1
|
Geng A, Roy R, Al-Hashimi HM. Conformational penalties: New insights into nucleic acid recognition. Curr Opin Struct Biol 2024; 89:102949. [PMID: 39522437 DOI: 10.1016/j.sbi.2024.102949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
The energy cost accompanying changes in the structures of nucleic acids when they bind partner molecules is a significant but underappreciated thermodynamic contribution to binding affinity and specificity. This review highlights recent advances in measuring conformational penalties and determining their contribution to the recognition, folding, and regulatory activities of nucleic acids. Notable progress includes methods for measuring and structurally characterizing lowly populated conformational states, obtaining ensemble information in high throughput, for large macromolecular assemblies, and in complex cellular environments. Additionally, quantitative and predictive thermodynamic models have been developed that relate conformational penalties to nucleic acid-protein association and cellular activity. These studies underscore the crucial role of conformational penalties in nucleic acid recognition.
Collapse
Affiliation(s)
- Ainan Geng
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rohit Roy
- Center for Genomic and Computational Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, NY 10032, USA.
| |
Collapse
|
2
|
Muzquiz R, Jamshidi C, Conroy DW, Jaroniec CP, Foster MP. Insights into Ligand-Mediated Activation of an Oligomeric Ring-Shaped Gene-Regulatory Protein from Solution- and Solid-State NMR. J Mol Biol 2024; 436:168792. [PMID: 39270971 PMCID: PMC11563856 DOI: 10.1016/j.jmb.2024.168792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/18/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues. Binding of the Trp ligands occurs cooperatively, such that successive binding events occur with higher apparent affinity but the structural basis for this cooperativity is poorly understood. We used solution methyl-TROSY NMR relaxation experiments focused on threonine and isoleucine sidechains, as well as magic angle spinning solid-state NMR 13C-13C and 15N-13C chemical shift correlation spectra on uniformly labeled samples recorded at 800 and 1200 MHz, to characterize the structure and dynamics of the protein. Methyl 13C relaxation dispersion experiments on ligand-free apo TRAP revealed concerted exchange dynamics on the µs-ms time scale, consistent with transient sampling of conformations that could allow ligand binding. Cross-correlated relaxation experiments revealed widespread disorder on fast timescales. Chemical shifts for methyl-bearing side chains in apo- and Trp-bound TRAP revealed subtle changes in the distribution of sampled sidechain rotameric states. These observations reveal a pathway and mechanism for induced conformational changes to generate homotropic Trp-Trp binding cooperativity.
Collapse
Affiliation(s)
- Rodrigo Muzquiz
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Cameron Jamshidi
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Daniel W Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Christopher P Jaroniec
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Mark P Foster
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, 484 W 12th Avenue, Columbus, Ohio 43210, USA.
| |
Collapse
|
3
|
Silvestrini ML, Solazzo R, Boral S, Cocco MJ, Closson JD, Masetti M, Gardner KH, Chong LT. Gating residues govern ligand unbinding kinetics from the buried cavity in HIF-2α PAS-B. Protein Sci 2024; 33:e5198. [PMID: 39467204 PMCID: PMC11516114 DOI: 10.1002/pro.5198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
While transcription factors have been generally perceived as "undruggable," an exception is the HIF-2 hypoxia-inducible transcription factor, which contains an internal cavity that is sufficiently large to accommodate a range of small-molecules, including the therapeutically used inhibitor belzutifan. Given the relatively long ligand residence times of these small molecules and the lack of any experimentally observed pathway connecting the cavity to solvent, there has been great interest in understanding how these drug ligands exit the buried receptor cavity. Here, we focus on the relevant PAS-B domain of hypoxia-inducible factor 2α (HIF-2α) and examine how one such small molecule (THS-017) exits from the buried cavity within this domain on the seconds-timescale using atomistic simulations and ZZ-exchange NMR. To enable the simulations, we applied the weighted ensemble path sampling strategy, which generates continuous pathways for a rare-event process [e.g., ligand (un)binding] with rigorous kinetics in orders of magnitude less computing time compared to conventional simulations. Results reveal the formation of an encounter complex intermediate and two distinct classes of pathways for ligand exit. Based on these pathways, we identified two pairs of conformational gating residues in the receptor: one for the major class (N288 and S304) and another for the minor class (L272 and M309). ZZ-exchange NMR validated the kinetic importance of N288 for ligand unbinding. Our results provide an ideal simulation dataset for rational manipulation of ligand unbinding kinetics.
Collapse
Affiliation(s)
| | - Riccardo Solazzo
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum‐Università di BolognaBolognaItaly
| | - Soumendu Boral
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
| | - Melanie J. Cocco
- Department of Pharmaceutical SciencesUniversity of California, IrvineIrvineCaliforniaUSA
- Department of Molecular Biology and BiochemistryUniversity of California, IrvineIrvineCaliforniaUSA
| | - Joseph D. Closson
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- PhD Program in BiochemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Matteo Masetti
- Department of Pharmacy and BiotechnologyAlma Mater Studiorum‐Università di BolognaBolognaItaly
| | - Kevin H. Gardner
- Structural Biology InitiativeCUNY Advanced Science Research CenterNew YorkNew YorkUSA
- Department of Chemistry and BiochemistryCity College of New YorkNew YorkNew YorkUSA
- PhD Programs in Biochemistry, Biology, and ChemistryCUNY Graduate CenterNew YorkNew YorkUSA
| | - Lillian T. Chong
- Department of ChemistryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
4
|
Adhada ST, Sarma SP. Slow Conformational Exchange between Partially Folded and Near-Native States of Ubiquitin: Evidence for a Multistate Folding Model. Biochemistry 2024; 63:2565-2579. [PMID: 39351677 DOI: 10.1021/acs.biochem.4c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The mechanism by which small proteins fold, i.e., via intermediates or via a two-state mechanism, is a subject of intense investigation. Intermediate states in the folding pathways of these proteins are sparsely populated due to transient lifetimes under normal conditions rendering them transparent to a majority of the biophysical methods employed for structural, thermodynamic, and kinetic characterization, which attributes are essential for understanding the cooperative folding/unfolding of such proteins. Dynamic NMR spectroscopy has enabled the characterization of folding intermediates of ubiquitin that exist in equilibrium under conditions of low pH and denaturants. At low pH, an unlocked state defined as N' is in fast exchange with an invisible state, U″, as observed by CEST NMR. Addition of urea to ubiquitin at pH 2 creates two new states F' and U', which are in slow exchange (kF'→U' = 0.14 and kU'→F' = 0.28 s-1) as indicated by longitudinal ZZ-magnetization exchange spectroscopy. High-resolution solution NMR structures of F' show it to be in an "unlocked" conformation with measurable changes in rotational diffusion, translational diffusion, and rotational correlational times. U' is characterized by the presence of just the highly conserved N-terminal β1-β2 hairpin. The folding of ubiquitin is cooperative and is nucleated by the formation of an N-terminal β-hairpin followed by significant hydrophobic collapse of the protein core resulting in the formation of bulk of the secondary structural elements stabilized by extensive tertiary contacts. U' and F' may thus be described as early and late folding intermediates in the ubiquitin folding pathway.
Collapse
Affiliation(s)
- Sri Teja Adhada
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Siddhartha P Sarma
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
5
|
Schanda P, Haran G. NMR and Single-Molecule FRET Insights into Fast Protein Motions and Their Relation to Function. Annu Rev Biophys 2024; 53:247-273. [PMID: 38346243 DOI: 10.1146/annurev-biophys-070323-022428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Proteins often undergo large-scale conformational transitions, in which secondary and tertiary structure elements (loops, helices, and domains) change their structures or their positions with respect to each other. Simple considerations suggest that such dynamics should be relatively fast, but the functional cycles of many proteins are often relatively slow. Sophisticated experimental methods are starting to tackle this dichotomy and shed light on the contribution of large-scale conformational dynamics to protein function. In this review, we focus on the contribution of single-molecule Förster resonance energy transfer and nuclear magnetic resonance (NMR) spectroscopies to the study of conformational dynamics. We briefly describe the state of the art in each of these techniques and then point out their similarities and differences, as well as the relative strengths and weaknesses of each. Several case studies, in which the connection between fast conformational dynamics and slower function has been demonstrated, are then introduced and discussed. These examples include both enzymes and large protein machines, some of which have been studied by both NMR and fluorescence spectroscopies.
Collapse
Affiliation(s)
- Paul Schanda
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria;
| | - Gilad Haran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel;
| |
Collapse
|
6
|
Khandave NP, Hansen DF, Vallurupalli P. Increasing the accuracy of exchange parameters reporting on slow dynamics by performing CEST experiments with 'high' B 1 fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 363:107699. [PMID: 38851059 DOI: 10.1016/j.jmr.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/11/2024] [Accepted: 05/11/2024] [Indexed: 06/10/2024]
Abstract
Over the last decade chemical exchange saturation transfer (CEST) NMR methods have emerged as powerful tools to characterize biomolecular conformational dynamics occurring between a visible major state and 'invisible' minor states. The ability of the CEST experiment to detect these minor states, and provide precise exchange parameters, hinges on using appropriate B1 field strengths during the saturation period. Typically, a pair of B1 fields with ω1 (=2πB1) values around the exchange rate kex are chosen. Here we show that the transverse relaxation rate of the minor state resonance (R2,B) also plays a crucial role in determining the B1 fields that lead to the most informative datasets. Using [Formula: see text] ≥ kex, to guide the choice of B1, instead of kex, leads to data wherefrom substantially more accurate exchange parameters can be derived. The need for higher B1 fields, guided by K, is demonstrated by studying the conformational exchange in two mutants of the 71 residue FF domain with kex ∼ 11 s-1 and ∼ 72 s-1, respectively. In both cases analysis of CEST datasets recorded using B1 field values guided by kex lead to imprecise exchange parameters, whereas using B1 values guided by K resulted in precise site-specific exchange parameters. The conclusions presented here will be valuable while using CEST to study slow processes at sites with large intrinsic relaxation rates, including carbonyl sites in small to medium sized proteins, amide 15N sites in large proteins and when the minor state dips are broadened due to exchange among the minor states.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - D Flemming Hansen
- Department of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom; The Francis Crick Institute, London, NW1 1BF, United Kingdom.
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India.
| |
Collapse
|
7
|
Muzquiz R, Jamshidi C, Conroy DW, Jaroniec CP, Foster MP. Insights into Ligand-Mediated Activation of an Oligomeric Ring-Shaped Gene-Regulatory Protein from Solution- and Solid-State NMR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593404. [PMID: 38798368 PMCID: PMC11118279 DOI: 10.1101/2024.05.10.593404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues. Binding of the Trp ligands occurs cooperatively, such that successive binding events occur with higher apparent affinity but the structural basis for this cooperativity is poorly understood. We used solution methyl-TROSY NMR relaxation experiments focused on threonine and isoleucine sidechains, as well as magic angle spinning solid-state NMR 13C-13C and 15N-13C chemical shift correlation spectra on uniformly labeled samples recorded at 800 and 1200 MHz, to characterize the structure and dynamics of the protein. Methyl 13C relaxation dispersion experiments on ligand-free apo TRAP revealed concerted exchange dynamics on the μs-ms time scale, consistent with transient sampling of conformations that could allow ligand binding. Cross-correlated relaxation experiments revealed widespread disorder on fast timescales. Chemical shifts for methyl-bearing side chains in apo- and Trp-bound TRAP revealed subtle changes in the distribution of sampled sidechain rotameric states. These observations reveal a pathway and mechanism for induced conformational changes to generate homotropic Trp-Trp binding cooperativity.
Collapse
Affiliation(s)
- Rodrigo Muzquiz
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| | - Cameron Jamshidi
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| | - Daniel W. Conroy
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| | - Christopher P. Jaroniec
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| | - Mark P. Foster
- Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12 Avenue, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18 Avenue, Columbus, OH 43210, USA
| |
Collapse
|
8
|
González-Delgado JM, Thompson PM, Andrałojć W, Gdaniec Z, Ghiladi RA, Franzen S. Comparison of the Backbone Dynamics of Dehaloperoxidase-Hemoglobin Isoenzymes. J Phys Chem B 2024; 128:3383-3397. [PMID: 38563384 DOI: 10.1021/acs.jpcb.3c07176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dehaloperoxidase (DHP) is a multifunctional hemeprotein with a functional switch generally regulated by the chemical class of the substrate. Its two isoforms, DHP-A and DHP-B, differ by only five amino acids and have an almost identical protein fold. However, the catalytic efficiency of DHP-B for oxidation by a peroxidase mechanism ranges from 2- to 6-fold greater than that of DHP-A depending on the conditions. X-ray crystallography has shown that many substrates and ligands have nearly identical binding in the two isoenzymes, suggesting that the difference in catalytic efficiency could be due to differences in the conformational dynamics. We compared the backbone dynamics of the DHP isoenzymes at pH 7 through heteronuclear relaxation dynamics at 11.75, 16.45, and 19.97 T in combination with four 300 ns MD simulations. While the overall dynamics of the isoenzymes are similar, there are specific local differences in functional regions of each protein. In DHP-A, Phe35 undergoes a slow chemical exchange between two conformational states likely coupled to a swinging motion of Tyr34. Moreover, Asn37 undergoes fast chemical exchange in DHP-A. Given that Phe35 and Asn37 are adjacent to Tyr34 and Tyr38, it is possible that their dynamics modulate the formation and migration of the active tyrosyl radicals in DHP-A at pH 7. Another significant difference is that both distal and proximal histidines have a 15-18% smaller S2 value in DHP-B, thus their greater flexibility could account for the higher catalytic activity. The distal histidine grants substrate access to the distal pocket. The greater flexibility of the proximal histidine could also accelerate H2O2 activation at the heme Fe by increased coupling of an amino acid charge relay to stabilize the ferryl Fe(IV) oxidation state in a Poulos-Kraut "push-pull"-type peroxidase mechanism.
Collapse
Affiliation(s)
| | - Peter M Thompson
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
- Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Stefan Franzen
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
9
|
Tiwari VP, De D, Thapliyal N, Kay LE, Vallurupalli P. Beyond slow two-state protein conformational exchange using CEST: applications to three-state protein interconversion on the millisecond timescale. JOURNAL OF BIOMOLECULAR NMR 2024; 78:39-60. [PMID: 38169015 DOI: 10.1007/s10858-023-00431-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
Although NMR spectroscopy is routinely used to study the conformational dynamics of biomolecules, robust analyses of the data are challenged in cases where exchange is more complex than two-state, such as when a 'visible' major conformer exchanges with two 'invisible' minor states on the millisecond timescale. It is becoming increasingly clear that chemical exchange saturation transfer (CEST) NMR experiments that were initially developed to study systems undergoing slow interconversion are also sensitive to intermediate-fast timescale biomolecular conformational exchange. Here we investigate the utility of the amide 15N CEST experiment to characterise protein three-state exchange occurring on the millisecond timescale by studying the interconversion between the folded (F) state of the FF domain from human HYPA/FBP11 (WT FF) and two of its folding intermediates I1 and I2. Although 15N CPMG experiments are consistent with the F state interconverting with a single minor state on the millisecond timescale, 15N CEST data clearly establish an exchange process between F and a pair of minor states. A unique three-state exchange model cannot be obtained by analysis of 15N CEST data recorded at a single temperature. However, including the relative sign of the difference in the chemical shifts of the two minor states based on a simple two-state analysis of CEST data recorded at multiple temperatures, results in a robust three-state model in which the F, I1 and I2 states interconvert with each other on the millisecond timescale ( k e x , F I 1 ~ 550 s-1, k e x , F I 2 ~ 1200 s-1, k e x , I 1 I 2 ~ 5000 s-1), with I1 and I2 sparsely populated at ~ 0.15% and ~ 0.35%, respectively, at 15 °C. A computationally demanding grid-search of exchange parameter space is not required to extract the best-fit exchange parameters from the CEST data. The utility of the CEST experiment, thus, extends well beyond studies of conformers in slow exchange on the NMR chemical shift timescale, to include systems with interconversion rates on the order of thousands/second.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Debajyoti De
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Nemika Thapliyal
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Lewis E Kay
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, Canada.
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada.
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada.
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
10
|
Varghese CN, Jaladeep A, Sekhar A. Measuring Hydroxyl Exchange Rates in Glycans Using a Synergistic Combination of Saturation Transfer and Relaxation Dispersion NMR. J Am Chem Soc 2024; 146:3825-3835. [PMID: 38293947 PMCID: PMC7615893 DOI: 10.1021/jacs.3c10982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Molecular recognition events mediated by glycans play pivotal roles in controlling the fate of diverse biological processes such as cellular communication and the immune response. The affinity of glycans for their target receptors is governed primarily by the hydrogen bonds formed by hydroxyl groups decorating the glycan surface. Hydroxyl exchange rate constants are therefore vital parameters that report on glycan structure and dynamics. Here we present a strategy for characterizing hydroxyl hydrogen/deuterium (H/D) exchange in glycans that employs a synergistic combination of 13C chemical exchange saturation transfer (CEST) and Carr-Purcell-Meiboom-Gill relaxation dispersion (CPMG) NMR methods. We show that the combination of CEST and CPMG experiments facilitates the sensitive detection of the small (∼0.1 ppm) two-bond deuterium isotope shift on a 13C nucleus when the attached hydroxyl group fluctuates between protonated and deuterated states. This shift is leveraged for measuring site-specific kinetic H/D exchange rate constants as well as thermodynamic free energies of isotope fractionation. The CEST and CPMG modules are integrated with a selective J-cross-polarization scheme that provides the flexibility for rapid characterization of H/D exchange at a specific hydroxyl site. Moreover, our approach enables the precise isothermal measurement of hydroxyl exchange rate constants without the need for cumbersome isotope labeling. The H/D exchange rate constants of three different glycans assessed using this method highlight its potential for detecting transient intra- and intermolecular hydrogen bonds. In addition, the trends in H/D exchange rate constants establish site-specific steric accessibility as a key determinant of solvent exchange dynamics in glycans.
Collapse
Affiliation(s)
- Claris Niya Varghese
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Ahallya Jaladeep
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India
| |
Collapse
|
11
|
Khandave NP, Sekhar A, Vallurupalli P. Studying micro to millisecond protein dynamics using simple amide 15N CEST experiments supplemented with major-state R 2 and visible peak-position constraints. JOURNAL OF BIOMOLECULAR NMR 2023; 77:165-181. [PMID: 37300639 PMCID: PMC7615914 DOI: 10.1007/s10858-023-00419-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/10/2023] [Indexed: 06/12/2023]
Abstract
Over the last decade amide 15N CEST experiments have emerged as a popular tool to study protein dynamics that involves exchange between a 'visible' major state and sparsely populated 'invisible' minor states. Although initially introduced to study exchange between states that are in slow exchange with each other (typical exchange rates of, 10 to 400 s-1), they are now used to study interconversion between states on the intermediate to fast exchange timescale while still using low to moderate (5 to 350 Hz) 'saturating' B1 fields. The 15N CEST experiment is very sensitive to exchange as the exchange delay TEX can be quite long (~0.5 s) allowing for a large number of exchange events to occur making it a very powerful tool to detect minor sates populated ([Formula: see text]) to as low as 1%. When systems are in fast exchange and the 15N CEST data has to be described using a model that contains exchange, the exchange parameters are often poorly defined because the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus exchange rate ([Formula: see text]) plots can be quite flat with shallow or no minima and the analysis of such 15N CEST data can lead to wrong estimates of the exchange parameters due to the presence of 'spurious' minima. Here we show that the inclusion of experimentally derived constraints on the intrinsic transverse relaxation rates and the inclusion of visible state peak-positions during the analysis of amide 15N CEST data acquired with moderate B1 values (~50 to ~350 Hz) results in convincing minima in the [Formula: see text] versus [Formula: see text] and the [Formula: see text] versus [Formula: see text] plots even when exchange occurs on the 100 μs timescale. The utility of this strategy is demonstrated on the fast-folding Bacillus stearothermophilus peripheral subunit binding domain that folds with a rate constant ~104 s-1. Here the analysis of 15N CEST data alone results in [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots that contain shallow minima, but the inclusion of visible-state peak positions and restraints on the intrinsic transverse relaxation rates of both states during the analysis of the 15N CEST data results in pronounced minima in the [Formula: see text] versus [Formula: see text] and [Formula: see text] versus [Formula: see text] plots and precise exchange parameters even in the fast exchange regime ([Formula: see text]~5). Using this strategy we find that the folding rate constant of PSBD is invariant (~10,500 s-1) from 33.2 to 42.9 °C while the unfolding rates (~70 to ~500 s-1) and unfolded state populations (~0.7 to ~4.3%) increase with temperature. The results presented here show that protein dynamics occurring on the 10 to 104 s-1 timescale can be studied using amide 15N CEST experiments.
Collapse
Affiliation(s)
- Nihar Pradeep Khandave
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India
| | - Ashok Sekhar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, 560012, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, 500046, India.
| |
Collapse
|
12
|
Lee E, Redzic JS, Zohar Eisenmesser E. Relaxation and single site multiple mutations to identify and control allosteric networks. Methods 2023; 216:51-57. [PMID: 37302521 PMCID: PMC11066977 DOI: 10.1016/j.ymeth.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/13/2023] Open
Abstract
Advances in Nuclear Magnetic Resonance (NMR) spectroscopy have allowed for the identification and characterization of movements in enzymes over the last 20 years that has also revealed the complexities of allosteric coupling. For example, many of the inherent movements of enzymes, and proteins in general, have been shown to be highly localized but nonetheless still coupled over long distances. Such partial couplings provide challenges to both identifying allosteric networks of dynamic communication and determining their roles in catalytic function. We have developed an approach to help identify and engineer enzyme function, called Relaxation And Single Site Multiple Mutations (RASSMM). This approach is a powerful extension of mutagenesis and NMR that is based on the observation that multiple mutations to a single site distal to the active site allosterically induces different effects to networks. Such an approach generates a panel of mutations that can also be subjected to functional studies in order to match catalytic effects with changes to coupled networks. In this review, the RASSMM approach is briefly outlined together with two applications that include cyclophilin-A and Biliverdin Reductase B.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
13
|
Gu S, Szymanski ES, Rangadurai AK, Shi H, Liu B, Manghrani A, Al-Hashimi HM. Dynamic basis for dA•dGTP and dA•d8OGTP misincorporation via Hoogsteen base pairs. Nat Chem Biol 2023; 19:900-910. [PMID: 37095237 DOI: 10.1038/s41589-023-01306-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/08/2023] [Indexed: 04/26/2023]
Abstract
Replicative errors contribute to the genetic diversity needed for evolution but in high frequency can lead to genomic instability. Here, we show that DNA dynamics determine the frequency of misincorporating the A•G mismatch, and altered dynamics explain the high frequency of 8-oxoguanine (8OG) A•8OG misincorporation. NMR measurements revealed that Aanti•Ganti (population (pop.) of >91%) transiently forms sparsely populated and short-lived Aanti+•Gsyn (pop. of ~2% and kex = kforward + kreverse of ~137 s-1) and Asyn•Ganti (pop. of ~6% and kex of ~2,200 s-1) Hoogsteen conformations. 8OG redistributed the ensemble, rendering Aanti•8OGsyn the dominant state. A kinetic model in which Aanti+•Gsyn is misincorporated quantitatively predicted the dA•dGTP misincorporation kinetics by human polymerase β, the pH dependence of misincorporation and the impact of the 8OG lesion. Thus, 8OG increases replicative errors relative to G because oxidation of guanine redistributes the ensemble in favor of the mutagenic Aanti•8OGsyn Hoogsteen state, which exists transiently and in low abundance in the A•G mismatch.
Collapse
Affiliation(s)
- Stephanie Gu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Eric S Szymanski
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Base4, Durham, NC, USA
| | - Atul K Rangadurai
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Hospital for Sick Children, Toronto, Ontario, Canada
| | - Honglue Shi
- Department of Chemistry, Duke University, Durham, NC, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
| | - Bei Liu
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | - Akanksha Manghrani
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - Hashim M Al-Hashimi
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
14
|
Shen Y, Bax A. Synergism between x-ray crystallography and NMR residual dipolar couplings in characterizing protein dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:040901. [PMID: 37448874 PMCID: PMC10338066 DOI: 10.1063/4.0000192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023]
Abstract
The important role of structural dynamics in protein function is widely recognized. Thermal or B-factors and their anisotropy, seen in x-ray analysis of protein structures, report on the presence of atomic coordinate heterogeneity that can be attributed to motion. However, their quantitative evaluation in terms of protein dynamics by x-ray ensemble refinement remains challenging. NMR spectroscopy provides quantitative information on the amplitudes and time scales of motional processes. Unfortunately, with a few exceptions, the NMR data do not provide direct insights into the atomic details of dynamic trajectories. Residual dipolar couplings, measured by solution NMR, are very precise parameters reporting on the time-averaged bond-vector orientations and may offer the opportunity to derive correctly weighted dynamic ensembles of structures for cases where multiple high-resolution x-ray structures are available. Applications to the SARS-CoV-2 main protease, Mpro, and ubiquitin highlight this complementarity of NMR and crystallography for quantitative assessment of internal motions.
Collapse
Affiliation(s)
- Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
15
|
Overbeck JH, Vögele J, Nussbaumer F, Duchardt‐Ferner E, Kreutz C, Wöhnert J, Sprangers R. Multi-Site Conformational Exchange in the Synthetic Neomycin-Sensing Riboswitch Studied by 19 F NMR. Angew Chem Int Ed Engl 2023; 62:e202218064. [PMID: 36970768 PMCID: PMC10952710 DOI: 10.1002/anie.202218064] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 03/28/2023]
Abstract
The synthetic neomycin-sensing riboswitch interacts with its cognate ligand neomycin as well as with the related antibiotics ribostamycin and paromomycin. Binding of these aminoglycosides induces a very similar ground state structure in the RNA, however, only neomycin can efficiently repress translation initiation. The molecular origin of these differences has been traced back to differences in the dynamics of the ligand:riboswitch complexes. Here, we combine five complementary fluorine based NMR methods to accurately quantify seconds to microseconds dynamics in the three riboswitch complexes. Our data reveal complex exchange processes with up to four structurally different states. We interpret our findings in a model that shows an interplay between different chemical groups in the antibiotics and specific bases in the riboswitch. More generally, our data underscore the potential of 19 F NMR methods to characterize complex exchange processes with multiple excited states.
Collapse
Affiliation(s)
- Jan H. Overbeck
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgGermany
| | - Jennifer Vögele
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Felix Nussbaumer
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Elke Duchardt‐Ferner
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Christoph Kreutz
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI)University of InnsbruckInnsbruckAustria
| | - Jens Wöhnert
- Institute for Molecular BiosciencesGoethe-University FrankfurtMax-von-Laue-Str. 960438Frankfurt/M.Germany
| | - Remco Sprangers
- Department of Biophysics IRegensburg Center for BiochemistryUniversity of RegensburgUniversitätsstrasse 3193051RegensburgGermany
| |
Collapse
|
16
|
Olivieri C, Walker C, Manu V, Porcelli F, Taylor SS, Bernlohr DA, Veglia G. An NMR portrait of functional and dysfunctional allosteric cooperativity in cAMP-dependent protein kinase A. FEBS Lett 2023; 597:1055-1072. [PMID: 36892429 PMCID: PMC11334100 DOI: 10.1002/1873-3468.14610] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
The cAMP-dependent protein kinase A (PKA) is the archetypical eukaryotic kinase. The catalytic subunit (PKA-C) structure is highly conserved among the AGC-kinase family. PKA-C is a bilobal enzyme with a dynamic N-lobe, harbouring the Adenosine-5'-triphosphate (ATP) binding site and a more rigid helical C-lobe. The substrate-binding groove resides at the interface of the two lobes. A distinct feature of PKA-C is the positive binding cooperativity between nucleotide and substrate. Several PKA-C mutations lead to the development of adenocarcinomas, myxomas, and other rare forms of liver tumours. Nuclear magnetic resonance (NMR) spectroscopy shows that these mutations disrupt the allosteric communication between the two lobes, causing a drastic decrease in binding cooperativity. The loss of cooperativity correlates with changes in substrate fidelity and reduced kinase affinity for the endogenous protein kinase inhibitor (PKI). The similarity between PKI and the inhibitory sequence of the kinase regulatory subunits suggests that the overall mechanism of regulation of the kinase may be disrupted. We surmise that a reduced or obliterated cooperativity may constitute a common trait for both orthosteric and allosteric mutations of PKA-C that may lead to dysregulation and disease.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - V.S. Manu
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92093
- Department of Pharmacology, University of California at San Diego, La Jolla, CA 92093
| | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
17
|
Gavrilov Y, Prestel A, Lindorff-Larsen K, Teilum K. Slow conformational changes in the rigid and highly stable chymotrypsin inhibitor 2. Protein Sci 2023; 32:e4604. [PMID: 36807681 PMCID: PMC10031225 DOI: 10.1002/pro.4604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/23/2023]
Abstract
Slow conformational changes are often directly linked to protein function. It is however less clear how such processes may perturb the overall folding stability of a protein. We previously found that the stabilizing double mutant L49I/I57V in the small protein chymotrypsin inhibitor 2 from barley led to distributed increased nanosecond and faster dynamics. Here we asked what effects the L49I and I57V substitutions, either individually or together, have on the slow conformational dynamics of CI2. We used 15 N CPMG spin relaxation dispersion experiments to measure the kinetics, thermodynamics and structural changes associated with slow conformational change in CI2. These changes result in an excited state that is populated to 4.3% at 1 °C. As the temperature is increased the population of the excited state decreases. Structural changes in the excited state are associated with residues that interact with water molecules that have well defined positions and are found at these positions in all crystal structures of CI2. The substitutions in CI2 have only little effect on the structure of the excited state whereas the stability of the excited state to some extent follows the stability of the main state. The minor state is thus most populated for the most stable CI2 variant and least populated for the least stable variant. We hypothesize that the interactions between the substituted residues and the well-ordered water molecules links subtle structural changes around the substituted residues to the region in the protein that experience slow conformational changes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yulian Gavrilov
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
- Present address: Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, Lund, Sweden
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
18
|
Koss H, Crawley T, Palmer AG. Site-based description of R 1ρ relaxation in local reference frames. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 347:107366. [PMID: 36641894 PMCID: PMC9976581 DOI: 10.1016/j.jmr.2023.107366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Nuclear magnetic spin relaxation in the presence of an applied radiofrequency field depends critically on chemical exchange processes that transfer nuclear spins between chemical or conformational environments with distinct resonance frequencies. Characterization of chemical exchange processes in R1ρ relaxation dispersion, CEST, and DEST experiments provides powerful insights into chemical and conformational kinetics of biological macromolecules. The present work reformulates expressions for magnetization evolution and the R1ρ relaxation rate constant by focussing on the orientations of the tilted rotating frames of reference for magnetization components in different sites, by treating the spin-locking field strength as a perturbation to free-precession evolution, and by applying the Homotopy Analysis and Laplace transform methods to approximate solutions to the Bloch-McConnell equations. The results provide an expression for R1ρ that is invariant to the topology of the kinetic scheme, an approximate equation for evolution of spin-locked z-magnetization, and an approach for effective simplification of chemical exchange topologies for 2- and N-site chemical exchange processes. The theoretical approach also provides an accurate approximation for relaxation during a constant-amplitude radiofrequency field in the absence of exchange.
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States.
| | - Timothy Crawley
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States.
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States.
| |
Collapse
|
19
|
Chiliveri SC, Louis JM, Best RB, Bax A. Real-time Exchange of the Lipid-bound Intermediate and Post-fusion States of the HIV-1 gp41 Ectodomain. J Mol Biol 2022; 434:167683. [PMID: 35700771 PMCID: PMC9378563 DOI: 10.1016/j.jmb.2022.167683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/03/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
The envelope glycoprotein gp41 of the HIV-1 virus mediates its entry into the host cell. During this process, gp41 undergoes large conformational changes and the energy released in the remodeling events is utilized to overcome the barrier associated with fusing the viral and host membranes. Although the structural intermediates of this fusion process are attractive targets for drug development, no detailed high-resolution structural information or quantitative thermodynamic characterization are available. By measuring the dynamic equilibrium between the lipid-bound intermediate and the post-fusion six-helical bundle (6HB) states of the gp41 ectodomain in the presence of bilayer membrane mimetics, we derived both the reaction kinetics and energies associated with these two states by solution NMR spectroscopy. At equilibrium, an exchange time constant of about 12 seconds at 38 °C is observed, and the post-fusion conformation is energetically more stable than the lipid-bound state by 3.4 kcal mol-1. The temperature dependence of the kinetics indicates that the folding occurs through a high-energy transition state which may resemble a 5HB structure. The energetics and kinetics of gp41 folding in the context of membrane bilayers provide a molecular basis for an improved understanding of viral membrane fusion.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA. https://twitter.com/SaiChiliveri
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
20
|
Rahban M, Zolghadri S, Salehi N, Ahmad F, Haertlé T, Rezaei-Ghaleh N, Sawyer L, Saboury AA. Thermal stability enhancement: Fundamental concepts of protein engineering strategies to manipulate the flexible structure. Int J Biol Macromol 2022; 214:642-654. [DOI: 10.1016/j.ijbiomac.2022.06.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 01/28/2023]
|
21
|
Mishra SH, Kancherla AK, Marincin KA, Bouvignies G, Nerli S, Sgourakis N, Dowling DP, Frueh DP. Global protein dynamics as communication sensors in peptide synthetase domains. SCIENCE ADVANCES 2022; 8:eabn6549. [PMID: 35857508 PMCID: PMC9286511 DOI: 10.1126/sciadv.abn6549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/28/2022] [Indexed: 05/04/2023]
Abstract
Biological activity is governed by the timely redistribution of molecular interactions, and static structural snapshots often appear insufficient to provide the molecular determinants that choreograph communication. This conundrum applies to multidomain enzymatic systems called nonribosomal peptide synthetases (NRPSs), which assemble simple substrates into complex metabolites, where a dynamic domain organization challenges rational design to produce new pharmaceuticals. Using a nuclear magnetic resonance (NMR) atomic-level readout of biochemical transformations, we demonstrate that global structural fluctuations help promote substrate-dependent communication and allosteric responses, and impeding these global dynamics by a point-site mutation hampers allostery and molecular recognition. Our results establish global structural dynamics as sensors of molecular events that can remodel domain interactions, and they provide new perspectives on mechanisms of allostery, protein communication, and NRPS synthesis.
Collapse
Affiliation(s)
- Subrata H. Mishra
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Aswani K. Kancherla
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth A. Marincin
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules (LBM), Département de Chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Santrupti Nerli
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Nikolaos Sgourakis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel P. Dowling
- Department of Chemistry, University of Massachusetts Boston, Boston, MA, USA
| | - Dominique P. Frueh
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Daffern N, Nordyke C, Zhang M, Palmer AG, Straub JE. Dynamical Models of Chemical Exchange in Nuclear Magnetic Resonance Spectroscopy. BIOPHYSICIST (ROCKVILLE, MD.) 2022; 3:13-34. [PMID: 36687382 PMCID: PMC9850547 DOI: 10.35459/tbp.2021.000201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemical exchange line-broadening is an important phenomenon in nuclear magnetic resonance (NMR) spectroscopy, in which a nuclear spin experiences more than one magnetic environment as a result of chemical or conformational changes of a molecule. The dynamic process of chemical exchange strongly affects the sensitivity and resolution of NMR experiments, and increasingly provides a powerful probe of the inter-conversion between chemical and conformational states of proteins, nucleic acids, and other biological macromolecules. A simple and often used theoretical description of chemical exchange in NMR spectroscopy is based on an idealized two-state jump model (the random-phase or telegraph signal). However, chemical exchange can also be represented as a barrier-crossing event that can be modeled using chemical reaction rate theory. The time scale of crossing is determined by the barrier height, the temperature, and the dissipation modeled as collisional or frictional damping. This tutorial explores the connection between the NMR theory of chemical exchange line-broadening and strong-collision models for chemical kinetics in statistical mechanics. Theoretical modeling and numerical simulation are used to map the rate of barrier-crossing dynamics of a particle on a potential energy surface to the chemical exchange relaxation rate constant. By developing explicit models for the exchange dynamics, the tutorial aims to elucidate the underlying dynamical processes that give rise to the rich phenomenology of chemical exchange observed in NMR spectroscopy. Software for generating and analyzing the numerical simulations is provided in the form of Python and Fortran source codes.
Collapse
Affiliation(s)
- Nicolas Daffern
- Department of Molecular Biosciences, Northwestern University, 4162 Cook Hall, Evanston, IL 60208
| | - Christopher Nordyke
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824
| | - Meiling Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, 236 Nieuwland Science Hall, Notre Dame, IN 46556
| | - Arthur G. Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032
| | - John E. Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215
| |
Collapse
|
23
|
Dayie TK, Olenginski LT, Taiwo KM. Isotope Labels Combined with Solution NMR Spectroscopy Make Visible the Invisible Conformations of Small-to-Large RNAs. Chem Rev 2022; 122:9357-9394. [PMID: 35442658 PMCID: PMC9136934 DOI: 10.1021/acs.chemrev.1c00845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 02/07/2023]
Abstract
RNA is central to the proper function of cellular processes important for life on earth and implicated in various medical dysfunctions. Yet, RNA structural biology lags significantly behind that of proteins, limiting mechanistic understanding of RNA chemical biology. Fortunately, solution NMR spectroscopy can probe the structural dynamics of RNA in solution at atomic resolution, opening the door to their functional understanding. However, NMR analysis of RNA, with only four unique ribonucleotide building blocks, suffers from spectral crowding and broad linewidths, especially as RNAs grow in size. One effective strategy to overcome these challenges is to introduce NMR-active stable isotopes into RNA. However, traditional uniform labeling methods introduce scalar and dipolar couplings that complicate the implementation and analysis of NMR measurements. This challenge can be circumvented with selective isotope labeling. In this review, we outline the development of labeling technologies and their application to study biologically relevant RNAs and their complexes ranging in size from 5 to 300 kDa by NMR spectroscopy.
Collapse
Affiliation(s)
- Theodore K. Dayie
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Lukasz T. Olenginski
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kehinde M. Taiwo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Olenginski LT, Kasprzak WK, Bergonzo C, Shapiro BA, Dayie TK. Conformational Dynamics of the Hepatitis B Virus Pre-genomic RNA on Multiple Time Scales: Implications for Viral Replication. J Mol Biol 2022; 434:167633. [PMID: 35595167 DOI: 10.1016/j.jmb.2022.167633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/28/2022] [Accepted: 05/07/2022] [Indexed: 12/30/2022]
Abstract
Human hepatitis B virus (HBV) replication is initiated by the binding of the viral polymerase (P) to epsilon (ε), an ≈85-nucleotide (nt) cis-acting regulatory stem-loop RNA located at the 5'-end of the pre-genomic RNA (pgRNA). This interaction triggers P and pgRNA packaging and protein-primed reverse transcription and is therefore an attractive therapeutic target. Our recent nuclear magnetic resonance (NMR) structure of ε provides a useful starting point toward a detailed understanding of HBV replication, and hints at the functional importance of ε dynamics. Here, we present a detailed description of ε motions on the ps to ns and μs to ms time scales by NMR spin relaxation and relaxation dispersion, respectively. We also carried out molecular dynamics simulations to provide additional insight into ε conformational dynamics. These data outline a series of complex motions on multiple time scales within ε. Moreover, these motions occur in mostly conserved nucleotides from structural regions (i.e., priming loop, pseudo-triloop, and U43 bulge) that biochemical and mutational studies have shown to be essential for P binding, P-pgRNA packaging, protein-priming, and DNA synthesis. Taken together, our work implicates RNA dynamics as an integral feature that governs HBV replication.
Collapse
Affiliation(s)
- Lukasz T Olenginski
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Wojciech K Kasprzak
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Christina Bergonzo
- Institute for Bioscience and Biotechnology Research, National Institute of Standards and Technology and University of Maryland, Rockville, MD 20850, USA
| | - Bruce A Shapiro
- RNA Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Theodore K Dayie
- Center for Biomolecular Structure and Organization, Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
25
|
Abyzov A, Blackledge M, Zweckstetter M. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry. Chem Rev 2022; 122:6719-6748. [PMID: 35179885 PMCID: PMC8949871 DOI: 10.1021/acs.chemrev.1c00774] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Motions in biomolecules
are critical for biochemical reactions.
In cells, many biochemical reactions are executed inside of biomolecular
condensates formed by ultradynamic intrinsically disordered proteins.
A deep understanding of the conformational dynamics of intrinsically
disordered proteins in biomolecular condensates is therefore of utmost
importance but is complicated by diverse obstacles. Here we review
emerging data on the motions of intrinsically disordered proteins
inside of liquidlike condensates. We discuss how liquid–liquid
phase separation modulates internal motions across a wide range of
time and length scales. We further highlight the importance of intermolecular
interactions that not only drive liquid–liquid phase separation
but appear as key determinants for changes in biomolecular motions
and the aging of condensates in human diseases. The review provides
a framework for future studies to reveal the conformational dynamics
of intrinsically disordered proteins in the regulation of biomolecular
condensate chemistry.
Collapse
Affiliation(s)
- Anton Abyzov
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Martin Blackledge
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), 38044 Grenoble, France.,CEA, DSV, IBS, 38044 Grenoble, France.,CNRS, IBS, 38044 Grenoble, France
| | - Markus Zweckstetter
- Translational Structural Biology Group, German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany.,Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| |
Collapse
|
26
|
Dreydoppel M, Lichtenecker RJ, Akke M, Weininger U. 1H R 1ρ relaxation dispersion experiments in aromatic side chains. JOURNAL OF BIOMOLECULAR NMR 2021; 75:383-392. [PMID: 34510298 PMCID: PMC8642340 DOI: 10.1007/s10858-021-00382-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Aromatic side chains are attractive probes of protein dynamic, since they are often key residues in enzyme active sites and protein binding sites. Dynamic processes on microsecond to millisecond timescales can be studied by relaxation dispersion experiments that attenuate conformational exchange contributions to the transverse relaxation rate by varying the refocusing frequency of applied radio-frequency fields implemented as either CPMG pulse trains or continuous spin-lock periods. Here we present an aromatic 1H R1ρ relaxation dispersion experiment enabling studies of two to three times faster exchange processes than achievable by existing experiments for aromatic side chains. We show that site-specific isotope labeling schemes generating isolated 1H-13C spin pairs with vicinal 2H-12C moieties are necessary to avoid anomalous relaxation dispersion profiles caused by Hartmann-Hahn matching due to the 3JHH couplings and limited chemical shift differences among 1H spins in phenylalanine, tyrosine and the six-ring moiety of tryptophan. This labeling pattern is sufficient in that remote protons do not cause additional complications. We validated the approach by measuring ring-flip kinetics in the small protein GB1. The determined rate constants, kflip, agree well with previous results from 13C R1ρ relaxation dispersion experiments, and yield 1H chemical shift differences between the two sides of the ring in good agreement with values measured under slow-exchange conditions. The aromatic1H R1ρ relaxation dispersion experiment in combination with the site-selective 1H-13C/2H-12C labeling scheme enable measurement of exchange rates up to kex = 2kflip = 80,000 s-1, and serve as a useful complement to previously developed 13C-based methods.
Collapse
Affiliation(s)
- Matthias Dreydoppel
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | | | - Mikael Akke
- Division of Biophysical Chemistry, Center for Molecular Protein Science, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Ulrich Weininger
- Institute of Physics, Biophysics, Martin-Luther-University Halle-Wittenberg, 06120, Halle (Saale), Germany.
| |
Collapse
|
27
|
The A39G FF domain folds on a volcano-shaped free energy surface via separate pathways. Proc Natl Acad Sci U S A 2021; 118:2115113118. [PMID: 34764225 DOI: 10.1073/pnas.2115113118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2021] [Indexed: 11/18/2022] Open
Abstract
Conformational dynamics play critical roles in protein folding, misfolding, function, misfunction, and aggregation. While detecting and studying the different conformational states populated by protein molecules on their free energy surfaces (FESs) remain a challenge, NMR spectroscopy has emerged as an invaluable experimental tool to explore the FES of a protein, as conformational dynamics can be probed at atomic resolution over a wide range of timescales. Here, we use chemical exchange saturation transfer (CEST) to detect "invisible" minor states on the energy landscape of the A39G mutant FF domain that exhibited "two-state" folding kinetics in traditional experiments. Although CEST has mostly been limited to studies of processes with rates between ∼5 to 300 s-1 involving sparse states with populations as low as ∼1%, we show that the line broadening that is often associated with minor state dips in CEST profiles can be exploited to inform on additional conformers, with lifetimes an order of magnitude shorter and populations close to 10-fold smaller than what typically is characterized. Our analysis of CEST profiles that exploits the minor state linewidths of the 71-residue A39G FF domain establishes a folding mechanism that can be described in terms of a four-state exchange process between interconverting states spanning over two orders of magnitude in timescale from ∼100 to ∼15,000 μs. A similar folding scheme is established for the wild-type domain as well. The study shows that the folding of this small domain proceeds through a pair of sparse, partially structured intermediates via two discrete pathways on a volcano-shaped FES.
Collapse
|
28
|
Chiliveri SC, Robertson AJ, Shen Y, Torchia DA, Bax A. Advances in NMR Spectroscopy of Weakly Aligned Biomolecular Systems. Chem Rev 2021; 122:9307-9330. [PMID: 34766756 DOI: 10.1021/acs.chemrev.1c00730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The measurement and application of residual dipolar couplings (RDCs) in solution NMR studies of biological macromolecules has become well established over the past quarter of a century. Numerous methods for generating the requisite anisotropic orientational molecular distribution have been demonstrated, each with its specific strengths and weaknesses. In parallel, an enormous number of pulse schemes have been introduced to measure the many different types of RDCs, ranging from the most widely measured backbone amide 15N-1H RDCs, to 1H-1H RDCs and couplings between low-γ nuclei. Applications of RDCs range from structure validation and refinement to the determination of relative domain orientations, the measurement of backbone and domain motions, and de novo structure determination. Nevertheless, it appears that the power of the RDC methodology remains underutilized. This review aims to highlight the practical aspects of sample preparation and RDC measurement while describing some of the most straightforward applications that take advantage of the exceptionally precise information contained in such data. Some emphasis will be placed on more recent developments that enable the accurate measurement of RDCs in larger systems, which is key to the ongoing shift in focus of biological NMR spectroscopy from structure determination toward gaining improved understanding of how molecular flexibility drives protein function.
Collapse
Affiliation(s)
- Sai Chaitanya Chiliveri
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Angus J Robertson
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dennis A Torchia
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
29
|
Waudby C, Christodoulou J. Analysis of conformational exchange processes using methyl-TROSY-based Hahn echo measurements of quadruple-quantum relaxation. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:777-793. [PMID: 37905227 PMCID: PMC10583286 DOI: 10.5194/mr-2-777-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/02/2023]
Abstract
Transverse nuclear spin relaxation is a sensitive probe of chemical exchange on timescales on the order of microseconds to milliseconds. Here we present an experiment for the simultaneous measurement of the relaxation rates of two quadruple-quantum transitions in 13 CH3 -labelled methyl groups. These coherences are protected against relaxation by intra-methyl dipolar interactions and so have unexpectedly long lifetimes within perdeuterated biomacromolecules. However, these coherences also have an order of magnitude higher sensitivity to chemical exchange broadening than lower order coherences and therefore provide ideal probes of dynamic processes. We show that analysis of the static magnetic field dependence of zero-, double- and quadruple-quantum Hahn echo relaxation rates provides a robust indication of chemical exchange and can determine the signed relative magnitudes of proton and carbon chemical shift differences between ground and excited states. We also demonstrate that this analysis can be combined with established Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion measurements, providing improved precision in parameter estimates, particularly in the determination of 1 H chemical shift differences.
Collapse
Affiliation(s)
- Christopher A. Waudby
- Institute of Structural and Molecular Biology, University College
London, London, WC1E 6BT, UK
| | - John Christodoulou
- Institute of Structural and Molecular Biology, University College
London, London, WC1E 6BT, UK
- Institute of Structural and Molecular Biology, Birkbeck College, University of London, London, WC1E 7HX, UK
| |
Collapse
|
30
|
Gong Z, Tootoonchi MH, Fraker CA, Walls JD. Reverse-dialysis can be misleading for drug release studies in emulsions as demonstrated by NMR dilution experiments. Int J Pharm 2021; 608:121093. [PMID: 34534630 PMCID: PMC8511114 DOI: 10.1016/j.ijpharm.2021.121093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/04/2021] [Accepted: 09/12/2021] [Indexed: 11/21/2022]
Abstract
Emulsions are an important class of carriers for the delivery of hydrophobic drugs. While knowledge of drug release kinetics is critical to optimizing drug carrying emulsions, there remain many open questions about the validity of standard characterization methods such as the commonly used reverse-dialysis. In this paper, the kinetic parameters of isoflurane release in perfluorotributylamine emulsions determined from both reverse-dialysis and nuclear magnetic resonance (NMR) dilution experiments are compared. The NMR-determined kinetic parameters of isoflurane release were found to be approximately seven orders of magnitude larger than those determined from conventional reverse-dialysis and were also shown to be consistent with prior in vivo observations of the anesthetization of rats.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Department of Chemistry, University of Miami, Coral Gables FL 33146, United States
| | | | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami FL 33136, United States
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables FL 33146, United States.
| |
Collapse
|
31
|
Bengs C, Dagys L, Moustafa GAI, Whipham JW, Sabba M, Kiryutin AS, Ivanov KL, Levitt MH. Nuclear singlet relaxation by chemical exchange. J Chem Phys 2021; 155:124311. [PMID: 34598559 DOI: 10.1063/5.0066182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The population imbalance between nuclear singlet states and triplet states of strongly coupled spin-1/2 pairs, also known as nuclear singlet order, is well protected against several common relaxation mechanisms. We study the nuclear singlet relaxation of 13C pairs in aqueous solutions of 1,2-13C2 squarate over a range of pH values. The 13C singlet order is accessed by introducing 18O nuclei in order to break the chemical equivalence. The squarate dianion is in chemical equilibrium with hydrogen-squarate (SqH-) and squaric acid (SqH2) characterized by the dissociation constants pK1 = 1.5 and pK2 = 3.4. Surprisingly, we observe a striking increase in the singlet decay time constants TS when the pH of the solution exceeds ∼10, which is far above the acid-base equilibrium points. We derive general rate expressions for chemical-exchange-induced nuclear singlet relaxation and provide a qualitative explanation of the TS behavior of the squarate dianion. We identify a kinetic contribution to the singlet relaxation rate constant, which explicitly depends on kinetic rate constants. Qualitative agreement is achieved between the theory and the experimental data. This study shows that infrequent chemical events may have a strong effect on the relaxation of nuclear singlet order.
Collapse
Affiliation(s)
- Christian Bengs
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Gamal A I Moustafa
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - James W Whipham
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Mohamed Sabba
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | | | | | - Malcolm H Levitt
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
32
|
Gong Z, Tootoonchi MH, Fraker CA, Walls JD. Determining chemical exchange rate constants in nanoemulsions using nuclear magnetic resonance. Phys Chem Chem Phys 2021; 23:19244-19254. [PMID: 34525142 PMCID: PMC8442839 DOI: 10.1039/d1cp02077c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 08/16/2021] [Indexed: 11/30/2022]
Abstract
In this work, the second-order kinetics of molecules exchanging between chemically distinct microenvironments, such as those found in nanoemulsions, is studied using nuclear magnetic resonance (NMR). A unique aspect of NMR exchange studies in nanoemulsions is that the difference in molecular resonance frequencies between the two phases, which determines whether the exchange is fast, intermediate, or slow on the NMR timescale, can depend upon the emulsion droplet composition, which is also determined by the kinetic exchange constants themselves. Within the fast-exchange regime, changes in resonance frequencies and line widths with dilution were used to extract the exchange rate constants from the NMR spectra in a manner analogous to determining the kinetic parameters in NMR ligand binding experiments. As a demonstration, the kinetic exchange parameters of isoflurane release from an emulsification of isoflurane and perflurotributylamine (FC43) were determined using NMR dilution and diffusion studies.
Collapse
Affiliation(s)
- Zhaoyuan Gong
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| | | | - Christopher A Fraker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL 33124, USA
| | - Jamie D Walls
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA.
| |
Collapse
|
33
|
Vugmeyster L, Ostrovsky D, Greenwood A, Fu R. Deuteron Chemical Exchange Saturation Transfer for the Detection of Slow Motions in Rotating Solids. Front Mol Biosci 2021; 8:705572. [PMID: 34386521 PMCID: PMC8353179 DOI: 10.3389/fmolb.2021.705572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/12/2021] [Indexed: 01/10/2023] Open
Abstract
We utilized the 2H Chemical Exchange Saturation Transfer (CEST) technique under magic angle spinning (MAS) conditions to demonstrate the feasibility of the method for studies of slow motions in the solid state. For the quadrupolar anisotropic interaction, the essence of CEST is to scan the saturation pattern over a range of offsets corresponding to the entire spectral region(s) for all conformational states involved, which translates into a range of −60–+ 60 kHz for methyl groups. Rotary resonances occur when the offsets are at half-and full-integer of the MAS rates. The choice of the optimal MAS rate is governed by the condition to reduce the number of rotary resonances in the CEST profile patterns and retain a sufficiently large quadrupolar interaction active under MAS to maintain sensitivity to motions. As examples, we applied this technique to a well-known model compound dimethyl-sulfone (DMS) as well as amyloid-β fibrils selectively deuterated at a single methyl group of A2 belonging to the disordered domain. It is demonstrated that the obtained exchange rate between the two rotameric states of DMS at elevated temperatures fell within known ranges and the fitted model parameters for the fibrils agree well with the previously obtained value using static 2H NMR techniques. Additionally, for the fibrils we have observed characteristic broadening of rotary resonances in the presence of conformational exchange, which provides implications for model selection and refinement. This work sets the stage for future potential extensions of the 2H CEST under MAS technique to multiple-labeled samples in small molecules and proteins.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, United States
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO, United States
| | - Alexander Greenwood
- Department of Chemistry, University of Cincinnati, Cincinnati, OH, United States
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL, United States
| |
Collapse
|
34
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021; 60:19942-19948. [PMID: 34125989 DOI: 10.1002/anie.202107091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate "instructs" the host to change its shape after complexation, while CS asserts that a guest "selects" the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsule M-1, encompassing two conformers M-1(+) and M-1(-), trap CX4 (X=Cl, Br) to give CX4 ⊂M-1(+) and CX4 ⊂M-1(-), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4 would, at its lower concentrations, bind M-1 via a M-1(+)→M-1(-)→CBr4 ⊂M-1(-) pathway corresponding to conformational selection. For M-1 complexing CCl4 though, data from 2D EXSY measurements and 1D NMR line-shape analysis suggested that lower CCl4 concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Remy F Lalisse
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Murat Güney
- Agri Ibrahim Çeçen University, Department of Chemistry, 04100, Agri, Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher M Hadad
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
35
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Remy F. Lalisse
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology University College London London WC1E 6BT UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Murat Güney
- Agri Ibrahim Çeçen University Department of Chemistry 04100 Agri Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher M. Hadad
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
36
|
Winston DS, Boehr DD. Allosteric and dynamic control of RNA-dependent RNA polymerase function and fidelity. Enzymes 2021; 49:149-193. [PMID: 34696831 DOI: 10.1016/bs.enz.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
All RNA viruses encode an RNA-dependent RNA polymerase (RdRp) responsible for genome replication. It is now recognized that enzymes in general, and RdRps specifically, are dynamic macromolecular machines such that their moving parts, including active site loops, play direct functional roles. While X-ray crystallography has provided deep insight into structural elements important for RdRp function, this methodology generally provides only static snapshots, and so is limited in its ability to report on dynamic fluctuations away from the lowest energy conformation. Nuclear magnetic resonance (NMR), molecular dynamics (MD) simulations and other biophysical techniques have brought new insight into RdRp function by their ability to characterize the trajectories, kinetics and thermodynamics of conformational motions. In particular, these methodologies have identified coordinated motions among conserved structural motifs necessary for nucleotide selection and incorporation. Disruption of these motions through amino acid substitutions or inhibitor binding impairs RdRp function. Understanding and re-engineering these motions thus provides exciting new avenues for anti-viral strategies. This chapter outlines the basics of these methodologies, summarizes the dynamic motions observed in different RdRps important for nucleotide selection and incorporation, and illustrates how this information can be leveraged towards rational vaccine strain development and anti-viral drug design.
Collapse
Affiliation(s)
- Dennis S Winston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
37
|
Peacock RB, Komives EA. Hydrogen/Deuterium Exchange and Nuclear Magnetic Resonance Spectroscopy Reveal Dynamic Allostery on Multiple Time Scales in the Serine Protease Thrombin. Biochemistry 2021; 60:3441-3448. [PMID: 34159782 DOI: 10.1021/acs.biochem.1c00277] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A deeper understanding of how hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals allostery is important because HDX-MS can reveal allostery in systems that are not amenable to nuclear magnetic resonance (NMR) spectroscopy. We were able to study thrombin and its complex with thrombomodulin, an allosteric regulator, by both HDX-MS and NMR. In this Perspective, we compare and contrast the results from both experiments and from molecular dynamics simulations. NMR detects changes in the chemical environment around the protein backbone N-H bond vectors, providing residue-level information about the conformational exchange between distinct states. HDX-MS detects changes in amide proton solvent accessibility and H-bonding. Taking advantage of NMR relaxation dispersion measurements of the time scale of motions, we draw conclusions about the motions reflected in HDX-MS experiments. Both experiments detect allostery, but they reveal different components of the allosteric transition. The insights gained from integrating NMR and HDX-MS into thrombin dynamics enable a clearer interpretation of the evidence for allostery revealed by HDX-MS in larger protein complexes and assemblies that are not amenable to NMR.
Collapse
Affiliation(s)
- Riley B Peacock
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| |
Collapse
|
38
|
Koss H, Honig B, Shapiro L, Palmer AG. Dimerization of Cadherin-11 involves multi-site coupled unfolding and strand swapping. Structure 2021; 29:1105-1115.e6. [PMID: 34166612 DOI: 10.1016/j.str.2021.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/01/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Cadherin extracellular domain 1 (EC1) mediates homophilic dimerization in adherens junctions. Conserved Trp2 and Trp4 residues in type II cadherins anchor the EC1 A strand intermolecularly in strand-swapped dimers. Herein, NMR spectroscopy is used to elucidate the roles of Trp2 and Trp4 in Cadherin-11 dimerization. The monomeric state, with the A strand and Trp side chains packed intramolecularly, is in equilibrium with sparsely populated partially and fully A-strand-exposed states, in which Trp2 (and Trp4, respectively) side-chain packing is disrupted. Exchange kinetics between the major state and the partially (fully) A-strand-exposed state is slow-intermediate (intermediate-fast). A separate very fast process exchanges ordered and random-coil BC-loop conformations with populations dependent on A-strand exposure and dimerization status. In addition, very slow processes connect the folded A-strand-exposed conformation to partially unfolded states, which may represent additional domain-swapping intermediates. The dimerization mechanism of type II cadherins is revealed as coupled folding and strand swapping.
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA
| | - Barry Honig
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA; Zuckerman Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 St. Nicholas Avenue, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA; Zuckerman Institute, Columbia University, 3227 Broadway, New York, NY 10027, USA
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, 701 West 168th Street, New York, NY 10032, USA.
| |
Collapse
|
39
|
Vugmeyster L. Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2021; 111:101710. [PMID: 33450712 PMCID: PMC7903970 DOI: 10.1016/j.ssnmr.2020.101710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/19/2020] [Accepted: 12/05/2020] [Indexed: 05/14/2023]
Abstract
Slow timescale dynamics in proteins are essential for a variety of biological functions spanning ligand binding, enzymatic catalysis, protein folding and misfolding regulations, as well as protein-protein and protein-nucleic acid interactions. In this review, we focus on the experimental and theoretical developments of 2H static NMR methods applicable for studies of microsecond to millisecond motional modes in proteins, particularly rotating frame relaxation dispersion (R1ρ), quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) relaxation dispersion, and quadrupolar chemical exchange saturation transfer NMR experiments (Q-CEST). With applications chosen from amyloid-β fibrils, we show the complementarity of these approaches for elucidating the complexities of conformational ensembles in disordered domains in the non-crystalline solid state, with the employment of selective deuterium labels. Combined with recent advances in relaxation dispersion backbone measurements for 15N/13C/1H nuclei, these techniques provide powerful tools for studies of biologically relevant timescale dynamics in disordered domains in the solid state.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO, 80204, USA.
| |
Collapse
|
40
|
Alderson TR, Kay LE. NMR spectroscopy captures the essential role of dynamics in regulating biomolecular function. Cell 2021; 184:577-595. [PMID: 33545034 DOI: 10.1016/j.cell.2020.12.034] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023]
Abstract
Biomolecules are in constant motion. To understand how they function, and why malfunctions can cause disease, it is necessary to describe their three-dimensional structures in terms of dynamic conformational ensembles. Here, we demonstrate how nuclear magnetic resonance (NMR) spectroscopy provides an essential, dynamic view of structural biology that captures biomolecular motions at atomic resolution. We focus on examples that emphasize the diversity of biomolecules and biochemical applications that are amenable to NMR, such as elucidating functional dynamics in large molecular machines, characterizing transient conformations implicated in the onset of disease, and obtaining atomic-level descriptions of intrinsically disordered regions that make weak interactions involved in liquid-liquid phase separation. Finally, we discuss the pivotal role that NMR has played in driving forward our understanding of the biomolecular dynamics-function paradigm.
Collapse
Affiliation(s)
- T Reid Alderson
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada.
| | - Lewis E Kay
- Department of Biochemistry, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, The University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Chemistry, The University of Toronto, Toronto, ON M5S A18, Canada; Program in Molecular Medicine, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
41
|
Khago D, Fucci IJ, Byrd RA. The Role of Conformational Dynamics in the Recognition and Regulation of Ubiquitination. Molecules 2020; 25:E5933. [PMID: 33333809 PMCID: PMC7765195 DOI: 10.3390/molecules25245933] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 11/23/2022] Open
Abstract
The ubiquitination pathway is central to many cell signaling and regulatory events. One of the intriguing aspects of the pathway is the combinatorial sophistication of substrate recognition and ubiquitin chain building determinations. The abundant structural and biological data portray several characteristic protein folds among E2 and E3 proteins, and the understanding of the combinatorial complexity that enables interaction with much of the human proteome is a major goal to developing targeted and selective manipulation of the pathway. With the commonality of some folds, there are likely other aspects that can provide differentiation and recognition. These aspects involve allosteric effects and conformational dynamics that can direct recognition and chain building processes. In this review, we will describe the current state of the knowledge for conformational dynamics across a wide timescale, address the limitations of present approaches, and illustrate the potential to make new advances in connecting dynamics with ubiquitination regulation.
Collapse
Affiliation(s)
| | | | - Robert Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, P.O. Box B, Building 538, Frederick, MD 21702-1201, USA; (D.K.); (I.J.F.)
| |
Collapse
|
42
|
Koss H, Rance M, Palmer AG. Algebraic expressions for Carr-Purcell-Meiboom-Gill relaxation dispersion for N-site chemical exchange. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 321:106846. [PMID: 33128917 PMCID: PMC8129722 DOI: 10.1016/j.jmr.2020.106846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/24/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
The Carr-Purcell-Meiboom-Gill (CPMG) NMR relaxation dispersion experiment measures the effective relaxation rate constant during a train of spin-echo pulse sequence elements as a function of the echo time. The CPMG experiment is a powerful method for characterizing chemical and conformational dynamic processes, termed chemical and conformational exchange, on μs-ms time scales, comparable to the experimentally accessible echo times. Approximate theoretical expressions for the effective relaxation rate constant for N-site chemical exchange have been reported (H. Koss, M. Rance, and A. G. Palmer, Biochemistry 57, 4753-4763 (2018)). Expressions for the effective relaxation rate constant have been improved by using the Cayley-Hamilton theorem to obtain simple and accurate approximations of the average Liouvillian for the CPMG experiment. The improved accuracy of the results allows efficient analyses of experimental data. In addition, the relationship is clarified between the approach of Koss and coworkers and that of Jen (1978).
Collapse
Affiliation(s)
- Hans Koss
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| | - Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| |
Collapse
|
43
|
Dubini RCA, Schön A, Müller M, Carell T, Rovó P. Impact of 5-formylcytosine on the melting kinetics of DNA by 1H NMR chemical exchange. Nucleic Acids Res 2020; 48:8796-8807. [PMID: 32652019 PMCID: PMC7470965 DOI: 10.1093/nar/gkaa589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
5-Formylcytosine (5fC) is a chemically edited, naturally occurring nucleobase which appears in the context of modified DNA strands. The understanding of the impact of 5fC on dsDNA physical properties is to date limited. In this work, we applied temperature-dependent 1H Chemical Exchange Saturation Transfer (CEST) NMR experiments to non-invasively and site-specifically measure the thermodynamic and kinetic influence of formylated cytosine nucleobase on the melting process involving dsDNA. Incorporation of 5fC within symmetrically positioned CpG sites destabilizes the whole dsDNA structure-as witnessed from the ∼2°C decrease in the melting temperature and 5-10 kJ mol-1 decrease in ΔG°-and affects the kinetic rates of association and dissociation. We observed an up to ∼5-fold enhancement of the dsDNA dissociation and an up to ∼3-fold reduction in ssDNA association rate constants, over multiple temperatures and for several proton reporters. Eyring and van't Hoff analysis proved that the destabilization is not localized, instead all base-pairs are affected and the transition states resembles the single-stranded conformation. These results advance our knowledge about the role of 5fC as a semi-permanent epigenetic modification and assist in the understanding of its interactions with reader proteins.
Collapse
Affiliation(s)
- Romeo C A Dubini
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
| | - Alexander Schön
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Markus Müller
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Carell
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
| |
Collapse
|
44
|
Tiwari VP, Vallurupalli P. A CEST NMR experiment to obtain glycine 1H α chemical shifts in 'invisible' minor states of proteins. JOURNAL OF BIOMOLECULAR NMR 2020; 74:443-455. [PMID: 32696193 DOI: 10.1007/s10858-020-00336-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Chemical exchange saturation transfer (CEST) experiments are routinely used to study protein conformational exchange between a 'visible' major state and 'invisible' minor states because they can detect minor states with lifetimes varying from ~ 3 to ~ 100 ms populated to just ~ 0.5%. Consequently several 1H, 15N and 13C CEST experiments have been developed to study exchange and obtain minor state chemical shifts at almost all backbone and sidechain sites in proteins. Conspicuously missing from this extensive set of CEST experiments is a 1H CEST experiment to study exchange at glycine (Gly) 1Hα sites as the existing 1H CEST experiments that have been designed to study dynamics in amide 1H-15N spin systems and methyl 13CH3 groups with three equivalent protons while suppressing 1H-1H NOE induced dips are not suitable for studying exchange in methylene 13CH2 groups with inequivalent protons. Here a Gly 1Hα CEST experiment to obtain the minor state Gly 1Hα chemical shifts is presented. The utility of this experiment is demonstrated on the L99A cavity mutant of T4 Lysozyme (T4L L99A) that undergoes conformational exchange between two compact conformers. The CEST derived minor state Gly 1Hα chemical shifts of T4L L99A are in agreement with those obtained previously using CPMG techniques. The experimental strategy presented here can also be used to obtain methylene proton minor state chemical shifts from protein sidechain and nucleic acid backbone sites.
Collapse
Affiliation(s)
- Ved Prakash Tiwari
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India
| | - Pramodh Vallurupalli
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad, Telangana, 500107, India.
| |
Collapse
|
45
|
Gorman SD, Winston DS, Sahu D, Boehr DD. Different Solvent and Conformational Entropy Contributions to the Allosteric Activation and Inhibition Mechanisms of Yeast Chorismate Mutase. Biochemistry 2020; 59:2528-2540. [DOI: 10.1021/acs.biochem.0c00277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Scott D. Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dennis S. Winston
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Debashish Sahu
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
46
|
Chao FA, Khago D, Byrd RA. Achieving pure spin effects by artifact suppression in methyl adiabatic relaxation experiments. JOURNAL OF BIOMOLECULAR NMR 2020; 74:223-228. [PMID: 32333192 PMCID: PMC7430055 DOI: 10.1007/s10858-020-00312-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/08/2020] [Indexed: 06/04/2023]
Abstract
Recent methyl adiabatic relaxation dispersion experiments provide examination of conformational dynamics across a very wide timescale (102-105 s-1) and, particularly, provide insight into the hydrophobic core of proteins and allosteric effects associated with modulators. The experiments require efficient decoupling of 1H and 13C spin interactions, and some artifacts have been discovered, which are associated with the design of the proton decoupling scheme. The experimental data suggest that the original design is valid; however, pulse sequences with either no proton decoupling or proton decoupling with imperfect pulses can potentially exhibit complications in the experiments. Here, we demonstrate that pulse imperfections in the proton decoupling scheme can be dramatically alleviated by using a single composite π pulse and provide pure single-exponential relaxation data. It allows the opportunity to access high-quality methyl adiabatic relaxation dispersion data by removing the cross-correlation between dipole-dipole interaction and chemical shift anisotropy. The resulting high-quality data is illustrated with the binding of an allosteric modulator (G2BR) to the ubiquitin conjugating enzyme Ube2g2.
Collapse
Affiliation(s)
- Fa-An Chao
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - Domarin Khago
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA
| | - R Andrew Byrd
- Structural Biophysics Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, 21702-1201, USA.
| |
Collapse
|
47
|
Rance M, Palmer AG. Compact expressions for R 1ρ relaxation for N-site chemical exchange using Schur decomposition. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 313:106705. [PMID: 32209492 PMCID: PMC7455919 DOI: 10.1016/j.jmr.2020.106705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The rotating-frame spin relaxation rate constant, R1ρ, is a powerful probe of macromolecular chemical and conformational dynamics in relaxation dispersion, CEST, and DEST NMR experiments. The R1ρ relaxation rate constant is given by the absolute value of the largest (least negative) eigenvalue of the Bloch-McConnell evolution matrix; however, estimation of this eigenvalue require inversion of 3 N × 3 N dimensional matrices, in which N is the number of interconverting sites or states for a given nuclear spin in a molecule. The Schur complement is used to reduce the problem of calculating the characteristic polynomial of a 3 N × 3 N matrix to that of calculating the characteristic polynomial of a 3 × 3 matrix. The resulting expressions for N-site chemical exchange are more numerically tractable, because the largest matrix inversion also is of dimension 3 × 3. In addition, the simplifications offered by the Schurr complement conveniently illustrate the effects of fast or slow kinetic steps within an N-site kinetic topology.
Collapse
Affiliation(s)
- Mark Rance
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, OH 45267, United States
| | - Arthur G Palmer
- Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, United States
| |
Collapse
|
48
|
Vugmeyster L, Ostrovsky D, Fu R. Deuteron Quadrupolar Chemical Exchange Saturation Transfer (Q-CEST) Solid-State NMR for Static Powder Samples: Approach and Applications to Amyloid-β Fibrils. Chemphyschem 2020; 21:220-231. [PMID: 31805217 PMCID: PMC7002291 DOI: 10.1002/cphc.201901053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/30/2019] [Indexed: 12/26/2022]
Abstract
We provide an experimental and computational framework for 2 H quadrupolar chemical exchange saturation transfer NMR experiments (Q-CEST) under static solid-state conditions for the quantification of dynamics on μs-ms timescales. Simulations using simple 2-site exchange models provide insights into the relation between spin dynamics and motions. Biological applications focus on two sites of amyloid-β fibrils in the 3-fold symmetric polymorph. The first site, the methyl group of A2 of the disordered N-terminal domain, undergoes diffusive motions and conformational exchange due to transient interactions. Earlier 2 H rotating frame relaxation and quadrupolar CPMG measurements are combined with the Q-CEST approach to characterize the multiple conformational states of the domain. The second site, the methyl group of M35, spans the water-accessible cavity inside the fibrils' core and undergoes extensive rotameric exchange. Q-CEST permits us to refine the rotameric exchange model for this site and allows the more precise determination of populations and rotameric exchange rate constants than line shape analysis.
Collapse
Affiliation(s)
- Liliya Vugmeyster
- Department of Chemistry, University of Colorado Denver, Denver, CO 80204, USA
| | - Dmitry Ostrovsky
- Department of Mathematics, University of Colorado Denver, Denver, CO 80204, USA
| | - Riqiang Fu
- National High Field Magnetic Laboratory, Tallahassee, FL 32310, USA
| |
Collapse
|
49
|
Schütz S, Sprangers R. Methyl TROSY spectroscopy: A versatile NMR approach to study challenging biological systems. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 116:56-84. [PMID: 32130959 DOI: 10.1016/j.pnmrs.2019.09.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/09/2019] [Accepted: 09/25/2019] [Indexed: 05/21/2023]
Abstract
A major goal in structural biology is to unravel how molecular machines function in detail. To that end, solution-state NMR spectroscopy is ideally suited as it is able to study biological assemblies in a near natural environment. Based on methyl TROSY methods, it is now possible to record high-quality data on complexes that are far over 100 kDa in molecular weight. In this review, we discuss the theoretical background of methyl TROSY spectroscopy, the information that can be extracted from methyl TROSY spectra and approaches that can be used to assign methyl resonances in large complexes. In addition, we touch upon insights that have been obtained for a number of challenging biological systems, including the 20S proteasome, the RNA exosome, molecular chaperones and G-protein-coupled receptors. We anticipate that methyl TROSY methods will be increasingly important in modern structural biology approaches, where information regarding static structures is complemented with insights into conformational changes and dynamic intermolecular interactions.
Collapse
Affiliation(s)
- Stefan Schütz
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | - Remco Sprangers
- Institute of Biophysics and Physical Biochemistry, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.
| |
Collapse
|
50
|
Gorman SD, Boehr DD. Energy and Enzyme Activity Landscapes of Yeast Chorismate Mutase at Cellular Concentrations of Allosteric Effectors. Biochemistry 2019; 58:4058-4069. [DOI: 10.1021/acs.biochem.9b00721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Scott D. Gorman
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - David D. Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|