1
|
Ness A, Aiken J, McKenzie D. Sheep scrapie and deer rabies in England prior to 1800. Prion 2023; 17:7-15. [PMID: 36654484 PMCID: PMC9858414 DOI: 10.1080/19336896.2023.2166749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Eighteenth-century England witnessed the emergence of two neurological diseases in animals. Scrapie, a transmissible spongiform encephalopathy, is a fatal neurodegenerative disease of sheep and goats that appears in classical and atypical forms. Reports of classical scrapie in continental Europe with described symptoms date back to 1750 in what is now western Poland. However, two major outbreaks of scrapie appeared in England prior to the 1800s. References to a sheep disease with a resemblance to scrapie first appear in Southwestern England between 1693 and 1722 and in the East Midlands between 1693 and 1706. Concurrent with the descriptions of scrapie in sheep was a neurological disease of deer first appearing in the East of England. Two 18th-century writers remarked on the symptomatic similarities between the sheep and deer neurological diseases. Multiple outbreaks of the unknown deer disease existing as early as 1772 are examined and are identified as rabies.
Collapse
Affiliation(s)
- Anthony Ness
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada,Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada,CONTACT Debbie McKenzie Centre for Prion and Protein Folding Diseases, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Cembran A, Fernandez-Funez P. Intrinsic determinants of prion protein neurotoxicity in Drosophila: from sequence to (dys)function. Front Mol Neurosci 2023; 16:1231079. [PMID: 37645703 PMCID: PMC10461008 DOI: 10.3389/fnmol.2023.1231079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Prion diseases are fatal brain disorders characterized by deposition of insoluble isoforms of the prion protein (PrP). The normal and pathogenic structures of PrP are relatively well known after decades of studies. Yet our current understanding of the intrinsic determinants regulating PrP misfolding are largely missing. A 3D subdomain of PrP comprising the β2-α2 loop and helix 3 contains high sequence and structural variability among animals and has been proposed as a key domain regulating PrP misfolding. We combined in vivo work in Drosophila with molecular dynamics (MD) simulations, which provide additional insight to assess the impact of candidate substitutions in PrP from conformational dynamics. MD simulations revealed that in human PrP WT the β2-α2 loop explores multiple β-turn conformations, whereas the Y225A (rabbit PrP-like) substitution strongly favors a 310-turn conformation, a short right-handed helix. This shift in conformational diversity correlates with lower neurotoxicity in flies. We have identified additional conformational features and candidate amino acids regulating the high toxicity of human PrP and propose a new strategy for testing candidate modifiers first in MD simulations followed by functional experiments in flies. In this review we expand on these new results to provide additional insight into the structural and functional biology of PrP through the prism of the conformational dynamics of a 3D domain in the C-terminus. We propose that the conformational dynamics of this domain is a sensitive measure of the propensity of PrP to misfold and cause toxicity. This provides renewed opportunities to identify the intrinsic determinants of PrP misfolding through the contribution of key amino acids to different conformational states by MD simulations followed by experimental validation in transgenic flies.
Collapse
Affiliation(s)
- Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
3
|
Myers RR, John A, Zhang W, Zou WQ, Cembran A, Fernandez-Funez P. Y225A induces long-range conformational changes in human prion protein that are protective in Drosophila. J Biol Chem 2023; 299:104881. [PMID: 37269948 PMCID: PMC10339063 DOI: 10.1016/j.jbc.2023.104881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/05/2023] Open
Abstract
Prion protein (PrP) misfolding is the key trigger in the devastating prion diseases. Yet the sequence and structural determinants of PrP conformation and toxicity are not known in detail. Here, we describe the impact of replacing Y225 in human PrP with A225 from rabbit PrP, an animal highly resistant to prion diseases. We first examined human PrP-Y225A by molecular dynamics simulations. We next introduced human PrP in Drosophila and compared the toxicity of human PrP-WT and Y225A in the eye and in brain neurons. Y225A stabilizes the β2-α2 loop into a 310-helix from six different conformations identified in WT and lowers hydrophobic exposure. Transgenic flies expressing PrP-Y225A exhibit less toxicity in the eye and in brain neurons and less accumulation of insoluble PrP. Overall, we determined that Y225A lowers toxicity in Drosophila assays by promoting a structured loop conformation that increases the stability of the globular domain. These findings are significant because they shed light on the key role of distal α-helix 3 on the dynamics of the loop and the entire globular domain.
Collapse
Affiliation(s)
- Ryan R Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, USA
| | - Aliciarose John
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Weiguanliu Zhang
- Department of Pathology and Neurology, National Prion Disease Pathology Surveillance Center, National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Wen-Quan Zou
- Department of Pathology and Neurology, National Prion Disease Pathology Surveillance Center, National Center for Regenerative Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, Minnesota, USA.
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, USA.
| |
Collapse
|
4
|
Richt JA, Haley N. Transmissible Spongiform Encephalopathies. Vet Microbiol 2022. [DOI: 10.1002/9781119650836.ch66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
5
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
6
|
Myers RR, Sanchez-Garcia J, Leving DC, Melvin RG, Fernandez-Funez P. New Drosophila models to uncover the intrinsic and extrinsic factors that mediate the toxicity of the human prion protein. Dis Model Mech 2022; 15:dmm049184. [PMID: 35142350 PMCID: PMC9093039 DOI: 10.1242/dmm.049184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 02/01/2022] [Indexed: 11/20/2022] Open
Abstract
Misfolding of the prion protein (PrP) is responsible for devastating neurological disorders in humans and other mammals. An unresolved problem in the field is unraveling the mechanisms governing PrP conformational dynamics, misfolding, and the cellular mechanism leading to neurodegeneration. The variable susceptibility of mammals to prion diseases is a natural resource that can be exploited to understand the conformational dynamics of PrP. Here we present a new fly model expressing human PrP with new, robust phenotypes in brain neurons and the eye. By using comparable attP2 insertions, we demonstrated the heightened toxicity of human PrP compared to rodent PrP along with a specific interaction with the amyloid-β peptide. By using this new model, we started to uncover the intrinsic (sequence/structure) and extrinsic (interactions) factors regulating PrP toxicity. We described PERK (officially known as EIF2AK3 in humans) and activating transcription factor 4 (ATF4) as key in the cellular mechanism mediating the toxicity of human PrP and uncover a key new protective activity for 4E-BP (officially known as Thor in Drosophila and EIF4EBP2 in humans), an ATF4 transcriptional target. Lastly, mutations in human PrP (N159D, D167S, N174S) showed partial protective activity, revealing its high propensity to misfold into toxic conformations.
Collapse
Affiliation(s)
- Ryan R. Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | | | - Daniel C. Leving
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Richard G. Melvin
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| |
Collapse
|
7
|
Tripodi L, Ru G, Lazzara F, Florio LC, Cocco C, Meloni D, Maria M, Bozzetta E, Perrotta MG, Caramelli M, Casalone C, Iulini B. Chronic Wasting Disease Monitoring in Italy 2017-2019: Neuropathological Findings in Cervids. Pathogens 2022; 11:401. [PMID: 35456076 PMCID: PMC9029944 DOI: 10.3390/pathogens11040401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Chronic wasting disease (CWD) is a prion disease that affects cervids; it is classified under transmissible spongiform encephalopathies (TSEs). CWD is particularly contagious, making its eradication in endemic areas very difficult and creating serious problems for cervid conservation and breeding. It has recently become an emerging public health risk to be managed by health authorities. Starting in 2017, active CWD surveillance in Italy has intensified with the monitoring of wild and farmed cervids. The present study summarizes findings from a histopathological survey of the brains from wild ruminants collected via CWD monitoring between 2017 and 2019. A total of 113 brains from 62 red deer (Cervus elaphus) and 51 roe deer (Capreolus capreolus) were submitted for analysis at the National Reference Center for Animal Encephalopathies (CEA) to determine major patterns of neuropathological lesions and correlated pathogens. Brain lesions were detected in 20 animals, 10 brain samples were unsuitable for examination, and 83 presented no lesions. Neuropathological examination revealed non-suppurative encephalitis or meningoencephalitis in most cases (15/20). This brain study revealed evidence for the absence of CWD in Italy and provided a reference spectrum of neuropathological lesions for differential diagnosis in cervids.
Collapse
Affiliation(s)
- Letizia Tripodi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | - Giuseppe Ru
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | - Fabrizio Lazzara
- Dipartimento Di Prevenzione, S.C. Sanità Animale, ASL 3 Genovese, Via San Giovanni Battista 48, 16154 Genoa, Italy;
| | - Lucia Caterina Florio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | - Cinzia Cocco
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | - Daniela Meloni
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | - Mazza Maria
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | | | - Maria Caramelli
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| | - Barbara Iulini
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’Aosta, Via Bologna 148, 10154 Turin, Italy; (L.T.); (G.R.); (L.C.F.); (C.C.); (D.M.); (M.M.); (E.B.); (M.C.); (C.C.)
| |
Collapse
|
8
|
Ishida Y, Tian T, Brandt AL, Kelly AC, Shelton P, Roca AL, Novakofski J, Mateus-Pinilla NE. Association of chronic wasting disease susceptibility with prion protein variation in white-tailed deer ( Odocoileus virginianus). Prion 2021; 14:214-225. [PMID: 32835598 PMCID: PMC7518741 DOI: 10.1080/19336896.2020.1805288] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chronic wasting disease (CWD) is caused by prions, infectious proteinaceous particles, PrPCWD. We sequenced the PRNP gene of 2,899 white-tailed deer (WTD) from Illinois and southern Wisconsin, finding 38 haplotypes. Haplotypes A, B, D, E, G and 10 others encoded Q95G96S100N103A123Q226, designated ‘PrP variant A.’ Haplotype C and five other haplotypes encoded PrP ‘variant C’ (Q95S96S100N103A123Q226). Haplotype F and three other haplotypes encoded PrP ‘variant F’ (H95G96S100N103A123Q226). The association of CWD with encoded PrP variants was examined in 2,537 tested WTD from counties with CWD. Relative to PrP variant A, CWD susceptibility was lower in deer with PrP variant C (OR = 0.26, p < 0.001), and even lower in deer with PrP variant F (OR = 0.10, p < 0.0001). Susceptibility to CWD was highest in deer with both chromosomes encoding PrP variant A, lower with one copy encoding PrP variant A (OR = 0.25, p < 0.0001) and lowest in deer without PrP variant A (OR = 0.07, p < 0.0001). There appeared to be incomplete dominance for haplotypes encoding PrP variant C in reducing CWD susceptibility. Deer with both chromosomes encoding PrP variant F (FF) or one encoding PrP variant C and the other F (CF) were all CWD negative. Our results suggest that an increased population frequency of PrP variants C or F and a reduced frequency of PrP variant A may reduce the risk of CWD infection. Understanding the population and geographic distribution of PRNP polymorphisms may be a useful tool in CWD management.
Collapse
Affiliation(s)
- Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Ting Tian
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,School of Mathematics, Sun Yat-sen University , Guangzhou, People's Republic of China
| | - Adam L Brandt
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,Division of Natural Sciences, St. Norbert College , De Pere, WI, USA
| | - Amy C Kelly
- Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA.,Bayer U.S. - Crop Sciences Biotechnology Genomics and Data Science, BB4929-A , Chesterfield, MO, USA
| | - Paul Shelton
- Illinois Department of Natural Resources, Division of Wildlife Resources , Springfield, IL, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign , Urbana, IL, USA
| | - Jan Novakofski
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| | - Nohra E Mateus-Pinilla
- Department of Animal Sciences, University of Illinois at Urbana-Champaign , Urbana, IL, USA.,Illinois Natural History Survey-Prairie Research Institute, University of Illinois at Urbana-Champaign , Champaign, IL, USA
| |
Collapse
|
9
|
Nakić N, Tran TH, Novokmet M, Andreoletti O, Lauc G, Legname G. Site-specific analysis of N-glycans from different sheep prion strains. PLoS Pathog 2021; 17:e1009232. [PMID: 33600485 PMCID: PMC7891774 DOI: 10.1371/journal.ppat.1009232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 01/23/2023] Open
Abstract
Prion diseases are a group of neurodegenerative diseases affecting a wide range of mammalian species, including humans. During the course of the disease, the abnormally folded scrapie prion protein (PrPSc) accumulates in the central nervous system where it causes neurodegeneration. In prion disorders, the diverse spectrum of illnesses exists because of the presence of different isoforms of PrPSc where they occupy distinct conformational states called strains. Strains are biochemically distinguished by a characteristic three-band immunoblot pattern, defined by differences in the occupancy of two glycosylation sites on the prion protein (PrP). Characterization of the exact N-glycan structures attached on either PrPC or PrPSc is lacking. Here we report the characterization and comparison of N-glycans from two different sheep prion strains. PrPSc from both strains was isolated from brain tissue and enzymatically digested with trypsin. By using liquid chromatography coupled to electrospray mass spectrometry, a site-specific analysis was performed. A total of 100 structures were detected on both glycosylation sites. The N-glycan profile was shown to be similar to the one on mouse PrP, however, with additional 40 structures reported. The results presented here show no major differences in glycan composition, suggesting that glycans may not be responsible for the differences in the two analyzed prion strains. To date, prion diseases remain a controversy amongst scientists. Although we know now it is the abnormal form of the prion protein (PrPSc) that causes the disease, many questions are still left unanswered. To understand the cellular mechanism of these diseases, we should first and foremost try to fully understand the prion protein itself. Even though many findings have been made regarding the structure of the protein, a large part of it is still unknown. Since the prion protein is actually a glycoprotein, to resolve its structure we need to put our focus not only on the protein part of the glycoprotein but also on the glycan structures as well. Here we compared two different sheep prion strains and although no major differences have been found between the glycan structures, this analysis may help the understanding of the role glycans have in prion diseases.
Collapse
Affiliation(s)
- Natali Nakić
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Thanh Hoa Tran
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,VNUK Institute for Research and Executive Education, The University of Danang, Da Nang, Vietnam
| | | | - Olivier Andreoletti
- UMR INRA ENVT 1225-IHAP, École Nationale Vétérinaire de Toulouse, Toulouse, France
| | - Gordan Lauc
- Genos Glycoscience Research Laboratory, Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy.,ELETTRA Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| |
Collapse
|
10
|
Nemani SK, Myskiw JL, Lamoureux L, Booth SA, Sim VL. Exposure Risk of Chronic Wasting Disease in Humans. Viruses 2020; 12:v12121454. [PMID: 33348562 PMCID: PMC7766630 DOI: 10.3390/v12121454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 01/02/2023] Open
Abstract
The majority of human prion diseases are sporadic, but acquired disease can occur, as seen with variant Creutzfeldt–Jakob disease (vCJD) following consumption of bovine spongiform encephalopathy (BSE). With increasing rates of cervid chronic wasting disease (CWD), there is concern that a new form of human prion disease may arise. Currently, there is no evidence of transmission of CWD to humans, suggesting the presence of a strong species barrier; however, in vitro and in vivo studies on the zoonotic potential of CWD have yielded mixed results. The emergence of different CWD strains is also concerning, as different strains can have different abilities to cross species barriers. Given that venison consumption is common in areas where CWD rates are on the rise, increased rates of human exposure are inevitable. If CWD was to infect humans, it is unclear how it would present clinically; in vCJD, it was strain-typing of vCJD prions that proved the causal link to BSE. Therefore, the best way to screen for CWD in humans is to have thorough strain-typing of harvested cervids and human CJD cases so that we will be in a position to detect atypical strains or strain shifts within the human CJD population.
Collapse
Affiliation(s)
- Satish K. Nemani
- Centre for Prions and Protein Folding Diseases, Edmonton, AB T6G 2R3, Canada;
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Jennifer L. Myskiw
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3R2, Canada
| | - Lise Lamoureux
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
| | - Stephanie A. Booth
- Zoonotic Diseases and Special Pathogens, Public Health Agency of Canada, National Microbiology Laboratory, Winnipeg, MB R3E 3R2, Canada; (J.L.M.); (L.L.); (S.A.B.)
- Department of Medical Microbiology and Infectious Diseases, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 3R2, Canada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding Diseases, Edmonton, AB T6G 2R3, Canada;
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Correspondence:
| |
Collapse
|
11
|
Myers R, Cembran A, Fernandez-Funez P. Insight From Animals Resistant to Prion Diseases: Deciphering the Genotype - Morphotype - Phenotype Code for the Prion Protein. Front Cell Neurosci 2020; 14:254. [PMID: 33013324 PMCID: PMC7461849 DOI: 10.3389/fncel.2020.00254] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/24/2020] [Indexed: 12/30/2022] Open
Abstract
Prion diseases are a group of neurodegenerative diseases endemic in humans and several ruminants caused by the misfolding of native prion protein (PrP) into pathological conformations. Experimental work and the mad-cow epidemic of the 1980s exposed a wide spectrum of animal susceptibility to prion diseases, including a few highly resistant animals: horses, rabbits, pigs, and dogs/canids. The variable susceptibility to disease offers a unique opportunity to uncover the mechanisms governing PrP misfolding, neurotoxicity, and transmission. Previous work indicates that PrP-intrinsic differences (sequence) are the main contributors to disease susceptibility. Several residues have been cited as critical for encoding PrP conformational stability in prion-resistant animals, including D/E159 in dog, S167 in horse, and S174 in rabbit and pig PrP (all according to human numbering). These amino acids alter PrP properties in a variety of assays, but we still do not clearly understand the structural correlates of PrP toxicity. Additional insight can be extracted from comparative structural studies, followed by molecular dynamics simulations of selected mutations, and testing in manipulable animal models. Our working hypothesis is that protective amino acids generate more compact and stable structures in a C-terminal subdomain of the PrP globular domain. We will explore this idea in this review and identify subdomains within the globular domain that may hold the key to unravel how conformational stability and disease susceptibility are encoded in PrP.
Collapse
Affiliation(s)
- Ryan Myers
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| | - Alessandro Cembran
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, United States
| |
Collapse
|
12
|
Abstract
The prion protein, PrP, can adopt at least 2 conformations, the overwhelmingly prevalent cellular conformation (PrPC) and the scrapie conformation (PrPSc). PrPC features a globular C-terminal domain containing 3 α-helices and a short β-sheet and a long flexible N-terminal tail whose exact conformation in vivo is not yet known and a metastable subdomain with β-strand propensity has been identified within it. The PrPSc conformation is very rare and has the characteristics of an amyloid. Furthermore, PrPSc is a prion, i.e., it is infectious. This involves 2 steps: (1) PrPSc can template PrPC and coerce it to adopt the PrPSc conformation and (2) PrPSc can be transmitted between individuals, by oral, parenteral, and other routes and thus propagate as an infectious agent. However, this is a simplification: On the one hand, PrPSc is not a single conformation, but rather, a set of alternative similar but distinct conformations. Furthermore, other amyloid conformations of PrP exist with different biochemical and propagative properties. In this issue of PLOS Biology, Asante and colleagues describe the first murine model of familial human prion disease and demonstrate the emergence and propagation of 2 PrP amyloid conformers. Of these, one causes neurodegeneration, whereas the other does not. With its many conformers, PrP is a truly protean protein.
Collapse
Affiliation(s)
- Jesús R. Requena
- CIMUS Biomedical Research Institute & Department of Medical Sciences, University of Santiago de Compostela-IDIS, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Assessment of Glial Activation Response in the Progress of Natural Scrapie after Chronic Dexamethasone Treatment. Int J Mol Sci 2020; 21:ijms21093231. [PMID: 32370224 PMCID: PMC7247567 DOI: 10.3390/ijms21093231] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation has been correlated with the progress of neurodegeneration in many neuropathologies. Although glial cells have traditionally been considered to be protective, the concept of them as neurotoxic cells has recently emerged. Thus, a major unsolved question is the exact role of astroglia and microglia in neurodegenerative disorders. On the other hand, it is well known that glucocorticoids are the first choice to regulate inflammation and, consequently, neuroglial inflammatory activity. The objective of this study was to determine how chronic dexamethasone treatment influences the host immune response and to characterize the beneficial or detrimental role of glial cells. To date, this has not been examined using a natural neurodegenerative model of scrapie. With this aim, immunohistochemical expression of glial markers, prion protein accumulation, histopathological lesions and clinical evolution were compared with those in a control group. The results demonstrated how the complex interaction between glial populations failed to compensate for brain damage in natural conditions, emphasizing the need for using natural models. Additionally, the data showed that modulation of neuroinflammation by anti-inflammatory drugs might become a research focus as a potential therapeutic target for prion diseases, similar to that considered previously for other neurodegenerative disorders classified as prion-like diseases.
Collapse
|
14
|
Sanchez-Garcia J, Fernandez-Funez P. D159 and S167 are protective residues in the prion protein from dog and horse, two prion-resistant animals. Neurobiol Dis 2018; 119:1-12. [PMID: 30010001 PMCID: PMC6139044 DOI: 10.1016/j.nbd.2018.07.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 06/07/2018] [Accepted: 07/11/2018] [Indexed: 12/14/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases caused by misfolding of the prion protein (PrP). These conditions affect humans and animals, including endemic forms in sheep and deer. Bovine, rodents, and many zoo mammals also developed prion diseases during the "mad-cow" epidemic in the 1980's. Interestingly, rabbits, horses, and dogs show unusual resistance to prion diseases, suggesting that specific sequence changes in the corresponding endogenous PrP prevents the accumulation of pathogenic conformations. In vitro misfolding assays and structural studies have identified S174, S167, and D159 as the key residues mediating the stability of rabbit, horse, and dog PrP, respectively. Here, we expressed the WT forms of rabbit, horse, and dog PrP in transgenic Drosophila and found that none of them is toxic. Replacing these key residues with the corresponding amino acids in hamster PrP showed that mutant horse (S167D) and dog (D159N) PrP are highly toxic, whereas mutant rabbit (S174 N) PrP is not. These results confirm the impact of S167 and D159 in local and long-range structural features in the globular domain of PrP that increase its stability, while suggesting the role of additional residues in the stability of rabbit PrP. Identifying these protective amino acids and the structural features that stabilize PrP can contribute to advance the field towards the development of therapies that halt or reverse the devastating effects of prion diseases.
Collapse
Affiliation(s)
- Jonatan Sanchez-Garcia
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA
| | - Pedro Fernandez-Funez
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, Duluth, MN 55812, USA.
| |
Collapse
|