studies on precisely modified chromatin substrates in vitro and provides a robust platform for investigating DNA modifications in chromatin biology.
Collapse
Affiliation(s)
- Deb Ranjan Banerjee
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Charles E Deckard
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Meagan B Elinski
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Meridith L Buzbee
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Wesley Wei Wang
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - James D Batteas
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| | - Jonathan T Sczepanski
- Department of Chemistry , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
26
|
Taniguchi J, Feng Y, Pandian GN, Hashiya F, Hidaka T, Hashiya K, Park S, Bando T, Ito S, Sugiyama H. Biomimetic Artificial Epigenetic Code for Targeted Acetylation of Histones. J Am Chem Soc 2018; 140:7108-7115. [DOI: 10.1021/jacs.8b01518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Junichi Taniguchi
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Yihong Feng
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Ganesh N. Pandian
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Fumitaka Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Takuya Hidaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Kaori Hashiya
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
| | - Shinji Ito
- Medical Research Support Center, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
27
|
Zou T, Kizaki S, Sugiyama H. Investigating Nucleosome Accessibility for MNase, FeII
Peplomycin, and Duocarmycin B2
by Using Capillary Electrophoresis. Chembiochem 2018; 19:664-668. [DOI: 10.1002/cbic.201700643] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Tingting Zou
- Department of Science; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Seiichiro Kizaki
- Department of Science; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
| | - Hiroshi Sugiyama
- Department of Science; Graduate School of Science; Kyoto University; Sakyo Kyoto 606-8502 Japan
- Institute for Integrated Cell-Material Sciences (iCeMS); Kyoto University; Yoshida Ushinomiya-cho Sakyo Kyoto 606-8501 Japan
| |
Collapse
|
28
|
Mattiroli F, Gu Y, Luger K. Measuring Nucleosome Assembly Activity in vitro with the Nucleosome Assembly and Quantification (NAQ) Assay. Bio Protoc 2018. [PMID: 29516027 DOI: 10.21769/bioprotoc.2714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Nucleosomes organize the eukaryotic genome into chromatin. In cells, nucleosome assembly relies on the activity of histone chaperones, proteins with high binding affinity to histones. At least a subset of histone chaperones promotes histone deposition in vivo. However, it has been challenging to characterize this activity, due to the lack of quantitative assays. Here we developed a quantitative nucleosome assembly (NAQ) assay to measure the amount of nucleosome formation in vitro. This assay relies on a Micrococcal nuclease (MNase) digestion step that yields DNA fragments protected by the deposited histone proteins. A subsequent run on the Bioanalyzer machine allows the accurate quantification of the fragments (length and amount), relative to a loading control. This allows us to measure nucleosome formation by following the signature DNA length of ~150 bp. This assay finally enables the characterization of the nucleosome assembly activity of different histone chaperones, a step forward in the understanding of the functional roles of these proteins in vivo.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Howard Hughes Medical Institute, University of Colorado Boulder, Department of Chemistry and Biochemistry, Boulder, CO, USA
| | - Yajie Gu
- Howard Hughes Medical Institute, University of Colorado Boulder, Department of Chemistry and Biochemistry, Boulder, CO, USA.,Colorado State University, Department of Biochemistry and Molecular Biology, Fort Collins, CO, USA
| | - Karolin Luger
- Howard Hughes Medical Institute, University of Colorado Boulder, Department of Chemistry and Biochemistry, Boulder, CO, USA
| |
Collapse
|
29
|
Cao S, Zhou K, Zhang Z, Luger K, Straight AF. Constitutive centromere-associated network contacts confer differential stability on CENP-A nucleosomes in vitro and in the cell. Mol Biol Cell 2018; 29:751-762. [PMID: 29343552 PMCID: PMC6003232 DOI: 10.1091/mbc.e17-10-0596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/05/2018] [Accepted: 01/09/2018] [Indexed: 11/15/2022] Open
Abstract
Eukaryotic centromeres are defined by the presence of nucleosomes containing the histone H3 variant, centromere protein A (CENP-A). Once incorporated at centromeres, CENP-A nucleosomes are remarkably stable, exhibiting no detectable loss or exchange over many cell cycles. It is currently unclear whether this stability is an intrinsic property of CENP-A containing chromatin or whether it arises from proteins that specifically associate with CENP-A chromatin. Two proteins, CENP-C and CENP-N, are known to bind CENP-A human nucleosomes directly. Here we test the hypothesis that CENP-C or CENP-N stabilize CENP-A nucleosomes in vitro and in living cells. We show that CENP-N stabilizes CENP-A nucleosomes alone and additively with CENP-C in vitro. However, removal of CENP-C and CENP-N from cells, or mutating CENP-A so that it no longer interacts with CENP-C or CENP-N, had no effect on centromeric CENP-A stability in vivo. Thus, the stability of CENP-A nucleosomes in chromatin does not arise solely from its interactions with CENP-C or CENP-N.
Collapse
Affiliation(s)
- Shengya Cao
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| | - Keda Zhou
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309
| | - Zhening Zhang
- National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309 .,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
30
|
Mattiroli F, Gu Y, Luger K. FRET-based Stoichiometry Measurements of Protein Complexes in vitro. Bio Protoc 2018; 7:e2713. [PMID: 29644254 DOI: 10.21769/bioprotoc.2713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
For a complete understanding of biochemical reactions, information on complex stoichiometry is essential. However, measuring stoichiometry is experimentally challenging. Our lab has developed a FRET-based assay to study protein complex stoichiometry in vitro. This assay, also known as Job plot, is set up as a continuous variation of the molar ratio between the two species, kept at constant total concentration. The FRET (Fluorescence Resonance Energy Transfer) between the two fluorescently-labeled proteins is measured and the stoichiometry is inferred from the sample with highest FRET signal. This approach allows us to assess complex stoichiometry in solution.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Howard Hughes Medical Institute, University of Colorado Boulder, Department of Chemistry and Biochemistry, Boulder, CO, USA
| | - Yajie Gu
- Howard Hughes Medical Institute, University of Colorado Boulder, Department of Chemistry and Biochemistry, Boulder, CO, USA.,Colorado State University, Department of Biochemistry and Molecular Biology, Fort Collins, CO, USA
| | - Karolin Luger
- Howard Hughes Medical Institute, University of Colorado Boulder, Department of Chemistry and Biochemistry, Boulder, CO, USA
| |
Collapse
|
31
|
Mattiroli F, Bhattacharyya S, Dyer PN, White AE, Sandman K, Burkhart BW, Byrne KR, Lee T, Ahn NG, Santangelo TJ, Reeve JN, Luger K. Structure of histone-based chromatin in Archaea. Science 2017; 357:609-612. [PMID: 28798133 DOI: 10.1126/science.aaj1849] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 05/16/2017] [Accepted: 07/05/2017] [Indexed: 12/16/2022]
Abstract
Small basic proteins present in most Archaea share a common ancestor with the eukaryotic core histones. We report the crystal structure of an archaeal histone-DNA complex. DNA wraps around an extended polymer, formed by archaeal histone homodimers, in a quasi-continuous superhelix with the same geometry as DNA in the eukaryotic nucleosome. Substitutions of a conserved glycine at the interface of adjacent protein layers destabilize archaeal chromatin, reduce growth rate, and impair transcription regulation, confirming the biological importance of the polymeric structure. Our data establish that the histone-based mechanism of DNA compaction predates the nucleosome, illuminating the origin of the nucleosome.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Sudipta Bhattacharyya
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Pamela N Dyer
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Alison E White
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Kathleen Sandman
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Brett W Burkhart
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Kyle R Byrne
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Thomas Lee
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Natalie G Ahn
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Thomas J Santangelo
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA.,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523, USA
| | - John N Reeve
- Department of Microbiology, Ohio State University, Columbus, OH 43210, USA
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, CO 80309, USA. .,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO 80523, USA.,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
32
|
The Cac2 subunit is essential for productive histone binding and nucleosome assembly in CAF-1. Sci Rep 2017; 7:46274. [PMID: 28418026 PMCID: PMC5394680 DOI: 10.1038/srep46274] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 11/08/2022] Open
Abstract
Nucleosome assembly following DNA replication controls epigenome maintenance and genome integrity. Chromatin assembly factor 1 (CAF-1) is the histone chaperone responsible for histone (H3-H4)2 deposition following DNA synthesis. Structural and functional details for this chaperone complex and its interaction with histones are slowly emerging. Using hydrogen-deuterium exchange coupled to mass spectrometry, combined with in vitro and in vivo mutagenesis studies, we identified the regions involved in the direct interaction between the yeast CAF-1 subunits, and mapped the CAF-1 domains responsible for H3-H4 binding. The large subunit, Cac1 organizes the assembly of CAF-1. Strikingly, H3-H4 binding is mediated by a composite interface, shaped by Cac1-bound Cac2 and the Cac1 acidic region. Cac2 is indispensable for productive histone binding, while deletion of Cac3 has only moderate effects on H3-H4 binding and nucleosome assembly. These results define direct structural roles for yeast CAF-1 subunits and uncover a previously unknown critical function of the middle subunit in CAF-1.
Collapse
|
33
|
Mattiroli F, Gu Y, Yadav T, Balsbaugh JL, Harris MR, Findlay ES, Liu Y, Radebaugh CA, Stargell LA, Ahn NG, Whitehouse I, Luger K. DNA-mediated association of two histone-bound complexes of yeast Chromatin Assembly Factor-1 (CAF-1) drives tetrasome assembly in the wake of DNA replication. eLife 2017; 6:e22799. [PMID: 28315523 PMCID: PMC5404915 DOI: 10.7554/elife.22799] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022] Open
Abstract
Nucleosome assembly in the wake of DNA replication is a key process that regulates cell identity and survival. Chromatin assembly factor 1 (CAF-1) is a H3-H4 histone chaperone that associates with the replisome and orchestrates chromatin assembly following DNA synthesis. Little is known about the mechanism and structure of this key complex. Here we investigate the CAF-1•H3-H4 binding mode and the mechanism of nucleosome assembly. We show that yeast CAF-1 binding to a H3-H4 dimer activates the Cac1 winged helix domain interaction with DNA. This drives the formation of a transient CAF-1•histone•DNA intermediate containing two CAF-1 complexes, each associated with one H3-H4 dimer. Here, the (H3-H4)2 tetramer is formed and deposited onto DNA. Our work elucidates the molecular mechanism for histone deposition by CAF-1, a reaction that has remained elusive for other histone chaperones, and it advances our understanding of how nucleosomes and their epigenetic information are maintained through DNA replication.
Collapse
Affiliation(s)
- Francesca Mattiroli
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Yajie Gu
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Tejas Yadav
- Weill Cornell Graduate School of Medical Sciences, New York, United States
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jeremy L Balsbaugh
- Department of Chemistry and Biochemistry, University of Colorado Boulder, Boulder, United States
| | - Michael R Harris
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Eileen S Findlay
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Yang Liu
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
| | - Catherine A Radebaugh
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
| | - Laurie A Stargell
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, United States
- Institute for Genome Architecture and Function, Colorado State University, Fort Collins, United States
| | - Natalie G Ahn
- Biofrontiers Institute, University of Colorado Boulder, Boulder, United States
| | - Iestyn Whitehouse
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Karolin Luger
- Department of Chemistry and Biochemistry, Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, United States
- Institute for Genome Architecture and Function, Colorado State University, Fort Collins, United States
| |
Collapse
|
34
|
Chassé MH, Muthurajan UM, Clark NJ, Kramer MA, Chakravarthy S, Irving T, Luger K. Biochemical and Biophysical Methods for Analysis of Poly(ADP-Ribose) Polymerase 1 and Its Interactions with Chromatin. Methods Mol Biol 2017; 1608:231-253. [PMID: 28695514 DOI: 10.1007/978-1-4939-6993-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Poly (ADP-Ribose) Polymerase I (PARP-1) is a first responder to DNA damage and participates in the regulation of gene expression. The interaction of PARP-1 with chromatin and DNA is complex and involves at least two different modes of interaction. In its enzymatically inactive state, PARP-1 binds native chromatin with similar affinity as it binds free DNA ends. Automodification of PARP-1 affects interaction with chromatin and DNA to different extents. Here we describe a series of biochemical and biophysical techniques to quantify and dissect the different binding modes of PARP-1 with its various substrates. The techniques listed here allow for high throughput and quantitative measurements of the interaction of different PARP-1 constructs (inactive and automodified) with chromatin and DNA damage models.
Collapse
Affiliation(s)
- Maggie H Chassé
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA.,Van Andel Research Institute, Grand Rapids, MI, USA
| | - Uma M Muthurajan
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA
| | | | | | - Srinivas Chakravarthy
- BioCAT, CSRRI and Department BCS, Illinois Institute of Technology, Chicago, IL, USA
| | - Thomas Irving
- BioCAT, CSRRI and Department BCS, Illinois Institute of Technology, Chicago, IL, USA
| | - Karolin Luger
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, 3415 Colorado Avenue, Boulder, CO, 80303, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA. .,Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
35
|
Wachnowsky C, Cowan JA. In Vitro Studies of Cellular Iron–Sulfur Cluster Biosynthesis, Trafficking, and Transport. Methods Enzymol 2017; 595:55-82. [DOI: 10.1016/bs.mie.2017.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|