1
|
Yang Y, Zhang S, Yang J, Yao C, Li X, Dai W, Liu J. The aqueous extract of Armadillidium vulgare Latreille alleviates neuropathic pain via inhibiting neuron-astrocyte crosstalk mediated by the IL-12-IFN-γ-IFNGR-CXCL10 pathway. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119173. [PMID: 39617087 DOI: 10.1016/j.jep.2024.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Armadillidium vulgare Latreille (AV), the dried body of pillbug, was originally described in Shennong's Classic of Materia Medica. As a common analgesic in animal-based traditional Chinese medicine, it is mainly used to relieve pain, promoting diuresis, relieving fatigue and so on. Our work demonstrated that AV could alleviate various types of acute and chronic pain including neuropathic pain (NP). And transcriptome sequencing analysis revealed that AV could suppress CXCL10 to alleviate NP, however, the upstream mechanisms governing CXCL10 synthesis remain vague. AIM OF THE STUDY The research's goal was to identify the mechanism via which AV regulates CXCL10 to ameliorate NP. MATERIALS AND METHODS Chronic constriction injury (CCI) to the sciatic nerve was used to induce the NP model 14 days following surgery. To identify cell signaling pathways, various approaches were used, including transcriptome sequencing, western blotting, immunofluorescence, as well as ELISA. The in vitro assay involved the cultivation of neuron PC12 cells and astrocyte C6 cells. RESULTS Both in vivo and in vitro results demonstrated that IL-12/IL-18 enhanced IFN-γ production in spinal neurons, which acted on IFN-γ receptors on neurons and astrocytes to upregulate CXCL10 expression in these cells, illustrating the pivotal role of IL-12 in the crosstalk between neurons and astrocytes. The role of IL-12 in pain regulation was elucidated for the first time within the nervous system. Additionally, its synergistic interaction with IL-18 on the downstream IFN-γ-CXCL10 pathway dramatically altered the activation of neurons and astrocytes. And AV could suppress CXCL10 to alleviate NP by mediating the IL-12-IFN-γ-IFNGR signaling pathway. CONCLUSIONS We explored a new target for NP by regulating neuron-astrocyte crosstalk and provided a theoretical basis for AV in clinical use.
Collapse
Affiliation(s)
- Yujie Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Shen Zhang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jin Yang
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Changheng Yao
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Xue Li
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Wenling Dai
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Jihua Liu
- Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
2
|
Jing B, Chen ZN, Si WM, Zhao JJ, Zhao GP, Zhang D. (+)-Catechin Alleviates CCI-Induced Neuropathic Pain in Rats by Modulating the IL34/CSFIR Axis and Attenuating the Schwann Cell-Macrophage Cascade Response in the DRG. Mol Neurobiol 2024; 61:5027-5041. [PMID: 38159197 DOI: 10.1007/s12035-023-03876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The aim of this study was to investigate the potential therapeutic applications of (+)-catechin in the treatment of neuropathic pain. In vivo study, 32 SD rats were randomly divided into four groups: sham group, chronic constriction injury (CCI) group, CCI + ibuprofen group and CCI+ (+)-catechin group. They were subjected to behavioural tests, ELISA, immunohistochemistry and Western blotting. The mechanisms involved were investigated using specific inhibitors in cell experiments. Results of in vivo experiments showed that (+)-catechin could reduce the cold sensitivity pain in a rat model of CCI; ELISA and immunohistochemistry results showed that (+)-catechin could decrease the levels of IL-8, IL-6, TNF-α, CCL2 and CCL5 in serum and the expression levels of nNOS, COX2, IL6, TNF-α, IBA-1 and CSF1R in DRG of CCI rats. Finally, western blot confirmed that (+)-catechin could diminish the levels of IL-34/CSF1R/JAK2/STAT3 signalling pathway in DRG of CCI rats. In vitro studies showed that (+)-catechin reduced IL-34 secretion in LPS-induced RSC96 cells. Meanwhile, (+)-catechin administration in LPS-induced Schwann cell-conditioned medium (L-CM) significantly inhibited the proliferation and migration of RAW264.7 cells; in addition, L-CM+(+)-catechin reduced the activation of the CSF1R/JAK2/STAT3 signalling pathway. (+)-Catechin attenuated the Schwann cell-macrophage cascade response in the DRG by modulating the IL34/CSFIR axis and inhibiting activation of the JAK2/STAT3 pathway, thereby attenuating CCI-induced neuropathic pain in rats.
Collapse
Affiliation(s)
- Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wai-Mei Si
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Ji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Bober A, Piotrowska A, Pawlik K, Ciapała K, Maciuszek M, Makuch W, Mika J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. Int J Mol Sci 2024; 25:7410. [PMID: 39000516 PMCID: PMC11242565 DOI: 10.3390/ijms25137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.
Collapse
Affiliation(s)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| | | | | | | | | | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| |
Collapse
|
4
|
Shin J, Kober KM, Harris C, Oppegaard K, Calvo-Schimmel A, Paul SM, Cooper BA, Olshen A, Dokiparthi V, Conley YP, Hammer M, Levine JD, Miaskowski C. Perturbations in Neuroinflammatory Pathways Are Associated With a Worst Pain Profile in Oncology Patients Receiving Chemotherapy. THE JOURNAL OF PAIN 2023; 24:84-97. [PMID: 36115520 PMCID: PMC11186595 DOI: 10.1016/j.jpain.2022.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/26/2022] [Accepted: 08/06/2022] [Indexed: 02/08/2023]
Abstract
Unrelieved pain occurs in 55% of cancer patients. Identification of molecular mechanisms for pain may provide insights into therapeutic targets. Purpose was to evaluate for perturbations in neuroinflammatory pathways between oncology patients with and without severe pain. Worst pain severity was rated using a 0 to 10 numeric rating scale six times over two cycles of chemotherapy. Latent profile analysis was used to identify subgroups of patients with distinct pain profiles. Pathway impact analyses were performed in two independent samples using gene expression data obtained from RNA sequencing (n = 192) and microarray (n = 197) technologies. Fisher's combined probability test was used to identify significantly perturbed pathways between None versus the Severe pain classes. In the RNA sequencing and microarray samples, 62.5% and 56.3% of patients were in the Severe pain class, respectively. Nine perturbed pathways were related to neuroinflammatory mechanisms (i.e., retrograde endocannabinoid signaling, gamma-aminobutyric acid synapse, glutamatergic synapse, Janus kinase-signal transducer and activator of transcription signaling, phagosome, complement and coagulation cascades, cytokine-cytokine receptor interaction, chemokine signaling, calcium signaling). First study to identify perturbations in neuroinflammatory pathways associated with severe pain in oncology outpatients. Findings suggest that complex neuroimmune interactions are involved in the maintenance of chronic pain conditions. Perspective: In this study that compared oncology patients with none versus severe pain, nine perturbed neuroinflammatory pathways were identified. Findings suggest that complex neuroimmune interactions are involved in the maintenance of persistent pain conditions.
Collapse
Affiliation(s)
- Joosun Shin
- School of Nursing, University of California, San Francisco, CA, USA
| | - Kord M Kober
- School of Nursing, University of California, San Francisco, CA, USA
| | - Carolyn Harris
- School of Nursing, University of California, San Francisco, CA, USA
| | - Kate Oppegaard
- School of Nursing, University of California, San Francisco, CA, USA
| | | | - Steven M Paul
- School of Nursing, University of California, San Francisco, CA, USA
| | - Bruce A Cooper
- School of Nursing, University of California, San Francisco, CA, USA
| | - Adam Olshen
- School of Medicine, University of California, San Francisco, CA, USA
| | | | - Yvette P Conley
- School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Jon D Levine
- School of Medicine, University of California, San Francisco, CA, USA
| | - Christine Miaskowski
- School of Nursing, University of California, San Francisco, CA, USA; School of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
5
|
Alvites RD, Branquinho MV, Sousa AC, Lopes B, Sousa P, Prada J, Pires I, Ronchi G, Raimondo S, Luís AL, Geuna S, Varejão ASP, Maurício AC. Effects of Olfactory Mucosa Stem/Stromal Cell and Olfactory Ensheating Cells Secretome on Peripheral Nerve Regeneration. Biomolecules 2022; 12:biom12060818. [PMID: 35740943 PMCID: PMC9220795 DOI: 10.3390/biom12060818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022] Open
Abstract
Cell secretome has been explored as a cell-free technique with high scientific and medical interest for Regenerative Medicine. In this work, the secretome produced and collected from Olfactory Mucosa Mesenchymal Stem Cells and Olfactory Ensheating Cells was analyzed and therapeutically applied to promote peripheral nerve regeneration. The analysis of the conditioned medium revealed the production and secretion of several factors with immunomodulatory functions, capable of intervening beneficially in the phases of nerve regeneration. Subsequently, the conditioned medium was applied to sciatic nerves of rats after neurotmesis, using Reaxon® as tube-guides. Over 20 weeks, the animals were subjected to periodic functional assessments, and after this period, the sciatic nerves and cranial tibial muscles were evaluated stereologically and histomorphometrically, respectively. The results obtained allowed to confirm the beneficial effects resulting from the application of this therapeutic combination. The administration of conditioned medium from Olfactory Mucosal Mesenchymal Stem Cells led to the best results in motor performance, sensory recovery, and gait patterns. Stereological and histomorphometric evaluation also revealed the ability of this therapeutic combination to promote nervous and muscular histologic reorganization during the regenerative process. The therapeutic combination discussed in this work shows promising results and should be further explored to clarify irregularities found in the outcomes and to allow establishing the use of cell secretome as a new therapeutic field applied in the treatment of peripheral nerves after injury.
Collapse
Affiliation(s)
- Rui D. Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Mariana V. Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Ana C. Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Justina Prada
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Isabel Pires
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Giulia Ronchi
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Stefania Raimondo
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Ana L. Luís
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
| | - Stefano Geuna
- Department of Clinical and Biological Sciences, and Cavalieri Ottolenghi Neuroscience Institute, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (G.R.); (S.R.); (S.G.)
| | - Artur Severo P. Varejão
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Centro de Ciência Animal e Veterinária (CECAV), Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
- Departamento de Ciências Veterinárias, Universidade de Trás-os-Montes e Alto Douro (UTAD), Quinta de Prados, 5001-801 Vila Real, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto (ICETA), Rua D. Manuel II, Apartado 55142, 4051-401 Porto, Portugal; (R.D.A.); (M.V.B.); (A.C.S.); (B.L.); (P.S.); (A.L.L.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), 5000-801 Vila Real, Portugal; (J.P.); (I.P.); (A.S.P.V.)
- Correspondence: ; Tel.: +351-91-9071286 or +351-22-0428000
| |
Collapse
|
6
|
SNAP25 is a potential prognostic biomarker for prostate cancer. Cancer Cell Int 2022; 22:144. [PMID: 35392903 PMCID: PMC8991690 DOI: 10.1186/s12935-022-02558-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is one of the most lethal cancers in male individuals. The synaptosome associated protein 25 (SNAP25) gene is a key mediator of multiple biological functions in tumors. However, its significant impact on the prognosis in PCa remains to be elucidated. METHODS We performed a comprehensive analysis of the Cancer Genome Atlas dataset (TCGA) to identify the differentially expressed genes between PCa and normal prostate tissue. We subjected the differentially expressed genes to gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes functional analysis, and constructed a protein-protein interaction network. We then screened for pivotal genes to identify the hub genes of prognostic significance by performing Cox regression analysis. We identified SNAP25 as one such gene and analyzed the relationship between its expression in PCa to poor prognosis using GEPIA interactive web server. RESULTS TCGA database demonstrated that SNAP25 was significantly downregulated in PCa. The progressive decrease in SNAP25 expression with the increase in the clinical staging and grading of PCa demonstrates that reduced SNAP25 expression considerably exacerbates the clinical presentation. Our findings confirm that SNAP25 expression strongly correlates with overall survival, which was determined using the Gleason score. We also validated the role of SNAP25 expression in the prognosis of patients with PCa. We used Gene Set Enrichment and Gene Ontology analyses to evaluate the function of SNAP25 and further explored the association between SNAP25 expression and tumor-infiltrating immune cells using the Tumor Immune Assessment Resource database. We found for the first time that SNAP25 is involved in the activation, differentiation, and migration of immune cells in PCa. Its expression was positively correlated with immune cell infiltration, including B cells, CD8+ T cells, CD4+ T cells, neutrophils, dendritic cells, macrophages, and natural killer cells. SNAP25 expression also positively correlated with chemokines/chemokine receptors, suggesting that SNAP25 may regulate the migration of immune cells. In addition, our experimental results verified the low expression of SNAP25 in PCa cells. CONCLUSION Our findings indicate a relationship between SNAP25 expression and PCa, demonstrating that SNAP25 is a potential prognostic biomarker due to its vital role in immune infiltration.
Collapse
|
7
|
Inflammation-related molecules in tears of patients with chronic ocular pain and dry eye disease. Exp Eye Res 2022; 219:109057. [DOI: 10.1016/j.exer.2022.109057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 12/28/2022]
|
8
|
Zhu X, Xie W, Zhang J, Strong JA, Zhang JM. Sympathectomy decreases pain behaviors and nerve regeneration by downregulating monocyte chemokine CCL2 in dorsal root ganglia in the rat tibial nerve crush model. Pain 2022; 163:e106-e120. [PMID: 33941753 PMCID: PMC8556407 DOI: 10.1097/j.pain.0000000000002321] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/15/2021] [Indexed: 01/03/2023]
Abstract
ABSTRACT Peripheral nerve regeneration is associated with pain in several preclinical models of neuropathic pain. Some neuropathic pain conditions and preclinical neuropathic pain behaviors are improved by sympathetic blockade. In this study, we examined the effect of a localized "microsympathectomy," ie, cutting the gray rami containing sympathetic postganglionic axons where they enter the L4 and L5 spinal nerves, which is more analogous to clinically used sympathetic blockade compared with chemical or surgical sympathectomy. We also examined manipulations of CCL2 (monocyte chemoattractant protein 1), a key player in both regeneration and pain. We used rat tibial nerve crush as a neuropathic pain model in which peripheral nerve regeneration can occur successfully. CCL2 in the sensory ganglia was increased by tibial nerve crush and reduced by microsympathectomy. Microsympathectomy and localized siRNA-mediated knockdown of CCL2 in the lumbar dorsal root ganglion had very similar effects: partial improvement of mechanical hypersensitivity and guarding behavior, reduction of regeneration markers growth-associated protein 43 and activating transcription factor 3, and reduction of macrophage density in the sensory ganglia and regenerating nerve. Microsympathectomy reduced functional regeneration as measured by myelinated action potential propagation through the injury site and denervation-induced atrophy of the tibial-innervated gastrocnemius muscle at day 10. Microsympathectomy plus CCL2 knockdown had behavioral effects similar to microsympathectomy alone. The results show that local sympathetic effects on neuropathic pain may be mediated in a large part by the effects on expression of CCL2, which in turn regulates the regeneration process.
Collapse
Affiliation(s)
- Xiaoyan Zhu
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wenrui Xie
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jingdong Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Judith A. Strong
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Ming Zhang
- Pain Research Center, Department of Anesthesiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
9
|
Shi C, Jin J, Xu H, Ma J, Li T, Xie Y, Li Z. CCR1 enhances SUMOylation of DGCR8 by up-regulating ERK phosphorylation to promote spinal nerve ligation-induced neuropathic pain. Gene Ther 2021; 29:379-389. [PMID: 34413501 DOI: 10.1038/s41434-021-00285-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 11/09/2022]
Abstract
Neuropathic pain is a somatosensory nervous system dysfunction that remains a threatening health problem globally. Recent studies have highlighted the involvement of C-C motif chemokine receptor 1 (CCR1) in neuropathic pain. Herein, the current study set out to explore the modulatory role of CCR1 in spinal nerve ligation (SNL)-induced neuropathic pain and its underlying molecular mechanism. First, it was found that CCR1 was highly expressed in spinal cord tissues and microglial cells of SNL rats. On the other hand, CCR1 knockdown attenuated nerve pain in SNL rats and repressed microglial cell activation in SNL rats and also in the LPS-induced microglial cell model of nerve injury, as evidenced by elevated microglial cell markers OX-42 and IL-1β, IL-6 and TNF-α. Mechanistically, CCR1 enhanced small ubiquitin-like modifier 1 (SUMO1) modification of DiGeorge syndrome critical region gene 8 (DGCR8) in LPS-treated microglial cells by phosphorylating ERK. Moreover, CCR1 silencing brought about elevations in mechanical withdrawal threshold and thermal withdrawal latency. To conclude, our findings indicated that CCR1 enhanced the modification of DGCR8 by SUMO1 through phosphorylation of ERK, thereby promoting the activation and inflammatory response of spinal cord microglial cells and increasing the sensitivity of SNL rats to pain. Thus, this study offers a promising therapeutic target for the management of neuropathic pain.
Collapse
Affiliation(s)
- Cunxian Shi
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jin Jin
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Hongyu Xu
- Department of Anesthesiology, Central Hospital of Zibo City, Zibo, China
| | - Jiahai Ma
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Tao Li
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Yonggang Xie
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China.
| | - Zhen Li
- Department of Otorhinolaryngology, Yantaishan Hospital, Yantai, China.
| |
Collapse
|
10
|
Chen L, Zheng J, Yang Z, Chen W, Wang Y, Wei P. Identification of key candidate genes in local dorsal root ganglion inflammation by integrated bioinformatics analysis. Exp Ther Med 2021; 22:821. [PMID: 34131444 PMCID: PMC8193217 DOI: 10.3892/etm.2021.10253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
The purpose of the present study was to identify potential markers of local dorsal root ganglion (DRG) inflammation to aid diagnosis, treatment and prognosis evaluation of DRG pain. A localized inflammation of the DRG (LID) rat model was used to study the contribution of inflammation to pain. The dataset GSE38859 was obtained from the Gene Expression Omnibus database. Pre-treatment standardization of gene expression data for each experiment was performed using the R/Bioconductor Limma package. Differentially expressed genes (DEGs) were identified between a LID model and a sham surgery control group. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of DEGs and gene set enrichment analysis (GSEA) were carried out using the ‘clusterProfiler’ package in R. Using the Search Tool for Retrieval of Interacting Genes, a protein-protein interaction network was constructed and visualized. Candidate genes with the highest potential validity were validated using reverse transcription-quantitative PCR and western blotting. In total, 66 DEGs were enriched in GO terms related to inflammation and the immune response processes. KEGG analysis revealed 14 associated signaling pathway terms. Protein-protein interaction network analysis revealed 9 node genes, 3 of which were among the top 10 DEGs. Matrix metallopeptidase 9, chemokine CXCL9, and complement component 3 were identified as key regulators of DRG inflammatory pain progression.
Collapse
Affiliation(s)
- Linhai Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Junshui Zheng
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Zhuan Yang
- Medical College, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Weiwei Chen
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Yangjian Wang
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, Ningbo First Hospital, Ningbo Hospital of Zhejiang University, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
11
|
Wang Z, Song K, Zhao W, Zhao Z. Dendritic cells in tumor microenvironment promoted the neuropathic pain via paracrine inflammatory and growth factors. Bioengineered 2021; 11:661-678. [PMID: 32434423 PMCID: PMC8291888 DOI: 10.1080/21655979.2020.1771068] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuropathic pain associated with cancers was caused by tumor itself or tumor therapy, which was aggravated by sensitizing nociceptor sensory neurons. The tumor microenvironment contributed to tumorigenesis, tumor progress, tumor metastasis, tumor immune resistance, tumor chemotherapy, and tumor immunotherapy. In the current study, we explored the contributions of the infiltrated dendritic cells insulted by Wnt1 in tumor microenvironment to neuropathic pain associated with cancers. The different transcriptome of infiltrated dendritic cells from lung adenocarcinoma and from juxtatumor indicated that thousands of genes were up-regulated by the tumor microenvironment, some of which were enriched in pain pathway. The paracrine factors such as TNF, WNT10A, PDGFA, and NRG1 were also elevated in tumor-infiltrating dendritic cells. The receptors of paracrine factors were highly expressed on dorsal root ganglia (DRG), and not altered in pain conditions. Single-cell RNA-seq data unveiled that TNFSF1 was expressed in neurons, microglial cells, and endothelial cells. PDGFRA was only expressed in microglial cells. ERBB3 was only expressed in neurons. FZD1 and 3 were extensively expressed in various cells. The components composed of signaling pathways associated with the above paracrine factors participated in pain networks. The transcription factors activated by paracrine factor signaling regulated the expression of genes associated with pain. TNF, WNT10A, and PDGFA were extensively expressed in multiple cancers, but their expression in patients did not distribute normally. These data indicated that infiltrated dendritic cells in tumor microenvironment promoted neuropathic pain by sensitizing nociceptor sensory neurons via paracrine factors. Blockage of paracrine factor signaling might alleviate cancer pain.
Collapse
Affiliation(s)
- Zhun Wang
- Department of Pain Management, Tianjin First Center Hospital , Tianjin, China
| | - Kai Song
- Department of Anesthesiology, Tianjin Medical University NanKai Hospital , Tianjin, China
| | - Wenxin Zhao
- School of the Fourth Clinical Medicine, Capital Medical University , Beijing, China
| | - Zhongmin Zhao
- Department of Pain Management, Hospital Affiliated 5 to Nantong University (Taizhou People's Hospital) , Taizhou, China
| |
Collapse
|
12
|
Kringel D, Malkusch S, Kalso E, Lötsch J. Computational Functional Genomics-Based AmpliSeq™ Panel for Next-Generation Sequencing of Key Genes of Pain. Int J Mol Sci 2021; 22:ijms22020878. [PMID: 33467215 PMCID: PMC7830224 DOI: 10.3390/ijms22020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/27/2020] [Accepted: 01/12/2021] [Indexed: 11/16/2022] Open
Abstract
The genetic background of pain is becoming increasingly well understood, which opens up possibilities for predicting the individual risk of persistent pain and the use of tailored therapies adapted to the variant pattern of the patient's pain-relevant genes. The individual variant pattern of pain-relevant genes is accessible via next-generation sequencing, although the analysis of all "pain genes" would be expensive. Here, we report on the development of a cost-effective next generation sequencing-based pain-genotyping assay comprising the development of a customized AmpliSeq™ panel and bioinformatics approaches that condensate the genetic information of pain by identifying the most representative genes. The panel includes 29 key genes that have been shown to cover 70% of the biological functions exerted by a list of 540 so-called "pain genes" derived from transgenic mice experiments. These were supplemented by 43 additional genes that had been independently proposed as relevant for persistent pain. The functional genomics covered by the resulting 72 genes is particularly represented by mitogen-activated protein kinase of extracellular signal-regulated kinase and cytokine production and secretion. The present genotyping assay was established in 61 subjects of Caucasian ethnicity and investigates the functional role of the selected genes in the context of the known genetic architecture of pain without seeking functional associations for pain. The assay identified a total of 691 genetic variants, of which many have reports for a clinical relevance for pain or in another context. The assay is applicable for small to large-scale experimental setups at contemporary genotyping costs.
Collapse
Affiliation(s)
- Dario Kringel
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Sebastian Malkusch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, P.O. Box 440, 00029 HUS Helsinki, Finland;
| | - Jörn Lötsch
- Institute of Clinical Pharmacology, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt am Main, Germany; (D.K.); (S.M.)
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
- Correspondence: ; Tel.: +49-69-6301-4589; Fax: +49-69-6301-4354
| |
Collapse
|
13
|
Masgutov R, Zeinalova A, Bogov A, Masgutova G, Salafutdinov I, Garanina E, Syromiatnikova V, Idrisova K, Mullakhmetova A, Andreeva D, Mukhametova L, Kadyrov A, Pankov I, Rizvanov A. Angiogenesis and nerve regeneration induced by local administration of plasmid pBud-coVEGF165-coFGF2 into the intact rat sciatic nerve. Neural Regen Res 2021; 16:1882-1889. [PMID: 33510097 PMCID: PMC8328758 DOI: 10.4103/1673-5374.306090] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) are well-known growth factors involved in the regeneration of various tissues and organs, including peripheral nerve system. In the present study, we elucidated the local and systemic effects of plasmid construct рBud-coVEGF165-coFGF2 injected into the epineurium of intact rat sciatic nerve. Results of histological examination of sciatic nerve and multiplex immunoassays of serum showed the absence of immunogenicity and biosafety of plasmid рBud-coVEGF165-coFGF2. Moreover, local administration of plasmid DNA construct resulted in significantly decreased levels of pro-inflammatory cytokines in the peripheral blood, including tumor necrosis factor α (TNFα) and interleukin-12, and significantly increased levels of cytokines and chemokines including Regulated upon Activation, Normal T Cell Expressed and Presumably Secrete (RANTES), epidermal growth factor, interleukin-2, and monocyte chemoattractant protein 1. These changes in the peripheral blood on day 7 after injection of plasmid construct рBud-coVEGF165-coFGF2 show that the plasmid construct has systemic effects and may modulate immune response. At the same time, reverse transcription-polymerase chain reaction revealed transient expression of coFGF2, coVEGF165, ratFGF2 and ratVEGFA with direct transport of transcripts from distal part to proximal part of the sciatic nerve. Immunohistochemical staining revealed prolonged presence of VEGFA in sciatic nerve till 14 days post-injection. These findings suggest that local administration of plasmid construct рBud-coVEGF165-coFGF2 at a concentration of 30 ng/µL results in the formation of pro-angiogenic stimuli and, and the plasmid construct, used as a drug for gene therapy, might potentially facilitate regeneration of the sciatic nerve. The study was approved by the Animal Ethics Committee of Kazan Federal University, procedures were approved by the Local Ethics Committee (approval No. 5) on May 27, 2014.
Collapse
Affiliation(s)
- Ruslan Masgutov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University; Republican Clinical Hospital, Kazan, Russia
| | - Alina Zeinalova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | | | - Galina Masgutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ilnur Salafutdinov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Ekaterina Garanina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Valeriia Syromiatnikova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Kamilla Idrisova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adelya Mullakhmetova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Dina Andreeva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Liliya Mukhametova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Adilet Kadyrov
- Department of Traumatology and Orthopedics, Kazan State Medical Academy, Kazan, Russia
| | - Igor Pankov
- Department of Traumatology and Orthopedics, Kazan State Medical Academy, Kazan, Russia
| | - Albert Rizvanov
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
14
|
McCarberg B, Peppin J. Pain Pathways and Nervous System Plasticity: Learning and Memory in Pain. PAIN MEDICINE 2020; 20:2421-2437. [PMID: 30865778 DOI: 10.1093/pm/pnz017] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Objective This article reviews the structural and functional changes in pain chronification and explores the association between memory and the development of chronic pain. Methods PubMed was searched using the terms "chronic pain," "central sensitization," "learning," "memory," "long-term potentiation," "long-term depression," and "pain memory." Relevant findings were synthesized into a narrative of the processes affecting pain chronification. Results Pain pathways represent a complex sensory system with cognitive, emotional, and behavioral influences. Anatomically, the hippocampus, amygdala, and anterior cortex-central to the encoding and consolidation of memory-are also implicated in experiential aspects of pain. Common neurotransmitters and similar mechanisms of neural plasticity (eg, central sensitization, long-term potentiation) suggest a mechanistic overlap between chronic pain and memory. These anatomic and mechanistic correlates indicate that chronic pain and memory intimately interact on several levels. Longitudinal imaging studies suggest that spatiotemporal reorganization of brain activity accompanies the transition to chronic pain, during which the representation of pain gradually shifts from sensory to emotional and limbic structures. Conclusions The chronification of pain can be conceptualized as activity-induced plasticity of the limbic-cortical circuitry resulting in reorganization of the neocortex. The state of the limbic-cortical network determines whether nociceptive signals are transient or chronic by extinguishing pathways or amplifying signals that intensify the emotional component of nociceptive inputs. Thus, chronic pain can be seen as the persistence of the memory of pain and/or the inability to extinguish painful memories. Ideally, pharmacologic, physical, and/or psychological approaches should reverse the reorganization accompanying chronic pain.
Collapse
Affiliation(s)
- Bill McCarberg
- Chronic Pain Management Program, Kaiser Permanente, San Diego, California; †University of California, San Diego, California; ‡Neighborhood Health, San Diego, California; §College of Osteopathic Medicine, Marian University, Indianapolis, Indiana; ¶John F. Peppin, DO, LLC, Hamden, Connecticut
| | - John Peppin
- Chronic Pain Management Program, Kaiser Permanente, San Diego, California; †University of California, San Diego, California; ‡Neighborhood Health, San Diego, California; §College of Osteopathic Medicine, Marian University, Indianapolis, Indiana; ¶John F. Peppin, DO, LLC, Hamden, Connecticut
| |
Collapse
|
15
|
Zhou RH, Chen C, Jin SH, Li J, Xu ZH, Ye L, Zhou JG. Co-expression gene modules involved in cisplatin-induced peripheral neuropathy according to sensitivity, status, and severity. J Peripher Nerv Syst 2020; 25:366-376. [PMID: 32779320 DOI: 10.1111/jns.12407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is among the most disabling and frustrating problems for cancer survivors. The neurotoxicity caused by cisplatin varies greatly among patients, and few predictors of appearance, duration of symptoms, susceptibility, or severity are available. A deeper understanding of the mechanisms underlying individual differences in status, severity, or sensitivity in response to cisplatin treatment is therefore required. By analyzing the GSE64174 gene expression profile and constructing a weighted gene co-expression network analysis (WGCNA) network, we screened gene modules and hub genes related to CIPN status, severity and sensitivity. We first identified the transcriptome profile of mouse dorsal root ganglion (DRG) samples and transformed their genes to human DRG counterparts. We then constructed WGCNA gene modules via optimal soft-threshold power-identification and module-preservation analysis. Comprehensive analysis and identification of module hub genes were performed via functional-enrichment analysis and significant common hub genes were identified, including "Cytoscape_cytoHubba," "Cytoscape_MCODE," and "Metascape_MCODE." Brown, green, and blue modules were selected to represent CIPN sensitivity, status, and severity, respectively, via trait-module correlational analysis. Additionally, functional enrichment analysis results indicated that these three modules were associated with some crucial biological functions, such as neutrophil migration, chemokine-mediated signaling pathway, and PI3K-Akt signaling pathway. We then identified seven common hub genes via three methods, including CXCL10, CCL21, CCR2, CXCR4, TLR4, NPY1R, and GALR2, related to CIPN status, severity and sensitivity. Our results provide possible targets and mechanism insights into the development and progress of CIPN, which can guide further transformation and pre-clinical research.
Collapse
Affiliation(s)
- Rui-Hao Zhou
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Su-Han Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Hao Xu
- School of Public Health, Nanchang University, Nanchang, China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Guo Zhou
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
16
|
Comparison of the beneficial effects of RS504393, maraviroc and cenicriviroc on neuropathic pain-related symptoms in rodents: behavioral and biochemical analyses. Int Immunopharmacol 2020; 84:106540. [PMID: 32402949 DOI: 10.1016/j.intimp.2020.106540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/16/2020] [Accepted: 04/23/2020] [Indexed: 01/01/2023]
Abstract
The latest research highlights the role of chemokine signaling pathways in the development of nerve injury-induced pain. Recent studies have provided evidence for the involvement of CCR2 and CCR5 in the pathomechanism underlying neuropathy. Thus, the aim of our study was to compare the effects of a selective CCR2 antagonist (RS504393), selective CCR5 antagonist (maraviroc) and dual CCR2/CCR5 antagonist (cenicriviroc) and determine whether the simultaneous blockade of both receptors is better than blocking only one of them selectively. All experiments were performed using Wistar rats/Swiss albino mice subjected to chronic constriction injury (CCI) of the sciatic nerve. To assess pain-related reactions, the von Frey and cold plate tests were used. The mRNA analysis was performed using RT-qPCR. We demonstrated that repeated intrathecal administration of the examined antagonists attenuated neuropathic pain in rats 7 days post-CCI. mRNA analysis showed that RS504393 did not modulate the spinal expression of the examined chemokines, whereas maraviroc reduced the CCI-induced elevation of CCL4 level. Cenicriviroc significantly lowered the spinal levels of CCL2-4 and CCL7. At the dorsal root ganglia, strong impacts of RS504393 and cenicriviroc on chemokine expression were observed; both reduced the CCI-induced elevation of CCL2-5 and CCL7 levels, whereas maraviroc decreased only the CCL5 level. Importantly, we demonstrated that a single intrathecal/intraperitoneal injection of cenicriviroc had greater analgesic properties than RS504393 or maraviroc in neuropathic mice. Additionally, we demonstrated that cenicriviroc enhanced opioid-induced analgesia. Based on our results, we suggest that targeting CCR2 and CCR5 simultaneously, is an interesting alternative for neuropathic pain pharmacotherapy.
Collapse
|
17
|
Guo Q, Mizuno K, Okuyama K, Lin N, Zhang Y, Hayashi H, Takagi N, Sato T. Antineuropathic pain actions of Wu-tou decoction resulted from the increase of neurotrophic factor and decrease of CCR5 expression in primary rat glial cells. Biomed Pharmacother 2020; 123:109812. [PMID: 31945696 DOI: 10.1016/j.biopha.2020.109812] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/28/2019] [Accepted: 12/29/2019] [Indexed: 12/12/2022] Open
Abstract
Wu-tou decoction (WTD), a classic Traditional Chinese medicine formula, has been extensively used in the treatment of neuropathic pain (NP) such as chronic inflammatory pain, trigeminal neuralgia, and cancer-induced pain. Our previous studies have shown that the severity of mechanical allodynia and thermo hypersensitivity in NP rats are reduced by WTD, of which analgesic candidates are paeoniflorin (Pae) and liquiritin (Liq). The aim of this study was to clarify the molecular mechanisms of WTD, Pae and Liq against NP based on the primary rat glial cells in vitro. The gene expression levels of neurotrophic factors such as nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and Artemin and C-C chemokine receptor type 5 (CCR5) were augmented by inflammatory cytokines, while chemokines increased only CCR5 gene expression. The constitutive and cytokine-augmented neurotrophic factor gene expression was enhanced by WTD, Pae, and Liq through PI3K- and PKA-dependent pathways in rat glial cells, leading to the increase of NGF and BDNF production. Furthermore, the CCR5 gene expression under basal and chemokine-treated conditions was suppressed by these reagents, in which signal pathway(s) was independent on the activation of PI3K and PKA. Moreover, there was no cytotoxicity in the WTD, Pae, and Liq treatments in glial cells. Thus, these results provide a novel evidence that WTD may exert the anti-NP actions by predominantly increasing the production of neurotrophic factors through PI3K- and PKA-signaling pathways in rat glial cells. Furthermore, Pae and Liq may play as analgesic candidates in WTD-mediated NP management.
Collapse
Affiliation(s)
- Qiuyan Guo
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Koji Mizuno
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Katsuki Okuyama
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Hideki Hayashi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Sato
- Department of Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
18
|
Dayer CF, Luthi F, Le Carré J, Vuistiner P, Terrier P, Benaim C, Giacobino JP, Léger B. Differences in the miRNA signatures of chronic musculoskeletal pain patients from neuropathic or nociceptive origins. PLoS One 2019; 14:e0219311. [PMID: 31276478 PMCID: PMC6611606 DOI: 10.1371/journal.pone.0219311] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/20/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The quality of life for millions of people worldwide is affected by chronic pain. In addition to the effect of chronic pain on well-being, chronic pain has also been associated with poor health conditions and increased mortality. Due to its multifactorial origin, the classification of pain types remains challenging. MicroRNAs (miRNA) are small molecules that regulate gene expression. They are released into the bloodstream in a stable manner under normal and pathological conditions and have been described as potential biomarkers. In the present study, we aimed to investigate whether pain may induce an aberrant, specific dysregulation of miRNA expression, depending on the origin of the pain. METHODS AND FINDINGS To do so, we measured the expression changes of 184 circulating miRNAs (c-miRNAs) in the plasma samples of patients with different origins of chronic musculoskeletal pain. After statistical analyses, we identified seven c-miRNA candidates that were differentially expressed depending on the nociceptive or neuropathic origin of the pain. We then developed a two c-miRNA signature (hsa-miR-320a and hsa-miR-98-5p) that was able to correctly classify the pain type of 70% of the patients from the validation set. CONCLUSIONS In conclusion, circulating miRNAs are promising biomarkers to identify and characterize the chronic pain type and to further improve its clinical management.
Collapse
Affiliation(s)
- Camille Florine Dayer
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
| | - François Luthi
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Musculoskeletal Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Physical Medicine and Rehabilitation, Orthopedic Hospital, University Hospital of Lausanne, Lausanne, Switzerland
| | - Joane Le Carré
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Philippe Vuistiner
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Philippe Terrier
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
- Haute Ecole Arc Santé, HES-SO University of Applied Sciences and Arts Western Switzerland, Neuchâtel, Switzerland
| | - Charles Benaim
- Department of Physical Medicine and Rehabilitation, Orthopedic Hospital, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jean-Paul Giacobino
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
| | - Bertrand Léger
- Institute for Research in Rehabilitation, Clinique Romande de Réadaptation, Sion, Switzerland
- Department of Medical Research, Clinique Romande de Réadaptation, Sion, Switzerland
| |
Collapse
|
19
|
Chemokines CCL2 and CCL7, but not CCL12, play a significant role in the development of pain-related behavior and opioid-induced analgesia. Cytokine 2019; 119:202-213. [DOI: 10.1016/j.cyto.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
|
20
|
Inflammatory chemokine profiles and their correlations with effector CD4 T cell and regulatory cell subpopulations in cutaneous lupus erythematosus. Cytokine 2019; 119:95-112. [DOI: 10.1016/j.cyto.2019.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 03/08/2019] [Accepted: 03/14/2019] [Indexed: 11/23/2022]
|
21
|
Chemokine CXCL10/CXCR3 signaling contributes to neuropathic pain in spinal cord and dorsal root ganglia after chronic constriction injury in rats. Neurosci Lett 2019; 694:20-28. [DOI: 10.1016/j.neulet.2018.11.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/27/2018] [Accepted: 11/14/2018] [Indexed: 02/06/2023]
|
22
|
Buvanendran A, Wang D, Kim H, Kroin JS, McCarthy RJ. RNA expression preoperatively and postoperatively following total knee replacement: a pilot study in patients with and without chronic postsurgical pain. Reg Anesth Pain Med 2019; 44:rapm-2018-100118. [PMID: 30635509 DOI: 10.1136/rapm-2018-100118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/03/2018] [Indexed: 11/04/2022]
Abstract
BACKGROUND AND OBJECTIVE Differences in gene expression may provide insight into the biological pathways involved in chronic postsurgical pain (CPSP). We compared blood RNA microarrays preoperatively and postoperatively following total knee arthroplasty (TKA) in patients with and without CPSP. METHODS Patients scheduled for primary TKA had whole blood samples obtained preoperatively and at 48 hours and 6 months postsurgery. RNA expression (54 613 transcripts) were assayed using the "Affymetrix HG-U133 plus 2.0" microarray. Genes that met the threshold criteria of ±1.5-fold differential change in expression (CPSP vs non-CPSP), with p<0.0125, were considered for pathway analysis. WikiPathways was used to identify biological pathways that were affected (p<0.01) by differentially regulated genes. RESULTS Four of 16 (25%) patients had CPSP at 6 months. Preoperatively, 325 (0.6%) genes met the criteria, with 292 (89.9%) having greater expression in the CPSP group. Twelve biological pathways were affected, with the mitogen-activated kinase, phosphatidylinositide 3-kinase-protein kinase B-mammalian target of rapamycin, and brain-derived neurotrophic factor signaling pathways having known association with pain. At 48 hours, 26 genes met the criteria; 7 pathways were affected, including transforming growth factor-β with known association with pain. At 6 months 55 genes met the criteria, with 49 increased in the CPSP group. Four biological pathways were affected, with only the chemokine signaling pathway having known association with pain. CONCLUSIONS Despite a lack of clinical differences, patients who develop CPSP have upregulated pain pathways preoperatively; however, only the chemokine pathway remained differentially upregulated at 6 months postsurgery.
Collapse
Affiliation(s)
- Asokumar Buvanendran
- Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois, USA
| | - Dan Wang
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Hyungsuk Kim
- Division of Intramural Research, National Institute of Nursing Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeffrey S Kroin
- Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois, USA
| | - Robert J McCarthy
- Department of Anesthesiology, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
23
|
Cataldo G, Lunzer MM, Olson JK, Akgün E, Belcher JD, Vercellotti GM, Portoghese PS, Simone DA. Bivalent ligand MCC22 potently attenuates nociception in a murine model of sickle cell disease. Pain 2018; 159:1382-1391. [PMID: 29578946 PMCID: PMC6008209 DOI: 10.1097/j.pain.0000000000001225] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Sickle cell disease (SCD) is a chronic inflammatory disorder accompanied by chronic pain. In addition to ongoing pain and hyperalgesia, vaso-occlusive crises-induced pain can be chronic or episodic. Because analgesics typically used to treat pain are not very effective in SCD, opioids, including morphine, are a primary treatment for managing pain in SCD but are associated with many serious side effects, including constipation, tolerance, addiction, and respiratory depression. Thus, there is a need for the development of novel treatments for pain in SCD. In this study, we used the Townes transgenic mouse model of SCD to investigate the antinociceptive efficacy of the bivalent ligand, MCC22, and compared its effectiveness with morphine. MCC22 consists of a mu-opioid receptor agonist and a chemokine receptor-5 (CCR5) antagonist that are linked through a 22-atom spacer. Our results show that intraperitoneal administration of MCC22 produced exceptionally potent dose-dependent antihyperalgesia as compared to morphine, dramatically decreased evoked responses of nociceptive dorsal horn neurons, and decreased expression of proinflammatory cytokines in the spinal cord. Moreover, tolerance did not develop to its analgesic effects after repeated administration. In view of the extraordinary potency of MCC22 without tolerance, MCC22 and similar compounds may vastly improve the management of pain associated with SCD.
Collapse
Affiliation(s)
- Giuseppe Cataldo
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Mary M. Lunzer
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Julie K. Olson
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| | - Eyup Akgün
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - John D. Belcher
- Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Gregory M. Vercellotti
- Department of Medicine, Vascular Biology Center, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Philip S. Portoghese
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN
| | - Donald A. Simone
- Department of Diagnostic & Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN
| |
Collapse
|
24
|
Berk T, Silberstein SD. The Use and Method of Action of Intravenous Lidocaine and Its Metabolite in Headache Disorders. Headache 2018. [DOI: 10.1111/head.13298] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Thomas Berk
- NYU School of Medicine; New York NY 10016 USA
| | | |
Collapse
|
25
|
Up-Regulation of CX3CL1 via STAT3 Contributes to SMIR-Induced Chronic Postsurgical Pain. Neurochem Res 2018; 43:556-565. [DOI: 10.1007/s11064-017-2449-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/29/2017] [Accepted: 12/05/2017] [Indexed: 12/30/2022]
|
26
|
Wang YR, Xu H, Tao M, Xu LH, Fu XC. Ligustilide Relieves Complete Freund's Adjuvant-induced Mechanical Hyperalgesia through Inhibiting the Activation of Spinal c-Jun N-terminal Kinase/c-Jun Pathway in Rats. Pharmacogn Mag 2017; 13:634-638. [PMID: 29200725 PMCID: PMC5701403 DOI: 10.4103/pm.pm_546_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 12/13/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Ligustilide, an active ingredient in a traditional Chinese medicine, has anti-inflammatory and analgesic effects. The underlying mechanisms of the anti-inflammatory pain effects of ligustilide are not completely understood. Objective: The aim of this study to investigate whether ligustilide conducts its analgesic effects on the complete Freund's adjuvant (CFA)-induced inflammatory pain through regulating the c-Jun N-terminal kinase (JNK)/c-Jun pathway in the spinal cord. Materials and Methods: Paw withdrawal thresholds (PWTs) and paw withdrawal latencies (PWLs) were tested to examine the analgesic effect of ligustilide on CFA-induced inflammatory pain in rats. The change of spinal JNK/c-Jun activation was detected by western blotting after CFA injection with or without consecutive intrathecal ligustilide administration. After SP600125 (JNK inhibitor) was intrathecally injected in CFA rats, PWTs and PWLs were tested to investigate the change of ligustilide's analgesic effect. Results: Repeated intravenous injection of ligustilide could attenuate the pain hypersensitivity induced by CFA. CFA caused increased activation of spinal JNK/c-Jun, which could be inhibited by ligustilide administration. Intrathecal injection of JNK inhibitor inhibited the CFA-induced mechanical hyperalgesia. Conclusion: Ligustilide could inhibit the upregulation of spinal p-JNK/p-c-Jun caused by CFA, and the inhibition of JNK/c-Jun activation is closely related to its anti-mechanical hyperalgesia effect in inflammatory pain. SUMMARY Ligustilide, an active ingredient in a popular traditional Chinese medicine, has effective anti-inflammatory and analgesic effects. Ligustilide inhibits the complete Freund's adjuvant-induced activation of spinal c-Jun N-terminal kinase-(JNK)/c-Jun pathway in rats. The inhibition of JNK/c-Jun activation is closely related to the anti-mechanical hyperalgesia effect of ligustilide.
Abbreviations used: CFA: Complete Freund's adjuvant, JNK: c-Jun N-terminal kinase, MAPK: Mitogen-activated protein kinase, PWT: Paw withdrawal threshold, PWL: Paw withdrawal latency.
Collapse
Affiliation(s)
- Yi-Rui Wang
- Department of Anesthesiology, Huangyan Hospital, Wenzhou Medical University, Taizhou 318020, China
| | - Hui Xu
- Department of Anesthesiology, Huangyan Hospital, Wenzhou Medical University, Taizhou 318020, China
| | - Min Tao
- Department of Anesthesiology, Huangyan Hospital, Wenzhou Medical University, Taizhou 318020, China
| | - Li-Hua Xu
- Department of Anesthesiology, Huangyan Hospital, Wenzhou Medical University, Taizhou 318020, China
| | - Xin-Chun Fu
- Department of Anesthesiology, Huangyan Hospital, Wenzhou Medical University, Taizhou 318020, China
| |
Collapse
|
27
|
Li F, Xue ZY, Liu X, Bai G, Wang YL. Annexin A10 contributes to chronic constrictive injury-induced pain through activating ERK1/2 signalling in rats. Int J Neurosci 2017; 128:125-132. [PMID: 28866949 DOI: 10.1080/00207454.2017.1375913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Feng Li
- Department of Anesthesiology, The First People's Hospital of Yancheng, Nantong University, Yancheng, China
| | - Zhou-Ya Xue
- Department of Anesthesiology, The First People's Hospital of Yancheng, Nantong University, Yancheng, China
| | - Xiang Liu
- Department of Anesthesiology, The First People's Hospital of Yancheng, Nantong University, Yancheng, China
| | - Gang Bai
- Department of Anesthesiology, The First People's Hospital of Yancheng, Nantong University, Yancheng, China
| | - Yuan-Lin Wang
- Department of Anesthesiology, The First People's Hospital of Huai'an, Nanjing Medical University, Huai'an, China
| |
Collapse
|
28
|
Microglial Inhibition Influences XCL1/XCR1 Expression and Causes Analgesic Effects in a Mouse Model of Diabetic Neuropathy. Anesthesiology 2017; 125:573-89. [PMID: 27387353 DOI: 10.1097/aln.0000000000001219] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recent studies indicated the involvement of some chemokines in the development of diabetic neuropathy; however, participation of the chemokine-C-motif ligand (XCL) subfamily remains unknown. The goal of this study was to examine how microglial inhibition by minocycline hydrochloride (MC) influences chemokine-C-motif ligand 1 (XCL1)-chemokine-C-motif receptor 1 (XCR1)/G protein-coupled receptor 5 expression and the development of allodynia/hyperalgesia in streptozotocin-induced diabetic neuropathy. METHODS The studies were performed on streptozotocin (200 mg/kg, intraperitoneally)-induced mouse diabetic neuropathic pain model and primary glial cell cultures. The MC (30 mg/kg, intraperitoneally) was injected two times daily until day 21. XCL1 and its neutralizing antibody were injected intrathecally, and behavior was evaluated with von Frey and cold plate tests. Quantitative analysis of protein expression of glial markers, XCL1, and/or XCR1 was performed by Western blot and visualized by immunofluorescence. RESULTS MC treatment diminished allodynia (0.9 ± 0.1 g; n = 7 vs. 3.8 ± 0.7 g; n = 7) and hyperalgesia (6.5 ± 0.6 s; n = 7 vs. 16.5 ± 1 s; n = 7) in the streptozotocin-induced diabetes. Repeated MC administration prevented microglial activation and inhibited the up-regulation of the XCL1/XCR1 levels. XCL1 administration (10 to 500 ng/5 μl; n = 9) in naive mice enhanced nociceptive transmission, and injections of neutralizing XCL1 (4 to 8 μg/5 μl; n = 10) antibody into the mice with diabetic neuropathic pain diminished allodynia/hyperalgesia. Microglia activation evoked in primary microglial cell cultures resulted in enhanced XCL1 release and XCR1 expression. Additionally, double immunofluorescence indicated the widespread coexpression of XCR1-expressing cells with spinal neurons. CONCLUSIONS In diabetic neuropathy, declining levels of XCL1 evoked by microglia inhibition result in the cause of analgesia. The putative mechanism corroborating this finding can be related to lower spinal expression of XCR1 together with the lack of stimulation of these XCR1 receptors, which are localized on neurons.
Collapse
|
29
|
Bäckryd E, Tanum L, Lind AL, Larsson A, Gordh T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J Pain Res 2017; 10:515-525. [PMID: 28424559 PMCID: PMC5344444 DOI: 10.2147/jpr.s128508] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In addition to central hyperexcitability and impaired top–down modulation, chronic inflammation probably plays a role in the pathophysiology of fibromyalgia (FM). Indeed, on the basis of both animal experiments and human studies involving the analysis of cytokines and other inflammation-related proteins in different body fluids, neuroinflammatory mechanisms are considered to be central to the pathophysiology of many chronic pain conditions. However, concerning FM, previous human plasma/serum and/or cerebrospinal fluid (CSF) cytokine studies have looked only at a few predetermined cytokine candidates. Instead of analyzing only a few substances at a time, we used a new multiplex protein panel enabling simultaneous analysis of 92 inflammation-related proteins. Hence, we investigated the CSF and plasma inflammatory profiles of 40 FM patients compared with CSF from healthy controls (n=10) and plasma from blood donor controls (n=46). Using multivariate data analysis by projection, we found evidence of both neuroinflammation (as assessed in CSF) and chronic systemic inflammation (as assessed in plasma). Two groups of proteins (one for CSF and one for plasma) highly discriminating between patients and controls are presented. Notably, we found high levels of CSF chemokine CX3CL1 (also known as fractalkine). In addition, previous findings concerning IL-8 in FM were replicated, in both CSF and plasma. This is the first time that such an extensive inflammatory profile has been described for FM patients. Hence, FM seems to be characterized by objective biochemical alterations, and the lingering characterization of its mechanisms as essentially idiopathic or even psychogenic should be seen as definitively outdated.
Collapse
Affiliation(s)
- Emmanuel Bäckryd
- Pain and Rehabilitation Center, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Lars Tanum
- Department of R&D in Mental Health, Akershus University Hospital, Lørenskog, Norway
| | | | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
30
|
Hang LH, Li SN, Dan X, Shu WW, Luo H, Shao DH. Involvement of Spinal CCR5/PKCγ Signaling Pathway in the Maintenance of Cancer-Induced Bone Pain. Neurochem Res 2016; 42:563-571. [PMID: 27848062 DOI: 10.1007/s11064-016-2108-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/21/2016] [Accepted: 11/10/2016] [Indexed: 01/24/2023]
Abstract
Cancer-induced bone pain (CIBP) is a challenging medical problem that considerably influences cancer patients' quality of life. Currently, few treatments have been developed to conquer CIBP because of a poor understanding of the potential mechanisms. Our previous work has proved that spinal RANTES (a major ligand for CCR5) was involved in the maintenance of CIBP. In this study, we attempted to investigate whether spinal CCR5 and its downstream PKCγ pathway is involved in the maintenance of CIBP. Inoculation of Walker 256 cells into the tibia could induce a marked mechanical allodynia with concomitant upregulation of spinal CCR5 and p-PKCγ expression from day 6 to day 15 after inoculation. Spinal CCR5 was prominently expressed in microglia, and mechanical allodynia was attenuated by intrathecal injection of DAPTA (a specific antagonist of CCR5) with downregulation of spinal CCR5 and p-PKCγ expression levels at day 15 in inoculated rats. Pre-intrathecal injection of RANTES could reverse the anti-allodynia effects of DAPTA. Intrathecal administration of GF109203X (an inhibitor of PKC) could alleviate mechanical allodynia as well as decrease of spinal p-PKCγ expression level, but no influence on spinal CCR5 level. Our findings suggest that CCR5/PKCγ signaling pathway in microglia may contribute to the maintenance of CIBP in rats.
Collapse
Affiliation(s)
- Li-Hua Hang
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China.
| | - Shu-Na Li
- Department of Otorhinolaryngology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Xiang Dan
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Wei-Wei Shu
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Hong Luo
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| | - Dong-Hua Shao
- Department of Anesthesiology, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, People's Republic of China
| |
Collapse
|
31
|
Raju HB, Tsinoremas NF, Capobianco E. Emerging Putative Associations between Non-Coding RNAs and Protein-Coding Genes in Neuropathic Pain: Added Value from Reusing Microarray Data. Front Neurol 2016; 7:168. [PMID: 27803687 PMCID: PMC5067702 DOI: 10.3389/fneur.2016.00168] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/20/2016] [Indexed: 12/28/2022] Open
Abstract
Regeneration of injured nerves is likely occurring in the peripheral nervous system, but not in the central nervous system. Although protein-coding gene expression has been assessed during nerve regeneration, little is currently known about the role of non-coding RNAs (ncRNAs). This leaves open questions about the potential effects of ncRNAs at transcriptome level. Due to the limited availability of human neuropathic pain (NP) data, we have identified the most comprehensive time-course gene expression profile referred to sciatic nerve (SN) injury and studied in a rat model using two neuronal tissues, namely dorsal root ganglion (DRG) and SN. We have developed a methodology to identify differentially expressed bioentities starting from microarray probes and repurposing them to annotate ncRNAs, while analyzing the expression profiles of protein-coding genes. The approach is designed to reuse microarray data and perform first profiling and then meta-analysis through three main steps. First, we used contextual analysis to identify what we considered putative or potential protein-coding targets for selected ncRNAs. Relevance was therefore assigned to differential expression of neighbor protein-coding genes, with neighborhood defined by a fixed genomic distance from long or antisense ncRNA loci, and of parental genes associated with pseudogenes. Second, connectivity among putative targets was used to build networks, in turn useful to conduct inference at interactomic scale. Last, network paths were annotated to assess relevance to NP. We found significant differential expression in long-intergenic ncRNAs (32 lincRNAs in SN and 8 in DRG), antisense RNA (31 asRNA in SN and 12 in DRG), and pseudogenes (456 in SN and 56 in DRG). In particular, contextual analysis centered on pseudogenes revealed some targets with known association to neurodegeneration and/or neurogenesis processes. While modules of the olfactory receptors were clearly identified in protein-protein interaction networks, other connectivity paths were identified between proteins already investigated in studies on disorders, such as Parkinson, Down syndrome, Huntington disease, and Alzheimer. Our findings suggest the importance of reusing gene expression data by meta-analysis approaches.
Collapse
Affiliation(s)
- Hemalatha B Raju
- Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL, USA; Human Genetics and Genomic Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicholas F Tsinoremas
- Center for Computational Science, University of Miami Miller School of Medicine, Miami, FL, USA; Human Genetics and Genomic Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Enrico Capobianco
- Center for Computational Science, University of Miami Miller School of Medicine , Miami, FL , USA
| |
Collapse
|
32
|
Liu B, Liu X, Tang SJ. Interactions of Opioids and HIV Infection in the Pathogenesis of Chronic Pain. Front Microbiol 2016; 7:103. [PMID: 26903982 PMCID: PMC4748029 DOI: 10.3389/fmicb.2016.00103] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/19/2016] [Indexed: 12/30/2022] Open
Abstract
Over 50% of HIV-1/AIDS patients suffer chronic pain. Currently, opioids are the cornerstone medications for treating severe pain in these patients. Ironically, emerging clinical data indicates that repeated use of opiate pain medicines might in fact heighten the chronic pain states in HIV patients. Both laboratory-based and clinical studies strongly suggest that opioids exacerbate the detrimental effects of HIV-1 infection on the nervous system, both on neurons and glia. The combination of opioids and HIV-1infection may promote the damage of neurons, including those in the pain sensory and transmission pathway, by activating both caspase-dependent and caspase-independent pro-apoptotic pathways. In addition, the opiate-HIV-1 interaction may also cause widespread disturbance of glial function and elicit glial-derived pro-inflammatory responses that dysregulate neuronal function. The deregulation of neuron-glia cross-talk that occurs with the combination of HIV-1 and opioids appears to play an important role in the development of the pathological pain state. In this article, we wish to provide an overview of the potential molecular and cellular mechanisms by which opioids may interact with HIV-1 to cause neurological problems, especially in the context of HIV-associated pathological pain. Elucidating the underlying mechanisms will help researchers and clinicians to understand how chronic use of opioids for analgesia enhances HIV-associated pain. It will also assist in optimizing therapeutic approaches to prevent or minimize this significant side effect of opiate analgesics in pain management for HIV patients.
Collapse
Affiliation(s)
- Bolong Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, GalvestonTX, USA; Department of Urology, Third Affiliated Hospital of Sun Yat-Sen UniversityGuangzhou, China
| | - Xin Liu
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| | - Shao-Jun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston TX, USA
| |
Collapse
|
33
|
Spinal NF-κB and chemokine ligand 5 expression during spinal glial cell activation in a neuropathic pain model. PLoS One 2015; 10:e0115120. [PMID: 25635831 PMCID: PMC4312098 DOI: 10.1371/journal.pone.0115120] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/18/2014] [Indexed: 12/30/2022] Open
Abstract
Background The NF-κB pathway and chemokine (C-C motif) ligand 5 (CCL5) are involved in pain modulation; however, the precise mechanisms of their interactions in chronic neuropathic pain have yet to be established. Methods The present study examined the roles of spinal NF-κB and CCL5 in a neuropathic pain model after chronic constriction injury (CCI) surgery. CCI-induced pain facilitation was evaluated using the Plantar and von Frey tests. The changes in NF-κB and CCL5 expression were analyzed by immunohistochemistry and Western blot analyses. Results Spinal NF-κB and CCL5 expression increased after CCI surgery. Repeated intrathecal infusions of pyrrolidine dithiocarbamate (PDTC, a NF-κB inhibitor) decreased CCL5 expression, inhibited the activation of microglia and astrocytes, and attenuated CCI-induced allodynia and hyperalgesia. Intrathecal injection of a CCL5-neutralizing antibody attenuated CCI-induced pain facilitation and also suppressed spinal glial cell activation after CCI surgery. However, the CCL5-neutralizing antibody did not affect NF-κB expression. Furthermore, selective glial inhibitors, minocycline and fluorocitrate, attenuated the hyperalgesia induced by intrathecal CCL5. Conclusions The inhibition of spinal CCL5 expression may provide a new method to prevent and treat nerve injury-induced neuropathic pain.
Collapse
|