1
|
You B, Shi G, Zhang Y, Fu X, Li Q, Wang Y, Huang G, Fang Y, Li R. The interaction of adenosine and dopamine in modulating the consequences of central nervous system oxygen toxicity. J Appl Physiol (1985) 2025; 138:169-181. [PMID: 39601779 DOI: 10.1152/japplphysiol.00500.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/03/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024] Open
Abstract
Hyperbaric oxygen (HBO) refers to pure oxygen with a pressure greater than 1 atmospheres absolute (ATA), and when the pressure is too high, it can cause convulsive attacks. Adenosine and dopamine have been shown to be closely associated with HBO-induced convulsion seizures, and their receptors exhibited a coexisting relationship of mutual antagonism on the membrane of nerve cells. We explored the influence of adenosine and dopamine interplay on the occurrence of oxygen convulsion. Rats were individually exposed to HBO of 6 ATA and treated with adenosine, dopamine, and their receptor modulators separately and jointly, with the latency of convulsion onset recorded. In addition, after administering adenosine to rats and exposing them to HBO for 30 min, the content of dopamine and its metabolites and the activity of enzymes related to their metabolism were measured. The results revealed that dopamine was effective in resisting convulsion (>60 min vs. 32.53 ± 5.31 min, P = 0.000), and low-dose adenosine partially counteracted its effect (>60 min vs. 28.18 ± 6.24 min, P = 0.002). The combined use of adenosine A1 and dopamine D1 receptor modulators significantly impacted the incidence of convulsion. The activation or inhibition of the A2A receptor had a particularly significant impact on convulsion, whereas modulating the D2 receptor did not affect their effects. The combination of A1 agonist and D2 agonist was highly effective in resisting convulsion (>60 min vs. 32.53 ± 5.31 min, P = 0.000). Exposure to HBO accelerated the metabolism of dopamine to its end products, which may be related to the enhanced activity of monoamine oxidase (MAO). Adenosine can inhibit MAO activity (0.0766 ± 0.0150 U/mg.prot vs. 0.1055 ± 0.0086 U/mg.prot, P = 0.004), maintaining a higher level of dopamine (1.820 ± 0.379 mg/g vs. 0.602 ± 0.087 mg/g, P = 0.000). The study demonstrated that dopamine plays a significant role in oxygen convulsion and adenosine can affect dopamine metabolism. The interaction between them can have a crucial impact on the occurrence of oxygen convulsion. The findings offer a novel perspective for further investigating the mechanism of oxygen convulsion and exploring effective preventive strategies.NEW & NOTEWORTHY The interaction between adenosine and dopamine is critically important in determining the incidence of oxygen convulsion. Simultaneous regulation of both adenosine and dopamine offers a superior approach to counteract oxygen convulsion, achieving a synergistic effect exceeding the sum of their individual impacts. These findings provide new directions and insights for future in-depth and systematic exploration of the pathogenesis of central nervous system oxygen toxicity.
Collapse
Affiliation(s)
- Benming You
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Guorong Shi
- Department of Pharmacy, Shidong Hospital of Shanghai Yangpu District, Shanghai, People's Republic of China
| | - Yanan Zhang
- Department of Diving and Hyperbaric Medicine, PLA Naval Medical Center, Naval Medical University, Shanghai, People's Republic of China
| | - Xiang Fu
- Department of Pharmacy, Shidong Hospital of Shanghai Yangpu District, Shanghai, People's Republic of China
| | - Qian Li
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Yu Wang
- Department of Pharmacy, Changhai Hospital, Naval Medical University, Shanghai, People's Republic of China
| | - Guoyang Huang
- Department of Diving and Hyperbaric Medicine, PLA Naval Medical Center, Naval Medical University, Shanghai, People's Republic of China
| | - Yiqun Fang
- Department of Diving and Hyperbaric Medicine, PLA Naval Medical Center, Naval Medical University, Shanghai, People's Republic of China
| | - Runping Li
- Department of Diving and Hyperbaric Medicine, PLA Naval Medical Center, Naval Medical University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Jang MH, Song J. Adenosine and adenosine receptors in metabolic imbalance-related neurological issues. Biomed Pharmacother 2024; 177:116996. [PMID: 38897158 DOI: 10.1016/j.biopha.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/08/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024] Open
Abstract
Metabolic syndromes (e.g., obesity) are characterized by insulin resistance, chronic inflammation, impaired glucose metabolism, and dyslipidemia. Recently, patients with metabolic syndromes have experienced not only metabolic problems but also neuropathological issues, including cognitive impairment. Several studies have reported blood-brain barrier (BBB) disruption and insulin resistance in the brain of patients with obesity and diabetes. Adenosine, a purine nucleoside, is known to regulate various cellular responses (e.g., the neuroinflammatory response) by binding with adenosine receptors in the central nervous system (CNS). Adenosine has four known receptors: A1R, A2AR, A2BR, and A3R. These receptors play distinct roles in various physiological and pathological processes in the brain, including endothelial cell homeostasis, insulin sensitivity, microglial activation, lipid metabolism, immune cell infiltration, and synaptic plasticity. Here, we review the recent findings on the role of adenosine receptor-mediated signaling in neuropathological issues related to metabolic imbalance. We highlight the importance of adenosine signaling in the development of therapeutic solutions for neuropathological issues in patients with metabolic syndromes.
Collapse
Affiliation(s)
- Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, United States.
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Republic of Korea.
| |
Collapse
|
3
|
de Moraes Santos Corrêa É, Christofoletti G, de Souza AS. Effects of Intracerebral Aminophylline Dosing on Catalepsy and Gait in an Animal Model of Parkinson's Disease. Int J Mol Sci 2024; 25:5191. [PMID: 38791229 PMCID: PMC11120906 DOI: 10.3390/ijms25105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD) is a progressive disorder characterized by the apoptosis of dopaminergic neurons in the basal ganglia. This study explored the potential effects of aminophylline, a non-selective adenosine A1 and A2A receptor antagonist, on catalepsy and gait in a haloperidol-induced PD model. Sixty adult male Swiss mice were surgically implanted with guide cannulas that targeted the basal ganglia. After seven days, the mice received intraperitoneal injections of either haloperidol (experimental group, PD-induced model) or saline solution (control group, non-PD-induced model), followed by intracerebral infusions of aminophylline. The assessments included catalepsy testing on the bar and gait analysis using the Open Field Maze. A two-way repeated-measures analysis of variance (ANOVA), followed by Tukey's post hoc tests, was employed to evaluate the impact of groups (experimental × control), aminophylline (60 nM × 120 nM × saline/placebo), and interactions. Significance was set at 5%. The results revealed that the systemic administration of haloperidol in the experimental group increased catalepsy and dysfunction of gait that paralleled the observations in PD. Co-treatment with aminophylline at 60 nM and 120 nM reversed catalepsy in the experimental group but did not restore the normal gait pattern of the animals. In the non-PD induced group, which did not present any signs of catalepsy or motor dysfunctions, the intracerebral dose of aminophylline did not exert any interference on reaction time for catalepsy but increased walking distance in the Open Field Maze. Considering the results, this study highlights important adenosine interactions in the basal ganglia of animals with and without signs comparable to those of PD. These findings offer valuable insights into the neurobiology of PD and emphasize the importance of exploring novel therapeutic strategies to improve patient's catalepsy and gait.
Collapse
Affiliation(s)
| | | | - Albert Schiaveto de Souza
- Faculty of Medicine, Institute of Health, Federal University of Mato Grosso do Sul, UFMS, Campo Grande 79060-900, Brazil; (É.d.M.S.C.); (G.C.)
| |
Collapse
|
4
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, De Caro R, Maura G, Agnati LF. Modulation of Neuron and Astrocyte Dopamine Receptors via Receptor-Receptor Interactions. Pharmaceuticals (Basel) 2023; 16:1427. [PMID: 37895898 PMCID: PMC10610355 DOI: 10.3390/ph16101427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Dopamine neurotransmission plays critical roles in regulating complex cognitive and behavioral processes including reward, motivation, reinforcement learning, and movement. Dopamine receptors are classified into five subtypes, widely distributed across the brain, including regions responsible for motor functions and specific areas related to cognitive and emotional functions. Dopamine also acts on astrocytes, which express dopamine receptors as well. The discovery of direct receptor-receptor interactions, leading to the formation of multimeric receptor complexes at the cell membrane and providing the cell decoding apparatus with flexible dynamics in terms of recognition and signal transduction, has expanded the knowledge of the G-protein-coupled receptor-mediated signaling processes. The purpose of this review article is to provide an overview of currently identified receptor complexes containing dopamine receptors and of their modulatory action on dopamine-mediated signaling between neurons and between neurons and astrocytes. Pharmacological possibilities offered by targeting receptor complexes in terms of addressing neuropsychiatric disorders associated with altered dopamine signaling will also be briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Cinzia Tortorella
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Raffaele De Caro
- Department of Neuroscience, University of Padova, 35122 Padova, Italy; (C.T.); (R.D.C.)
| | - Guido Maura
- Department of Pharmacy, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| |
Collapse
|
5
|
Agnati LF, Guidolin D, Cervetto C, Maura G, Marcoli M. Brain Structure and Function: Insights from Chemical Neuroanatomy. Life (Basel) 2023; 13:life13040940. [PMID: 37109469 PMCID: PMC10142941 DOI: 10.3390/life13040940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
We present a brief historical and epistemological outline of investigations on the brain’s structure and functions. These investigations have mainly been based on the intermingling of chemical anatomy, new techniques in the field of microscopy and computer-assisted morphometric methods. This intermingling has enabled extraordinary investigations to be carried out on brain circuits, leading to the development of a new discipline: “brain connectomics”. This new approach has led to the characterization of the brain’s structure and function in physiological and pathological conditions, and to the development of new therapeutic strategies. In this context, the conceptual model of the brain as a hyper-network with a hierarchical, nested architecture, arranged in a “Russian doll” pattern, has been proposed. Our investigations focused on the main characteristics of the modes of communication between nodes at the various miniaturization levels, in order to describe the brain’s integrative actions. Special attention was paid to the nano-level, i.e., to the allosteric interactions among G protein-coupled receptors organized in receptor mosaics, as a promising field in which to obtain a new view of synaptic plasticity and to develop new, more selective drugs. The brain’s multi-level organization and the multi-faceted aspects of communication modes point to an emerging picture of the brain as a very peculiar system, in which continuous self-organization and remodeling take place under the action of external stimuli from the environment, from peripheral organs and from ongoing integrative actions.
Collapse
Affiliation(s)
- Luigi F. Agnati
- Department of Biochemical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
- Center for Promotion of 3Rs in Teaching and Research (Centro 3R), 56122 Pisa, Italy
| | - Guido Maura
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, University of Genova, 16148 Genova, Italy
- Center for Promotion of 3Rs in Teaching and Research (Centro 3R), 56122 Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, 16132 Genova, Italy
| |
Collapse
|
6
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-receptor interactions and microvesicle exchange as mechanisms modulating signaling between neurons and astrocytes. Neuropharmacology 2023; 231:109509. [PMID: 36935005 DOI: 10.1016/j.neuropharm.2023.109509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
It is well known that astrocytes play a significant metabolic role in the nervous tissue, maintaining the homeostasis of the extracellular space and of the blood-brain barrier, and providing trophic support to neurons. In addition, however, evidence exists indicating astrocytes as important elements for brain activity through signaling exchange with neurons. Astrocytes, indeed, can sense synaptic activity and their molecular machinery responds to neurotransmitters released by neurons with cytoplasmic Ca2+ elevations that, in turn, stimulate the release of neuroactive substances (gliotransmitters) influencing nearby neurons. In both cell types the recognition and transduction of this complex pattern of signals is mediated by specific receptors that are also involved in mechanisms tuning the intercellular cross-talk between astrocytes and neurons. Two of these mechanisms are the focus of the present discussion. The first concerns direct receptor-receptor interactions leading to the formation at the cell membrane of multimeric receptor complexes. The cooperativity that emerges in the actions of orthosteric and allosteric ligands of the monomers forming the assembly provides the cell decoding apparatus with sophisticated and flexible dynamics in terms of recognition and signal transduction pathways. A further mechanism of plasticity involving receptors is based on the transfer of elements of the cellular signaling apparatus via extracellular microvesicles acting as protective containers, which can lead to transient changes in the transmitting/decoding capabilities of the target cell.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121, Padova, Italy.
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121, Padova, Italy
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126, Genova, Italy
| | - Luigi F Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| |
Collapse
|
7
|
Birch JN, Vanderheyden WM. The Molecular Relationship between Stress and Insomnia. Adv Biol (Weinh) 2022; 6:e2101203. [PMID: 35822937 DOI: 10.1002/adbi.202101203] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/15/2022] [Indexed: 01/28/2023]
Abstract
The bi-directional relationship between sleep and stress has been actively researched as sleep disturbances and stress have become increasingly common in society. Interestingly, the brain and underlying neural circuits important for sleep regulation may respond uniquely to stress that leads to post-traumatic stress disorder (PTSD) and stress that does not. In stress that does not lead to PTSD, the hypothalamic-pituitary-adrenal axis (HPA) pathway is activated normally that results in sympathetic nervous system activation that allows the brain and body to return to baseline functioning. However, exposure to stress that leads to PTSD, causes enhanced negative feedback of this same pathway and results in long-term physiological and psychological changes. In this review, how stress regulates glucocorticoid signaling pathways in brain glial cells called astrocytes, and then mediates stress-induced insomnia are examined. Astrocytes are critical sleep regulatory cells and their connections to sleep and stress due to disturbed glucocorticoid signaling provide a novel mechanism to explain how stress leads to insomnia. This review will examine the interactions of stress neurobiology, astrocytes, sleep, and glucocorticoid signaling pathways and will examine the how stress that leads to PTSD and stress that does not impacts sleep-regulatory processes.
Collapse
Affiliation(s)
- Jasmine N Birch
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, 412 E. Spokane Falls Blvd, Spokane, WA, 99 202, USA
| | - William M Vanderheyden
- WSU Health Sciences Spokane, Elson S. Floyd College of Medicine, Department of Translational Medicine and Physiology, Pharmaceutical and Biomedical Sciences Building, Room 213/Lab 230, 412 E. Spokane Falls Blvd, (Lab) 509-368-6809, Spokane, WA, 99 202, USA
| |
Collapse
|
8
|
Emmi A, Antonini A, Sandre M, Baldo A, Contran M, Macchi V, Guidolin D, Porzionato A, De Caro R. Topography and distribution of adenosine A2A and dopamine D2 receptors in the human Subthalamic Nucleus. Front Neurosci 2022; 16:945574. [PMID: 36017181 PMCID: PMC9396224 DOI: 10.3389/fnins.2022.945574] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The human Subthalamic Nucleus (STh) is a diencephalic lens-shaped structure located ventrally to the thalamus and functionally implicated in the basal ganglia circuits. Despite recent efforts to characterize the neurochemical and functional anatomy of the STh, little to no information is available concerning the expression and distribution of receptors belonging to the dopaminergic and purinergic system in the human STh. Both systems are consistently implicated in basal ganglia physiology and pathology, especially in Parkinson’s Disease, and represent important targets for the pharmacological treatment of movement disorders. Here, we investigate the topography and distribution of A2A adenosine and D2 dopamine receptors in the human basal ganglia and subthalamic nucleus. Our findings indicate a peculiar topographical distribution of the two receptors throughout the subthalamic nucleus, while colocalization between the receptors opens the possibility for the presence of A2AR- D2R heterodimers within the dorsal and medial aspects of the structure. However, further investigation is required to confirm these findings.
Collapse
Affiliation(s)
- Aron Emmi
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
- Movement Disorders Unit, Neurology Clinic, University Hospital of Padova, Padua, Italy
| | - Angelo Antonini
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
- Movement Disorders Unit, Neurology Clinic, University Hospital of Padova, Padua, Italy
| | - Michele Sandre
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
- Movement Disorders Unit, Neurology Clinic, University Hospital of Padova, Padua, Italy
| | - Andrea Baldo
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Martina Contran
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Veronica Macchi
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| | - Diego Guidolin
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
- *Correspondence: Andrea Porzionato,
| | - Raffaele De Caro
- Department of Neurosciences, Institute of Human Anatomy, University of Padova, Padua, Italy
- Center for Neurodegenerative Disease Research (CESNE), University of Padova, Padua, Italy
| |
Collapse
|
9
|
Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. Int J Mol Sci 2022; 23:5805. [PMID: 35628615 PMCID: PMC9145073 DOI: 10.3390/ijms23105805] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 01/25/2023] Open
Abstract
In the last decades, new evidence on brain structure and function has been acquired by morphological investigations based on synergic interactions between biochemical anatomy approaches, new techniques in microscopy and brain imaging, and quantitative analysis of the obtained images. This effort produced an expanded view on brain architecture, illustrating the central nervous system as a huge network of cells and regions in which intercellular communication processes, involving not only neurons but also other cell populations, virtually determine all aspects of the integrative function performed by the system. The main features of these processes are described. They include the two basic modes of intercellular communication identified (i.e., wiring and volume transmission) and mechanisms modulating the intercellular signaling, such as cotransmission and allosteric receptor-receptor interactions. These features may also open new possibilities for the development of novel pharmacological approaches to address central nervous system diseases. This aspect, with a potential major impact on molecular medicine, will be also briefly discussed.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
10
|
Marcoli M, Agnati LF, Franco R, Cortelli P, Anderlini D, Guidolin D, Cervetto C, Maura G. Modulating brain integrative actions as a new perspective on pharmacological approaches to neuropsychiatric diseases. Front Endocrinol (Lausanne) 2022; 13:1038874. [PMID: 36699033 PMCID: PMC9868467 DOI: 10.3389/fendo.2022.1038874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
A critical aspect of drug development in the therapy of neuropsychiatric diseases is the "Target Problem", that is, the selection of a proper target after not simply the etiopathological classification but rather the detection of the supposed structural and/or functional alterations in the brain networks. There are novel ways of approaching the development of drugs capable of overcoming or at least reducing the deficits without triggering deleterious side effects. For this purpose, a model of brain network organization is needed, and the main aspects of its integrative actions must also be established. Thus, to this aim we here propose an updated model of the brain as a hyper-network in which i) the penta-partite synapses are suggested as key nodes of the brain hyper-network and ii) interacting cell surface receptors appear as both decoders of signals arriving to the network and targets of central nervous system diseases. The integrative actions of the brain networks follow the "Russian Doll organization" including the micro (i.e., synaptic) and nano (i.e., molecular) levels. In this scenario, integrative actions result primarily from protein-protein interactions. Importantly, the macromolecular complexes arising from these interactions often have novel structural binding sites of allosteric nature. Taking G protein-coupled receptors (GPCRs) as potential targets, GPCRs heteromers offer a way to increase the selectivity of pharmacological treatments if proper allosteric drugs are designed. This assumption is founded on the possible selectivity of allosteric interventions on G protein-coupled receptors especially when organized as "Receptor Mosaics" at penta-partite synapse level.
Collapse
Affiliation(s)
- Manuela Marcoli
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Pisa, Italy
- Center of Excellence for Biomedical Research, University of Genova, Genova, Italy
- *Correspondence: Manuela Marcoli, ; Luigi F. Agnati,
| | - Luigi F. Agnati
- Department of Biomedical, Metabolic Sciences and Neuroscience, University of Modena and Reggio Emilia, Modena, Italy
- *Correspondence: Manuela Marcoli, ; Luigi F. Agnati,
| | - Rafael Franco
- CiberNed Network Center for Neurodegenerative diseases, National Spanish Health Institute Carlos III, Madrid, Spain
- Molecular Neurobiology laboratory, Department of Biochemistry and Molecular Biomedicine. Universitat de Barcelona, Barcelona, Spain
- School of Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Pietro Cortelli
- Department of Biomedical and NeuroMotor Sciences (DIBINEM), Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Deanna Anderlini
- Centre for Sensorimotor Performance, The University of Queensland, Brisbane, QLD, Australia
| | - Diego Guidolin
- Department of Neuroscience, University of Padova, Padova, Italy
| | - Chiara Cervetto
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), Pisa, Italy
| | - Guido Maura
- Department of Pharmacy, Section of Pharmacology and Toxicology, University of Genova, Genova, Italy
| |
Collapse
|
11
|
Guidolin D, Tortorella C, Marcoli M, Cervetto C, Maura G, Agnati LF. Receptor-Receptor Interactions and Glial Cell Functions with a Special Focus on G Protein-Coupled Receptors. Int J Mol Sci 2021; 22:8656. [PMID: 34445362 PMCID: PMC8395429 DOI: 10.3390/ijms22168656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
The discovery that receptors from all families can establish allosteric receptor-receptor interactions and variably associate to form receptor complexes operating as integrative input units endowed with a high functional and structural plasticity has expanded our understanding of intercellular communication. Regarding the nervous system, most research in the field has focused on neuronal populations and has led to the identification of many receptor complexes representing an important mechanism to fine-tune synaptic efficiency. Receptor-receptor interactions, however, also modulate glia-neuron and glia-glia intercellular communication, with significant consequences on synaptic activity and brain network plasticity. The research on this topic is probably still at the beginning and, here, available evidence will be reviewed and discussed. It may also be of potential interest from a pharmacological standpoint, opening the possibility to explore, inter alia, glia-based neuroprotective therapeutic strategies.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Cinzia Tortorella
- Department of Neuroscience, Section of Anatomy, University of Padova, 35121 Padova, Italy;
| | - Manuela Marcoli
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Chiara Cervetto
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Guido Maura
- Department of Pharmacy, Center of Excellence for Biomedical Research, University of Genova, 16126 Genova, Italy; (M.M.); (C.C.); (G.M.)
| | - Luigi F. Agnati
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| |
Collapse
|
12
|
Garcia-Gil M, Camici M, Allegrini S, Pesi R, Tozzi MG. Metabolic Aspects of Adenosine Functions in the Brain. Front Pharmacol 2021; 12:672182. [PMID: 34054547 PMCID: PMC8160517 DOI: 10.3389/fphar.2021.672182] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
Adenosine, acting both through G-protein coupled adenosine receptors and intracellularly, plays a complex role in multiple physiological and pathophysiological processes by modulating neuronal plasticity, astrocytic activity, learning and memory, motor function, feeding, control of sleep and aging. Adenosine is involved in stroke, epilepsy and neurodegenerative pathologies. Extracellular concentration of adenosine in the brain is tightly regulated. Adenosine may be generated intracellularly in the central nervous system from degradation of AMP or from the hydrolysis of S-adenosyl homocysteine, and then exit via bi-directional nucleoside transporters, or extracellularly by the metabolism of released nucleotides. Inactivation of extracellular adenosine occurs by transport into neurons or neighboring cells, followed by either phosphorylation to AMP by adenosine kinase or deamination to inosine by adenosine deaminase. Modulation of the nucleoside transporters or of the enzymatic activities involved in the metabolism of adenosine, by affecting the levels of this nucleoside and the activity of adenosine receptors, could have a role in the onset or the development of central nervous system disorders, and can also be target of drugs for their treatment. In this review, we focus on the contribution of 5'-nucleotidases, adenosine kinase, adenosine deaminase, AMP deaminase, AMP-activated protein kinase and nucleoside transporters in epilepsy, cognition, and neurodegenerative diseases with a particular attention on amyotrophic lateral sclerosis and Huntington's disease. We include several examples of the involvement of components of the adenosine metabolism in learning and of the possible use of modulators of enzymes involved in adenosine metabolism or nucleoside transporters in the amelioration of cognition deficits.
Collapse
Affiliation(s)
- Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Marcella Camici
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Simone Allegrini
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Rossana Pesi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| | - Maria Grazia Tozzi
- Department of Biology, Unit of Biochemistry, University of Pisa, Pisa, Italy
| |
Collapse
|
13
|
Dong Z, Huang B, Jiang C, Chen J, Lin H, Lian Q, Wu B. The Adenosine A2A Receptor Activation in Nucleus Accumbens Suppress Cue-Induced Reinstatement of Propofol Self-administration in Rats. Neurochem Res 2021; 46:1081-1091. [PMID: 33616808 PMCID: PMC8053194 DOI: 10.1007/s11064-021-03238-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023]
Abstract
Propofol has shown strong addictive properties in rats and humans. Adenosine A2A receptors (A2AR) in the nucleus accumbens (NAc) modulate dopamine signal and addictive behaviors such as cocaine- and amphetamine-induced self-administration. However, whether A2AR can modulate propofol addiction remains unknown. AAV-shA2AR was intra-NAc injected 3 weeks before the propofol self-administration training to test the impacts of NAc A2AR on establishing the self-administration model with fixed ratio 1 (FR1) schedule. Thereafter, the rats were withdrawal from propofol for 14 days and tested cue-induced reinstatement of propofol seeking behavior on day 15. The propofol withdrawal rats received one of the doses of CGS21680 (A2AR agonist, 2.5-10.0 ng/site), MSX-3 (A2AR antagonist, 5.0-20.0 μg/site) or eticlopride (D2 receptor (D2R) antagonist, 0.75-3.0 μg/site) or vehicle via intra-NAc injection before relapse behavior test. The numbers of active and inactive nose-poke response were recorded. Focal knockdown A2AR by shA2AR did not affect the acquisition of propofol self-administration behavior, but enhance cue-induced reinstatement of propofol self-administration compared with the AAV-shCTRLgroup. Pharmacological activation of the A2AR by CGS21680 (≥ 5.0 ng/site) attenuated cue-induced reinstatement of propofol self-administration behavior. Similarly, pharmacological blockade of D2R by eticlopride (0.75-3.0 μg/site) attenuated propofol seeking behavior. These effects were reversed by the administration of MSX-3 (5.0-20.0 μg/site). The A2AR- and D2R-mediated effects on propofol relapse were not confounded by the learning process, and motor activity as the sucrose self-administration and locomotor activity were not affected by all the treatments. This study provides genetic and pharmacological evidence that NAc A2AR activation suppresses cue-induced propofol relapse in rats, possibly by interacting with D2R.
Collapse
Affiliation(s)
- Zhanglei Dong
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Bingwu Huang
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Chenchen Jiang
- Clinical Research Unit, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiangfan Chen
- Molecular Neuropharmacology Laboratory, Wenzhou Medical University, Wenzhou, China
| | - Han Lin
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China
| | - Qingquan Lian
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
| | - Binbin Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan West Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
14
|
Stocco E, Sfriso MM, Borile G, Contran M, Barbon S, Romanato F, Macchi V, Guidolin D, De Caro R, Porzionato A. Experimental Evidence of A 2A-D 2 Receptor-Receptor Interactions in the Rat and Human Carotid Body. Front Physiol 2021; 12:645723. [PMID: 33935801 PMCID: PMC8082109 DOI: 10.3389/fphys.2021.645723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
Adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) are known to be involved in the physiological response to hypoxia, and their expression/activity may be modulated by chronic sustained or intermittent hypoxia. To date, A2AR and D2R can form transient physical receptor–receptor interactions (RRIs) giving rise to a dynamic equilibrium able to influence ligand binding and signaling, as demonstrated in different native tissues and transfected mammalian cell systems. Given the presence of A2AR and D2R in type I cells, type II cells, and afferent nerve terminals of the carotid body (CB), the aim of this work was to demonstrate here, for the first time, the existence of A2AR–D2R heterodimers by in situ proximity ligation assay (PLA). Our data by PLA analysis and tyrosine hydroxylase/S100 colocalization indicated the formation of A2AR–D2R heterodimers in type I and II cells of the CB; the presence of A2AR–D2R heterodimers also in afferent terminals is also suggested by PLA signal distribution. RRIs could play a role in CB dynamic modifications and plasticity in response to development/aging and environmental stimuli, including chronic intermittent/sustained hypoxia. Exploring other RRIs will allow for a broad comprehension of the regulative mechanisms these interactions preside over, with also possible clinical implications.
Collapse
Affiliation(s)
- Elena Stocco
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Maria Martina Sfriso
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Giulia Borile
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Martina Contran
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Silvia Barbon
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Filippo Romanato
- Department of Physics and Astronomy "G. Galilei," University of Padova, Padua, Italy.,Institute of Pediatric Research Città della Speranza, Padua, Italy
| | - Veronica Macchi
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Diego Guidolin
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Raffaele De Caro
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| | - Andrea Porzionato
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, Padua, Italy
| |
Collapse
|
15
|
Prasad K, de Vries EFJ, Elsinga PH, Dierckx RAJO, van Waarde A. Allosteric Interactions between Adenosine A 2A and Dopamine D 2 Receptors in Heteromeric Complexes: Biochemical and Pharmacological Characteristics, and Opportunities for PET Imaging. Int J Mol Sci 2021; 22:ijms22041719. [PMID: 33572077 PMCID: PMC7915359 DOI: 10.3390/ijms22041719] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/17/2022] Open
Abstract
Adenosine and dopamine interact antagonistically in living mammals. These interactions are mediated via adenosine A2A and dopamine D2 receptors (R). Stimulation of A2AR inhibits and blockade of A2AR enhances D2R-mediated locomotor activation and goal-directed behavior in rodents. In striatal membrane preparations, adenosine decreases both the affinity and the signal transduction of D2R via its interaction with A2AR. Reciprocal A2AR/D2R interactions occur mainly in striatopallidal GABAergic medium spiny neurons (MSNs) of the indirect pathway that are involved in motor control, and in striatal astrocytes. In the nucleus accumbens, they also take place in MSNs involved in reward-related behavior. A2AR and D2R co-aggregate, co-internalize, and co-desensitize. They are at very close distance in biomembranes and form heteromers. Antagonistic interactions between adenosine and dopamine are (at least partially) caused by allosteric receptor–receptor interactions within A2AR/D2R heteromeric complexes. Such interactions may be exploited in novel strategies for the treatment of Parkinson’s disease, schizophrenia, substance abuse, and perhaps also attention deficit-hyperactivity disorder. Little is known about shifting A2AR/D2R heteromer/homodimer equilibria in the brain. Positron emission tomography with suitable ligands may provide in vivo information about receptor crosstalk in the living organism. Some experimental approaches, and strategies for the design of novel imaging agents (e.g., heterobivalent ligands) are proposed in this review.
Collapse
Affiliation(s)
- Kavya Prasad
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| | - Erik F. J. de Vries
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Philip H. Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
| | - Rudi A. J. O. Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Department of Diagnostic Sciences, Ghent University Faculty of Medicine and Health Sciences, C.Heymanslaan 10, 9000 Gent, Belgium
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713GZ Groningen, The Netherlands; (E.F.J.d.V.); (P.H.E.); (R.A.J.O.D.)
- Correspondence: (K.P.); (A.v.W.); Tel.: +31-50-3613215
| |
Collapse
|