1
|
Kobia-Acquah E, Lingham G, Flitcroft DI, Loughman J. Two-year changes of macular choroidal thickness in response to 0.01% atropine eye drops: Results from the myopia outcome study of atropine in children (MOSAIC) clinical trial. Acta Ophthalmol 2024. [PMID: 39737658 DOI: 10.1111/aos.17429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
PURPOSE To investigate 2-year changes in macular choroidal thickness (ChT) in children receiving 0.01% atropine eyedrops and its relationship with spherical equivalent refraction (SER) progression and axial length (AL) elongation. METHODS A total of 250 myopic children aged 6-16 years (167%-0.01% atropine, 83-placebo) were enrolled in the MOSAIC (ISRCTN36732601) clinical trial. Participants with complete 2-year ChT (Topcon Triton Swept-Source OCT), SER, and AL data were included in this study. Changes in macular ChT at 2 years and associations with changes in SER and AL elongation were analysed using linear mixed models. RESULTS A total of 187 children (126%-0.01% atropine, 61-placebo) were included in the analysis. Choroidal thickness over 2 years was stable in the 0.01% atropine compared with placebo group, which exhibited consistent thinning in subfoveal (mean ± SE: 0.49 ± 2.22 μm vs. -9.46 ± 2.69 μm; p = 0.034), parafoveal (1.40 ± 1.73 μm vs. -8.11 ± 2.08 μm; p = 0.002), and perifoveal (0.80 ± 1.25 vs. -6.17 ± 1.69; p = 0.002) macular subfields. Choroidal thickening was observed in participants with slower axial eye growth and myopia progression, regardless of their treatment group. Mediation analysis indicated that atropine 0.01% had a significant effect on ChT, with 68.3% of the effect being direct and 31.7% mediated through axial length changes. For SER, the direct effect on ChT was 80%, with the remaining 20% mediated by SER changes. CONCLUSIONS Myopic participants treated with 0.01% atropine exhibited stable ChT over 2 years, whereas the placebo group showed consistent thinning. The effect of atropine 0.01% on ChT was only partially explained by axial length and SER changes, indicating a direct effect of atropine treatment on the choroid.
Collapse
Affiliation(s)
- Emmanuel Kobia-Acquah
- Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| | - Gareth Lingham
- Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
- Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, Australia
| | - Daniel Ian Flitcroft
- Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
- Department of Ophthalmology, Children's Health Ireland at Temple Street Hospital, Dublin, Ireland
| | - James Loughman
- Centre for Eye Research Ireland, Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Yang Y, Wei L, Wang B, Zheng W. Effects of atropine on choroidal thickness in myopic children: a meta-analysis. Front Pharmacol 2024; 15:1440180. [PMID: 39498339 PMCID: PMC11533146 DOI: 10.3389/fphar.2024.1440180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/26/2024] [Indexed: 11/07/2024] Open
Abstract
Background Atropine is an effective medicine for myopia prevention and control. This meta-analysis was conducted to investigate the effects of atropine on choroidal thickness (ChT) in children with myopia. Methods Between its inception and 1 June 2023, Medline, Embase, and Web of Science were all searched, and only English literature was included. The choroidal thickness was the primary study outcome. Axial length, standardized equivalent refraction were examined as secondary outcomes. STATA 12.0 was used for data extraction and analysis. Results A total of 307 eyes were involved in this study to evaluate the effect of atropine on ChT, axial length (AL) and standardized equivalent refraction (SER) in myopic children. Choroidal thickening was significantly higher in the atropine group than in the control group at 1 month (WMD, 6.87 mm, 95% CI, 0.04 to 13.10, P = 0.049), whereas it was significantly higher in the atropine group than in the control group at months 6 (WMD, 10.37 mm, 95% CI, -3.21 to 23.95, P = 0.135), 12 (WMD, 15.10 mm, 95% CI, -5.08 to 35.27, P = 0.143) and at final follow-up (WMD, 11.52 mm, 95% CI, -3.26 to 26.31, P = 0.127), the differences were not statistically significant. At months 1 (WMD, -0.03 mm, 95% CI, -0.04 to -0.01, P = 0.003), 6 (WMD, -0.07 mm, 95% CI, -0.01 to -0.03, P = 0.000), 12 (WMD, -0.13mm, 95% CI, -0.15 to -0.11, P = 0.843), and at final follow-up (WMD, -0.08 mm, 95% CI, -0.16 to -0.01, P = 0.127), atropine treatment was able to delay the axial elongation. At 1-month follow-up, there was no significant difference in the effect of atropine on SER in myopic children compared with the control group (WMD, 0.01D, 95% CI, -0.07 to 26.31, P = 0.127), whereas it was able to control the progression of refractive status at final follow-up (WMD, 11.52 mm, 95% CI, -3.26 to 26.31, P = 0.127). Conclusion Limited evidence suggests that 0.01% atropine causes choroidal thickening in myopic children at 1 month of treatment. In the short term, choroidal thickness may be a predictor of the effectiveness of atropine in controlling myopia in children. 0.01% atropine is effective in controlling myopic progression in terms of SER and AL. Systematic Review Registration http://www.crd.york.ac.uk/prospero, identifier, CRD42022381195.
Collapse
Affiliation(s)
- Yaqi Yang
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Lijuan Wei
- Ophthalmology Department, Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | | | | |
Collapse
|
3
|
Sun Y, Li ZZ, Yang J, Sha YR, Hou XY, Fu H, Li JY, Bai SC, Xie YF, Wang GH. Molecular mechanism of hypoxia and alpha-ketoglutaric acid on collagen expression in scleral fibroblasts. Int J Ophthalmol 2024; 17:1780-1790. [PMID: 39430015 PMCID: PMC11422372 DOI: 10.18240/ijo.2024.10.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 07/23/2024] [Indexed: 10/22/2024] Open
Abstract
AIM To investigate the molecular mechanisms underlying the influence of hypoxia and alpha-ketoglutaric acid (α-KG) on scleral collagen expression. METHODS Meta-analysis and clinical statistics were used to prove the changes in choroidal thickness (ChT) during myopia. The establishment of a hypoxic myopia model (HYP) for rabbit scleral fibroblasts through hypoxic culture and the effects of hypoxia and α-KG on collagen expression were demonstrated by Sirius red staining. Transcriptome analysis was used to verify the genes and pathways that hypoxia and α-KG affect collagen expression. Finally, real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) was used for reverse verification. RESULTS Meta-analysis results aligned with clinical statistics, revealing a thinning of ChT, leading to scleral hypoxia. Sirius red staining indicated lower collagen expression in the HYP group and higher collagen expression in the HYP+α-KG group, showed that hypoxia reduced collagen expression in scleral fibroblasts, while α-KG can elevated collagen expression under HYP conditions. Transcriptome analysis unveiled the related genes and signaling pathways of hypoxia and α-KG affect scleral collagen expression and the results were verified by RT-qPCR. CONCLUSION The potential molecular mechanisms through which hypoxia and α-KG influencing myopia is unraveled and three novel genes TLCD4, TBC1D4, and EPHX3 are identified. These findings provide a new perspective on the prevention and treatment of myopia via regulating collagen expression.
Collapse
Affiliation(s)
- Yun Sun
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Zhuo-Zheng Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jing Yang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Ya-Ru Sha
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Xin-Yu Hou
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Hong Fu
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Jia-Yin Li
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Shu-Chang Bai
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Yong-Fang Xie
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| | - Guo-Hui Wang
- School of Life Science and Technology, Shandong Second Medical University, Weifang 261053, Shandong Province, China
| |
Collapse
|
4
|
Zhang Y, Zhu Q, Song W, Chuang GM, Sun D, Cheung K, Chou A, He A, Shoghi E, Wildsoet CF. Dynamic BMP gene expression regulation in chick RPE during recovery from short term optical defocus and form-deprivation. PLoS One 2024; 19:e0311505. [PMID: 39392817 PMCID: PMC11469538 DOI: 10.1371/journal.pone.0311505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/19/2024] [Indexed: 10/13/2024] Open
Abstract
PURPOSE This study investigated the differential gene expression of BMPs in chick retinal pigment epithelium (RPE) during recovery from short term exposure to optical defocus and form-deprivation (FD) treatments. METHODS 14-day old White-Leghorn chicks wore either monocular +10 or -10 D lenses, or diffusers for 2 or 48 h, after which eyes were allowed unobstructed vision for up to 96 h. Over this recovery period, refractive errors and choroidal thickness (ChT) were tracked using retinoscopy and high-frequency A-scan ultrasonography. Real-time PCR was used to examine the expression of BMP2, 4, and 7 genes in RPE samples collected 0, 15 min, 2, 24, 48, and 96 h after the termination of treatments. Expression levels in treated eyes and their contralateral control eyes were compared. RESULTS After the termination of the lens and diffuser treatments, eyes gradually recovered from induced shifts in refractive error. With all three treatments, ChT changes reached statistical significance after 48 h of treatment, be it thinning with the -10 D lens and diffuser treatments (-0.06 ± 0.03mm, p < 0.05; -0.11 ± 0.04 mm, p < 0.05, resp.), or thickening with the +10 D lens (0.31 ± 0.04 mm, p < 0.001). BMP2 gene expression was rapidly upregulated in eyes wearing the +10 D lens, being statistical significance after 2 h, as well as 48 h of treatment. With the 2 h treatment, the latter gene expression pattern persisted for 15 min into the recovery period, before decreasing to the same level as that of contralateral control eyes, with a short-lived rebound, i.e., upregulation, 24 h into the recovery period. With the longer, 48 h treatment, BMP2 gene expression decreased more gradually, from 739 ± 121% at the end of the treatment period, to 72 ± 14% after 48 h of recovery. Two and 48 h of both -10 D and FD treatments resulted in BMP2 gene expression downregulation, with the time taken for gene expression levels to fully recover varying with the duration of initial treatments. In both cases, BMP2 gene expression downregulation persisted for 15 min into the recovery period, but reversed to upregulation by 2 h. Similar gene expression patterns were also observed for BMP4, although the changes were smaller. CONCLUSIONS The observed changes in BMP gene expression in chick RPE imply dynamic, albeit complex regulation, with the duration of exposure and recovery being critical variables for all three types of visual manipulations. This study provides further evidence for a role of the RPE as an important signal relay linking the retina to the choroid and sclera in eye growth regulation.
Collapse
Affiliation(s)
- Yan Zhang
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
| | - Qiurong Zhu
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
- Department of Ophthalmology, Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Wulian Song
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
- Department of Ophthalmology, the 2nd Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China
| | - Grace May Chuang
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
| | - Daniel Sun
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
| | - Kiana Cheung
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
| | - Andreana Chou
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
| | - Andrea He
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
| | - Elham Shoghi
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
| | - Christine F. Wildsoet
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States of America
| |
Collapse
|
5
|
Platzl C, Kaser-Eichberger A, Trost A, Strohmaier C, Stone R, Nickla D, Schroedl F. Melanopsin in the human and chicken choroid. Exp Eye Res 2024; 247:110053. [PMID: 39151779 PMCID: PMC11542372 DOI: 10.1016/j.exer.2024.110053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The choroid embedded in between retina and sclera is essential for retinal photoreceptor nourishment, but is also a source of growth factors in the process of emmetropization that converts retinal visual signals into scleral growth signals. Still, the exact control mechanisms behind those functions are enigmatic while circadian rhythms are involved. These rhythms are attributed to daylight influences that are melanopsin (OPN4) driven. Recently, OPN4-mRNA has been detected in the choroid, and while its origin is unknown we here seek to identify the underlying structures using morphological methods. Human and chicken choroids were prepared for single- and double-immunohistochemistry of OPN4, vasoactive intestinal peptide (VIP), substance P (SP), CD68, and α-smooth muscle actin (ASMA). For documentation, light-, fluorescence-, and confocal laser scanning microscopy was applied. Retinal controls proved the reliability of the OPN4 antibody in both species. In humans, OPN4 immunoreactivity (OPN4-IR) was detected in nerve fibers of the choroid and adjacent ciliary nerve fibers. OPN4+ choroidal nerve fibers lacked VIP, but were co-localized with SP. OPN4-immunoreactivity was further detected in VIP+/SP + intrinsic choroidal neurons, in a hitherto unclassified CD68-negative choroidal cell population thus not representing macrophages, as well as in a subset of choroidal melanocytes. In chicken, choroidal nerve fibers were OPN4+, and further OPN4-IR was detected in clustered suprachoroidal structures that were not co-localized with ASMA and therefore do not represent non-vascular smooth-muscle cells. In the choroidal stroma, numerous cells displayed OPN4-IR, the majority of which was VIP-, while a few of those co-localized with VIP and were therefore classified as avian intrinsic choroidal neurons. OPN4-immunoreactivity was absent in choroidal blood vessels of both species. In summary, OPN4-IR was detected in both species in nerve fibers and cells, some of which could be identified (ICN, melanocytes in human), while others could not be classified yet. Nevertheless, the OPN4+ structures described here might be involved in developmental, light-, thermally-driven or nociceptive mechanisms, as known from other systems, but with respect to choroidal control this needs to be proven in upcoming studies.
Collapse
Affiliation(s)
- Christian Platzl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Andrea Trost
- Dept. of Ophthalmology and Optometry, Paracelsus Medical University, Salzburg, Austria
| | - Clemens Strohmaier
- Department of Ophthalmology and Optometry, Johannes Kepler University, Linz, Austria
| | - Richard Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Debora Nickla
- Dept. of Biomedical Sciences and Disease, The New England College of Optometry, Boston, USA
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology -Salzburg, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
6
|
Xin J, Bao B, Liu J, Ma Z, Zhang M, Bi H, Guo D. Crosstalk between Myopia and Inflammation: A Mini Review. Int J Med Sci 2024; 21:1589-1603. [PMID: 39006849 PMCID: PMC11241089 DOI: 10.7150/ijms.94826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/22/2024] [Indexed: 07/16/2024] Open
Abstract
Myopia represents a significant public health concern worldwide, particularly affecting the ocular health of children and adolescents. The escalating prevalence of myopia in recent years underscores its urgency as a health issue among this demographic. Research indicates a profound connection between the onset of myopia, inflammatory processes and fibrosis. Individuals with inflammatory conditions like allergic conjunctivitis, choroiditis, systemic lupus erythematosus, and diabetes exhibit a heightened susceptibility to myopia. Conversely, myopic patients are at an increased risk of developing ocular inflammatory disorders, notably idiopathic multifocal choroiditis. We postulate that the expression of inflammatory markers, including NF-κB, TGF-β, IL-1β, IL-6, IL-8, and TNF-α, may contribute to the chronic inflammatory state observed in myopia. This paper highlights a substantial correlation between myopia and inflammation, suggesting the potential efficacy of anti-inflammatory agents in managing inflammation and slowing myopia progression.
Collapse
Affiliation(s)
- Jizhao Xin
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Bo Bao
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Jinpeng Liu
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Zhongyu Ma
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Miao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250002, China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases; Shandong Academy of Eye Disease Prevention and Therapy; Medical College of Optometry and Ophthalmology, Shandong University of Traditional Chinese Medicine, Jinan, 250002, China
| |
Collapse
|
7
|
Liu F, Ye Y, Yang W, Wang J, Xu Y, Zhao Y, Li M, Chen Z, Shen Y, Li M, Zhou X. Quantitative Evaluation of the Topographical Maps of Three-Dimensional Choroidal Vascularity Index in Children With Different Degrees of Myopia. Invest Ophthalmol Vis Sci 2024; 65:14. [PMID: 38466287 DOI: 10.1167/iovs.65.3.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose To investigate topographical maps of the three-dimensional choroidal vascularity index (3D-CVI) in children with different levels of myopia. Methods We enrolled 274 eyes from 143 children with various severity of myopia, including emmetropia (EM), low myopia (LM), and moderate-high myopia (MHM). The choroidal vessel volume (CVV), choroidal stroma volume (CSV), and 3D-CVI in different eccentricities (fovea, parafovea, and perifovea) and quadrants (nasal, temporal, superior, and inferior) were obtained from swept-source optical coherence tomography angiography (SS-OCTA) volume scans. All choroidal parameters were compared among groups, and the associated factors contributing to different 3D-CVIs were analyzed. Results Compared to the less myopic group, the more myopic group showed a significant decrease in CVV and CSV (MHM < LM < EM) and a significant increase in the 3D-CVI (MHM > LM > EM) in most areas (all P < 0.05). The nasal quadrant had the greatest 3D-CVI and lowest CSV and CVV, and vice versa in the temporal quadrant. The 3D-CVIs of the EM and LM groups gradually increased from the fovea to the perifovea, whereas the 3D-CVI of the MHM group first decreased and then increased. Regression analysis showed that axial length was an independent risk factor affecting foveal and parafoveal 3D-CVIs. Restricted cubic spline analysis revealed that the 3D-CVI increased with spherical equivalent (SE) when the SE was less than threshold and decreased when the SE was greater than threshold (SE thresholds for foveal, parafoveal, and perifoveal 3D-CVIs were -5.25 D, -5.125 D, and -2.00 D, respectively; all P < 0.05). Conclusions Children with myopia exhibited decreased CSV and CVV, increased 3D-CVIs, and altered 3D-CVI eccentricity characteristics (from the fovea to the perifovea). The quadratic relationship between the 3D-CVI and SE should be explored in longitudinal investigations.
Collapse
Affiliation(s)
- Fang Liu
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yuhao Ye
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Weiming Yang
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
- Department of Ophthalmology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jing Wang
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Ye Xu
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yu Zhao
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Meng Li
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Zhi Chen
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Yang Shen
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Meiyan Li
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| | - Xingtao Zhou
- Department of Ophthalmology and Optometry, Eye, Ear, Nose, and Throat Hospital, Fudan University, Shanghai, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, China
| |
Collapse
|
8
|
Liang C, Li F, Gu C, Xie L, Yan W, Wang X, Shi R, Linghu S, Liu T. Metabolomic profiling of ocular tissues in rabbit myopia: Uncovering differential metabolites and pathways. Exp Eye Res 2024; 240:109796. [PMID: 38244883 DOI: 10.1016/j.exer.2024.109796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
To investigate the metabolic difference among tissue layers of the rabbits' eye during the development of myopia using metabolomic techniques and explore any metabolic links or cascades within the ocular wall. Ultra Performance Liquid Chromatography - Mass Spectrometry (UPLC-MS) was utilized for untargeted metabolite screening (UMS) to identify the significant differential metabolites produced between myopia (MY) and control (CT) (horizontal). Subsequently, we compared those key metabolites among tissues (Sclera, Choroid, Retina) of MY for distribution and variation (longitudinal). A total of 6285 metabolites were detected in the three tissues. The differential metabolites were screened and the metabolic pathways of these metabolites in each myopic tissue were labeled, including tryptophan and its metabolites, pyruvate, taurine, caffeine metabolites, as well as neurotransmitters like glutamate and dopamine. Our study suggests that multiple metabolic pathways or different metabolites under the same pathway, might act on different parts of the eyeball and contribute to the occurrence and development of myopia by affecting the energy supply to the ocular tissues, preventing antioxidant stress, affecting scleral collagen synthesis, and regulating various neurotransmitters mutually.
Collapse
Affiliation(s)
- Chengpeng Liang
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| | - Fayuan Li
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Chengqi Gu
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ling Xie
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Wen Yan
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Xiaoye Wang
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Rong Shi
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Shaorong Linghu
- Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Taixiang Liu
- Key Laboratory of Ocular Diseases of Guizhou Province, Zunyi Medical University, Zunyi, 563000, Guizhou Province, China; Department of Ophthalmology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China.
| |
Collapse
|
9
|
Bai Y, Sui J, Li H, He Q, Wei R. Relationship between the structure and microcirculation of the optic disc region and myopic traction maculopathy in highly myopic eyes. Graefes Arch Clin Exp Ophthalmol 2024; 262:801-811. [PMID: 37955699 PMCID: PMC10907474 DOI: 10.1007/s00417-023-06312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023] Open
Abstract
PURPOSE To explore the characteristics and influencing factors structural and microcirculatory of optic disc and peripapillary tissue in eyes with myopia traction maculopathy (MTM). METHODS There were 100 eyes from 77 patients in this study. We used 1:1 matching axial length in myopic eyes. Patients were divided into two groups according to the presence or absence of MTM. Fundus structure parameters were obtained by swept source optical coherence tomography (SS-OCT), and the optic disc microcirculation parameters were obtained by OCT angiography (OCTA). RESULTS MTM group were older (P = 0.001) and had poorer Best-corrected Visual Acuity (BCVA) (P = 0.011), the optic disc-fovea distance (DFD) was longer (P < 0.019), optic disc tilt was greater (P < 0.001), area of peripapillary atrophy (PPA) was larger (P < 0.001), and PPA/optical disc area (ONH) was higher (P < 0.001). The peripapillary scleral thickness (PST) was lower in the MTM group (P < 0.001). The mean peripapillary choroidal thickness (PCT) (P < 0.001) and PCT in the 10 orientations were significantly lower in the MTM group than in the NMTM group (all P < 0.01). Vascular density in the nasosuperior (NS) region of the optic disc was significantly lower in the MTM group (P = 0.037). The generalized estimating equation suggested that PPA area (P = 0.028), mean PCT (P = 0.008), superior PCT (P = 0.027), inferonasal PCT (P = 0.040), temporoinferior PCT (P = 0.013), and PST (P = 0.046) correlated with MTM. Age, axial length, optic disc tilt, PPA area, mean PCT, and optic disc central zone (0-2 mm) vascular density (all P < 0.05) were significantly correlated with PST. CONCLUSIONS The enlarged PPA area and thinner PCT and PST in eyes with MTM are more significant. Lower PST in high myopia was related to abnormalities of PCT and microcirculation. TRIAL REGISTRATION Clinical Trial Registration number: ChiCTR2100046590.
Collapse
Affiliation(s)
- Yang Bai
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jinyuan Sui
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Haoru Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Qing He
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China.
- Tianjin Binhai High-Tech Industrial Development Zone, No. 251 Fukang Road, Huayuan Industrial Zone (Nankai District), Tianjin, China.
| |
Collapse
|
10
|
Zhang Y, Liu Y, An M. Analysis and validation of potential ICD-related biomarkers in development of myopia using machine learning. Int Ophthalmol 2024; 44:116. [PMID: 38411755 DOI: 10.1007/s10792-024-02986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 10/19/2023] [Indexed: 02/28/2024]
Abstract
PURPOSE We aimed to identify and verify potential biomarkers in the development of myopia associated with immunogenic cell death (ICD). METHODS We download high myopia (HM) dataset GSE136701 from Gene Expression Omnibus. Differentially expressed genes in HM were identified to overlapped with ICD-related genes. Least absolute shrinkage and selection operator were used to select the Hub genes. Furthermore, the correlation between the hub genes and immune infiltration, immune response activities, and hub genes Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analysis was investigated using Spearman's rank correlation. Prediction of the miRNAs upstream of the Hub genes was based on the TargetScan database. We used guinea pig lens-induced myopia model's scleral tissues performed quantitative real-time polymerase chain reaction. RESULTS We identified overlapped with ICD-related genes (LY96, IL1A, IL33, and AGER) and two genes (LY96 and AGER) as hub genes. Single sample gene set enrichment analysis and Spearman's rank correlation revealed that hub gene expression levels in HM were significantly correlated with the infiltration percentages of CD56dim natural killer cells, macrophages, immature B cells, and the immune response activities of APC co-stimulation and Kyoto Encyclopedia of Genes and Genomes pathways, such as terpenoid backbone biosynthesis, aminoacyl-trna biosynthesis, Huntington's disease, oxidative phosphorylation; there were a few additional signaling pathways compared to normal samples. Additionally, several miRNA were predicted as upstream regulators of LY96 and AGER. LY96 was identified as a significantly differentially expressed biomarker in myopia guinea pig's scleral tissues, as verified by qPCR. CONCLUSION LY96 was identified and verified as a ICD-related potential myopia biomarker. Molecular mechanisms or pathways involved in myopia development by LY96 requires further research.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Yanli Liu
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Number 183, Zhongshan Avenue West, Tianhe District, Guangzhou, 510630, People's Republic of China.
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, 510630, Guangdong, People's Republic of China.
| |
Collapse
|
11
|
Ablordeppey RK, Lin CR, Song B, Benavente-Perez A. Choroidal Morphology and Photoreceptor Activity Are Related and Affected by Myopia Development. Invest Ophthalmol Vis Sci 2024; 65:3. [PMID: 38300557 PMCID: PMC10846344 DOI: 10.1167/iovs.65.2.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/14/2024] [Indexed: 02/02/2024] Open
Abstract
Purpose The choroid is critical for the regulation of eye growth and is involved in the pathogenesis of myopia-associated ocular complications. This study explores the relationship among choroidal biometry, photoreceptor activity, and myopic growth in marmosets (Callithrix jacchus) with lens-induced myopia. Methods A total of 34 common marmosets aged 92 to 273 days old were included in this study. Axial myopia was induced in 17 marmosets using negative soft contact lenses and 17 marmosets served as untreated controls. Cycloplegic refraction (RE) and vitreous chamber depth (VCD) were measured using autorefraction and A-scan ultrasonography, respectively. Choroidal scans were obtained using spectral-domain optical coherence tomography and binarized to calculate subfoveal choroidal thickness (ChT), total choroidal area (TCA), luminal area (LA), stromal area (SA), choroidal vascularity index (CVI), and LA/SA. To assess photoreceptor activity, the a-wave of the full-field electroretinogram was measured. Regression models were used to investigate the relationship between outcome measures. Results Eyes induced with axial myopia (RE = -7.14 ± 4.03 diopters [D], VCD = 6.86 ± 0.39 mm) showed significant reductions (4.92-21.24%) in all choroidal parameters (ChT, TCA, LA, SA, CVI, and LA/SA) compared to controls (RE = -1.25 ± 0.60 D, VCD = 6.58 ± 0.26 mm, all P < 0.05), which changed as a function of refraction and vitreous elongation, and were associated with a decrease in the a-wave amplitude. Further, multiple regression showed that a combination of ChT and CVI could well predict RE and VCD. Conclusions This study reports the existence of significant alterations in choroidal morphology in non-human primate eyes induced with myopia. The changes in choroidal anatomy were associated with reduced light-adapted a-wave amplitude. These findings may represent early markers for reduced visual performance and chorioretinal complications known to occur in eyes with large degrees of myopia.
Collapse
Affiliation(s)
- Reynolds Kwame Ablordeppey
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Carol Ren Lin
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Brian Song
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| | - Alexandra Benavente-Perez
- Department of Biological and Vision Sciences, State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
12
|
Cai C, Ma Y, He S, Meng C, Gu C, He J, Lhamo T, Draga D, Zhou C, Qiu Q. Influence of high altitude on choroid thickness, retinal thickness, and myopia: A cross-sectional study comparing adolescents in Shanghai and Tibet. Indian J Ophthalmol 2024; 72:S240-S247. [PMID: 38099385 PMCID: PMC11624659 DOI: 10.4103/ijo.ijo_1546_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 12/19/2023] Open
Abstract
PURPOSE This study aimed to explore the influence of high altitude on myopia, macular choroidal thickness (mCT), and macular retinal thickness (mRT) in adolescents. METHODS Two schools, one in Shanghai (at sea level) and one in Shigatse, Tibet (more than 4000 m above sea level), were selected. Refractive error was measured by an autorefractor instrument and subjective refraction, and mCT and mRT were measured at three concentric circles by optical coherence tomography. Student's t -test, Chi-square test, and multiple linear regression analyses were used to analyze the data. RESULTS A total of 1114 participants (657 and 457 in Shanghai and Tibet, respectively) were enrolled in this cross-sectional study. The average age of the participants was 18.81 ± 1.10 years, and 44.34% were males. The spherical equivalent (SE) of adolescents in Shanghai was significantly lower than that of adolescents in Tibet (-4.14 ± 2.37 D and -2.12 ± 1.87 D, P < 0.01). The prevalence of myopia and high myopia among adolescents in Shanghai (94.52%, 19.48%) was significantly higher than those among adolescents in Tibet (44.74%, 2.41%) ( P < 0.01). The mCT of Tibetan adolescents was significantly thicker than that of Shanghai adolescents (295.80 ± 62.46 μm and 218.71 ± 61.42 μm, P < 0.01), especially the central mCT. The mRT of Tibetan adolescents was also thicker than that of Shanghai adolescents (301.42 ± 23.26 μm and 281.04 ± 12.24 μm, P < 0.01). CONCLUSIONS Compared with Shanghai adolescents, the choroid of Tibet adolescents is thicker, and the myopia prevalence is lower. It is speculated that increased altitude is associated with the thickening of mCT and a low myopia prevalence.
Collapse
Affiliation(s)
- Chunyang Cai
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Yingyan Ma
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Shuai He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Chunren Meng
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Chufeng Gu
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Jiangnan He
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Department of Preventative Ophthalmology, Shanghai Eye Diseases Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai, PR China
| | - Thashi Lhamo
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, Tibet, PR China
| | - Deji Draga
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, Tibet, PR China
| | - Chuandi Zhou
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, PR China
| | - Qinghua Qiu
- Department of Ophthalmology, Shigatse People’s Hospital, Shigatse, Tibet, PR China
- Department of Ophthalmology, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| |
Collapse
|
13
|
Rasys AM, Wegerski A, Trainor PA, Hufnagel RB, Menke DB, Lauderdale JD. Dynamic changes in ocular shape during human development and its implications for retina fovea formation. Bioessays 2024; 46:e2300054. [PMID: 38037292 PMCID: PMC11614145 DOI: 10.1002/bies.202300054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 10/10/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023]
Abstract
The human fovea is known for its distinctive pit-like appearance, which results from the displacement of retinal layers superficial to the photoreceptors cells. The photoreceptors are found at high density within the foveal region but not the surrounding retina. Efforts to elucidate the mechanisms responsible for these unique features have ruled out cell death as an explanation for pit formation and changes in cell proliferation as the cause of increased photoreceptor density. These findings have led to speculation that mechanical forces acting within and on the retina during development underly the formation of foveal architecture. Here we review eye morphogenesis and retinal remodeling in human embryonic development. Our meta-analysis of the literature suggests that fovea formation is a protracted process involving dynamic changes in ocular shape that start early and continue throughout most of human embryonic development. From these observations, we propose a new model for fovea development.
Collapse
Affiliation(s)
- Ashley M. Rasys
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
| | - Andrew Wegerski
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Department of Anatomy & Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas B. Menke
- Department of Genetics, The University of Georgia, Athens, Georgia, USA
| | - James D. Lauderdale
- Department of Cellular Biology, The University of Georgia, Athens, Georgia, USA
- Neuroscience Division of the Biomedical and Health Sciences Institute, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
14
|
Chen J, Ikeda SI, Negishi K, Tsubota K, Kurihara T. Identification of Potential Therapeutic Targets for Myopic Choroidal Neovascularization via Discovery-Driven Data Mining. Curr Eye Res 2023; 48:1160-1169. [PMID: 37610842 DOI: 10.1080/02713683.2023.2252201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/29/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Purpose: Myopic choroidal neovascularization (mCNV) is a prevalent cause of vision loss. However, the development of effective therapeutic targets for mCNV has been hindered by the paucity of suitable animal models. Therefore, the aim of this study is to identify potential genes and pathways associated with mCNV and to unearth prospective therapeutic targets that can be utilized to devise efficacious treatments.Methods: Text data mining was used to identify genes linked to choroid, neovascularization, and myopia. g: Profiler was utilized to analyze the biological processes of gene ontology and the Reactome pathways. Protein interaction network analysis was performed using strings and visualized in Cytoscape. MCODE and cytoHubba were used for further screening.Results: Discovery-driven text data mining identified 55 potential genes related to choroid, neovascularization, and myopia. Gene enrichment analysis revealed 11 biological processes and seven Reactome pathways. A protein-protein interaction network with 47 nodes was constructed and analyzed using centrality ranking. Key clusters were identified through algorithm tools. Finally, 14 genes (IL6, FGF2, MMP9, IL10, TNF, MMP2, HGF, MMP3, IGF1, CCL2, CTNNB1, BDNF, NGF, and EDN1), in addition to VEGFA, were evaluated as targets with potential as future therapeutics.Conclusions: This study provides new potential therapeutic targets for mCNV, including IL6, FGF2, MMP9, IL10, TNF, MMP2, HGF, MMP3, IGF1, CCL2, CTNNB1, BDNF, NGF, and EDN1, which correspond to seven potential enriched pathways. These findings provide a basis for further research and offer new possibilities for developing therapeutic interventions for this condition.
Collapse
Affiliation(s)
- Junhan Chen
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Shin-Ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
- Tsubota Laboratory, Inc, Tokyo, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
15
|
Xu R, Zheng J, Liu L, Zhang W. Effects of inflammation on myopia: evidence and potential mechanisms. Front Immunol 2023; 14:1260592. [PMID: 37849748 PMCID: PMC10577208 DOI: 10.3389/fimmu.2023.1260592] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023] Open
Abstract
As the most common type of refractive error, myopia has become one of the leading causes of visual impairment. With the increasing prevalence of myopia, there is a growing need to better understand the factors involved in its development. Inflammation, one of the most fundamental pathophysiological processes in humans, is a rapid response triggered by harmful stimuli and conditions. Although controlled inflammatory responses are necessary, over-activated inflammation is the common soil for many diseases. The impact of inflammation on myopia has received rising attention in recent years. Elevated inflammation may contribute to myopia progression either directly or indirectly by inducing scleral remodeling, and myopia development may also increase ocular inflammation. This article provides a comprehensive review of the interplay between inflammation and myopia and the potential biological mechanisms, which may present new targets for understanding the pathology of myopia and developing myopia therapies.
Collapse
Affiliation(s)
- Ran Xu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Jing Zheng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Longqian Liu
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| | - Wenqiu Zhang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
- Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Goto S, Zhang Y, Vyas SA, Zhu Q, Wildsoet CF. Changes in Expression in BMP2 and Two Closely Related Genes in Guinea Pig Retinal Pigment Epithelium during Induction and Recovery from Myopia. Biomolecules 2023; 13:1373. [PMID: 37759773 PMCID: PMC10526436 DOI: 10.3390/biom13091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE We previously reported differential gene expression of the bone morphogenetic protein 2 (Bmp2) in guinea pig retinal pigment epithelium (RPE) after 1 day of hyperopic defocus, imposed with a negative contact lens (CLs). The study reported here sought to obtain insights into the temporal profiles of gene expression changes in Bmp2, as well as those of two closely related genes, the inhibitor of DNA binding 3 (Id3) and Noggin (Nog), both during myopia induction and when the CL treatment was terminated to allow recovery from induced myopia. METHODS To induce myopia, 2-week-old pigmented guinea pigs (New Zealand strain, n = 8) wore monocular -10 diopter (D) rigid gas-permeable (RGP) CLs for one week, while the other eye served as a control. Ocular measurements were made at baseline, 3 days, and 7 days after the initiation of CL wear, with treatment then being terminated and additional measurements being made after a further 3 days, 1 week, and 2 weeks. Spherical equivalent refractive errors (SERs), axial length (AL), choroidal thickness (ChT), and scleral thickness (ScT) data were collected using retinoscopy, optical biometry (Lenstar), and spectral domain optical coherence tomography (SD-OCT), respectively. RPE samples were collected from both eyes of the guinea pigs after either 1 day or 1 week of CL wear or 1 day or 2 weeks after its termination, and RNA was subsequently isolated and subjected to quantitative real-time PCR (qRT-PCR) analyses, targeting the Bmp2, Id3, and Nog genes. RESULTS Mean interocular differences (treated-control) in AL and SER were significantly different from baseline after 3 and 7 days of CL wear, consistent with induced myopia (p < 0.001 for all cases). Termination of CL wear resulted in the normalization (i.e., recovery) of the ALs and SERs of the treated eyes within 7 days, and the earlier significant ChT thinning with CL wear (p = 0004, day 7) was replaced by rapid thickening, which remained significant on day 7 (p = 0.009) but had normalized by day 14. The ChT changes were much smaller in magnitude than the AL changes in both phases. Interocular differences in the ScT showed no significant changes. The Bmp2 and Id3 genes were both significantly downregulated with CL wear, after 1 day (p = 0.012 and 0.016) and 7 days (p = 0.002 and 0.005), while Bmp2 gene expression increased and Nog gene expression decreased after the termination of CL wear, albeit transiently, which was significant on 1 day (p = 0.004 and 0.04) but not 2 weeks later. No change in Id3 gene expression was observed over the latter period. Conclusions: The above patterns of myopia induction and recovery validate this negative RGP-CL model as an alternative to traditional spectacle lens models for guinea pigs. The defocus-driven, sign-dependent changes in the expression of the Bmp2 gene in guinea pig RPE are consistent with observations in chicks and demonstrate the important role of BMP2 in eye growth regulation.
Collapse
Affiliation(s)
- So Goto
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, CA 94720, USA
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Department of Ophthalmology, National Hospital Organization, Tokyo Medical Center, Meguro-ku, Tokyo 152-8902, Japan
| | - Yan Zhang
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, CA 94720, USA
| | - Sonal Aswin Vyas
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, CA 94720, USA
| | - Qiurong Zhu
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Christine F. Wildsoet
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Wei P, Han G, Wang Y. Effects of dopamine D2 receptor antagonists on retinal pigment epithelial/choroid complex metabolism in form-deprived myopic guinea pigs. Proteomics 2023; 23:e2200325. [PMID: 37491763 DOI: 10.1002/pmic.202200325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
The retinal pigment epithelial (RPE)/choroid complex regulates myopia development, but the precise pathogenesis of myopia remains unclear. We aimed to investigate the changes in RPE/choroid complex metabolism in a form deprivation myopia model after dopamine D2 receptor (D2R) modulation. Guinea pigs were randomly divided into normal (NC), form deprivation myopia (FDM), and FDM treated with dopamine D2R antagonist groups. Differential metabolites were screened using SIMCA-P software and MetaboAnalyst metabolomics analysis tool. Functions of differential metabolites were analyzed using KEGG enrichment pathways. Relative to the NC group, 38 differential metabolites were identified, comprising 29 increased metabolites (including nicotinic acid, cytosine, and glutamate) and 9 decreased metabolites, of which proline exhibited the largest decrease. Pathway analysis revealed regulation of arginine/proline and aspartate/glutamate metabolism. Intravitreal D2R antagonist injection increased proline concentrations and activated arginine/proline and purine metabolism pathways. In sum, D2R antagonists alleviated the myopia trend of refractive biological parameters in form deprivation myopic guinea pigs, suggesting the involvement of dopamine D2R signaling in myopia pathogenesis. The RPE/choroid may provide glutamate to the retina by activating proline metabolism via metabolic coupling with the retina. Dopamine D2R antagonism may modulate proline/arginine metabolic pathways in the RPE/choroid and regulate metabolism, information presentation, and myopia.
Collapse
Affiliation(s)
- Pinghui Wei
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
| | - Guoge Han
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
| | - Yan Wang
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin, PR China
- Nankai University Eye Institute, Nankai University Affiliated Eye Hospital, Nankai University, Tianjin, PR China
- Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
18
|
Jonas JB, Jonas RA, Bikbov MM, Wang YX, Panda-Jonas S. Myopia: Histology, clinical features, and potential implications for the etiology of axial elongation. Prog Retin Eye Res 2023; 96:101156. [PMID: 36585290 DOI: 10.1016/j.preteyeres.2022.101156] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Myopic axial elongation is associated with various non-pathological changes. These include a decrease in photoreceptor cell and retinal pigment epithelium (RPE) cell density and retinal layer thickness, mainly in the retro-equatorial to equatorial regions; choroidal and scleral thinning pronounced at the posterior pole and least marked at the ora serrata; and a shift in Bruch's membrane opening (BMO) occurring in moderately myopic eyes and typically in the temporal/inferior direction. The BMO shift leads to an overhang of Bruch's membrane (BM) into the nasal intrapapillary compartment and BM absence in the temporal region (i.e., parapapillary gamma zone), optic disc ovalization due to shortening of the ophthalmoscopically visible horizontal disc diameter, fovea-optic disc distance elongation, reduction in angle kappa, and straightening/stretching of the papillomacular retinal blood vessels and retinal nerve fibers. Highly myopic eyes additionally show an enlargement of all layers of the optic nerve canal, elongation and thinning of the lamina cribrosa, peripapillary scleral flange (i.e., parapapillary delta zone) and peripapillary choroidal border tissue, and development of circular parapapillary beta, gamma, and delta zone. Pathological features of high myopia include development of macular linear RPE defects (lacquer cracks), which widen to round RPE defects (patchy atrophies) with central BM defects, macular neovascularization, myopic macular retinoschisis, and glaucomatous/glaucoma-like and non-glaucomatous optic neuropathy. BM thickness is unrelated to axial length. Including the change in eye shape from a sphere in emmetropia to a prolate (rotational) ellipsoid in myopia, the features may be explained by a primary BM enlargement in the retro-equatorial/equatorial region leading to axial elongation.
Collapse
Affiliation(s)
- Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim of the Ruprecht-Karis-University, Mannheim, Germany; Institute for Clinical and Scientific Ophthalmology and Acupuncture Jonas & Panda, Heidelberg, Germany.
| | - Rahul A Jonas
- Department of Ophthalmology, University of Cologne, Cologne, Germany
| | | | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing, China
| | | |
Collapse
|
19
|
Tang W, Ouyang J, Luo Y. Distribution of the Retinal Microcirculation Based on the Morphology of Peripapillary Atrophy in High Myopia. Ophthalmic Res 2023; 66:1085-1095. [PMID: 37459845 PMCID: PMC10614452 DOI: 10.1159/000531509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/06/2023] [Indexed: 11/01/2023]
Abstract
INTRODUCTION The objective of this study was to evaluate the retinal microvasculature of the optic nerve head and macula in high myopia (HM), investigate the association between the vascular parameters and peripapillary atrophy (PPA) deformation, and assess and identify the PPA morphology changes during the development of HM. METHODS One hundred sixty-seven right eyes from 167 HM patients were enrolled in this cross-sectional study. Using the optical coherence tomography angiography (OCTA) and fundus camera, we evaluated the following parameters: radian and type of PPA, intrapapillary vascular density (IVD), peripapillary vascular density (PVD), macular vascular density (MVD), and foveal avascular zone (FAZ). Based on the PPA radian, subjects were divided into four groups: the non-PPA, temporal PPA, advanced PPA, and annular PPA. At the same time, the above parameters were compared between the groups using analysis of variance (ANOVA) and least significant difference test. RESULTS Total enrolled patients were divided into the non-PPA group (22 eyes), temporal-PPA group (70 eyes), advanced-PPA group (60 eyes), and annular-PPA group (15 eyes). The results showed that the PVD in the annular-PPA group was smaller than that in the non-PPA group, especially in the superonasal, nasosuperior, nasoinferior, inferotemporal, temporoinferior, and superotemporal directions (F = 4.059, 5.014, 2.830, 4.798, 5.892, 3.439; p < 0.05). Notably, the PVD showcased the highest value in temporal, followed by that in superior and inferior, and the lowest in the nasal. Concerning the fovea deep macular vascular density, FAZ area, and subfoveal choroidal thickness in the annular-PPA group, they were less than those of the rest of the groups (p < 0.05). CONCLUSION The retinal microvasculature differed significantly in HM according to the PPA morphology. In addition to PVD and SFCT, the PPA can also affect FAZ. Finally, we speculated that PVD demonstrated better predictability of myopic progression than MVD.
Collapse
Affiliation(s)
- Wenquan Tang
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China,
| | | | - YuLin Luo
- Department of Ophthalmology, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
20
|
Huang Y, Wang Y, Shen Y, Chen Z, Peng X, Zhang L, Han T, Zhou X. Defocus-induced spatial changes in choroidal thickness of chicks observed by wide-field swept-source OCT. Exp Eye Res 2023:109564. [PMID: 37419380 DOI: 10.1016/j.exer.2023.109564] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/07/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Choroid has been claimed to be of importance during ocular development. However, how the choroid responds spatially to different visual cues has not been fully understood. The aim of this study was to investigate defocus-induced spatial changes in choroidal thickness (ChT) in chicks. Eight 10-day-old chicks were fitted monocularly with -10 D or +10 D lenses (day 0), which were removed seven days later (day 7). The ChT was measured on days 0, 7, 14, and 21 using wide-field swept-source optical coherence tomography (SS-OCT) and analyzed with custom-made software. Comparisons of the ChT in the central (1 mm), paracentral (1-3 mm), and peripheral (3-6 mm) ring areas and the ChT in the superior, inferior, nasal, and temporal regions were conducted. Axial lengths and refractions were also evaluated. In the negative lens group, the global ChT of the treated eyes was significantly less than that of the fellow eyes on day 7 (interocular difference: 179.28 ± 25.94 μm, P = 0.001), but thicker on day 21 (interocular difference: 241.80 ± 57.13 μm, P = 0.024). These changes were more pronounced in the central choroid. The superior-temporal choroid changed more during induction but less during recovery. In the positive lens group, the ChT of both eyes increased on day 7 and decreased on day 21, with most changes occurring in the central region, too. The inferior-nasal choroid of the treated eyes changed more during induction but less during recovery. These results provide evidence for regionally asymmetric characteristics of the choroidal response to visual cues and insights into the underlying mechanisms of emmetropization.
Collapse
Affiliation(s)
- Yangyi Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Yuliang Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Yang Shen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Zhi Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Xiaoliao Peng
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Luoli Zhang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China
| | - Tian Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China.
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China; Shanghai Research Center of Ophthalmology and Optometry, China; Shanghai Engineering Research Center of Laser and Autostereoscopic 3D for Vision Care, China.
| |
Collapse
|
21
|
Liu C, Li M, Shen Y, Han X, Wei R, Wang Y, Xu S, Zhou X. Targeting choroidal vasculopathy via up-regulation of tRNA-derived fragment tRF-22 expression for controlling progression of myopia. J Transl Med 2023; 21:412. [PMID: 37355654 PMCID: PMC10290315 DOI: 10.1186/s12967-023-04274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Myopia has emerged as a major public health concern globally, which is tightly associated with scleral extracellular matrix (ECM) remodeling and choroidal vasculopathy. Choroidal vasculopathy has gradually been recognized as a critical trigger of myopic pathology. However, the precise mechanism controlling choroidal vasculopathy remains unclear. Transfer RNA-derived fragments (tRFs) are known as a novel class of small non-coding RNAs that plays important roles in several biological and pathological processes. In this study, we investigated the role of tRF-22-8BWS72092 (tRF-22) in choroidal vasculopathy and myopia progression. METHODS The tRF-22 expression pattern under myopia-related stresses was detected by qRT-PCR. MTT assays, EdU incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of tRF-22 in choroidal endothelial cell function in vitro. Isolectin B4 staining and choroidal sprouting assay ex vivo were conducted to detect the role of tRF-22 in choroidal vascular dysfunction in vivo. Immunofluorescent staining, western blot assays and ocular biometric parameters measurement were performed to examine whether altering tRF-22 expression in choroid affects scleral hypoxia and ECM remodeling and myopia progression in vivo. Bioinformatics analysis and luciferase activity assays were conducted to identify the downstream targets of tRF-22. RNA-sequencing combined with m6A-qPCR assays were used to identify the m6A modified targets of METTL3. Gain-of-function and Loss-of-function analysis were performed to reveal the mechanism of tRF-22/METTL3-mediated choroidal vascular dysfunction. RESULTS The results revealed that tRF-22 expression was significantly down-regulated in myopic choroid. tRF-22 overexpression alleviated choroidal vasculopathy and retarded the progression of myopia in vivo. tRF-22 regulated choroidal endothelial cell viability, proliferation, migration, and tube formation ability in vitro. Mechanistically, tRF-22 interacted with METTL3 and blocked m6A methylation of Axin1 and Arid1b mRNA transcripts, which led to increased expression of Axin1 and Arid1b. CONCLUSIONS Our study reveals that the intervention of choroidal vasculopathy via tRF-22-METTL3- Axin1/Arid1b axis is a promising strategy for the treatment of patients with myopic pathology.
Collapse
Affiliation(s)
- Chang Liu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Meiyan Li
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Yaming Shen
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, China
- The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Xiaoyan Han
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Ruoyan Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Yunzhe Wang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China
| | - Shanshan Xu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, 210029, China
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China.
- NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China.
- Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200031, China.
- Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, 200031, China.
| |
Collapse
|
22
|
Erdinest N, London N, Lavy I, Berkow D, Landau D, Morad Y, Levinger N. Peripheral Defocus and Myopia Management: A Mini-Review. KOREAN JOURNAL OF OPHTHALMOLOGY 2023; 37:70-81. [PMID: 36796348 PMCID: PMC9935061 DOI: 10.3341/kjo.2022.0125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/26/2022] [Indexed: 02/07/2023] Open
Abstract
Myopia is the most common refractive error in the world, and its' prevalence continually increases. The potential pathological and visual complications of progressive myopia have inspired researchers to study the sources of myopia, axial elongation, and explore modalities to arrest progression. Considerable attention has been given over the past few years to the myopia risk factor known as hyperopic peripheral blur, the focus of this review. The primary theories currently believed to be the cause of myopia, the parameters considered to contribute and influence the effect of peripheral blur, such as the surface retinal area or depth of blur will be discussed. The currently available optical devices designed to provide peripheral myopic defocus will be discussed, including bifocal and progressive addition ophthalmic lenses, peripheral defocus single vision ophthalmic lenses, orthokeratology lenses, and bifocal or multifocal center distance soft lenses, as well as their effectivity as mentioned in the literature to date.
Collapse
Affiliation(s)
- Nir Erdinest
- Department of Opthalmology, Hadassah-Hebrew University Medical Center, Jerusalem,
Israel
- The Myopia Center, Rishon LeZion,
Israel
| | | | - Itay Lavy
- Department of Opthalmology, Hadassah-Hebrew University Medical Center, Jerusalem,
Israel
| | | | - David Landau
- Department of Opthalmology, Hadassah-Hebrew University Medical Center, Jerusalem,
Israel
| | - Yair Morad
- The Myopia Center, Rishon LeZion,
Israel
- Department of Ophthalmology, Assaf Harofeh Medical Center, Zerifin,
Israel
| | - Nadav Levinger
- Department of Opthalmology, Hadassah-Hebrew University Medical Center, Jerusalem,
Israel
- Department of Ophthalmology, Enaim Refractive Surgery Center, Jerusalem,
Israel
| |
Collapse
|
23
|
Shi WQ, Wan T, Li B, Li T, Zhou XD. EFEMP1 is a potential biomarker of choroid thickness change in myopia. Front Neurosci 2023; 17:1144421. [PMID: 36891459 PMCID: PMC9987712 DOI: 10.3389/fnins.2023.1144421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Purpose To explore the possible molecular mechanism by which epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) regulates choroid thickness (CT) in the development of myopia. Methods In total, 131 subjects were divided into the emmetropia (EM) group, non-high myopia (non-HM) group and high myopia (HM) group. Their age, refraction, intraocular pressure, and other ocular biometric parameters were collected. A 6 × 6 mm area centered on the optic disc was scanned by coherent optical tomography angiography (OCTA) to measure CT, and the tear concentrations of EFEMP1 were quantified using enzyme-linked immunosorbent assay (ELISA) analysis. Twenty-two guinea pigs were divided into the control group and the form-deprivation myopia (FDM) group. The right eye of the guinea pig in the FDM group was covered for 4 weeks, and the diopter and axial length of the right eye of the guinea pig were measured before and after the treatment. After the measurement, the guinea pig was euthanized, and the eyeball was removed. Quantitative reverse transcription polymerase chain reaction, western blotting assays and immunohistochemistry were used to assess the expression of EFEMP1 in the choroid. Results There were significant differences in CT among the three groups (p < 0.001). CT was positively correlated with age in HM (r = -0.3613, p = 0.0021), but no significant correlation with SE (p > 0.05) was observed. Furthermore, there were increased levels of EFEMP1 in the tears of myopic patients. After 4 weeks of covering the right eye of the FDM guinea pigs, there was a significant increase in axial length and a decrease in diopter (p < 0.05). The mRNA and protein expression of EFEMP1 was significantly increased in the choroid. Conclusion Choroidal thickness was significantly thinner in myopic patients, and the expression level of EFEMP1 in the choroid increased during the development of FDM. Therefore, EFEMP1 may be involved in the regulation of choroidal thickness in myopia patients.
Collapse
Affiliation(s)
- Wen-Qing Shi
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Ting Wan
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Bing Li
- Central Laboratory, Jinshan Hospital of Fudan University, Shanghai, China
| | - Tao Li
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiao-Dong Zhou
- Department of Ophthalmology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
24
|
Mathis U, Feldkaemper M, Liu H, Schaeffel F. Studies on the interactions of retinal dopamine with choroidal thickness in the chicken. Graefes Arch Clin Exp Ophthalmol 2023; 261:409-425. [PMID: 36192457 PMCID: PMC9837001 DOI: 10.1007/s00417-022-05837-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/17/2022] [Accepted: 09/09/2022] [Indexed: 01/17/2023] Open
Abstract
PURPOSE Recently, an increasing number of studies relied on the assumption that visually induced changes in choroidal thickness can serve as a proxy to predict future axial eye growth. The retinal signals controlling choroidal thickness are, however, not well defined. We have studied the potential roles of dopamine, released from the retina, in the choroidal response in the chicken. METHODS Changes in retinal dopamine release and choroidal thickness changes were induced by intravitreal injections of either atropine (250 µg or 360 nMol), atropine combined with a dopamine antagonist, spiperone (500 µMol), or spiperone alone and were tracked by optical coherence tomography (OCT). To visually stimulate dopamine release, other chicks were exposed to flicker light of 1, 10, or 400 Hz (duty cycle 0.2) and choroidal thickness was tracked. In all experiments, dopamine and 3,4-Dihydroxyphenylacetic acid (DOPAC) were measured in vitreous, retina, and choroid by high-performance liquid chromatography with electrochemical detection (HLPC-ED). The distribution of the rate-limiting enzyme of dopamine synthesis, tyrosine hydroxylase (TH), neuronal nitric oxide synthase (nNOS), vascular endothelial growth factor (VEGF), and alpha2A adrenoreceptors (alpha2A-ADR) was studied in the choroid by immunofluorescence. RESULTS The choroid thickened strongly in atropine-injected eyes, less so in atropine + spiperone-injected eyes and became thinner over the day in spiperone alone-, vehicle-, or non-injected eyes. Flickering light at 20 lx, both 1 and 10 Hz, prevented diurnal choroidal thinning, compared to 400 Hz, and stimulated retinal dopamine release. Correlation analysis showed that the higher retinal dopamine levels or release, the thicker became the choroid. TH-, nNOS-, VEGF-, and alpha2A adrenoreceptor-positive nerve fibers were localized in the choroid around lacunae and in the walls of blood vessels with colocalization of TH and nNOS, and TH and VEGF. CONCLUSIONS Retinal DOPAC and dopamine levels were positively correlated with choroidal thickness. TH-positive nerve fibers in the choroid were closely associated with peptides known to play a role in myopia development. Findings are in line with the hypothesis that dopamine is related to retinal signals controlling choroidal thickness.
Collapse
Affiliation(s)
- Ute Mathis
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Marita Feldkaemper
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Hong Liu
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
- Institute for Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland.
- Zeiss Vision Lab, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
25
|
London N, Erdinest N, Lavy I, Berkow D, Landau D, Levinger N, Morad Y. Peripheral defocus as it relates to myopia progression: A mini-review. Taiwan J Ophthalmol 2023. [DOI: 10.4103/tjo.tjo-d-22-00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
26
|
Liu S, Chen T, Chen B, Liu Y, Lu X, Li J. Lrpap1 deficiency leads to myopia through TGF-β-induced apoptosis in zebrafish. Cell Commun Signal 2022; 20:162. [PMID: 36261846 PMCID: PMC9580148 DOI: 10.1186/s12964-022-00970-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/03/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Frameshift mutations in LRPAP1 are responsible for autosomal recessive high myopia in human beings but its underlying mechanism remains elusive. This study aims to investigate the effect of LRPAP1 defect on ocular refractive development and its involved mechanism. METHODS A lrpap1 mutant zebrafish line with homozygous frameshift mutation was generated by CRISPR/Cas9 technology and confirmed by Sanger sequencing. The ocular refractive phenotype was analyzed by calculating the relative refractive error (RRE) with vivo photography and histological analysis at different development stages, together with examining ocular structure change via transmission electron microscopy. Further, RNA sequencing and bioinformatics analysis were performed. The potentially involved signaling pathway as well as the interacted protein were investigated in vivo. RESULTS The lrpap1 homozygous mutant zebrafish line showed myopic phenotype. Specifically, the mutant lines showed larger eye axial length-to-body length in one-month old individuals and a myopic shift with an RRE that changed after two months. Collagen fibers became thinning and disordered in the sclera. Further, RNA sequencing and bioinformatics analysis indicated that apoptosis signaling was activated in mutant line; this was further confirmed by acridine orange and TUNEL staining. Moreover, the expression of TGF-β protein was elevated in the mutant lines. Finally, the treatment of wild-type embryos with a TGF-β agonist aggravated the degree of eyeball apoptosis; conversely, the use of a TGF-β inhibitor mitigated apoptosis in mutant embryos. CONCLUSION The study provides functional evidence of a link between lrpap1 and myopia, suggesting that lrpap1 deficiency could lead to myopia through TGF-β-induced apoptosis signaling. Video abstract.
Collapse
Affiliation(s)
- Shanshan Liu
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Chen
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Binghao Chen
- grid.459579.30000 0004 0625 057XDepartment of Orthopedics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yijun Liu
- grid.413107.0Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaohe Lu
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Li
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Wahyuningsih E, Wigid D, Dewi A, Moehariadi H, Sujuti H, Anandita N. The Effect of Citicoline on the Expression of Matrix Metalloproteinase-2 (MMP-2), Transforming Growth Factor-β1 (TGF-β1), and Ki-67, and on the Thickness of Scleral Tissue of Rat Myopia Model. Biomedicines 2022; 10:2600. [PMID: 36289864 PMCID: PMC9599282 DOI: 10.3390/biomedicines10102600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 12/20/2023] Open
Abstract
Citicoline, presumed to be involved in the dopaminergic pathway, might play a role as a candidate agent in controlling myopia. However, its study with respect to myopia is limited. The aim of this study is to demonstrate the effect of citicoline on the expression of MMP-2, TGF-β1, and Ki-67, and on the thickness of scleral tissue of a rat myopia model. Immunohistochemistry was performed to evaluate the expression of MMP-2, TGF-β1, and Ki-67 as the markers for fibroblast proliferation. Hematoxylin and eosin staining were used to evaluate scleral thickness. An electronic digital caliper was used to evaluate the axial length. The treatment group administered with 200 mg/kg BW/day had the lowest mean MMP-2 expression, axial elongation, and fibroblast proliferation, but it had the highest mean scleral thickness. The treatment group administered with 300 mg/kg BW/day had the highest mean TGF-β1 expression. Citicoline is able to decrease MMP-2 expression and fibroblast proliferation and increase TGF-β1 expression and scleral tissue thickness significantly in the scleral tissue of rat models for myopia.
Collapse
Affiliation(s)
- Eka Wahyuningsih
- Department of Ophthalmology, Faculty of Medicine, Universitas Brawijaya, Dr. Saiful Anwar General Hospital, Malang 65111, Indonesia
| | | | | | | | | | | |
Collapse
|
28
|
Chen CS, Hsu YA, Lin CH, Wang YC, Lin ES, Chang CY, Chen JJY, Wu MY, Lin HJ, Wan L. Fallopia Japonica and Prunella vulgaris inhibit myopia progression by suppressing AKT and NFκB mediated inflammatory reactions. BMC Complement Med Ther 2022; 22:271. [PMID: 36242032 PMCID: PMC9563826 DOI: 10.1186/s12906-022-03747-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/29/2022] [Indexed: 12/12/2022] Open
Abstract
Background The increased global incidence of myopia requires the establishment of therapeutic approaches. This study aimed to investigate the effect of Fallopia Japonica (FJ) and Prunella vulgaris (PV) extract on myopia caused by monocular form deprivation (MFD). Methods We used human retinal pigment epithelial cell to study the molecular mechanisms on how FJ extract (FJE) and PV extract (PVE) lowering the inflammation of the eye. The effect of FJE and PVE in MFD induced hamster model and explore the role of inflammation cytokines in myopia. Results FJE + PVE reduced IL-6, IL-8, and TNF-α expression in RPE cells. Furthermore, FJE and PVE inhibited inflammation by attenuating the phosphorylation of protein kinase B (AKT), and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) pathway. In addition, we report two resveratrol + ursolic acid compounds from FJ and PV and their inhibitory activities against IL-6, IL-8, and TNF-α expression levels in RPE cells treated with IL-6 and TNF-α. FJE, PVE, and FJE + PVE were applied to MFD hamsters and their axial length was measured after 21 days. The axial length showed statistically significant differences between phosphate-buffered saline- and FJE-, PVE-, and FJE + PVE-treated MFD eyes. FJE + PVE suppressed expressions of IL-6, IL-8, and TNF-α. They also inhibited myopia-related transforming growth factor-beta (TGF)-β1, matrix metalloproteinase (MMP)-2, and NF-κB expression while increasing type I collagen expression. Conclusions Overall, these results suggest that FJE + PVE may have a therapeutic effect on myopia and be used as a potential treatment option. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03747-2.
Collapse
Affiliation(s)
- Chih-Sheng Chen
- grid.252470.60000 0000 9263 9645Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan ,grid.252470.60000 0000 9263 9645Division of Chinese Medicine, Asia University Hospital, Taichung, Taiwan
| | - Yu-An Hsu
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Chia-Hung Lin
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan
| | - Yao-Chien Wang
- grid.414692.c0000 0004 0572 899XDepartment of Emergency Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan
| | - En-Shyh Lin
- grid.419772.e0000 0001 0576 506XDepartment of Beauty Science, National Taichung University of Science and Technology, Taichung, Taiwan
| | - Ching-Yao Chang
- grid.252470.60000 0000 9263 9645Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Jamie Jiin-Yi Chen
- grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Yen Wu
- grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Hui-Ju Lin
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.411508.90000 0004 0572 9415Eye Center, China Medical University Hospital, Taichung, Taiwan
| | - Lei Wan
- grid.254145.30000 0001 0083 6092School of Chinese Medicine, China Medical University, 91, Hsueh-Shih Road, Taichung, 40402 Taiwan ,grid.252470.60000 0000 9263 9645Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan ,grid.411508.90000 0004 0572 9415Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
29
|
Gerena Arévalo VA, Ruiz-Moreno JM. Choroidal Thickness in a Hyperopic Pediatric Population. Diagnostics (Basel) 2022; 12:diagnostics12102330. [PMID: 36292018 PMCID: PMC9600784 DOI: 10.3390/diagnostics12102330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/21/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
Abstract
Aims: To evaluate the choroidal thickness (CT) in hyperopic and emmetropic children using swept-source optical coherence tomography (SS-OCT). Methods: This was a prospective, cross-sectional comparative study. Macular choroidal thickness and axial length of 62 eyes from hyperopic pediatric patients were studied. CT was determined at nine different macular locations. The results were compared to 66 eyes of healthy pediatric patients. Results: Study groups were classified as a hyperopic group (SE ≥ 2D) and an emmetropic group (SE < 2D). The hyperopic group have shorter AL than the emmetropic group (p < 0.001). The mean CT is greater in the hyperopic group (p = 0.039), and there are no significant differences between CT and gender (p = 0.389). Study participants were also classified by age (2−5 years old and 6−18 years old), and we observe differences in CT, but these differences are only significant for the 6−18 years old group (p < 0.05). Conclusions: CT in hyperopic pediatric populations is statistically thicker than in healthy pediatric patients. AL and SE have statistically significant correlations with CT values, and those correlations are seen in children in the ocular slow-growing phase (6−18 years old), and not in the early years (2−5 years old).
Collapse
Affiliation(s)
- Vanessa Antonia Gerena Arévalo
- Department of Ophthalmology, Puerta de Hierro-Majadahonda University Hospital, 28222 Madrid, Spain
- Sanitas La Moraleja University Hospital, 28050 Madrid, Spain
- Correspondence:
| | - Jose Maria Ruiz-Moreno
- Department of Ophthalmology, Puerta de Hierro-Majadahonda University Hospital, 28222 Madrid, Spain
- Department of Ophthalmology, Castilla de la Mancha University, 13001 Ciudad Real, Spain
| |
Collapse
|
30
|
Zhang Y, Jeong H, Mori K, Ikeda SI, Shoda C, Miwa Y, Nakai A, Chen J, Ma Z, Jiang X, Torii H, Kubota Y, Negishi K, Kurihara T, Tsubota K. Vascular endothelial growth factor from retinal pigment epithelium is essential in choriocapillaris and axial length maintenance. PNAS NEXUS 2022; 1:pgac166. [PMID: 36714840 PMCID: PMC9802415 DOI: 10.1093/pnasnexus/pgac166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/16/2022] [Indexed: 06/18/2023]
Abstract
Myopia, which prevalence is rapidly increasing, causes visual impairment; however, the onset mechanism of pathological axial length (AL) elongation remains unclear. A highly vascularized choroid between the retinal pigment epithelium (RPE) and sclera not only maintains physiological activities, but also contributes to ocular development and growth regulation. Vascular endothelial growth factor (VEGF) secreted from the RPE to the choroid is essential for retinal function and maintenance of the choriocapillaris. Herein, we demonstrated that the loss of VEGF secreted from the RPE caused abnormal choriocapillaris development and AL elongation, with features similar to those of the lens-induced myopia (LIM) mouse model, whereas VEGF overexpression by knocking-out von Hippel-Lindau (VHL) specific to the RPE expands the choriocapillaris and shortens the AL. Additionally, LDL Receptor Related Protein 2 (LRP2) deletion in the RPE downregulated VEGF expression and leads to pathological AL elongation. Furthermore, high-myopia patients without choriocapillaris demonstrated longer ALs than did those with preserved choriocapillaris. These results suggest that physiological secretion of VEGF from the RPE is required for proper AL development by maintaining the choriocapillaris. The pinpoint application of VEGF to the choriocapillaris may become a potential intervention for the prevention and treatment of axial myopia progression.
Collapse
Affiliation(s)
- Yan Zhang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Heonuk Jeong
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kiwako Mori
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Shin-Ichi Ikeda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Chiho Shoda
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi City, Tokyo 173-8610, Japan
| | - Yukihiro Miwa
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Aichi Animal Eye Clinic, 3 Chome-17-3 Honjitori, Minami Ward, Nagoya, Aichi 457-0074, Japan
| | - Ayaka Nakai
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Nihon University School of Medicine, 30-1 Oyaguchikamicho, Itabashi City, Tokyo 173-8610, Japan
| | - Junhan Chen
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Ziyan Ma
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Xiaoyan Jiang
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Hidemasa Torii
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuno Negishi
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Toshihide Kurihara
- Laboratory of Photobiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
- Tsubota Laboratory Inc., 34 Shinanomachi, 304 Toshin Shinanomachi Ekimae Building, Shinjuku-ku, Tokyo 160-0016, Japan
| |
Collapse
|
31
|
Goto S, Muroy SE, Zhang Y, Saijo K, Kolora SRR, Zhu Q, Wildsoet CF. Gene Expression Signatures of Contact Lens-Induced Myopia in Guinea Pig Retinal Pigment Epithelium. Invest Ophthalmol Vis Sci 2022; 63:25. [PMID: 36006019 PMCID: PMC9424971 DOI: 10.1167/iovs.63.9.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Purpose To identify key retinal pigment epithelium (RPE) genes linked to the induction of myopia in guinea pigs. Methods To induce myopia, two-week-old pigmented guinea pigs (New Zealand strain, n = 5) wore −10 diopter (D) rigid gas-permeable contact lenses (CLs), for one day; fellow eyes were left without CLs and served as controls. Spherical equivalent refractive errors (SE) and axial length (AL) were measured at baseline and one day after initiation of CL wear. RNA sequencing was applied to RPE collected from both treated and fellow (control) eyes after one day of CL-wear to identify related gene expression changes. Additional RPE-RNA samples from treated and fellow eyes were subjected to quantitative real-time PCR (qRT-PCR) analysis for validation purposes. Results The CLs induced myopia. The change from baseline values in SE was significantly different (P = 0.016), whereas there was no significant difference in the change in AL (P = 0.10). RNA sequencing revealed significant interocular differences in the expression in RPE of 13 genes: eight genes were significantly upregulated in treated eyes relative to their fellows, and five genes, including bone morphogenetic protein 2 (Bmp2), were significantly downregulated. The latter result was also confirmed by qRT-PCR. Additional analysis of differentially expressed genes revealed significant enrichment for bone morphogenetic protein (BMP) and TGF-β signaling pathways. Conclusions The results of this RPE gene expression study provide further supporting evidence for an important role of BMP2 in eye growth regulation, here from a guinea pig myopia model.
Collapse
Affiliation(s)
- So Goto
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States.,Department of Ophthalmology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Ophthalmology, National Hospital Organization, Tokyo Medical Center, Meguro-ku, Tokyo, Japan
| | - Sandra E Muroy
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| | - Yan Zhang
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Kaoru Saijo
- Department of Molecular & Cell Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States
| | - Sree Rohit Raj Kolora
- Department of Integrative Biology, University of California, Berkeley, California, United States
| | - Qiurong Zhu
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States.,Department of Optometry and Visual Science, West China Hospital of Sichuan University, China
| | - Christine F Wildsoet
- Herbert Wertheim School Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
32
|
Swierkowska J, Karolak JA, Vishweswaraiah S, Mrugacz M, Radhakrishna U, Gajecka M. Decreased Levels of DNA Methylation in the PCDHA Gene Cluster as a Risk Factor for Early-Onset High Myopia in Young Children. Invest Ophthalmol Vis Sci 2022; 63:31. [PMID: 36036911 PMCID: PMC9434983 DOI: 10.1167/iovs.63.9.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose High myopia (HM), an eye disorder with at least –6.0 diopters refractive error, has a complex etiology with environmental, genetic, and likely epigenetic factors involved. To complement the DNA methylation assessment in children with HM, we analyzed genes that had significantly lower DNA methylation levels. Methods The DNA methylation pattern was studied based on the genome-wide methylation data of 18 Polish children with HM paired with 18 controls. Genes overlapping CG dinucleotides with decreased methylation level in HM cases were assessed by enrichment analyses. From those, genes with CG dinucleotides in promoter regions were further evaluated based on exome sequencing (ES) data of 16 patients with HM from unrelated Polish families, Sanger sequencing data of the studied children, and the RNA sequencing data of human retinal ARPE-19 cells. Results The CG dinucleotide with the most decreased methylation level in cases was identified in a promoter region of PCDHA10 that overlaps intronic regions of PCDHA1–9 of the PCDHA gene cluster in myopia 5q31 locus. Also, two single nucleotide variants, rs200661444, detected in our ES, and rs246073, previously found as associated with a refractive error in a genome-wide association study, were revealed within this gene cluster. Additionally, genes previously linked to ocular phenotypes, myopia-related traits, or loci, including ADAM20, ZFAND6, ETS1, ABHD13, SBSPON, SORBS2, LMOD3, ATXN1, and FARP2, were found to have decreased methylation. Conclusions Alterations in the methylation pattern of specific CG dinucleotides may be associated with early-onset HM, so this could be used to develop noninvasive biomarkers of HM in children and adolescents.
Collapse
Affiliation(s)
| | - Justyna A Karolak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Sangeetha Vishweswaraiah
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States
| | - Malgorzata Mrugacz
- Department of Ophthalmology and Eye Rehabilitation, Medical University of Bialystok, Bialystok, Poland
| | - Uppala Radhakrishna
- Department of Obstetrics and Gynecology, Oakland University William Beaumont School of Medicine, Royal Oak, Michigan, United States
| | - Marzena Gajecka
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland.,Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
33
|
Lou L, Ostrin LA. Effects of Monocular Light Deprivation on the Diurnal Rhythms in Retinal and Choroidal Thickness. Invest Ophthalmol Vis Sci 2022; 63:6. [PMID: 35816044 PMCID: PMC9284467 DOI: 10.1167/iovs.63.8.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To determine the effects of monocular light deprivation on diurnal rhythms in retinal and choroidal thickness. Methods Twenty participants, ages 22 to 45 years, underwent spectral domain optical coherence tomography imaging every three hours, from 8 AM to 8 PM, on two consecutive days. Participants wore an eye patch over the left eye starting at bedtime of day 1 until the end of the last measurement on day 2. Choroidal, total retinal, photoreceptor outer segment + retinal pigment epithelium (RPE), and photoreceptor inner segment thicknesses were determined. Results For both eyes, significant diurnal variations were observed in choroidal, total retinal, outer segment + RPE, and inner segment thickness (P < 0.001). For light-deprived eyes, choroid diurnal variation persisted, although the choroid was significantly thinner at 8 AM and 11 AM (P < 0.01) on day 2 compared to day 1. On the other hand, diurnal variations in retinal thickness were eliminated in the light-deprived eye on day 2 when the eye was patched (P > 0.05). Total retinal and inner segment thicknesses significantly decreased (P < 0.001) and outer segment + RPE thickness significantly increased (P < 0.05) on day 2 compared to day 1. Conclusions Blocking light exposure in one eye abolished the rhythms in retinal thickness, but not in choroidal thickness, of the deprived eye. Findings suggest that the rhythms in retinal thickness are, at least in part, driven by light exposure, whereas the rhythm in choroidal thickness is not impacted by short-term light deprivation.
Collapse
Affiliation(s)
- Linjiang Lou
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| |
Collapse
|
34
|
Feng J, Zhang S, Li W, Bai T, Liu Y, Chang X. Intermittent Fasting to the Eye: A New Dimension Involved in Physiological and Pathological Changes. Front Med (Lausanne) 2022; 9:867624. [PMID: 35685418 PMCID: PMC9171076 DOI: 10.3389/fmed.2022.867624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Intermittent fasting (IF) is gaining popularity as a therapeutic dietary strategy that regulates metabolism and can alter the development of metabolic disorders. An increasing amount of research has connected ocular diseases to IF and discovered that it has a direct and indirect effect on the eye’s physiological structure and pathological alterations. This article summarizes the progress of research on IF in regulating the physiological structures of the ocular vasculature, the anterior segment of the eye, the retina, and the choroid. We explored the therapeutic potential of IF for various common ocular diseases. In the future, a comprehensive study into the fundamental processes of IF will provide a direct and rigorous approach to eye disease prevention and therapy.
Collapse
Affiliation(s)
- Jiaqing Feng
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Shijiao Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Wenning Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Tianle Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yulin Liu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xingyu Chang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
35
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
36
|
The outcomes of primary pars plana vitrectomy alone as a first surgical procedure in pediatric rhegmatogenous retinal detachment. Int Ophthalmol 2022; 42:3469-3478. [DOI: 10.1007/s10792-022-02346-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
|
37
|
Yang Q, Tan QQ, Lan CJ, Lv BZ, Zhou GM, Zhong WQ, Gu ZM, Mao YM, Liao X. The Changes of KCNQ5 Expression and Potassium Microenvironment in the Retina of Myopic Guinea Pigs. Front Physiol 2021; 12:790580. [PMID: 35002772 PMCID: PMC8733613 DOI: 10.3389/fphys.2021.790580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 11/13/2022] Open
Abstract
KCNQ5 is suggestively associated with myopia, but its specific role in the myopic process has not been studied further. The aim of this study was to investigate the expression of potassium channel gene KCNQ5 and the changes of K+ microenvironment within the retina of form deprivation myopia (FDM) guinea pigs. A total of 60 guinea pigs were randomly divided into the normal control (NC) group, the self-control (SC) group, and the form-deprivation (FD) group for different treatments. Molecular assays and immunohistochemistry (IHC) were conducted to measure the expression and distribution of KCNQ5-related gene and protein in the retina. We determined the K+ concentration in the retina. In addition, the possible effects of form deprivation on potassium ionic currents and the pharmacological sensitivity of KCNQ5 activator Retigabine and inhibitor XE991 to the M-current in RPE cells were investigated using the patch-clamp technique. As a result, FD eyes exhibited more myopic refraction and longer AL. The mRNA and protein levels of KCNQ5 significantly decreased in the FD eyes, but the K+ concentration increased. In addition, the M-type K+ current [IK(M)] density decreased in FD RPE cells, and were activated or inhibited in a concentration-dependent manner due to the addition of Retigabine or XE991. Overall, KCNQ5 was significantly downregulated in the retina of FD guinea pigs, which may be associated with the increasing K+ concentration, decreasing IK(M) density, and elongating ocular axis. It suggested that KCNQ5 may play a role in the process of myopia, and the intervention of potassium channels may contribute to the prevention and control of myopia.
Collapse
Affiliation(s)
- Qin Yang
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
- The Translational Medicine Research Center and the Hepatobiliary Research Institute (North Sichuan Medical College), Nanchong, China
| | - Qing Qing Tan
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
| | - Chang Jun Lan
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
| | - Bo Zhen Lv
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Gui Mei Zhou
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
| | - Wei Qi Zhong
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
- The Translational Medicine Research Center and the Hepatobiliary Research Institute (North Sichuan Medical College), Nanchong, China
| | - Zhi Ming Gu
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
- The Translational Medicine Research Center and the Hepatobiliary Research Institute (North Sichuan Medical College), Nanchong, China
| | - Yu Mei Mao
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuan Liao
- Department of Ophthalmology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Ophthalmology and Optometry, North Sichuan Medical College, Nanchong, China
| |
Collapse
|
38
|
Zhou X, Zhang S, Yang F, Yang Y, Huang Q, Huang C, Qu J, Zhou X. Decreased Choroidal Blood Perfusion Induces Myopia in Guinea Pigs. Invest Ophthalmol Vis Sci 2021; 62:30. [PMID: 34967855 PMCID: PMC8740532 DOI: 10.1167/iovs.62.15.30] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The development of myopia in guinea pigs can be inhibited by attenuating scleral hypoxia by increasing choroidal blood perfusion (ChBP). In this study, we reduced ChBP through surgical and pharmacological methods to determine the effect on myopia development. We also determined whether ChBP was reduced by quinpirole, a drug that enhances form-deprivation myopia (FDM). Methods ChBP was reduced in the right eyes of guinea pigs via transection of the temporal ciliary arteries or daily injections of phenylephrine into the inferior peribulbar space for one week during normal ocular growth. Other guinea pigs were subjected to two weeks of monocular FDM—with facemasks, along with daily injections of quinpirole, a dopamine D2 receptor agonist, to enhance the FDM. Changes in refraction, axial length, ChBP, and choroidal thickness (ChT) were measured in both treated and fellow eyes of the treatment and control groups. Scleral hypoxia labeling with pimonidazole adducts and α-smooth muscle actin (α-SMA) protein were also measured. Results Surgical and pharmacological reduction of ChBP induced myopia development in the treated eyes. These treatments rendered the scleral hypoxia and increased scleral α-SMA expression. Furthermore, quinpirole injections, which increased the magnitude of myopia, augmented the FDM-associated reductions in ChBP and ChT and increased the levels of scleral hypoxia and α-SMA protein. Conclusions Decreased ChBP in guinea pigs leads to scleral hypoxia and scleral myofibroblast transdifferentiation with increased α-SMA expression, ultimately resulting in myopia development. In future clinical trials, ChBP reduction can serve as a potential biomarker for early detection of myopia development.
Collapse
Affiliation(s)
- Xuan Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Sen Zhang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Fan Yang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Yaozhen Yang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Qin Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Chengjie Huang
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China
| | - Jia Qu
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| | - Xiangtian Zhou
- School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.,State Key Laboratory of Optometry, Ophthalmology and Vision Science, Wenzhou, Zhejiang, China.,Research Unit of Myopia Basic Research and Clinical Prevention and Control, Chinese Academy of Medical Sciences (2019RU025), Wenzhou, Zhejiang, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China
| |
Collapse
|
39
|
Liu S, Chen H, Ma W, Zhong Y, Liang Y, Gu L, Lu X, Li J. Non-coding RNAs and related molecules associated with form-deprivation myopia in mice. J Cell Mol Med 2021; 26:186-194. [PMID: 34841657 PMCID: PMC8742199 DOI: 10.1111/jcmm.17071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/01/2021] [Accepted: 11/15/2021] [Indexed: 01/18/2023] Open
Abstract
The role of miRNAs and its regulatory mechanism in myopia are indeterminate. Our study aimed to investigate potential myopia‐associated non‐coding RNAs and related molecules by performing a comprehensive bioinformatic analysis of miRNA expression profile of mice with form‐deprivation myopia (FDM). Differentially expressed miRNAs in two raw microarray data sets (GSE58124 and GSE84220) from Gene Expression Omnibus (GEO) database were comprehensively analysed using GEO2R. Target genes were predicted using miRDB and enriched with Metascape online tool. Protein‐protein interaction (PPI) networks were constructed utilizing STRING and Cytoscape. Significant differentially expressed miRNAs were validated by real‐time polymerase chain reaction (qRT‐PCR) using RNA extracted from monocular FDM ocular tissues. As result, we identified three upregulated miRNAs (mmu‐miR‐1936, mmu‐miR‐338‐5p, and mmu‐miR‐673‐3p) significantly associated with myopia in the two microarray data sets (p < 0.05 and |Log (Fold Change) |>1). GO functional analysis suggested these three miRNAs were targeted in genes mostly enriched in morphogenesis and developmental growth of retinal tissues. Enrichment analysis revealed top eight transcription factors, including PAX6 and Smad3, related to myopia. Ten hub genes, including Rbx1, Fbxl3, Fbxo27, Fbxl7, Fbxo4, Cul3, Cul2, Klhl5, Fbxl16 and Klhl42, associated with ubiquitin conjugation were identified. qRT‐PCR confirmed the increased expression of mmu‐miR‐1936 and mmu‐miR‐338‐5p (p < 0.05), but no statistical difference was observed in mmu‐miR‐673‐3p expression in myopic retinas. Our findings indicated mmu‐miR‐1936, mmu‐miR‐338‐5p and mmu‐miR‐673‐3p upregulation may be associated with myopia development via post‐transcriptional gene regulation, and identified potential molecules that could be further explored in future studies of the mechanism in myopia.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Huijie Chen
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenbei Ma
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanyan Zhong
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yingying Liang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lishan Gu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaohe Lu
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Li
- Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Liu Y, Wang L, Xu Y, Pang Z, Mu G. The influence of the choroid on the onset and development of myopia: from perspectives of choroidal thickness and blood flow. Acta Ophthalmol 2021; 99:730-738. [PMID: 33550704 DOI: 10.1111/aos.14773] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
Myopia is the most common type of refractive errors characterized by excessive elongation of the ocular globe. With the increasing prevalence of myopia, improved knowledge of factors involved in myopia development is of particular importance. There are growing evidence suggesting that the choroid plays an important role in the regulation of eye growth and the development of myopia. Studies have demonstrated that thinning choroid is a structural feature of myopia, with a negative correlation between choroidal thickness and axial length, suggesting that the change in choroidal thickness may be a predictive biomarker for long-term changes in ocular elongation. Given the fact that the choroid is primarily a vascular structure capable of rapidly changing blood flow, variations of choroidal thickness might be primarily caused by changes in choroidal blood flow. Considering that hypoxia is associated with myopia and choroidal blood flow is the main source of oxygen and nourishment supply, apart from the effect on myopia possibly by changing choroidal thickness, decreasing choroidal blood flow may contribute to scleral ischaemia and hypoxia, resulting in alterations in the scleral structure and thus leading to myopia. This review aims to provide an overview of recent work exploring the influence of the choroid on myopia from perspectives of choroidal thickness and blood flow, which may present new predictive indicators for the onset of myopia and new targets for the development of novel therapeutic approaches for myopia.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Ophthalmology Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University Jinan China
| | - Lijun Wang
- Department of Ophthalmology Binzhou Medical University Hospital Binzhou China
| | - Yanyun Xu
- Department of Ophthalmology Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital Jinan China
| | - Zuoxiang Pang
- Department of Ophthalmology Weifang People's Hospital Weifang China
| | - Guoying Mu
- Department of Ophthalmology Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University Jinan China
| |
Collapse
|
41
|
Wang J, Ye X, She X, Xu J, Chen Y, Tao J, Ye X, Shen L. Choroidal remodeling distribution pattern in the macular region in Chinese young patients with myopia. BMC Ophthalmol 2021; 21:369. [PMID: 34663240 PMCID: PMC8524998 DOI: 10.1186/s12886-021-02139-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
Background The pathogenesis of myopia has been found to be associated with the blood supply of the choroid. This study aimed to determine the relationship between the distribution pattern of choroidal remodeling and the degree of myopia in young patients. Methods Young patients (age < 18 years) with the spherical equivalent of less than − 12 diopters (D) were included. Spectral-domain optical coherence tomography (SD-OCT) with enhanced depth imaging (EDI) modality was used to measure the choroidal thickness (CT) and choroidal vascularity index (CVI) in the macular regions. CVI was calculated as the proportion of luminal area to choroidal area and was measured within 1 mm and 3 mm nasal (N1 and N3), temporal (T1 and T3), superior (S1 and S3), and inferior (I1 and I3) to the foveal center. CVI was compared across different ages (i.e., 5 ~ 9 years, 10 ~ 13 years, and 14 ~ 18 years), axial lengths (ALs) (i.e., 21.00 ~ 25.00 mm and 25.01 ~ 29.00 mm), and spherical equivalents (SEs) (i.e., SE > -0.5D, − 0.5 ~ − 3.0D, − 3.01 ~ − 6.0D, and < − 6.0D). Linear regression analysis was applied to assess the association between independent (i.e., age, AL, SE, and intraocular pressure) and dependent variables (i.e., CVI of different regions). Results One hundred sixty-four eyes from 85 volunteers were included. The mean CT in the central foveal was 269.87 ± 63.32 μm (93.00 μm to 443.00 μm). The mean subfoveal-CVI was 67.66 ± 2.40% (57.84 to 79.60%). Multiple linear regression results revealed significant correlations between SE and T1-CVI (p < 0.05, r2 = 0.082, β = 0.194), N1-CVI (p < 0.05, r2 = 0.039, β = 0.212). Simple linear regression results revealed that T1-CVI (p < 0.05, r2 = 0.09) and T3-CVI (p < 0.05, r2 = 0.05) were negatively correlated with SE; N1-CVI (p < 0.05, r2 = 0.05) and N3-CVI (p < 0.05, r2 = 0.04) were negatively correlated with SE. Conclusions CVI in the horizontal meridian underwent the largest change as myopia worsened. Temporal and nasal CVIs within the r = 1 mm, and r = 3 mm subfoveal range were positively associated with the degree of myopia in young patients. The CVI value may be used to assess the vascular status of the choroid and be a potential marker of myopic progression.
Collapse
Affiliation(s)
- Jun Wang
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Xin Ye
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Xiangjun She
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Jiahao Xu
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Yiqi Chen
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Jiwei Tao
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Xinjie Ye
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, China
| | - Lijun Shen
- School of Ophthalmology and Eye Hospital, Wenzhou Medical University, 270 West Xueyuan Road, Wenzhou, Zhejiang, China.
| |
Collapse
|
42
|
Kalatzis V, Roux AF, Meunier I. Molecular Therapy for Choroideremia: Pre-clinical and Clinical Progress to Date. Mol Diagn Ther 2021; 25:661-675. [PMID: 34661884 DOI: 10.1007/s40291-021-00558-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 12/01/2022]
Abstract
Choroideremia is an inherited retinal disease characterised by a degeneration of the light-sensing photoreceptors, supporting retinal pigment epithelium and underlying choroid. Patients present with the same symptoms as those with classic rod-cone dystrophy: (1) night blindness early in life; (2) progressive peripheral visual field loss, and (3) central vision decline with a slow progression to legal blindness. Choroideremia is monogenic and caused by mutations in CHM. Eight clinical trials (three phase 1/2, four phase 2, and one phase 3) have started (four of which are already finished) to evaluate the therapeutic efficacy of gene supplementation mediated by subretinal delivery of an adeno-associated virus serotype 2 (AAV2/2) vector expressing CHM. Furthermore, one phase 1 clinical trial has been initiated to evaluate the efficiency of a novel AAV variant to deliver CHM to the outer retina following intravitreal delivery. Lastly, a non-viral-mediated CHM replacement strategy is currently under development, which could lead to a future clinical trial. Here, we summarise the rationale behind these various studies, as well as any results published to date. The diversity of these trials currently places choroideremia at the forefront of the retinal gene therapy field. As a consequence, the trial outcomes, regardless of the results, have the potential to change the landscape of gene supplementation for inherited retinal diseases.
Collapse
Affiliation(s)
- Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.
| | - Anne-Françoise Roux
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,Molecular Genetics Laboratory, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier, Univ Montpellier, Inserm U1298, Hôpital St Eloi, 80 Avenue Augustin Fliche, 34091, Montpellier, France.,National Reference Centre for Inherited Sensory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France
| |
Collapse
|
43
|
Xu S, Hu Y, Cui D, Zhao F, Jiang J, Feng Z, Li C, Li Z, Yang X. Association between the posterior ocular contour pattern and progression of myopia in children: A prospective study based on OCT imaging. Ophthalmic Physiol Opt 2021; 41:1087-1096. [PMID: 34382246 DOI: 10.1111/opo.12850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE This study aims to reveal the relationship between the posterior ocular contour and the subsequent progression of myopia in children. METHODS Children aged 8-12 years with myopia received baseline measurements and were instructed to wear their glasses every day and return for a follow-up visit after one year. Axial length and other ocular parameters were measured using a noncontact biometer. The contour of the posterior eye was calculated and analysed based on images from spectral domain optical coherence tomography (SD-OCT). Univariate and multivariate linear regression models were created to analyse the relationship between the contour of the posterior eye and the progression of myopia. RESULTS Baseline posterior ocular contour measurements correlated with baseline axial length and spherical equivalent refraction (SER) (all p < 0.05). Eyes that were more myopic tended to have a more prolate posterior ocular contour. Although the baseline contour of the retinal pigment epithelium (RPE) and chorioscleral interface (CSI) showed no significant relationship with the progression of myopia (all p > 0.05), interestingly, when the baseline contour of the RPE was more prolate than that of the CSI, the axial length increased during the following year (R2 = 0.62; p < 0.01). The multivariate model, when adjusted for other variables, further validated the independent role of this variable. CONCLUSIONS The difference between the RPE and CSI contours correlated with the subsequent progression of myopia in children. This finding can help inform clinicians regarding the management of children at the onset of myopia and potentially provide an avenue for experimental research on the mechanism of myopia development.
Collapse
Affiliation(s)
- Shengsong Xu
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Yin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Dongmei Cui
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Feng Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Jinyun Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhibin Feng
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Cong Li
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Zhouyue Li
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| | - Xiao Yang
- State Key Laboratory of Ophthalmology, Zhongshan Opthalmic Center, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
44
|
The impact of vascular risk factors on the thickness and volume of the choroid in AMD patients. Sci Rep 2021; 11:15106. [PMID: 34302055 PMCID: PMC8302717 DOI: 10.1038/s41598-021-94676-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/29/2021] [Indexed: 11/08/2022] Open
Abstract
Disturbances in choroidal microcirculation may lead to the onset and progression of age-related macular degeneration (AMD). We aimed to assess changes in the choroidal volume and thickness in the macular region in AMD eyes and to investigate whether coexisting vascular risk factors alter choroidal status. We enrolled 354 AMD patients (175 dry, 179 wet AMD) and 121 healthy controls. All participants underwent a complete ophthalmologic examination and assessment of choroidal thickness and volume. A multivariate analysis adjusted for age, sex, and smoking status revealed that wet AMD was an independent factor associated with higher average thickness of the central ring area (ATC) and average volume of the central ring area (AVC) and lower choroidal vascularity index (CVI) compared to controls (β = + 0.18, p = 0.0007, β = + 0.18, p = 0.0008, respectively) and to dry AMD (β = + 0.17, p = 0.00003 for both ATC and AVC and β = - 0.30 p < 0.0001 for CVI). ATC, AVC and average volume (AV) were lower in AMD patients with hypertension and ischaemic heart disease (IHD). The duration of hypertension was inversely correlated with ATC, AVC and AV (Rs = - 0.13, p < 0.05; Rs = - 0.12; p < 0.05, Rs = - 0.12; p < 0.05, respectively) while IHD duration negatively correlated with AV (Rs = - 0.15, p < 0.05). No such associations were observed in the control group. Our findings show that the choroidal vascular system in eyes with AMD is much more susceptible to damage in the presence than in the absence of systemic vascular disease.
Collapse
|
45
|
Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model. Curr Issues Mol Biol 2021; 43:716-727. [PMID: 34287272 PMCID: PMC8929083 DOI: 10.3390/cimb43020052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022] Open
Abstract
Resveratrol is a key component of red wine and other grape products. Recent studies have characterized resveratrol as a polyphenol, and shown its beneficial effects on cancer, metabolism, and infection. This study aimed to obtain insights into the biological effects of resveratrol on myopia. To this end, we examined its anti-inflammatory influence on human retinal pigment epithelium cells and in a monocular form deprivation (MFD)-induced animal model of myopia. In MFD-induced myopia, resveratrol increased collagen I level and reduced the expression levels of matrix metalloproteinase (MMP)2, transforming growth factor (TGF)-β, and nuclear factor (NF)-κB expression levels. It also suppressed the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Resveratrol exhibited no significant cytotoxicity in ARPE-19 cells. Downregulation of inflammatory cytokine production, and inhibition of AKT, c-Raf, Stat3, and NFκB phosphorylation were observed in ARPE-19 cells that were treated with resveratrol. In conclusion, the findings suggest that resveratrol inhibits inflammatory effects by blocking the relevant signaling pathways, to ameliorate myopia development. This may make it a natural candidate for drug development for myopia.
Collapse
|
46
|
Li D, Liu C, Sun YN, Zhu CY, Xu SS, Shan K, Zhang SJ, Yan B, Lu Y. Targeting choroidal vascular dysfunction via inhibition of circRNA-FoxO1 for prevention and management of myopic pathology. Mol Ther 2021; 29:2268-2280. [PMID: 33647458 PMCID: PMC8261076 DOI: 10.1016/j.ymthe.2021.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 12/30/2022] Open
Abstract
Myopia has become a global public health problem due to high prevalence. Although the etiological factors of myopia have been gradually recognized, the underlying mechanism remains largely elusive. Choroidal vascular dysfunction is recognized as a critical vision-threatening complication in myopia. Circular RNAs (circRNAs) are shown as the critical regulators in many biological processes and human diseases. In this study, we investigated the role of circRNAs in choroidal vascular dysfunction in myopia. The level of circFoxO1 was significantly upregulated in myopic choroid. circFoxO1 silencing suppressed choroidal endothelial cell viability, proliferation, migration, and tube formation in vitro and alleviated choroidal vascular dysfunction in vivo and ex vivo. circFoxO1 silencing retarded the progression of myopia as shown by reduced extracellular matrix remodeling and improved refractive error and axial elongation. Mechanistically, circFoxO1 acted as the sponge of miR-145 to sequester and inhibit miR-145 activity, thereby inducing VEGFA or ANGPT2 expression. miR-145 could mimic the effects of circFoxO1 silencing on choroidal endothelial phenotypes. Collectively, intervention of choroidal vascular dysfunction via regulating circFoxO1 level is a potential strategy for the prevention and management of myopia.
Collapse
Affiliation(s)
- Dan Li
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Chang Liu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Ya-Nan Sun
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Chuan-Yan Zhu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Shan-Shan Xu
- The Affiliated Eye Hospital, Nanjing Medical University, Nanjing, China; The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, China
| | - Kun Shan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Shu-Jie Zhang
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China
| | - Biao Yan
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.
| | - Yi Lu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China; NHC Key Laboratory of Myopia (Fudan University), Key Laboratory of Myopia, Chinese Academy of Medical Sciences, and Shanghai Key Laboratory of Visual Impairment and Restoration (Fudan University), Shanghai, China.
| |
Collapse
|
47
|
Diacerein Inhibits Myopia Progression through Lowering Inflammation in Retinal Pigment Epithelial Cell. Mediators Inflamm 2021; 2021:6660640. [PMID: 34285659 PMCID: PMC8275387 DOI: 10.1155/2021/6660640] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/22/2021] [Accepted: 05/31/2021] [Indexed: 11/18/2022] Open
Abstract
Myopia is a highly prevalent refractive disorder. We investigated the effect of diacerein on monocular form deprivation (MFD) in hamsters as a possible therapeutic intervention. Diacerein is an anthraquinone derivative drug whose active metabolite is rhein. Diacerein or atropine was applied to the MFD hamsters, and their refractive error and axial length were measured after 21 days. The refractive error (control: −0.91 ± 0.023, atropine: −0.3 ± 0.08, and diacerein: −0.27 ± 0.07 D) and axial length (control: 0.401 ± 0.017, atropine: 0.326 ± 0.017, and diacerein: 0.334 ± 0.016 mm) showed statistically significant differences between control, atropine-treated, and diacerein-treated MFD eyes. Furthermore, we determined the level of transforming growth factor-beta- (TGF-) β1, matrix metalloproteinase- (MMP-) 2, type I collagen, interleukin- (IL-) 6, IL-8, and monocyte chemoattractant protein- (MCP-) 1 in the retina. Atropine and diacerein suppressed levels of the myopia-related TGF-β1 and MMP-2 while increasing type I collagen expression. They also inhibited the interleukin IL-6, IL-8, and MCP-1 levels. Diacerein reduced the IL-6, IL-8, and MCP-1 expression in ARPE-19 cells. Furthermore, diacerein inhibited inflammation by attenuating the phosphorylation of protein kinase B (AKT) and nuclear factor kappa-light-chain-enhancer of activated B (NF-κB) pathway. This suggests that diacerein has a therapeutic effect on myopia and is a potential treatment option.
Collapse
|
48
|
Riddell N, Murphy MJ, Crewther SG. Electroretinography and Gene Expression Measures Implicate Phototransduction and Metabolic Shifts in Chick Myopia and Hyperopia Models. Life (Basel) 2021; 11:life11060501. [PMID: 34072440 PMCID: PMC8228081 DOI: 10.3390/life11060501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/26/2022] Open
Abstract
The Retinal Ion-Driven Fluid Efflux (RIDE) model theorizes that phototransduction-driven changes in trans-retinal ion and fluid transport underlie the development of myopia (short-sightedness). In support of this model, previous functional studies have identified the attenuation of outer retinal contributions to the global flash electroretinogram (gfERG) following weeks of myopia induction in chicks, while discovery-driven transcriptome studies have identified changes to the expression of ATP-driven ion transport and mitochondrial metabolism genes in the retina/RPE/choroid at the mid- to late-induction time-points. Less is known about the early time-points despite biometric analyses demonstrating changes in eye growth by 3 h in the chick lens defocus model. Thus, the present study compared gfERG and transcriptome profiles between 3 h and 3 days of negative lens-induced myopia and positive lens-induced hyperopia in chicks. Photoreceptor (a-wave and d-wave) and bipolar (b-wave and late-stage d-wave) cell responses were suppressed following negative lens-wear, particularly at the 3–4 h and 3-day time-points when active shifts in the rate of ocular growth were expected. Transcriptome measures revealed the up-regulation of oxidative phosphorylation genes following 6 h of negative lens-wear, concordant with previous reports at 2 days in this model. Signal transduction pathways, with core genes involved in glutamate and G-protein coupled receptor signalling, were down-regulated at 6 h. These findings contribute to a growing body of evidence for the dysregulation of phototransduction and mitochondrial metabolism in animal models of myopia.
Collapse
|
49
|
Li Y, Jiang J, Yang J, Xiao L, Hua Q, Zou Y. PI3K/AKT/mTOR signaling participates in insulin-mediated regulation of pathological myopia-related factors in retinal pigment epithelial cells. BMC Ophthalmol 2021; 21:218. [PMID: 34001063 PMCID: PMC8127189 DOI: 10.1186/s12886-021-01946-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/13/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Insulin positively correlates with the length of the eye axis and is increased in the vitreous and serum of patients with pathological myopia (PM). How insulin influences the physiological process of retinal pigment epithelial (RPE) cells in PM remains unclear. This study aimed to explore the effect of insulin on the ultrastructure and function of RPE cells and the role of PI3K/AKT/mTOR signaling involved in the development of PM. METHODS The ARPE-19 cells were treated with different concentrations of insulin to analyze the cell morphology, cell viability, the protein level of insulin receptor β, and the mRNA and protein levels of and PM-related factors (TIMP-2, MMP-2, bFGF, and IGF-1). The ultrastructure of APRE-19 cells was also observed after insulin treatment. Besides, the PI3K/AKT/mTOR signaling was studied with or without the PI3K inhibitor LY294002 in ARPE-19 cells. RESULTS Insulin enhanced the cell viability of ARPE-19 cells and caused the endoplasmic reticulum to expand and vesiculate, suggesting increased secretion of growth factors and degeneration in ARPE-19 cells. Furthermore, the insulin receptor β was stimulated with insulin treatment, subsequently, the phosphorylation of AKT and mTOR was positively activated, which was adversely suppressed in the presence of LY294002. The secretion of TIMP-2 and bFGF was significantly decreased, and the secretion of MMP-2 and IGF-1 was highly elevated with insulin treatment depending on the concentration in ARPE-19 cells. Furthermore, the effect of insulin on PM-related proteins was restored with the addition of LY294002. CONCLUSIONS Our results indicated that insulin regulated the secretion of PM-related factors via the PI3K/AKT/mTOR signaling pathway in retinal pigment epithelial cells, and thus probably promoted the development of PM through transducing regulation signals from retina to choroid and sclera.
Collapse
Affiliation(s)
- Yunqin Li
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China
| | - Junliang Jiang
- Orthopedics and Traumatology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, 650021, Kunming, Yunnan Province, China
| | - Jin Yang
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China
| | - Libo Xiao
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China
| | - Qiyun Hua
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China
| | - Yue Zou
- Ophthalmology Department, 2nd People's Hospital of Yunnan Province, The Affiliated Hospital of Yunnan University, No. 176 Qingnian Road, Wuhua District, Yunnan Province, 650021, Kunming, China.
| |
Collapse
|
50
|
Smith EL, Hung LF, She Z, Beach K, Ostrin LA, Jong M. Topically instilled caffeine selectively alters emmetropizing responses in infant rhesus monkeys. Exp Eye Res 2021; 203:108438. [PMID: 33428866 DOI: 10.1016/j.exer.2021.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Oral administration of the adenosine receptor (ADOR) antagonist, 7-methylxanthine (7-MX), reduces both form-deprivation and lens-induced myopia in mammalian animal models. We investigated whether topically instilled caffeine, another non-selective ADOR antagonist, retards vision-induced axial elongation in monkeys. Beginning at 24 days of age, a 1.4% caffeine solution was instilled in both eyes of 14 rhesus monkeys twice each day until the age of 135 days. Concurrent with the caffeine regimen, the monkeys were fitted with helmets that held either -3 D (-3D/pl caffeine, n = 8) or +3 D spectacle lenses (+3D/pl caffeine, n = 6) in front of their lens-treated eyes and zero-powered lenses in front of their fellow-control eyes. Refractive errors and ocular dimensions were measured at baseline and periodically throughout the lens-rearing period. Control data were obtained from 8 vehicle-treated animals also reared with monocular -3 D spectacles (-3D/pl vehicle). In addition, historical comparison data were available for otherwise untreated lens-reared controls (-3D/pl controls, n = 20; +3D/pl controls, n = 9) and 41 normal monkeys. The vehicle controls and the untreated lens-reared controls consistently developed compensating axial anisometropias (-3D/pl vehicle = -1.44 ± 1.04 D; -3D/pl controls = -1.85 ± 1.20 D; +3D/pl controls = +1.92 ± 0.56 D). The caffeine regime did not interfere with hyperopic compensation in response to +3 D of anisometropia (+1.93 ± 0.82 D), however, it reduced the likelihood that animals would compensate for -3 D of anisometropia (+0.58 ± 1.82 D). The caffeine regimen also promoted hyperopic shifts in both the lens-treated and fellow-control eyes; 26 of the 28 caffeine-treated eyes became more hyperopic than the median normal monkey (mean (±SD) relative hyperopia = +2.27 ± 1.65 D; range = +0.31 to +6.37 D). The effects of topical caffeine on refractive development, which were qualitatively similar to those produced by oral administration of 7-MX, indicate that ADOR antagonists have potential in treatment strategies for preventing and/or reducing myopia progression.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, Australia.
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, TX, United States
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia; Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australia
| |
Collapse
|