1
|
Aparicio GI, Quintero JE, Plum L, Deng L, Wanczyk K, Henry M, Lynch E, Murphy M, Gerhardt GA, van Horne CG, Monje PV. Identification of cellular and noncellular components of mature intact human peripheral nerve. J Peripher Nerv Syst 2024; 29:294-314. [PMID: 38973168 DOI: 10.1111/jns.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/09/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND AND AIMS The goal of this study was to define basic constituents of the adult peripheral nervous system (PNS) using intact human nerve tissues. METHODS We combined fluorescent and chromogenic immunostaining methods, myelin-selective fluorophores, and routine histological stains to identify common cellular and noncellular elements in aldehyde-fixed nerve tissue sections. We employed Schwann cell (SC)-specific markers, such as S100β, NGFR, Sox10, and myelin protein zero (MPZ), together with axonal, extracellular matrix (collagen IV, laminin, fibronectin), and fibroblast markers to assess the SC's relationship to myelin sheaths, axons, other cell types, and the acellular environment. RESULTS Whereas S100β and Sox10 revealed mature SCs in the absence of other stains, discrimination between myelinating and non-myelinating (Remak) SCs required immunodetection of NGFR along with axonal and/or myelin markers. Surprisingly, our analysis of NGFR+ profiles uncovered the existence of at least 3 different novel populations of NGFR+/S100β- cells, herein referred to as nonglial cells, residing in the stroma and perivascular areas of all nerve compartments. An important proportion of the nerve's cellular content, including circa 30% of endoneurial cells, consisted of heterogenous S100β negative cells that were not associated with axons. Useful markers to identify the localization and diversity of nonglial cell types across different compartments were Thy1, CD34, SMA, and Glut1, a perineurial cell marker. INTERPRETATION Our optimized methods revealed additional detailed information to update our understanding of the complexity and spatial orientation of PNS-resident cell types in humans.
Collapse
Affiliation(s)
- Gabriela I Aparicio
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Jorge E Quintero
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lauren Plum
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Lingxiao Deng
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kristen Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Miriam Henry
- Department of Plastic Surgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Evan Lynch
- Department of Plastic Surgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Michael Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Greg A Gerhardt
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Plastic Surgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| | - Craig G van Horne
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Paula V Monje
- Department of Neurosurgery, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Neurorestoration Center, College of Medicine, University of Kentucky, Lexington, Kentucky, USA
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Wang Z, Xu Y, Huang L, Zhao J, Ye Y, Liu C, Wang B, Zhao H, Zhang H. Ultrastructural characteristics and morphological relationships of cardiomyocytes and telocytes in the myocardium of the bullfrog (Rana catesbeiana). Anat Histol Embryol 2024; 53:e13008. [PMID: 38230833 DOI: 10.1111/ahe.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/29/2023] [Accepted: 12/05/2023] [Indexed: 01/18/2024]
Abstract
Telocytes (TCs) are distinctive interstitial cells due to their characteristic structures and heterogeneity. They are suggested to participate in tissue repair/regeneration. TCs have been identified in many organs of various mammals. However, data on TCs in lower animals are still very limited. In this work, TCs were identified in the myocardium of the bullfrog (Rana catesbeiana) by light and transmission electron microscopy (TEM). The structural relationships between TCs and neighbouring cell types were measured using the ImageJ (FiJi) morphometric software. TCs with slender Tps (telepodes) were located around cardiomyocytes (CMC). TEM revealed TCs with long Tps in the stroma between CMC. The homocellular tight junctions were observed between the Tps. The Tps were also very close to the neighbouring CMC. The distance between Tps and CMC was 0.15 ± 0.08 μm. Notably, Tps were observed to adhere to the periphery of the satellite cells. The Tps and the satellite cells established heterocellular structural connections by tight junctions. Additionally, Tps were frequently observed in close proximity to mast cells (MCs). The distance between the Tps and the MCs was 0.19 ± 0.09 μm. These results confirmed that TCs are present in the myocardium of the bullfrog, and that TCs established structural relationships with neighbouring cell types, including satellite cells and MCs. These findings provide the anatomical evidence to support the note that TCs are involved in tissue regeneration.
Collapse
Affiliation(s)
- Zifan Wang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yizhen Xu
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Ling Huang
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Jiancheng Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Yaqiong Ye
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Canying Liu
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
| | - Bingyun Wang
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
| | - Haiquan Zhao
- College of Life Science and Engineering, Foshan University, Foshan, China
| | - Hui Zhang
- College of Life Science and Engineering, Foshan University, Foshan, China
- Guangdong Provincial Engineering Research Center for Animal Stem Cells of Ordinary Universities, Foshan, China
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
3
|
Rusu MC, Nicolescu MI, Vrapciu AD. Evidence of lymphatics in the rat eye retina. Ann Anat 2022; 244:151987. [PMID: 35914631 DOI: 10.1016/j.aanat.2022.151987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND The lymphatic structure of the eye is still under debate. It is mainly assumed that the retina is primarily drained by prelymphatics and not by lymphatics per se. We aimed to identify lymphatics in the rat retina. METHODS Eyes from ten Wistar rats were paraffin-embedded and lymphatic marker podoplanin (D2-40) was investigated. RESULTS We identified in the rat retina a blunt-end network of lymphatic endothelial vessels. It consisted of circumferential vessels within the outer and, respectively, inner plexiform layers, connected by radial dichotomous vessels. Moreover, D2-40 expression was found within the choroid, ciliary body, and extraocular muscles. CONCLUSIONS This in situ evidence is strongly supported by the recent in vitro demonstration of the expression of lymphatic markers in retinal endothelial cells. Further studies of comparative histology should use specific lymphatic markers to test whether other species besides rats have proper retinal lymphatics.
Collapse
Affiliation(s)
- Mugurel Constantin Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania; Laboratory of Radiobiology, "Victor Babeș" National Institute of Pathology, 050096 Bucharest, Romania
| | - Alexandra Diana Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
4
|
Zurzu M, Nicolescu MI, Mogoantă L, Pantea S, Rusu MC. Telocytes and Lymphatics of the Human Colon. Life (Basel) 2021; 11:life11101001. [PMID: 34685373 PMCID: PMC8538068 DOI: 10.3390/life11101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/20/2021] [Accepted: 09/22/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Telocytes (TCs) are a peculiar morphological type of stromal cells. They project long and moniliform telopodes, visible on various bidimensional sections. Originally regarded as “interstitial Cajal-like cells”, gastrointestinal TCs were CD34+. Further double-labelling studies found that colon TCs are negative for the expressions of the PDGFR-α and α-SMA. However, the TCs in colon were not distinguished specifically from endothelial cells (ECs), vascular or lymphatic. A combinational approach is important for accurate TC identification. Hence, we designed an immunohistochemical study of human colon to check whether ECs and CD34+ TCs express different markers. Methods: Immunohistochemistry was performed on archived paraffin-embedded samples of human colon (nine cases) for the following markers: CD31, CD34, CD117/c-kit and D2-40 (podoplanin). Results: A distinctive population of CD34+ TCs was found coating the myenteric ganglia. However, also perivascular cells and vascular ECs were CD34+. c-kit expression was equally found in interstitial Cajal cells (ICCs) and perivascular cells. The CD34 TCs did not express c-kit. As they were equally CD31- and D2-40- they were assessed as different from ECs. Conclusions: Testing specific markers of ECs, vascular and lymphatic, in the same tissues in which CD34+ TCs are found, is much more relevant than to identify TCs by transmission electron microscopy alone.
Collapse
Affiliation(s)
- Mihai Zurzu
- Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Mihnea Ioan Nicolescu
- Division of Histology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Laboratory of Radiobiology, “Victor Babeș” National Institute of Pathology, 050096 Bucharest, Romania
- Correspondence: (M.I.N.); (M.C.R.)
| | - Laurențiu Mogoantă
- Department of Histology, University of Medicine and Pharmacy Craiova, 200349 Craiova, Romania;
| | - Stelian Pantea
- Surgery Clinic II, “Victor Babeș” University of Medicine and Pharmacy, 300041 Timișoara, Romania;
| | - Mugurel Constantin Rusu
- Division of Anatomy, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania;
- Correspondence: (M.I.N.); (M.C.R.)
| |
Collapse
|
5
|
Sukhacheva TV, Nizyaeva NV, Samsonova MV, Cherniaev AL, Burov AA, Iurova MV, Shchegolev AI, Serov RA, Sukhikh GT. Morpho-functional changes of cardiac telocytes in isolated atrial amyloidosis in patients with atrial fibrillation. Sci Rep 2021; 11:3563. [PMID: 33574429 PMCID: PMC7878494 DOI: 10.1038/s41598-021-82554-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
Telocytes are interstitial cells with long, thin processes by which they contact each other and form a network in the interstitium. Myocardial remodeling of adult patients with different forms of atrial fibrillation (AF) occurs with an increase in fibrosis, age-related isolated atrial amyloidosis (IAA), cardiomyocyte hypertrophy and myolysis. This study aimed to determine the ultrastructural and immunohistochemical features of cardiac telocytes in patients with AF and AF + IAA. IAA associated with accumulation of atrial natriuretic factor was detected in 4.3-25% biopsies of left (LAA) and 21.7-41.7% of right (RAA) atrial appendage myocardium. Telocytes were identified at ultrastructural level more often in AF + IAA, than in AF group and correlated with AF duration and mitral valve regurgitation. Telocytes had ultrastructural signs of synthetic, proliferative, and phagocytic activity. Telocytes corresponded to CD117+, vimentin+, CD34+, CD44+, CD68+, CD16+, S100-, CD105- immunophenotype. No significant differences in telocytes morphology and immunophenotype were found in patients with various forms of AF. CD68-positive cells were detected more often in AF + IAA than AF group. We assume that in aged AF + IAA patients remodeling of atrial myocardium provoked transformation of telocytes into "transitional forms" combining the morphological and immunohistochemical features with signs of fibroblast-, histiocyte- and endotheliocyte-like cells.
Collapse
Affiliation(s)
- Tatyana V Sukhacheva
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, The Ministry of Health of Russian Federation, Moscow, Russia.
| | - Natalia V Nizyaeva
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Maria V Samsonova
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation, Moscow, 115682, Russia
| | - Andrey L Cherniaev
- Pulmonology Scientific Research Institute under Federal Medical and Biological Agency of Russian Federation, Moscow, 115682, Russia
| | - Artem A Burov
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Mariia V Iurova
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
- First Moscow State Medical University Named After I.M. Sechenov, Moscow, Russia
| | - Aleksandr I Shchegolev
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
| | - Roman A Serov
- A.N. Bakulev National Medical Research Center of Cardiovascular Surgery, The Ministry of Health of Russian Federation, Moscow, Russia
| | - Gennady T Sukhikh
- National Medical Research Center for Obstetrics, Gynecology, and Perinatology Named After Academician V.I. Kulakov of the Ministry of Healthcare of the Russian Federation, Moscow, Russia, 117997
- First Moscow State Medical University Named After I.M. Sechenov, Moscow, Russia
| |
Collapse
|
6
|
Liao Z, Chen Y, Duan C, Zhu K, Huang R, Zhao H, Hintze M, Pu Q, Yuan Z, Lv L, Chen H, Lai B, Feng S, Qi X, Cai D. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction. Am J Cancer Res 2021; 11:268-291. [PMID: 33391474 PMCID: PMC7681094 DOI: 10.7150/thno.47021] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
Promotion of cardiac angiogenesis in ischemic myocardium is a critical strategy for repairing and regenerating the myocardium after myocardial infarction (MI). Currently, effective methods to aid in the survival of endothelial cells, to avoid apoptosis in ischemic myocardium and to achieve long-term cardiac angiogenesis are still being pursued. Here, we investigated whether cardiac telocyte (CT)-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells to facilitate cardiac angiogenesis during MI. Methods: CT exosomes were isolated from CT conditioned medium, and their miRNA profile was characterized by small RNA sequencing. A rat model of left anterior descending coronary artery ligation (LAD)-mediated MI was assessed with histology for infarct size and fibrosis, immunostaining for angiogenesis and cell apoptosis and echocardiography to evaluate the therapeutic effects. Cardiac microvascular endothelial cells (CMECs) and the LAD-MI model treated with CT exosomes or CT exosomal miRNA-21-5p in vitro and in vivo were assessed with cellular and molecular techniques to demonstrate the underlying mechanism. Results: CTs exert therapeutic effects on MI via the potent paracrine effects of CT exosomes to facilitate the inhibition of apoptosis and survival of CMECs and promote cardiac angiogenesis. A novel mechanism of CTs is revealed, in which CT-endothelial cell communication suppresses apoptosis and promotes the survival of endothelial cells in the pathophysiological myocardium. CT exosomal miRNA-21-5p targeted and silenced the cell death inducing p53 target 1 (Cdip1) gene and thus down-regulated the activated caspase-3, which then inhibited the apoptosis of recipient endothelial cells under ischemic and hypoxic conditions, facilitating angiogenesis and regeneration following MI. Conclusions: The present study is the first to show that CTs inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted Cdip1 silencing to improve angiogenesis in myocardial infarction. It is believed that these novel findings and the discovery of cellular and molecular mechanisms will provide new opportunities to tailor novel cardiac cell therapies and cell-free therapies for the functional and structural regeneration of the injured myocardium.
Collapse
|
7
|
Selviler-Sizer S, Kabak YB, Kabak M. Telocytes in the hearts of Saanen goats. Microsc Res Tech 2020; 84:548-554. [PMID: 33017500 DOI: 10.1002/jemt.23612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 12/21/2022]
Abstract
Telocytes, new interstitial cells that have received significant attention in recent years, have been detected in many organs, including the heart. The distinction between telocytes and other interstitial cells can only be made based on their ultrastructural characterization and immunophenotypic features. In this study, we examined the interstitial cells in the healthy heart tissues of Saanen goats to determine whether they are telocytes or not, by using a scanning electron microscope (SEM) and immunohistochemical and immunofluorescence staining methods. The SEM revealed oval and round telocytes with two to four telopodes. Some telopodes also had podoms. The staining for immunohistochemical and immunofluorescence methods used for CD34, c-kit (CD117), and vimentin antibodies. Positive cells were detected in the heart muscle and heart valves by immunohistochemical staining. As these antigens can also be expressed by other non-telocyte cells, we used double immunofluorescence staining with CD34/c-kit and CD34/vimentin antibodies to identify true telocytes. Telocytes were determined in the right atrium and aortic valve. While telocytes were CD34+/c-kit+ and CD34+/vimentin+, fibroblasts were CD34-/vimentin+. These results confirm the presence of telocytes in the hearts of Saanen goats.
Collapse
Affiliation(s)
- Sedef Selviler-Sizer
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Yonca Betil Kabak
- Department of Pathology, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| | - Murat Kabak
- Department of Anatomy, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkey
| |
Collapse
|
8
|
Nicolescu MI, Rusu MC, Voinea LM, Vrapciu AD, Bâră RI. Lymphatic lacunae of the human eye conjunctiva embedded within a stroma containing CD34 + telocytes. J Cell Mol Med 2020; 24:8871-8875. [PMID: 32578954 PMCID: PMC7412391 DOI: 10.1111/jcmm.15354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 04/05/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022] Open
Abstract
An accurate identification of telocytes (TCs) was limited because of the heterogeneity of cell types expressing the markers attributed to TCs. Some endothelial lineage cells also could fit within the pattern of TCs. Such endothelial cells could line conjunctival lacunae previously assessed by laser confocal microscopy. We have been suggested that an accurate distinction of TCs from endothelial cells in the human eye conjunctiva could be achieved by use of CD31, CD34 and D2‐40 (podoplanin); and that the conjunctival lacunae are in fact lymphatic. We aimed as testing the hypothesis by an immunohistochemical study on human eye conjunctiva biopsy samples. Samples of human eye conjunctiva from 30 patients were evaluated immunohistochemically by use of the primary antibodies: CD34, D2‐40 and CD31. D2‐40 was equally expressed within epithelia and laminae propria. Basal epithelial cells were D2‐40 positive. Within the stromal compartment, the lymphatic marker D2‐40 labelled several lymphatic vessels. CD31 labelled both vascular and lymphatic endothelial cells within the lamina propria. When capillary lymphatics were tangentially cut, they gave the false appearance of telocytes. Blood endothelial cells expressed CD34, whereas lymphatic endothelial cells did not. Stromal CD34‐expressing cells/telocytes were found building a consistent pan‐stromal network which was equally CD31‐negative and D2‐40‐negative. The conjunctival lymphatic lacunae seem to represent a peculiar anatomic feature of eye conjunctiva. They are embedded within a CD34‐expressing stromal network of TCs. The negative expression of CD31 and D2‐40 should be tested when discriminating CD34‐expressing TCs.
Collapse
Affiliation(s)
- Mihnea I Nicolescu
- Division of Histology, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Radiobiology Laboratory, "Victor Babeș" National Institute of Pathology, Bucharest, Romania
| | - Mugurel C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Liliana M Voinea
- Department of Ophthalmology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Ophthalmology, Bucharest University Emergency Hospital, Bucharest, Romania
| | - Alexandra D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Raluca I Bâră
- Department of Ophthalmology, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Ophthalmology, Bucharest University Emergency Hospital, Bucharest, Romania
| |
Collapse
|
9
|
Sukhacheva TV, Nizyaeva NV, Samsonova MV, Chernyaev AL, Shchegolev AI, Serov RA. Telocytes in the Myocardium of Children with Congenital Heart Disease Tetralogy of Fallot. Bull Exp Biol Med 2020; 169:137-146. [PMID: 32488790 DOI: 10.1007/s10517-020-04840-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Telocytes, a new type of interstitial stem cells with long thin processes that form a three-dimensional network around cardiomyocytes, vessels, and nerve fibers were described in the myocardium of children with tetralogy of Fallot. Two types of morphologically different telocytes, spindle-shaped and rounded, were identified. Contacts of telocytes with stem cells and interstitial macrophages were found. Telocytes were more common in the immature myocardium, where the assembly of myofibrils in cardiomyocytes was not completed and small Ki-67+ cardiomyocyte progenitor cells were present. Telocytes expressed immunohistochemical markers CD117, vimentin, CD34, and CD44. Localization and ultrastructural characteristics of telocytes suggested their participation in stem cell differentiation, coordination of neoangiogenesis, and paracrine regulation of all components of the interstitium.
Collapse
Affiliation(s)
- T V Sukhacheva
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of Russian Federation, Moscow, Russia.
| | - N V Nizyaeva
- V. I. Kulakov National Research Medical Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - M V Samsonova
- Research Institute of Pulmonology, Federal Medical-Biological Agency of Russian Federation, Moscow, Russia
| | - A L Chernyaev
- Research Institute of Pulmonology, Federal Medical-Biological Agency of Russian Federation, Moscow, Russia
| | - A I Shchegolev
- V. I. Kulakov National Research Medical Center for Obstetrics, Gynecology and Perinatology, Ministry of Health of Russian Federation, Moscow, Russia
| | - R A Serov
- A. N. Bakulev National Medical Research Center of Cardiovascular Surgery, Ministry of Health of Russian Federation, Moscow, Russia
| |
Collapse
|
10
|
The oral mucosa: Epithelial professional phagocytes, lymphatics, telocytes, and false telocytes. Ann Anat 2020; 229:151462. [DOI: 10.1016/j.aanat.2020.151462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 12/07/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
|
11
|
Yang HM, Kim JY, Cho HJ, Lee JE, Jin S, Hur J, Kwon YW, Seong MW, Choi EK, Lee HY, Lee HS, Jeon M, Kim J, Yang J, Oh S, Suh KS, Yoon SS, Kim KB, Oh BH, Park YB, Kim HS. NFATc1+CD31+CD45- circulating multipotent stem cells derived from human endocardium and their therapeutic potential. Biomaterials 2019; 232:119674. [PMID: 31865194 DOI: 10.1016/j.biomaterials.2019.119674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Many studies have shown the existence of cardiac stem cells in the myocardium and epicardial progenitor cells in the epicardium. However, the characteristics of stem cells in the endocardium has not been fully elucidated. In this study, we investigated the origin of newly identified cells in the blood and their therapeutic potential. The new population of cells, identified from human peripheral blood, was quite different from previously reported stem cells. These newly identified cells, which we named Circulating Multipotent Stem (CiMS) cells, were multipotent, and therefore differentiated into multiple lineages in vitro and in vivo. In order to determine the origin of these cells, we collected peripheral blood from a group of patients who underwent bone marrow, liver, heart, or kidney transplantation. We identified the endocardium as the origin of these cells because the Short Tandem Repeat profile of CiMS cells from the recipient had changed from the recipient's profile to the donor's profile after heart transplantation. CiMS cells significantly increased after stimuli to the endocardium, such as catheter ablation for arrhythmia or acute myocardial infarction. CiMS cells circulate in human peripheral blood and are easily obtainable, suggesting that these cells could be a promising tool for cell therapy.
Collapse
Affiliation(s)
- Han-Mo Yang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Ju-Young Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Hyun-Jai Cho
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Joo-Eun Lee
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Sooryeonhwa Jin
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Jin Hur
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Yoo-Wook Kwon
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Moon-Woo Seong
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Eue-Keun Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Hae-Young Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Hyun-Seob Lee
- Genomics Core Facility, Department of Transdisciplinary Research and Collaboration, Biomedical Research Institute, Seoul National University Hospital, Seoul, South Korea
| | - Mika Jeon
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Joonoh Kim
- National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul, South Korea
| | - Seil Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Sung-Soo Yoon
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Ki-Bong Kim
- Department of Thoracic and Cardiovascular Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung-Hee Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Young-Bae Park
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea
| | - Hyo-Soo Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea; National Research Laboratory for Stem Cell Niche, Seoul National University Hospital, Seoul, South Korea; Innovative Research Institute for Cell Therapy, Seoul National University Hospital, Seoul, South Korea; Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
12
|
Rusu MC, Hostiuc S, Fildan AP, Tofolean DE. Critical Review: What Cell Types Are the Lung Telocytes? Anat Rec (Hoboken) 2019; 303:1280-1292. [PMID: 31443120 DOI: 10.1002/ar.24237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/11/2019] [Accepted: 05/13/2019] [Indexed: 12/15/2022]
Abstract
Telocytes (TCs) are stromal cells defined by peculiar long, thin, moniliform prolongations known as telopodes. When isolated, their morphology often lacks the specificity for the proper definition of a particular cell type. Recent studies have linked TCs with different functions and different cell lineages. Although some authors have studied pulmonary TCs, their research has important limitations that we will attempt to summarize in this article. We will focus our analysis on the following: the culture methods used to study them, the lack of proper discrimination of TCs from lymphatic endothelial cells (LECs), whose ultrastructures are very similar, and the immune phenotype of TCs, which may appear in other cell types such as those related to the endothelial lineage or stem/progenitor cells. In conclusion, the cellular diagnosis of lung TCs should be considered with caution until properly designed studies can positively identify these cells and differentiate them from other cell types such as LECs and stem/progenitor cells. Anat Rec, 303:1280-1292, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- Mugurel C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Sorin Hostiuc
- Department of Legal Medicine and Bioethics, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ariadna P Fildan
- Internal Medicine Department, Faculty of Medicine, Ovidius University of Constanţa, Constatnţa, Romania
| | - Doina E Tofolean
- Internal Medicine Department, Faculty of Medicine, Ovidius University of Constanţa, Constatnţa, Romania
| |
Collapse
|
13
|
Li S, Shen X, He S. Expression of toll-like receptors and their regulatory roles in murine cardiac telocytes. J Cell Mol Med 2019; 23:5360-5368. [PMID: 31232516 PMCID: PMC6653320 DOI: 10.1111/jcmm.14416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/11/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
Abstract
Telocytes, newly discovered in the last decade, are interstitial cells found in numerous organs, with multiple proposed potential biological functions. Toll-like receptors (TLRs) play an important role in innate and adaptive immunity by recognizing pathogen-associated molecular patterns (PAMPs). However, it is still unknown whether telocytes express these innate receptors. We sought to determine the expression and role of TLRs in telocytes. In our study, we primarily detected TLR1-9 expression in telocytes. The proliferation, apoptosis and immunoregulatory activity of telocytes activated with or without TLR ligands were determined. Our results showed that purified telocytes expressed TLR2, TLR3 and TLR5. In particular, telocytes expressed high levels of TLR2 as observed using flow cytometry. When we stimulated telocytes with TLR2 or TLR3 agonists (Pam3CSK4, PolyI:C), iNOS expression was greatly increased after Pam3CSK4 treatment. Additionally, telocyte proliferation was reduced and cell apoptosis was increased after TLR agonist stimulation. A co-culture experiment showed that supernatant from telocytes pretreated with Pam3CSK4 inhibited T cell activation much more than that from untreated telocytes and this effect was mediated by iNOS. Overall, our results demonstrated TLR expression on telocytes for the first time and provided evidence of an immunoregulatory role of telocytes, indicating their clinical potential.
Collapse
Affiliation(s)
- Shinan Li
- Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China
| | - Xiaokun Shen
- Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China
| | - Shaoheng He
- Institute for Translation Medicine, Jinzhou Medical University, Jinzhou, China.,Allergy and Clinical Immunology Research Centre, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
14
|
Abstract
A great interest has developed over the last several years in research on interstitial Cajal-like cells (ICLCs), later renamed to telocytes (TCs). Such studies are restricted by diverse limitations. We aimed to critically review (sub)epicardial ICLCs/TCs and to bring forward supplemental immunohistochemical evidence on (sub)epicardial stromal niche inhabitants. We tested the epicardial expressions of CD117/c-kit, CD34, Cytokeratin 7 (CK7), Ki67, Platelet-Derived Growth Factor Receptor (PDGFR)-α and D2-40 in adult human cardiac samples. The mesothelial epicardial cells expressed D2-40, CK7, CD117/c-kit and PDGFR-α. Subepicardial D2-40-positive lymphatic vessels and isolated D2-40-positive and CK7-positive subepicardial cells were also found. Immediate submesothelial spindle-shaped cells expressed Ki-67. Submesothelial stromal cells and endothelial tubes were PDGFR-α-positive and CD34-positive. The expression of CD34 was pan-stromal, so a particular stromal cell type could not be distinguished. The stromal expression of CD117/c-kit was also noted. It seems that epicardial TCs could not be regarded as belonging to a unique cell type until (pre)lymphatic endothelial cells are inadequately excluded. Markers such as CD117/c-kit or CD34 seem to be improper for identifying TCs as a distinctive cell type. Care should be taken when using the immunohistochemical method and histological interpretations, as they may not produce accurate results.
Collapse
|
15
|
Iancu CB, Rusu MC, Mogoantă L, Hostiuc S, Grigoriu M. Myocardial Telocyte-Like Cells: A Review Including New Evidence. Cells Tissues Organs 2019; 206:16-25. [PMID: 30879002 DOI: 10.1159/000497194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/17/2019] [Indexed: 11/19/2022] Open
Abstract
Telocytes (TCs) are a controversial cell type characterized by the presence of a particular kind of prolongations, known as telopodes, which are long, thin, and moniliform. A number of attempts has been made to establish the molecular phenotype of cardiac TCs (i.e., expression of c-kit, CD34, vimentin, PDGRFα, PDGRFβ, etc.). We designed an immunohistochemical study involving cardiac tissue samples obtained from 10 cadavers with the aim of determining whether there are TC-like interstitial cells that populate the interstitial space other than the mural microvascular cells. We applied the markers for CD31, CD34, PDGRFα, CD117/c-kit, and α-smooth muscle actin (α-SMA). We found that, in relation to two-dimensional cuts, the endothelial tubes could be misidentified as TC-like cells, the difference being the positive identification of endothelial lumina. Moreover, we found that cardiac pericytes express PDGRFα, CD117/c-kit, and α-SMA, and that they could also be misidentified as TCs when using light microscopy. We reviewed the respective values of the previously identified markers for achieving a clear-cut identification of cardiac TCs, highlighting the critical lack of specificity.
Collapse
Affiliation(s)
- Cristian B Iancu
- Division of Anatomy, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mugurel C Rusu
- Division of Anatomy, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,
| | - Laurenţiu Mogoantă
- Department of Histology, University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Sorin Hostiuc
- Department of Legal Medicine and Bioethics, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Grigoriu
- Division of Surgery, University Emergency Hospital Bucharest, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
16
|
Varga I, Polák Š, Kyselovič J, Kachlík D, Danišovič Ľ, Klein M. Recently Discovered Interstitial Cell Population of Telocytes: Distinguishing Facts from Fiction Regarding Their Role in the Pathogenesis of Diverse Diseases Called "Telocytopathies". MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E56. [PMID: 30781716 PMCID: PMC6410178 DOI: 10.3390/medicina55020056] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/14/2019] [Accepted: 02/11/2019] [Indexed: 12/19/2022]
Abstract
In recent years, the interstitial cells telocytes, formerly known as interstitial Cajal-like cells, have been described in almost all organs of the human body. Although telocytes were previously thought to be localized predominantly in the organs of the digestive system, as of 2018 they have also been described in the lymphoid tissue, skin, respiratory system, urinary system, meninges and the organs of the male and female genital tracts. Since the time of eminent German pathologist Rudolf Virchow, we have known that many pathological processes originate directly from cellular changes. Even though telocytes are not widely accepted by all scientists as an individual and morphologically and functionally distinct cell population, several articles regarding telocytes have already been published in such prestigious journals as Nature and Annals of the New York Academy of Sciences. The telocyte diversity extends beyond their morphology and functions, as they have a potential role in the etiopathogenesis of different diseases. The most commonly described telocyte-associated diseases (which may be best termed "telocytopathies" in the future) are summarized in this critical review. It is difficult to imagine that a single cell population could be involved in the pathogenesis of such a wide spectrum of pathological conditions as extragastrointestinal stromal tumors ("telocytomas"), liver fibrosis, preeclampsia during pregnancy, tubal infertility, heart failure and psoriasis. In any case, future functional studies of telocytes in vivo will help to understand the mechanism by which telocytes contribute to tissue homeostasis in health and disease.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Štefan Polák
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Ján Kyselovič
- Fifth Department of Internal Medicine, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - David Kachlík
- Institute of Anatomy, Second Faculty of Medicine, Charles University, 128 00 Prague, Czech Republic.
| | - Ľuboš Danišovič
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| | - Martin Klein
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University in Bratislava, 813 72 Bratislava, Slovakia.
| |
Collapse
|
17
|
Recently discovered interstitial cells termed telocytes: distinguishing cell-biological and histological facts from fictions. Biologia (Bratisl) 2018. [DOI: 10.2478/s11756-018-0162-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Critical review: Cardiac telocytes vs cardiac lymphatic endothelial cells. Ann Anat 2018; 222:40-54. [PMID: 30439414 DOI: 10.1016/j.aanat.2018.10.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 02/07/2023]
Abstract
The study of cardiac interstitial Cajal-like cells (ICLCs) began in 2005 and continued until 2010, when these cells were renamed as telocytes (TCs). Since then, numerous papers on cardiac ICLCs and TCs have been published. However, in the initial descriptions upon which further research was based, lymphatic endothelial cells (LECs) and initial lymphatics were not considered. No specific antibodies for LECs (such as podoplanin or LYVE-1) were used in cardiac TC studies, although ultrastructurally, LECs and TCs have similar morphological traits, including the lack of a basal lamina. When tissues are longitudinally cut, migrating LECs involved in adult lymphangiogenesis have an ICLC or TC morphology, both in light and transmission electron microscopy. In this paper, we present evidence that at least some cardiac TCs are actually LECs. Therefore, a clear-cut distinction should be made between TCs and LECs, at both the molecular and the ultrastructural levels, in order to avoid obtaining invalid data.
Collapse
|
19
|
Zhong X, Zheng Y, Li H, Huang S, Ge J. Identification of Myocardial Telocytes and Bone Marrow Mesenchymal Stem Cells in Mice. Cell Transplant 2018; 27:1515-1522. [PMID: 30203685 PMCID: PMC6180723 DOI: 10.1177/0963689718796773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The aim of this study was to compare the morphology, immune phenotype, and cytokine profiles between myocardial telocytes (TCs) and bone marrow mesenchymal stem cells (MSCs), and explore the difference between those two types of interstitial cells. METHODS TCs and MSCs were cultured in vitro and cell morphology was observed with a light microscope. The expression levels of CD34, c-kit, and vimentin were detected by immunofluorescence, RT-qPCR, and Western blotting in both TCs and MSCs. The related supernatant was collected and total of 49 cytokine profiles were detected by RayBio Mice Cytokine Antibody Array. Significantly different cytokines were further confirmed by ELISA. RESULTS TCs have small cellular body and very long prolongations and they were CD34+/c-kit+/vimentin+, whereas MSCs have no telopodes and they were CD34-/c-kit- /vimentin+. Cytokine profile analysis and ELISA showed that 19 of 49 cytokines were increased dramatically in the supernatant of TCs compared with those of MSCs. Moreover, 9 of 19 cytokines were increased 2-fold at least in the supernatant of TCs compared with those of MSCs. Of 49 cytokines, 30 exhibited no significant changes in the supernatant of TCs compared with those of MSCs. CONCLUSIONS Using various technologies, we identified that myocardial TCs and MSCs are significantly different in terms of cell structure and cytokine profiles.
Collapse
Affiliation(s)
- Xin Zhong
- 1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,Xin Zhong and Yonghua Zheng contributed equally to this work
| | - Yonghua Zheng
- 2 Department of Respiratory Medicine, Shanghai Jinshan Tinglin Hospital, Shanghai, China.,Xin Zhong and Yonghua Zheng contributed equally to this work
| | - Hua Li
- 1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,3 Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Steve Huang
- 1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- 1 Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.,3 Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Vannucchi MG, Traini C. The telocytes/myofibroblasts 3-D network forms a stretch receptor in the human bladder mucosa. Is this structure involved in the detrusor overactive diseases? Ann Anat 2018; 218:118-123. [DOI: 10.1016/j.aanat.2018.01.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 02/08/2023]
|
21
|
Manta L, Rusu M, Pop F. What podoplanin tells us about cells with telopodes. Ann Anat 2018; 218:124-128. [DOI: 10.1016/j.aanat.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/25/2022]
|
22
|
Petrea C, Crăiţoiu Ş, Vrapciu A, Mănoiu V, Rusu M. The telopode- and filopode-projecting heterogeneous stromal cells of the human sclera niche. Ann Anat 2018; 218:129-140. [DOI: 10.1016/j.aanat.2017.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022]
|
23
|
Varga I, Kyselovič J, Galfiova P, Danisovic L. The Non-cardiomyocyte Cells of the Heart. Their Possible Roles in Exercise-Induced Cardiac Regeneration and Remodeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 999:117-136. [PMID: 29022261 DOI: 10.1007/978-981-10-4307-9_8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The non-cardiomyocyte cellular microenvironment of the heart includes diverse types of cells of mesenchymal origin. During development, the majority of these cells derive from the epicardium, while a subset derives from the endothelium/endocardium and neural crest derived mesenchyme. This subset includes cardiac fibroblasts and telocytes, the latter of which are a controversial type of "connecting cell" that support resident cardiac progenitors in the postnatal heart. Smooth muscle cells, pericytes, and endothelial cells are also present, in addition to adipocytes, which accumulate as epicardial adipose connective tissue. Furthermore, the heart harbors many cells of hematopoietic origin, such as mast cells, macrophages, and other immune cell populations. Most of these control immune reactions and inflammation. All of the above-mentioned non-cardiomyocyte cells of the heart contribute to this organ's well-orchestrated physiology. These cells also contribute to regeneration as a result of injury or age, in addition to tissue remodeling triggered by chronic disease or increased physical activity (exercise-induced cardiac growth). These processes in the heart, the most important vital organ in the human body, are not only fascinating from a scientific standpoint, but they are also clinically important. It is well-known that regular exercise can help prevent many cardiovascular diseases. However, the precise mechanisms underpinning myocardial remodeling triggered by physical activity are still unknown. Surprisingly, exercise-induced adaptation mechanisms are often identical or very similar to tissue remodeling caused by pathological conditions, such as hypertension, cardiac hypertrophy, and cardiac fibrosis. This review provides a summary of our current knowledge regarding the cardiac cellular microenvironment, focusing on the clinical applications this information to the study of heart remodeling during regular physical exercise.
Collapse
Affiliation(s)
- Ivan Varga
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic.
| | - Jan Kyselovič
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University Bratislava, Bratislava, Slovak Republic
| | - Paulina Galfiova
- Institute of Histology and Embryology, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovak Republic
| |
Collapse
|
24
|
Beta-Estradiol Regulates Voltage-Gated Calcium Channels and Estrogen Receptors in Telocytes from Human Myometrium. Int J Mol Sci 2018; 19:ijms19051413. [PMID: 29747396 PMCID: PMC5983827 DOI: 10.3390/ijms19051413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/14/2018] [Accepted: 05/02/2018] [Indexed: 12/18/2022] Open
Abstract
Voltage-gated calcium channels and estrogen receptors are essential players in uterine physiology, and their association with different calcium signaling pathways contributes to healthy and pathological conditions of the uterine myometrium. Among the properties of the various cell subtypes present in human uterine myometrium, there is increasing evidence that calcium oscillations in telocytes (TCs) contribute to contractile activity and pregnancy. Our study aimed to evaluate the effects of beta-estradiol on voltage-gated calcium channels and estrogen receptors in TCs from human uterine myometrium and to understand their role in pregnancy. For this purpose, we employed patch-clamp recordings, ratiometric Fura-2-based calcium imaging analysis, and qRT-PCR techniques for the analysis of cultured human myometrial TCs derived from pregnant and non-pregnant uterine samples. In human myometrial TCs from both non-pregnant and pregnant uterus, we evidenced by qRT-PCR the presence of genes encoding for voltage-gated calcium channels (Cav3.1, Ca3.2, Cav3.3, Cav2.1), estrogen receptors (ESR1, ESR2, GPR30), and nuclear receptor coactivator 3 (NCOA3). Pregnancy significantly upregulated Cav3.1 and downregulated Cav3.2, Cav3.3, ESR1, ESR2, and NCOA3, compared to the non-pregnant condition. Beta-estradiol treatment (24 h, 10, 100, 1000 nM) downregulated Cav3.2, Cav3.3, Cav1.2, ESR1, ESR2, GRP30, and NCOA3 in TCs from human pregnant uterine myometrium. We also confirmed the functional expression of voltage-gated calcium channels by patch-clamp recordings and calcium imaging analysis of TCs from pregnant human myometrium by perfusing with BAY K8644, which induced calcium influx through these channels. Additionally, we demonstrated that beta-estradiol (1000 nM) antagonized the effect of BAY K8644 (2.5 or 5 µM) in the same preparations. In conclusion, we evidenced the presence of voltage-gated calcium channels and estrogen receptors in TCs from non-pregnant and pregnant human uterine myometrium and their gene expression regulation by beta-estradiol in pregnant conditions. Further exploration of the calcium signaling in TCs and its modulation by estrogen hormones will contribute to the understanding of labor and pregnancy mechanisms and to the development of effective strategies to reduce the risk of premature birth.
Collapse
|
25
|
Rusu MC, Mănoiu VS, Creţoiu D, Creţoiu SM, Vrapciu AD. Stromal cells/telocytes and endothelial progenitors in the perivascular niches of the trigeminal ganglion. Ann Anat 2018; 218:141-155. [PMID: 29680777 DOI: 10.1016/j.aanat.2017.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/10/2017] [Accepted: 12/15/2017] [Indexed: 12/15/2022]
Abstract
Stromal cells/telocytes (SCs/TCs) were recently described in the human adult trigeminal ganglion (TG). As some markers are equally expressed in SCs/TCs and endothelial cells, we hypothesized that a subset of the TG SCs/TCs is in fact represented by endothelial progenitor cells of a myelomonocytic origin. This study aimed to evaluate whether the interstitial cells of the human adult TG correlate with the myelomonocytic lineage. We used primary antibodies for c-erbB2/HER-2, CD31, nestin, CD10, CD117/c-kit, von Willebrand factor (vWF), CD34, Stro-1, CD146, α-smooth muscle actin (α-SMA), CD68, VEGFR-2 and cytokeratin 7 (CK7). The TG pial mesothelium and subpial vascular microstroma expressed c-erbB2/HER-2, CK7 and VEGFR-2. SCs/TCs neighbouring the neuronoglial units (NGUs) also expressed HER-2, which suggests a pial origin. These cells were also positive for CD10, CD31, CD34, CD68 and nestin. Endothelial cells expressed CD10, CD31, CD34, CD146, nestin and vWF. We also found vasculogenic networks with spindle-shaped and stellate endothelial progenitors expressing CD10, CD31, CD34, CD68, CD146 and VEGFR-2. Isolated mesenchymal stromal cells expressed Stro-1, CD146, CK7, c-kit and nestin. Pericytes expressed α-SMA and CD146. Using transmission electron microscopy (TEM), we found endothelial-specific Weibel-Palade bodies in spindle-shaped stromal progenitors. Our study supports the hypothesis that an intrinsic vasculogenic niche potentially involved in microvascular maintenance and repair might be present in the human adult trigeminal ganglion and that it might be supplied by either the pial mesothelium or the bone marrow niche.
Collapse
Affiliation(s)
- M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER - Center of Excellence in Laboratory Medicine and Pathology, Romania.
| | - V S Mănoiu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - D Creţoiu
- Division of Cellular and Molecular Biology and Histology, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - S M Creţoiu
- Division of Cellular and Molecular Biology and Histology, Department 2 Morphological Sciences, Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
26
|
Molecular phenotypes of the human kidney: Myoid stromal cells/telocytes and myoepithelial cells. Ann Anat 2018; 218:95-104. [PMID: 29660398 DOI: 10.1016/j.aanat.2017.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/09/2017] [Accepted: 12/10/2017] [Indexed: 12/17/2022]
Abstract
The connective stromal and epithelial compartments of the kidney have regenerative potential and phenotypic flexibility. A few studies have shown that cells appertaining to both compartments can exhibit myoid phenotypes. The purpose of our study was to investigate the myoid pattern of kidney and its association with the kidney niches containing stromal cells/telocytes (SC/TCs). We performed an immunohistochemical study using a panel of endothelial, myoid, mesenchymal and stem/progenitor markers, namely CD31, CD34, CD105 (endoglin), CD117/c-kit, nestin, desmin, α-smooth muscle actin (α-SMA) and the heavy chain of smooth muscle myosin (SMM). We used histologically normal kidney samples, obtained after nephrectomy, from nine adult patients. The capsular SC/TCs had a strong CD34 and partial nestin and CD105 immunopositivity. Subcapsular and interstitial SC/TCs expressed c-kit, nestin, CD105, but also α-SMA and SMM, therefore having a myoid phenotype. The endothelial SC/TCs phenotype was CD31+/CD34+/CD105+/nestin±/SMM±/α-SMA±. All three myoid markers were expressed in periendothelial SC/TCs. We also found a scarce expression of nestin in parietal epithelial cells of Bowman's capsule, and in podocytes. In epithelial cells, we found a positive expression for CD31, CD117/c-kit, desmin, CD34, SMM, and CD105. In epithelial tubular cells, we found a predominant basal expression of the myoid markers (SMM and desmin). In conclusion, myoepithelial tubular cells, myoid endothelial cells and myoid SC/TCs are normal constituents of the kidney.
Collapse
|
27
|
Petrea CE, Rusu MC, Mănoiu VS, Vrapciu AD. Telocyte-like cells containing Weibel-Palade bodies in rat lamina fusca. Ann Anat 2018; 218:88-94. [PMID: 29655846 DOI: 10.1016/j.aanat.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/22/2018] [Accepted: 03/25/2018] [Indexed: 12/25/2022]
Abstract
Telocytes (TCs) are cells with long, thin and moniliform processes called telopodes. These cells have been found in numerous tissues, including the eye choroid and sclera. Lamina fusca (LF), an anatomical structure located at the sclera-choroid junction, has outer fibroblastic lamellae containing cells with long telopodes. The purpose of this study was to evaluate, via transmission electron microscopy, the LF for the presence of endothelial-specific ultrastructural features, such as Weibel-Palade bodies (WPBs), in the residing TCs. We found that the outer fibroblastic layer of LF lacked pigmented cells but contained numerous cells with telopodes. These cells had incomplete or absent basal laminae, were united by focal adhesions and close contacts, and displayed scarce caveolae and shedding vesicles. Within the stromal cells of LF, numerous WPBs in various stages of maturation and vesicular structures, as secretory pods that ensure the exocytosis of WPBs content, were observed. The WPBs content of the cells with telopodes in the LF could indicate either their involvement in vasculogenesis and/or lymphangiogenesis or that they are the P-selectin- and CD63-containing pools that play roles in scleral or choroidal inflammation.
Collapse
Affiliation(s)
- C E Petrea
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER - Center of Excellence in Laboratory Medicine and Pathology, Bucharest, Romania.
| | - V S Mănoiu
- Department of Cellular and Molecular Biology, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
28
|
Hostiuc S, Negoi I, Dogaroiu C, Drima E, Iancu CB. Cardiac telocytes. From basic science to cardiac diseases. I. Atrial fibrillation. Ann Anat 2018; 218:83-87. [PMID: 29655845 DOI: 10.1016/j.aanat.2017.12.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Atrial fibrillation (AF) is nowadays considered to be one of the most important causes of heart failure, stroke, cognitive decline, vascular dementia, sudden death and overall cardiovascular morbidity. Recently were published a few articles suggesting a possible involvement of telocytes in the development of atrial fibrillation. The purpose of this article is to analyze the results obtained in the field systematically, and to see if there is enough data to support a possible involvement of telocytes in arrhythmogenesis. MATERIALS AND METHODS To this end, we performed a systematic review of the relevant scientific literature, indexed in PubMed, Web of Science, and Scopus. RESULTS AND DISCUSSIONS Our systematic review of the published data identified five articles containing original data, based on which the association between telocytes and atrial fibrillation was inferred in later studies. We analyzed the usefulness of the information contained in the original articles to support this association, showing a lack of definite proofs correlating telocytes with atrial fibrillation. CONCLUSIONS Even if a few articles implied a potential association between AF and telocytes, the current data is not enough to support it. Moreover, even an association between the morphology, characteristics, or density of the telocytes in the atrium/pulmonary veins and AF is potentially speculative, and more studies should be performed before implying it with a reasonable degree of certainty.
Collapse
Affiliation(s)
- Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Ionuț Negoi
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Catalin Dogaroiu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Eduard Drima
- University of Medicine and Pharmacy, Galaţi, Romania
| | | |
Collapse
|
29
|
Hostiuc S, Marinescu M, Costescu M, Aluaș M, Negoi I. Cardiac telocytes. From basic science to cardiac diseases. II. Acute myocardial infarction. Ann Anat 2018; 218:18-27. [PMID: 29604385 DOI: 10.1016/j.aanat.2018.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/28/2018] [Accepted: 02/04/2018] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The purpose of this study was to evaluate the scientific evidence regarding a potential role of telocytes in myocardial infarction. MATERIALS AND METHODS To this purpose, we performed a systematic review of relevant scientific literature, indexed in PubMed, Web of Science, and Scopus. RESULTS AND DISCUSSIONS We found six articles containing relevant studies aimed at liking myocardial infarction and telocytes. The studies that were analysed in this review failed to show, beyond a reasonable doubt, that telocytes do actually have significant roles in myocardial regeneration after myocardial infarction. The main issues to be addressed in future studies are a correct characterization of telocytes, and a differentiation from other cell types that either have similar morphologies (using electron microscopy) or similar immunophenotypes, with emphasis on endothelial progenitors, which were previously shown to have similar morphology, and functions in cardiac regeneration after myocardial infarction.
Collapse
Affiliation(s)
- Sorin Hostiuc
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Mihai Marinescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihnea Costescu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Maria Aluaș
- Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ionut Negoi
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
30
|
Dobra MA, Vrapciu AD, Pop F, Petre N, Rusu MC. The molecular phenotypes of ureteral telocytes are layer-specific. Acta Histochem 2018; 120:41-45. [PMID: 29153593 DOI: 10.1016/j.acthis.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 01/16/2023]
Abstract
Telocytes (TC) are the delicate interstitial (stromal) cells defined by their long, thin and moniliform processes termed telopodes. Numerous studies determined that different subsets of telocytes populate almost all tissues and attempted to relate these subsets to various functions, from cell signaling to tissue repair and regeneration. Extremely few studies addressed the urinary tract though few data on the molecular pattern of the urinary TCs actually exist. We therefore hypothesized that subsets of urinary TCs co-localize within the human ureter and we aimed at performing an immunohistochemical study to evaluate the tissue-specific molecular pattern of TCs. On sample tissues of proximal ureter drawn from ten human adult patients during surgery were applied primary antibodies against CD34, CD105, von Willebrand Factor, the heavy chain of smooth muscle myosin (SMM) and c-erbB-2. The molecular pattern indicated three different subsets of ureteral TCs which are neither endothelial nor epithelial in nature: (a) type I: the CD34-/CD105+ TCs of the superficial layer of lamina propria; (b) type II: the CD34+/CD105± myoid TCs of the deep layer of lamina propria and (c) type III: the CD34+/CD105+ perivascular TCs. Although apparently different, all these subsets of TCs could belong to the stem/progenitor niche of the ureter.
Collapse
Affiliation(s)
- M A Dobra
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - A D Vrapciu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - F Pop
- MEDCENTER - Center of Excellence in Laboratory Medicine and Pathology
| | - N Petre
- "Carol Davila" Clinical Hospital of Nephrology, Bucharest, Romania
| | - M C Rusu
- Division of Anatomy, Faculty of Dental Medicine, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; MEDCENTER - Center of Excellence in Laboratory Medicine and Pathology.
| |
Collapse
|
31
|
Klein M, Urban L, Deckov I, Danisovic L, Polak S, Danihel L, Varga I. Distribution of telocytes in the corpus and cervix of human uterus: an immunohistochemical study. Biologia (Bratisl) 2017. [DOI: 10.1515/biolog-2017-0134] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
32
|
The sheath of Waldeyer is not a specific anatomical trait of the ureterovesical junction. Morphologie 2017; 102:6-11. [PMID: 29269238 DOI: 10.1016/j.morpho.2017.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 12/17/2022]
Abstract
The function of the ureterovesical junction depends upon a peculiar structure, the adventitial fibromuscular sheath of Waldeyer, which coats the distal end of the ureter. The origin of the smooth muscle of Waldeyer's sheath (WS) is disputed. Evidence points more likely to an ureteral one. In this regard we hypothesized the WS is not specific to the distal ureter but is rather a common trait. We therefore aimed at exploring whether or not the proximal ureter is provided with a similar adventitial fibromuscular coat. We performed an immunohistochemical study on human samples of proximal ureter resulted after nephrectomies in ten patients. We applied myoid immunohistochemical markers: α-smooth muscle actin (α-SMA), desmin, and heavy chain of smooth muscle myosin (SMM) which labeled additional adventitial smooth muscle bundles, a discontinuous inner circular one applied on the muscular coat, and outer longitudinal cords specifically located on one side of the ureter, as is the case for WS. Moreover, the lamina propria myoid deep layer showed isolated smooth muscle fibers and spindle-shaped stromal cells with telocyte morphology. Our results support the idea that WS may not be a specific structure of the distal ureter, instead being just a common anatomical characteristic of the ureter.
Collapse
|