1
|
An Q, Wang Y, Tian Z, Han J, Li J, Liao F, Yu F, Zhao H, Wen Y, Zhang H, Deng Z. Molecular and structural basis of an ATPase-nuclease dual-enzyme anti-phage defense complex. Cell Res 2024; 34:545-555. [PMID: 38834762 PMCID: PMC11291478 DOI: 10.1038/s41422-024-00981-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Coupling distinct enzymatic effectors emerges as an efficient strategy for defense against phage infection in bacterial immune responses, such as the widely studied nuclease and cyclase activities in the type III CRISPR-Cas system. However, concerted enzymatic activities in other bacterial defense systems are poorly understood. Here, we biochemically and structurally characterize a two-component defense system DUF4297-HerA, demonstrating that DUF4297-HerA confers resistance against phage infection by cooperatively cleaving dsDNA and hydrolyzing ATP. DUF4297 alone forms a dimer, and HerA alone exists as a nonplanar split spiral hexamer, both of which exhibit extremely low enzymatic activity. Interestingly, DUF4297 and HerA assemble into an approximately 1 MDa supramolecular complex, where two layers of DUF4297 (6 DUF4297 molecules per layer) linked via inter-layer dimerization of neighboring DUF4297 molecules are stacked on top of the HerA hexamer. Importantly, the complex assembly promotes dimerization of DUF4297 molecules in the upper layer and enables a transition of HerA from a nonplanar hexamer to a planar hexamer, thus activating their respective enzymatic activities to abrogate phage infection. Together, our findings not only characterize a novel dual-enzyme anti-phage defense system, but also reveal a unique activation mechanism by cooperative complex assembly in bacterial immunity.
Collapse
Affiliation(s)
- Qiyin An
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Tian
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Han
- Department of Human Anatomy, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jinyue Li
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fumeng Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yancheng Wen
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, Fujian, China
| | - Heng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| |
Collapse
|
2
|
Kuang W, Zhao Y, Li J, Deng Z. Structure-function analysis of the ATPase domain of African swine fever virus topoisomerase. mBio 2024; 15:e0308623. [PMID: 38411066 PMCID: PMC11005426 DOI: 10.1128/mbio.03086-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
Type II topoisomerase utilizes the energy from ATP hydrolysis to alter DNA topology during genome replication and transcription. The ATPase domain of this enzyme is required for ATP hydrolysis and plays a crucial role in coupling DNA binding and ATP turnover with the DNA strand passage reaction. The African swine fever virus (ASFV) specifically encodes a topoisomerase II (topo II), which is critical for viral replication and an attractive target for antiviral development. Here, we present a high-resolution crystal structure of the ASFV topo II ATPase domain complexed with the substrate analog AMPPNP. Structural comparison reveals that the ASFV topo II ATPase domain shares a conserved overall structure with its homologs from eukaryotes and prokaryotes but also has three characteristic regions, including the intra-molecular interface formed by the ATP-lid and QTK loop as well as helix α9, the K-loop in the transducer domain, and the antennae-like α-helix at the ATP binding domain. Mutating the key residues within these three regions impairs or abolishes the basal and DNA-stimulated ATPase activities and reduces or eliminates the relaxation activity of the holoenzyme. Our data indicate that all three regions are functionally important for the ATPase and relaxation activities and strongly suggest that ATP hydrolysis, DNA binding, and strand passage are highly coupled and managed by the allosteric coordination of multiple domains of the type II topoisomerase. Moreover, we find a promising druggable pocket in the dimeric interface of the ASFV topo II ATPase domain, which will benefit future anti-ASFV drug development. IMPORTANCE The ATPase domain of type II topoisomerase provides energy by hydrolyzing ATP and coordinates with the DNA-binding/cleavage domain to drive and control DNA transport. The precise molecular mechanisms of how these domains respond to DNA binding and ATP hydrolysis signals and communicate with each other remain elusive. We determine the first high-resolution crystal structure of the ATPase domain of African swine fever virus (ASFV) topo II in complex with AMPPNP and biochemically investigate its function in ATPase and DNA relaxation activities. Importantly, we find that mutations at three characteristic regions of the ASFV ATPase domain produce parallel effects on the basal/DNA-stimulated ATPase and relaxation activities, implying the tight coupling of the ATP hydrolysis and strand passage process. Therefore, our data provide important implications for understanding the strand passage mechanism of the type II topoisomerase and the structural basis for developing ATPase domain-targeting antivirals against ASFV.
Collapse
Affiliation(s)
- Wenhua Kuang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yan Zhao
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinyue Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Antiviral Research, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| |
Collapse
|
3
|
A Varon H, Santos P, Lopez-Vallejo F, Y Soto C. Novel scaffolds targeting Mycobacterium tuberculosis plasma membrane Ca 2+ transporter CtpF by structure-based strategy. Bioorg Chem 2023; 138:106648. [PMID: 37315451 DOI: 10.1016/j.bioorg.2023.106648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/20/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
CtpF is a Ca2+ transporter P-type ATPase key to the response to stress conditions and to Mycobacterium tuberculosis virulence, therefore, an interesting target for the design of novel anti-Mtb compounds. In this work, molecular dynamics simulations of four previously identified CtpF inhibitors allowed recognizing the key protein-ligand (P-L) interactions, which were then used to perform a pharmacophore-based virtual screening (PBVS) of 22 million compounds from ZINCPharmer. The top-rated compounds were then subjected to molecular docking, and their scores were refined by MM-GBSA calculations. In vitro assays showed that ZINC04030361 (Compound 7) was the best promising candidate, showing a MIC of 25.0 μg/mL, inhibition of Ca2+-ATPase activity (IC50) of 3.3 μM, cytotoxic activity of 27.2 %, and hemolysis of red blood cells lower than 0.2 %. Interestingly, the ctpF gene is upregulated in the presence of compound 7, compared to other alkali/alkaline P-type ATPases coding genes, strongly suggesting that CtpF is a compound 7-specific target.
Collapse
Affiliation(s)
- Henry A Varon
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Paola Santos
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Fabian Lopez-Vallejo
- Departamento de Física y Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia-Sede Manizales, Kilómetro 9 vía al aeropuerto, La Nubia, Manizales 170003, Colombia.
| | - Carlos Y Soto
- Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Bogotá, Colombia
| |
Collapse
|
4
|
Ngo AN, Murowchick J, Gounev AD, Gounev TK, Youan BBC. Physico-chemistry and Cytotoxicity of Tenofovir-Loaded Acid Phosphatase-Responsive Chitosan Nanoparticles. AAPS PharmSciTech 2023; 24:143. [PMID: 37353718 DOI: 10.1208/s12249-023-02580-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/02/2023] [Indexed: 06/25/2023] Open
Abstract
This study assesses the in vitro release of tenofovir (TFV)-loaded triphosphate (TPP) cross-linked chitosan nanoparticles (NPs) catalyzed by human prostatic acid phosphatase (hPAP) for 24 h. The physico-chemical characterization of the NPs included particle mean diameter (PMD), zeta potential (ζ), percent drug encapsulation efficiency (% EE), Fourier transform infra-red (FTIR) spectroscopy, powder X-ray diffractometry analysis (PXRD), and drug release kinetics. The first-order rate constant (k) and activation energy (Ea) of the cross-link (TPP) are determined by the integrated rate law and Arrhenius's equations. The hPAP Michaelis-Menten constant (Km) is determined by the Lineweaver-Burk's equation. The NP's safety profile is evaluated on vaginal epithelial cells (VK2/E6E7). The lyophilized drug-loaded NPs' PMD, ζ, and PDI are 149.97 nm, 4.4 mV, and 0.3, respectively. The % EE after lyophilization is 93.7 ± 4.4%. These NPs released drug at faster rate (63% of TFV within 6 h) under the enzyme's influence. The similarity and difference factors of drug release profiles (absence vs presence of hPAP) are 56.5 and 40.3, respectively. The hPAP's Km value of 0.019 mM suggests it has a good affinity for TPP at physiological pH ~ 7.4. The enhanced hydrolysis of TPP or degradation of chitosan NPs is fundamentally due to a decrease of TPP's activation energy by hPAP. In fact, the Ea value is 22.50 ± 3.06 kJ/mol or 16.33 ± 0.62 kJ/mol in the absence or presence of hPAP, respectively. The NPs are non-cytotoxic to the treated vaginal cell line. These hPAP-responsive NPs are promising topical nanomicrobicides for HIV/AIDS prevention.
Collapse
Affiliation(s)
- Albert Nguessan Ngo
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA
- School of Pharmacy, American University of Health Sciences, Signal Hill, California, 90755, USA
- College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California, 90059, USA
| | - James Murowchick
- Department of Geosciences, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Andrea Drew Gounev
- Department of Chemistry, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Todor K Gounev
- Department of Chemistry, University of Missouri - Kansas City, Kansas City, Missouri, 64110, USA
| | - Bi-Botti Celestin Youan
- Laboratory of Future Nanomedicines and Theoretical Chronopharmaceutics, Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| |
Collapse
|
5
|
A Novel Zinc Exporter CtpG Enhances Resistance to Zinc Toxicity and Survival in Mycobacterium bovis. Microbiol Spectr 2022; 10:e0145621. [PMID: 35377187 PMCID: PMC9045314 DOI: 10.1128/spectrum.01456-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc is a microelement essential for the growth of almost all organisms, but it is toxic at high concentrations and represents an antimicrobial strategy for macrophages. Mycobacterium tuberculosis and Mycobacterium bovis are two well-known intracellular pathogens with strong environmental adaptability, including zinc toxicity. However, the signaling pathway and molecular mechanisms on sensing and resistance to zinc toxicity remains unclear in mycobacteria. Here, we first report that P1B-type ATPase CtpG acts as a zinc efflux transporter and characterize a novel CmtR-CtpG-Zn2+ regulatory pathway that enhances mycobacterial resistance to zinc toxicity. We found that zinc upregulates ctpG expression via transcription factor CmtR and stimulates the ATPase activity of CtpG. The APC residues in TM6 is essential for CtpG to export zinc and enhance M. bovis BCG resistance to zinc toxicity. During infection, CtpG inhibits zinc accumulation in the mycobacteria, and aids bacterial survival in THP-1 macrophage and mice with elevated inflammatory responses. Our findings revealed the existence of a novel regulatory pathway on mycobacteria responding to and adapting to host-mediated zinc toxicity. IMPORTANCE Tuberculosis is caused by the bacillus Mycobacterium tuberculosis and is one of the major sources of mortality. M. tuberculosis has developed unique mechanisms to adapt to host environments, including zinc deficiency and toxicity, during infection. However, the molecular mechanism by which mycobacteria promote detoxification of zinc, and the associated signaling pathways remains largely unclear. In this study, we first report that P1B-type ATPase CtpG acts as a zinc efflux transporter and characterize a novel CmtR-CtpG-Zn2+ regulatory pathway that enhances mycobacterial resistance to zinc toxicity in M. bovis. Our findings reveal the existence of a novel excess zinc-triggered signaling circuit, provide new insights into mycobacterial adaptation to the host environment during infection, and might be useful targets for the treatment of tuberculosis.
Collapse
|
6
|
Li Y, Rárová L, Scarpato S, Çiçek SS, Jordheim M, Štenclová T, Strnad M, Mangoni A, Zidorn C. Seasonal variation of phenolic compounds in Zostera marina (Zosteraceae) from the Baltic Sea. PHYTOCHEMISTRY 2022; 196:113099. [PMID: 35065450 DOI: 10.1016/j.phytochem.2022.113099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Seasonal variations of phenolic compounds, in leaves of Zostera marina L. from the Baltic Sea near Kiel/Germany were investigated. Dominant compounds were mono- and disulfated flavonoids and phenylpropanoic acids, in particular luteolin 7,3'-O-disulfate and diosmetin 7-O-sulfate as well as rosmarinic acid, a dimeric phenylpropanoid. All detected sulfated flavones showed similar seasonal trends: there were two significant concentration peaks in June and November. Moreover, two geographically distinct flavonoid chemotypes were identified based on their respective main flavonoid; one chemotype was characterized by the prevalence of luteolin 7,3'-O-disulfate (German Baltic Sea), and the other by the prevalence of diosmetin 7-O-sulfate (Norwegian North Sea). Furthermore, an undescribed tetrameric phenylpropanoid, 7'',8''-didehydrosalvianolic acid B, was isolated and its structure was established by extensive NMR, MS, and CD experiments. This compound inhibited activity of Na+/K+-ATPase in the micro-molar range without any cytotoxic effects against human cancer and normal cells.
Collapse
Affiliation(s)
- Yan Li
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Silvia Scarpato
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Serhat Sezai Çiçek
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany
| | - Monica Jordheim
- Department of Chemistry, University of Bergen, Allégatan 41, N-5007, Bergen, Norway
| | - Tereza Štenclová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University, And Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Alfonso Mangoni
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, 80131, Napoli, Italy
| | - Christian Zidorn
- Pharmazeutisches Institut, Abteilung Pharmazeutische Biologie, Christian-Albrechts-Universität zu Kiel, Gutenbergstraße 76, 24118, Kiel, Germany.
| |
Collapse
|
7
|
Bitter RM, Oh S, Deng Z, Rahman S, Hite RK, Yuan P. Structure of the Wilson disease copper transporter ATP7B. SCIENCE ADVANCES 2022; 8:eabl5508. [PMID: 35245129 PMCID: PMC8896786 DOI: 10.1126/sciadv.abl5508] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/10/2022] [Indexed: 05/31/2023]
Abstract
ATP7A and ATP7B, two homologous copper-transporting P1B-type ATPases, play crucial roles in cellular copper homeostasis, and mutations cause Menkes and Wilson diseases, respectively. ATP7A/B contains a P-type ATPase core consisting of a membrane transport domain and three cytoplasmic domains, the A, P, and N domains, and a unique amino terminus comprising six consecutive metal-binding domains. Here, we present a cryo-electron microscopy structure of frog ATP7B in a copper-free state. Interacting with both the A and P domains, the metal-binding domains are poised to exert copper-dependent regulation of ATP hydrolysis coupled to transmembrane copper transport. A ring of negatively charged residues lines the cytoplasmic copper entrance that is presumably gated by a conserved basic residue sitting at the center. Within the membrane, a network of copper-coordinating ligands delineates a stepwise copper transport pathway. This work provides the first glimpse into the structure and function of ATP7 proteins and facilitates understanding of disease mechanisms and development of rational therapies.
Collapse
Affiliation(s)
- Ryan M. Bitter
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - SeCheol Oh
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Suhaila Rahman
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
8
|
Xavier BM, Zein AA, Venes A, Wang J, Lee JY. Transmembrane Polar Relay Drives the Allosteric Regulation for ABCG5/G8 Sterol Transporter. Int J Mol Sci 2020; 21:ijms21228747. [PMID: 33228147 PMCID: PMC7699580 DOI: 10.3390/ijms21228747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
The heterodimeric ATP-binding cassette (ABC) sterol transporter, ABCG5/G8, is responsible for the biliary and transintestinal secretion of cholesterol and dietary plant sterols. Missense mutations of ABCG5/G8 can cause sitosterolemia, a loss-of-function disorder characterized by plant sterol accumulation and premature atherosclerosis. A new molecular framework was recently established by a crystal structure of human ABCG5/G8 and reveals a network of polar and charged amino acids in the core of the transmembrane domains, namely, a polar relay. In this study, we utilize genetic variants to dissect the mechanistic role of this transmembrane polar relay in controlling ABCG5/G8 function. We demonstrated a sterol-coupled ATPase activity of ABCG5/G8 by cholesteryl hemisuccinate (CHS), a relatively water-soluble cholesterol memetic, and characterized CHS-coupled ATPase activity of three loss-of-function missense variants, R543S, E146Q, and A540F, which are respectively within, in contact with, and distant from the polar relay. The results established an in vitro phenotype of the loss-of-function and missense mutations of ABCG5/G8, showing significantly impaired ATPase activity and loss of energy sufficient to weaken the signal transmission from the transmembrane domains. Our data provide a biochemical evidence underlying the importance of the polar relay and its network in regulating the catalytic activity of ABCG5/G8 sterol transporter.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily G, Member 5/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 5/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 5/metabolism
- ATP Binding Cassette Transporter, Subfamily G, Member 8/chemistry
- ATP Binding Cassette Transporter, Subfamily G, Member 8/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 8/metabolism
- Adenosine Triphosphatases/chemistry
- Adenosine Triphosphatases/genetics
- Adenosine Triphosphatases/metabolism
- Adenosine Triphosphate/chemistry
- Adenosine Triphosphate/metabolism
- Allosteric Regulation
- Binding Sites
- Biological Transport
- Cholesterol/chemistry
- Cholesterol/metabolism
- Cholesterol Esters/chemistry
- Cholesterol Esters/metabolism
- Cholic Acid/chemistry
- Cholic Acid/metabolism
- Gene Expression
- Humans
- Hypercholesterolemia/genetics
- Hypercholesterolemia/metabolism
- Hypercholesterolemia/pathology
- Intestinal Diseases/genetics
- Intestinal Diseases/metabolism
- Intestinal Diseases/pathology
- Kinetics
- Lipid Metabolism, Inborn Errors/genetics
- Lipid Metabolism, Inborn Errors/metabolism
- Lipid Metabolism, Inborn Errors/pathology
- Lipoproteins/chemistry
- Lipoproteins/genetics
- Lipoproteins/metabolism
- Models, Molecular
- Mutation
- Phytosterols/adverse effects
- Phytosterols/genetics
- Phytosterols/metabolism
- Pichia/chemistry
- Pichia/genetics
- Pichia/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Thermodynamics
Collapse
Affiliation(s)
- Bala M. Xavier
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (B.M.X.); (A.A.Z.); (A.V.)
| | - Aiman A. Zein
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (B.M.X.); (A.A.Z.); (A.V.)
| | - Angelica Venes
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (B.M.X.); (A.A.Z.); (A.V.)
- Biomedical Sciences Program, Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Junmei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15206, USA
- Correspondence: (J.W.); (J.-Y.L.); Tel.: +1-412-383-3268 (J.W.); +1-613-562-5800 (ext. 8308) (J.-Y.L.)
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (B.M.X.); (A.A.Z.); (A.V.)
- Correspondence: (J.W.); (J.-Y.L.); Tel.: +1-412-383-3268 (J.W.); +1-613-562-5800 (ext. 8308) (J.-Y.L.)
| |
Collapse
|
9
|
León-Torres A, Arango E, Castillo E, Soto CY. CtpB is a plasma membrane copper (I) transporting P-type ATPase of Mycobacterium tuberculosis. Biol Res 2020; 53:6. [PMID: 32054527 PMCID: PMC7017476 DOI: 10.1186/s40659-020-00274-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 01/30/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The intracellular concentration of heavy-metal cations, such as copper, nickel, and zinc is pivotal for the mycobacterial response to the hostile environment inside macrophages. To date, copper transport mediated by P-type ATPases across the mycobacterial plasma membrane has not been sufficiently explored. RESULTS In this work, the ATPase activity of the putative Mycobacterium tuberculosis P1B-type ATPase CtpB was associated with copper (I) transport from mycobacterial cells. Although CtpB heterologously expressed in M. smegmatis induced tolerance to toxic concentrations of Cu2+ and a metal preference for Cu+, the disruption of ctpB in M. tuberculosis cells did not promote impaired cell growth or heavy-metal accumulation in whole mutant cells in cultures under high doses of copper. In addition, the Cu+ ATPase activity of CtpB embedded in the plasma membrane showed features of high affinity/slow turnover ATPases, with enzymatic parameters KM 0.19 ± 0.04 µM and Vmax 2.29 ± 0.10 nmol/mg min. In contrast, the ctpB gene transcription was activated in cells under culture conditions that mimicked the hostile intraphagosomal environment, such as hypoxia, nitrosative and oxidative stress, but not under high doses of copper. CONCLUSIONS The overall results suggest that M. tuberculosis CtpB is associated with Cu+ transport from mycobacterial cells possibly playing a role different from copper detoxification.
Collapse
Affiliation(s)
- Andrés León-Torres
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Epifania Arango
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Eliana Castillo
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 N° 45-03, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
10
|
Expression and purification of the 5'-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl Microbiol Biotechnol 2020; 104:2957-2972. [PMID: 32040605 PMCID: PMC7062661 DOI: 10.1007/s00253-020-10428-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/17/2020] [Accepted: 02/03/2020] [Indexed: 11/05/2022]
Abstract
5’-Nucleotidases (EC 3.1.3.5) are enzymes that catalyze the hydrolytic dephosphorylation of 5′-ribonucleotides and 5′-deoxyribonucleotides to their corresponding nucleosides plus phosphate. In the present study, to search for new genes encoding 5′-nucleotidases specific for purine nucleotides in industrially important Bacillus species, “shotgun” cloning and the direct selection of recombinant clones grown in purine nucleosides at inhibitory concentrations were performed in the Escherichia coli GS72 strain, which is sensitive to these compounds. As a result, orthologous yitU genes from Bacillus subtilis and Bacillus amyloliquefaciens, whose products belong to the ubiquitous haloacid dehalogenase superfamily (HADSF), were selected and found to have a high sequence similarity of 87%. B. subtilis YitU was produced in E. coli as an N-terminal hexahistidine-tagged protein, purified and biochemically characterized as a soluble 5′-nucleotidase with broad substrate specificity with respect to various deoxyribo- and ribonucleoside monophosphates: dAMP, GMP, dGMP, CMP, AMP, XMP, IMP and 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranosyl 5′-monophosphate (AICAR-P). However, the preferred substrate for recombinant YitU was shown to be flavin mononucleotide (FMN). B. subtilis and B. amyloliquefaciens yitU overexpression increased riboflavin (RF) and 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) accumulation and can be applied to breed highly performing RF- and AICAR-producing strains.
Collapse
|
11
|
Borg Distefano M, Hofstad Haugen L, Wang Y, Perdreau-Dahl H, Kjos I, Jia D, Morth JP, Neefjes J, Bakke O, Progida C. TBC1D5 controls the GTPase cycle of Rab7b. J Cell Sci 2018; 131:jcs.216630. [PMID: 30111580 DOI: 10.1242/jcs.216630] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/02/2018] [Indexed: 01/01/2023] Open
Abstract
Rab GTPases are key regulators of intracellular trafficking, and cycle between a GTP-bound active state and a GDP-bound inactive state. This cycle is regulated by guanine-nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several efforts have been made in connecting the correct GEFs and GAPs to their specific Rab. Here, we aimed to identify GAPs for Rab7b, the small GTPase involved in transport from late endosomes to the trans-Golgi. An siRNA screen targeting proteins containing TBC domains critical for Rab GAPs was performed and coupled to a phenotypic read-out that visualized the distribution of Rab7b. Silencing of TBC1D5 provided the strongest phenotype and this protein was subsequently validated in various in vitro and cell-based assays. TBC1D5 localizes to Rab7b-positive vesicles, interacts with Rab7b and has GAP activity towards Rab7b in vitro, which is further increased by retromer proteins. Similarly to the constitutively active mutant of Rab7b, inactivation of TBC1D5 also reduces the number of CI-MPR- and sortilin-positive vesicles. Together, the results show that TBC1D5 is a GAP for Rab7b in the control of endosomal transport to the trans-Golgi.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Marita Borg Distefano
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Linda Hofstad Haugen
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Yan Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Harmonie Perdreau-Dahl
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Ingrid Kjos
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610041, China
| | - Jens Preben Morth
- Norwegian Center of Molecular Medicine, Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, 0424 Oslo, Norway
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Leiden University Medical Center LUMC, 2300 RC Leiden, The Netherlands
| | - Oddmund Bakke
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, Centre for Immune Regulation, University of Oslo, 0316 Oslo, Norway
| |
Collapse
|
12
|
Identification and characterization of a calmodulin binding domain in the plasma membrane Ca 2+-ATPase from Trypanosoma equiperdum. Mol Biochem Parasitol 2018; 222:51-60. [PMID: 29752964 DOI: 10.1016/j.molbiopara.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/19/2018] [Accepted: 04/23/2018] [Indexed: 02/01/2023]
Abstract
The plasma membrane Ca2+-ATPase (PMCA) from trypanosomatids lacks a classical calmodulin (CaM) binding domain, although CaM stimulated activities have been detected by biochemical assays. Recently we proposed that the Trypanosoma equiperdum CaM-sensitive PMCA (TePMCA) contains a potential 1-18 CaM-binding motif at the C-terminal region of the pump. In the present study, we evaluated the potential CaM-binding motifs using CaM from Trypanosoma cruzi and either the recombinant full length TePMCA C-terminal sequence (P14) or synthetic peptides comprising different regions of the C-terminal domain. We demonstrated that P14 and a synthetic peptide corresponding to residues 1037-1062 (which contains the predicted 1-18 binding motif) competed efficiently for binding to TcCaM, exhibiting similar IC50s of 200 nM. A stable complex of this peptide and TcCaM was formed in the presence of Ca2+, as determined by native-polyacrylamide gel electrophoresis. A predicted structure obtained by molecular docking showed an interaction of the 1-18 binding motif with the Ca2+/CaM complex. Moreover, when the peptide was incubated with CaM and Ca2+, a blue shift in the tryptophan fluorescence spectrum (from 350 to 329 nm) was observed. Substitutions at W1039 and F1056, strongly decreased both CaM-peptide interaction and the complex assembly. Our results demonstrated the presence of a functional 1-18 motif at the TePMCA C-terminal domain. Furthermore, on the basis of spectrofluorometric assays and the resulting structure modeled by docking we propose that the L1042 and W1060 residues might also participate as anchors to form a 1-4-18-22 motif.
Collapse
|
13
|
Kalita B, Patra A, Jahan S, Mukherjee AK. First report of the characterization of a snake venom apyrase (Ruviapyrase) from Indian Russell's viper (Daboia russelii) venom. Int J Biol Macromol 2018; 111:639-648. [PMID: 29325746 DOI: 10.1016/j.ijbiomac.2018.01.038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/30/2017] [Accepted: 01/07/2018] [Indexed: 11/23/2022]
Abstract
A novel apyrase from Russell's viper venom (RVV) was purified and characterized, and it was named Ruviapyrase (Russell's viper apyrase). It is a high molecular weight (79.4 kDa) monomeric glycoprotein that contains 2.4% neutral sugars and 58.4% N-linked oligosaccharides and strongly binds to Concanavalin A. The LC-MS/MS analysis did not identify any protein in NCBI protein database, nevertheless some de novo sequences of Ruviapyrase showed putative conserved domain of apyrase superfamily. Ruviapyrase hydrolysed adenosine triphosphate (ATP) to a significantly greater extent (p < .05) as compared to adenosine diphosphate (ADP); however, it was devoid of 5'-nucleotidase and phosphodiesterase activities. The Km and Vmax values for Ruviapyrase towards ATP were 2.54 μM and 615 μM of Pi released min-1, respectively with a turnover number (Kcat) of 24,600 min-1. Spectrofluorometric analysis demonstrated interaction of Ruviapyrase with ATP and ADP at Kd values of 0.92 nM and 1.25 nM, respectively. Ruviapyrase did not show cytotoxicity against breast cancer (MCF-7) cells and haemolytic activity, it exhibited marginal anticoagulant and strong antiplatelet activity, and dose-dependently reversed the ADP-induced platelet aggregation. The catalytic activity and platelet deaggregation property of Ruviapyrase was significantly inhibited by EDTA, DTT and IAA, and neutralized by commercial monovalent and polyvalent antivenom.
Collapse
Affiliation(s)
- Bhargab Kalita
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Aparup Patra
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Shagufta Jahan
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India.
| |
Collapse
|
14
|
López M, Quitian LV, Calderón MN, Soto CY. The P-type ATPase CtpG preferentially transports Cd2+ across the Mycobacterium tuberculosis plasma membrane. Arch Microbiol 2017; 200:483-492. [DOI: 10.1007/s00203-017-1465-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/20/2017] [Accepted: 11/28/2017] [Indexed: 12/31/2022]
|
15
|
Ravishankar H, Barth A, Andersson M. Probing the activity of a recombinant Zn 2+ -transporting P-type ATPase. Biopolymers 2017; 109. [PMID: 29168553 DOI: 10.1002/bip.23087] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/16/2017] [Accepted: 10/25/2017] [Indexed: 01/25/2023]
Abstract
P-type ATPase proteins maintain cellular homeostasis and uphold critical concentration gradients by ATP-driven ion transport across biological membranes. Characterization of single-cycle dynamics by time-resolved X-ray scattering techniques in solution could resolve structural intermediates not amendable to for example crystallization or cryo-electron microscopy sample preparation. To pave way for such time-resolved experiments, we used biochemical activity measurements, Attenuated Total Reflectance (ATR) and time-dependent Fourier-Transform Infra-Red (FTIR) spectroscopy to identify optimal conditions for activating a Zn2+ -transporting Type-I ATPase from Shigella sonnei (ssZntA) at high protein concentration using caged ATP. The highest total activity was observed at a protein concentration of 25 mg/mL, at 310 K, pH 7, and required the presence of 20% (v/v) glycerol as stabilizing agent. Neither the presence of caged ATP nor increasing lipid-to-protein ratio affected the hydrolysis activity significantly. This work also paves way for characterization of recombinant metal-transporting (Type-I) ATPase mutants with medical relevance.
Collapse
Affiliation(s)
- H Ravishankar
- Science for Life Laboratory, Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, SE-171 21, Sweden
| | - A Barth
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, SE-106 91, Sweden
| | - M Andersson
- Science for Life Laboratory, Department of Physics and Swedish e-Science Research Center, KTH Royal Institute of Technology, Solna, SE-171 21, Sweden
| |
Collapse
|
16
|
Proteomic analysis to unravel the complex venom proteome of eastern India Naja naja: Correlation of venom composition with its biochemical and pharmacological properties. J Proteomics 2017; 156:29-39. [PMID: 28062377 DOI: 10.1016/j.jprot.2016.12.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 12/27/2016] [Accepted: 12/29/2016] [Indexed: 12/29/2022]
Abstract
The complex venom proteome of the eastern India (EI) spectacled cobra (Naja naja) was analyzed using tandem mass spectrometry of cation-exchange venom fractions. About 75% of EI N. naja venom proteins were <18kDa and cationic at physiological pH of blood. SDS-PAGE (non-reduced) analysis indicated that in the native state venom proteins either interacted with each-other or self-aggregated resulting in the formation of higher molecular mass complexes. Proteomic analysis revealed that 43 enzymatic and non-enzymatic proteins in EI N. naja venom with a percent composition of about 28.4% and 71.6% respectively were distributed over 15 venom protein families. The three finger toxins (63.8%) and phospholipase A2s (11.4%) were the most abundant families of non-enzymatic and enzymatic proteins, respectively. nanoLC-ESI-MS/MS analysis demonstrated the occurrence of acetylcholinesterase, phosphodiesterase, cholinesterase and snake venom serine proteases in N. naja venom previously not detected by proteomic analysis. ATPase, ADPase, hyaluronidase, TAME, and BAEE-esterase activities were detected by biochemical analysis; however, due to a limitation in the protein database depository they were not identified in EI N. naja venom by proteomic analysis. The proteome composition of EI N. naja venom was well correlated with its in vitro and in vivo pharmacological properties in experimental animals and envenomed human. BIOLOGICAL SIGNIFICANCE Proteomic analysis reveals the complex and diverse protein profile of EI N. naja venom which collectively contributes to the severe pathophysiological manifestation upon cobra envenomation. The study has also aided in comprehending the compositional variation in venom proteins of N. naja within the Indian sub-continent. In addition, this study has also identified several enzymes in EI N. naja venom which were previously uncharacterized by proteomic analysis of Naja venom.
Collapse
|
17
|
Zakataeva NP, Romanenkov DV, Yusupova YR, Skripnikova VS, Asahara T, Gronskiy SV. Identification, Heterologous Expression, and Functional Characterization of Bacillus subtilis YutF, a HAD Superfamily 5'-Nucleotidase with Broad Substrate Specificity. PLoS One 2016; 11:e0167580. [PMID: 27907199 PMCID: PMC5132288 DOI: 10.1371/journal.pone.0167580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/16/2016] [Indexed: 11/25/2022] Open
Abstract
5'-nucleotidases (EC 3.1.3.5) catalyze the hydrolytic dephosphorylation of 5'-ribonucleotides and 5'-deoxyribonucleotides as well as complex nucleotides, such as uridine 5'-diphosphoglucose (UDP-glucose), nicotinamide adenine dinucleotide and flavin adenine dinucleotide, to their corresponding nucleosides plus phosphate. These enzymes have been found in diverse species in intracellular and membrane-bound, surface-localized forms. Soluble forms of 5'-nucleotidases belong to the ubiquitous haloacid dehalogenase superfamily (HADSF) and have been shown to be involved in the regulation of nucleotide, nucleoside and nicotinamide adenine dinucleotide (NAD+) pools. Despite the important role of 5'-nucleotidases in cellular metabolism, only a few of these enzymes have been characterized in the Gram-positive bacterium Bacillus subtilis, the workhorse industrial microorganism included in the Food and Drug Administration’s GRAS (generally regarded as safe) list. In the present study, we report the identification of a novel 5'-nucleotidase gene from B. subtilis, yutF, which comprises 771 bp encoding a 256-amino-acid protein belonging to the IIA subfamily of the HADSF. The gene product is responsible for the major p-nitrophenyl phosphatase activity in B. subtilis. The yutF gene was overexpressed in Escherichia coli, and its product fused to a polyhistidine tag was purified and biochemically characterized as a soluble 5'-nucleotidase with broad substrate specificity. The recombinant YutF protein was found to hydrolyze various purine and pyrimidine 5'-nucleotides, showing preference for 5'-nucleoside monophosphates and, specifically, 5'-XMP. Recombinant YutF also exhibited phosphohydrolase activity toward nucleotide precursors, ribose-5-phosphate and 5-phosphoribosyl-1-pyrophosphate. Determination of the kinetic parameters of the enzyme revealed a low substrate specificity (Km values in the mM concentration range) and modest catalytic efficiencies with respect to substrates. An initial study of the regulation of yutF expression showed that the yutF gene is a component of the yutDEF transcription unit and that YutF overproduction positively influences yutDEF expression.
Collapse
Affiliation(s)
| | | | | | | | - Takayuki Asahara
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki, Kanagawa, Japan
| | | |
Collapse
|
18
|
Mukherjee AK, Kalita B, Mackessy SP. A proteomic analysis of Pakistan Daboia russelii russelii venom and assessment of potency of Indian polyvalent and monovalent antivenom. J Proteomics 2016; 144:73-86. [PMID: 27265321 DOI: 10.1016/j.jprot.2016.06.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/14/2016] [Accepted: 06/01/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED To address the dearth of knowledge on the biochemical composition of Pakistan Russell's Viper (Daboia russelii russelii) venom (RVV), the venom proteome has been analyzed and several biochemical and pharmacological properties of the venom were investigated. SDS-PAGE (reduced) analysis indicated that proteins/peptides in the molecular mass range of ~56.0-105.0kDa, 31.6-51.0kDa, 15.6-30.0kDa, 9.0-14.2kDa and 5.6-7.2kDa contribute approximately 9.8%, 12.1%, 13.4%, 34.1% and 30.5%, respectively of Pakistan RVV. Proteomics analysis of gel-filtration peaks of RVV resulted in identification of 75 proteins/peptides which belong to 14 distinct snake venom protein families. Phospholipases A2 (32.8%), Kunitz type serine protease inhibitors (28.4%), and snake venom metalloproteases (21.8%) comprised the majority of Pakistan RVV proteins, while 11 additional families accounted for 6.5-0.2%. Occurrence of aminotransferase, endo-β-glycosidase, and disintegrins is reported for the first time in RVV. Several of RVV proteins/peptides share significant sequence homology across Viperidae subfamilies. Pakistan RVV was well recognized by both the polyvalent (PAV) and monovalent (MAV) antivenom manufactured in India; nonetheless, immunological cross-reactivity determined by ELISA and neutralization of pro-coagulant/anticoagulant activity of RVV and its fractions by MAV surpassed that of PAV. BIOLOGICAL SIGNIFICANCE The study establishes the proteome profile of the Pakistan RVV, thereby indicating the presence of diverse proteins and peptides that play a significant role in the pathophysiology of RVV bite. Further, the proteomic findings will contribute to understand the variation in venom composition owing to different geographical location and identification of pharmacologically important proteins in Pakistan RVV.
Collapse
Affiliation(s)
- Ashis K Mukherjee
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India; School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639-0017, USA.
| | - Bhargab Kalita
- Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, 784028, Assam, India
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO 80639-0017, USA.
| |
Collapse
|
19
|
Gregersen JL, Mattle D, Fedosova NU, Nissen P, Reinhard L. Isolation, crystallization and crystal structure determination of bovine kidney Na(+),K(+)-ATPase. Acta Crystallogr F Struct Biol Commun 2016; 72:282-7. [PMID: 27050261 PMCID: PMC4822984 DOI: 10.1107/s2053230x1600279x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/16/2016] [Indexed: 01/23/2023] Open
Abstract
Na(+),K(+)-ATPase is responsible for the transport of Na(+) and K(+) across the plasma membrane in animal cells, thereby sustaining vital electrochemical gradients that energize channels and secondary transporters. The crystal structure of Na(+),K(+)-ATPase has previously been elucidated using the enzyme from native sources such as porcine kidney and shark rectal gland. Here, the isolation, crystallization and first structure determination of bovine kidney Na(+),K(+)-ATPase in a high-affinity E2-BeF3(-)-ouabain complex with bound magnesium are described. Crystals belonging to the orthorhombic space group C2221 with one molecule in the asymmetric unit exhibited anisotropic diffraction to a resolution of 3.7 Å with full completeness to a resolution of 4.2 Å. The structure was determined by molecular replacement, revealing unbiased electron-density features for bound BeF3(-), ouabain and Mg(2+) ions.
Collapse
Affiliation(s)
- Jonas Lindholt Gregersen
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Daniel Mattle
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| | - Natalya U. Fedosova
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Biomedicine, Aarhus University, Ole Worms Alle 6, DK-8000 Aarhus, Denmark
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Denmark
| | - Linda Reinhard
- Centre for Membrane Pumps in Cells and Disease – PUMPkin, Danish National Research Foundation, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus, Denmark
| |
Collapse
|
20
|
Subramani S, Perdreau-Dahl H, Morth JP. The magnesium transporter A is activated by cardiolipin and is highly sensitive to free magnesium in vitro. eLife 2016; 5. [PMID: 26780187 PMCID: PMC4758953 DOI: 10.7554/elife.11407] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/16/2016] [Indexed: 01/19/2023] Open
Abstract
The magnesium transporter A (MgtA) is a specialized P-type ATPase, believed to import Mg2+ into the cytoplasm. In Salmonella typhimurium and Escherichia coli, the virulence determining two-component system PhoQ/PhoP regulates the transcription of mgtA gene by sensing Mg2+ concentrations in the periplasm. However, the factors that affect MgtA function are not known. This study demonstrates, for the first time, that MgtA is highly dependent on anionic phospholipids and in particular, cardiolipin. Colocalization studies confirm that MgtA is found in the cardiolipin lipid domains in the membrane. The head group of cardiolipin plays major role in activation of MgtA suggesting that cardiolipin may act as a Mg2+ chaperone for MgtA. We further show that MgtA is highly sensitive to free Mg2+ (Mg2+free) levels in the solution. MgtA is activated when the Mg2+free concentration is reduced below 10 μM and is strongly inhibited above 1 mM, indicating that Mg2+free acts as product inhibitor. Combined, our findings conclude that MgtA may act as a sensor as well as a transporter of Mg2+. DOI:http://dx.doi.org/10.7554/eLife.11407.001 Magnesium is an essential element for living cells, meaning that organisms from bacteria to humans need magnesium to survive. All cells are surrounded by a membrane made of fatty molecules called lipids, which is also embedded with proteins. Magnesium, like other metal ions, is transported inside cells across the cell’s membrane by specific membrane proteins. A species of gut bacteria called E. coli has two separate magnesium transport systems: one that works at high concentrations of magnesium and one at lower concentrations. The latter system involves a membrane protein called magnesium transporter A (or MgtA for short), which works like a molecular pump. However, it was not known exactly how this transporter was affected by magnesium nor how sensitive it was to this divalent metal ion. It was also unclear whether MgtA worked alone in the bacterial membrane or if it worked in conjunction with other molecules. Now Subramani et al. have managed to show that MgtA can sense magnesium ions down to micromolar concentrations, which is the equivalent to a pinch (1 gram) of magnesium salt in 10,000 liters of water. The experiments also showed that this detection system depended on a specific lipid molecule in the membrane called cardiolipin. MgtA and cardiolipin were found together in the membrane of living E. coli suggesting that the two do indeed work together. The discovery that a membrane transporter that pumps ions needs cardiolipin to work suggests that cells could indirectly control the movement of ions by changing the levels of specific lipids in their membranes. Subramani et al. now hope to use techniques, such as X-ray crystallography, to visualize how magnesium and cardiolipin bind to MtgA and explore how the three molecules work together as a complete system. Information about these interactions could in the future help researchers understand how these bacteria try to protect themself in the hostile environment in the human gut or cells of the immune systems. Further studies of this system could be used to develop biological sensors for magnesium or to design antibiotics that interfere with the magnesium transporter to treat bacterial infections. DOI:http://dx.doi.org/10.7554/eLife.11407.002
Collapse
Affiliation(s)
- Saranya Subramani
- Norwegian Centre of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Oslo, Norway
| | - Harmonie Perdreau-Dahl
- Norwegian Centre of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Jens Preben Morth
- Norwegian Centre of Molecular Medicine, Nordic EMBL Partnership University of Oslo, Oslo, Norway.,Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
21
|
Chingaté S, Delgado G, Salazar LM, Soto CY. The ATPase activity of the mycobacterial plasma membrane is inhibited by the LL37-analogous peptide LLAP. Peptides 2015. [PMID: 26218806 DOI: 10.1016/j.peptides.2015.07.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emergence of multidrug-resistant Mycobacterium tuberculosis strains has led to the development of new antituberculous agents. In this context, antimicrobial targeting proteins to the cell membrane are interesting due to the avoidance of the plasma membrane permeation. Through this study, the antimicrobial activity, cellular toxicity, as well as the effect on the mycobacterial cell membrane ATPase activity of a cathelicidin-analogous peptide were assessed. By using bioinformatics analyses, a 15 amino acid LL37-analogous peptide called LLAP, which has the amino acid sequence: GRKSAKKIGKRAKRI, was designed to improve its helical structure and antibacterial activity compared to the native sequence. The LLAP peptide was synthesized, purified by RP-HPLC and its structural characteristics were determined by MALDI-TOF MS and circular dichroism. Compared to the native amino acid sequence, the minimum inhibitory concentration and cytotoxic activity of LLAP were 4.0 and 5.6-fold lower, respectively. In addition, the hemolytic activity of LLAP was lower than 1.1% and the cytotoxic activity of peptides was similar for both peptides. Interestingly, the LLAP peptide displayed approximately 50% inhibition of basal ATPase activity of the mycobacterial plasma membrane, which could in turn be associated with the impaired cell viability. The results suggest that LLAP could be considered as potential antimycobacterial compounds against cell membrane targeting ATPases. However, this antimycobacterial activity can be improved. It is expected further applications to be found for other antimicrobial peptides families based on the implemented methodology.
Collapse
Affiliation(s)
- Sandra Chingaté
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Gabriela Delgado
- Pharmacy Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Luz Mary Salazar
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia.
| | - Carlos-Yesid Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30# 45-03, Ciudad Universitaria, Bogotá, Colombia
| |
Collapse
|
22
|
Mattle D, Zhang L, Sitsel O, Pedersen LT, Moncelli MR, Tadini-Buoninsegni F, Gourdon P, Rees DC, Nissen P, Meloni G. A sulfur-based transport pathway in Cu+-ATPases. EMBO Rep 2015; 16:728-40. [PMID: 25956886 PMCID: PMC4467857 DOI: 10.15252/embr.201439927] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/13/2015] [Accepted: 03/31/2015] [Indexed: 11/09/2022] Open
Abstract
Cells regulate copper levels tightly to balance the biogenesis and integrity of copper centers in vital enzymes against toxic levels of copper. PIB -type Cu(+)-ATPases play a central role in copper homeostasis by catalyzing the selective translocation of Cu(+) across cellular membranes. Crystal structures of a copper-free Cu(+)-ATPase are available, but the mechanism of Cu(+) recognition, binding, and translocation remains elusive. Through X-ray absorption spectroscopy, ATPase activity assays, and charge transfer measurements on solid-supported membranes using wild-type and mutant forms of the Legionella pneumophila Cu(+)-ATPase (LpCopA), we identify a sulfur-lined metal transport pathway. Structural analysis indicates that Cu(+) is bound at a high-affinity transmembrane-binding site in a trigonal-planar coordination with the Cys residues of the conserved CPC motif of transmembrane segment 4 (C382 and C384) and the conserved Met residue of transmembrane segment 6 (M717 of the MXXXS motif). These residues are also essential for transport. Additionally, the studies indicate essential roles of other conserved intramembranous polar residues in facilitating copper binding to the high-affinity site and subsequent release through the exit pathway.
Collapse
Affiliation(s)
- Daniel Mattle
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Limei Zhang
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Oleg Sitsel
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Lotte Thue Pedersen
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Maria Rosa Moncelli
- Department of Chemistry 'Ugo Schiff', University of Florence, Sesto Fiorentino, Italy
| | | | - Pontus Gourdon
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Douglas C Rees
- Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| | - Poul Nissen
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark
| | - Gabriele Meloni
- Centre for Membrane Pumps in Cells and Disease - PUMPkin, Department of Molecular Biology and Genetics, Danish National Research Foundation Aarhus University, Aarhus C, Denmark Division of Chemistry and Chemical Engineering and Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
23
|
CtpA, a putative Mycobacterium tuberculosis P-type ATPase, is stimulated by copper (I) in the mycobacterial plasma membrane. Biometals 2015; 28:713-24. [PMID: 25967101 DOI: 10.1007/s10534-015-9860-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/01/2015] [Indexed: 12/24/2022]
Abstract
The transport of heavy-metal ions across the plasma membrane is essential for mycobacterial intracellular survival; in this context, P-type ATPases are pivotal for maintenance of ionic gradients and the plasma membrane homeostasis of mycobacteria. To date, the copper ion transport that is mediated by P-type ATPases in mycobacteria is poorly understood. In this work, the ion-specific activation of CtpA, a putative plasma membrane Mycobacterium tuberculosis P-type ATPase, with different heavy-metal cations was assessed. Mycobacterium smegmatis mc(2)155 cells heterologously expressing the M. tuberculosis ctpA gene displayed an increased tolerance to toxic levels of the Cu(2+) ion (4 mM) compared to control cells, suggesting that CtpA is possibly involved in the copper detoxification of mycobacterial cells. In contrast, the tolerance of M. smegmatis recombinant cells against other heavy-metal divalent cations, such as Co(2+), Mn(2+), Ni(2+) and Zn(2+), was not detected. In addition, the ATPase activity of plasma membrane vesicles that were obtained from M. smegmatis cells expressing CtpA was stimulated by Cu(+) (4.9 nmol of Pi released/mg of protein.min) but not by Cu(2+) ions; therefore, Cu(2+) reduction to Cu(+) inside mycobacterial cells is suggested. Finally, the plasma membrane vesicles of M. smegmatis that were enriched with CtpA exhibited an optimal activity at 37 °C and pH 7.9; the apparent kinetic parameters of the enzyme were a K(1/2) of 4.68 × 10(-2) µM for Cu(+), a Vmax of 10.3 U/mg of protein, and an h value of 1.91.
Collapse
|
24
|
Ayala-Torres C, Novoa-Aponte L, Soto CY. Pma1 is an alkali/alkaline earth metal cation ATPase that preferentially transports Na(+) and K(+) across the Mycobacterium smegmatis plasma membrane. Microbiol Res 2015; 176:1-6. [PMID: 26070686 DOI: 10.1016/j.micres.2015.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 04/07/2015] [Accepted: 04/17/2015] [Indexed: 12/14/2022]
Abstract
Mycobacterium smegmatis Pma1 is the orthologue of M. tuberculosis P-type ATPase cation transporter CtpF, which is activated under stress conditions, such as hypoxia, starvation and response to antituberculous and toxic substances. The function of Pma1 in the mycobacterial processes across the plasma membrane has not been characterised. In this work, bioinformatic analyses revealed that Pma1 likely contains potential sites for, Na(+), K(+) and Ca(2+) binding and transport. Accordingly, RT-qPCR experiments showed that M. smegmatis pma1 transcription is stimulated by sub-lethal doses of Na(+), K(+) and Ca(2+); in addition, the ATPase activity of plasma membrane vesicles in recombinant Pma1-expressing M. smegmatis cells is stimulated by treatment with these cations. In contrast, M. smegmatis cells homologously expressing Pma1 displayed tolerance to high doses of Na(+) and K(+) but not to Ca(2+) ions. Consistently, the recombinant protein Km embedded in plasma membrane demonstrated that Ca(2+) has more affinity for Pma1 than Na(+) and K(+) ions; furthermore, the estimation of Vmax/Km suggests that Na(+) and K(+) ions are more efficiently translocated than Ca(2+). Thus, these results strongly suggest that Pma1 is a promiscuous alkali/alkaline earth cation ATPase that preferentially transports Na(+) and/or K(+) across the mycobacterial plasma membrane.
Collapse
Affiliation(s)
- Carlos Ayala-Torres
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Lorena Novoa-Aponte
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia
| | - Carlos Y Soto
- Chemistry Department, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 30 # 45-03, Ciudad Universitaria, Bogotá, Colombia.
| |
Collapse
|
25
|
Saguez C, Gonzales FA, Schmid M, Bøggild A, Latrick CM, Malagon F, Putnam A, Sanderson L, Jankowsky E, Brodersen DE, Jensen TH. Mutational analysis of the yeast RNA helicase Sub2p reveals conserved domains required for growth, mRNA export, and genomic stability. RNA (NEW YORK, N.Y.) 2013; 19:1363-1371. [PMID: 23962665 PMCID: PMC3854527 DOI: 10.1261/rna.040048.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/27/2013] [Indexed: 06/02/2023]
Abstract
Sub2p/UAP56 is a highly conserved DEAD-box RNA helicase involved in the packaging and nuclear export of mRNA/protein particles (mRNPs). In Saccharomyces cerevisiae, Sub2p is recruited to active chromatin by the pentameric THO complex and incorporated into the larger transcription-export (TREX) complex. Sub2p also plays a role in the maintenance of genome integrity as its inactivation causes severe transcription-dependent recombination of DNA. Despite the central role of Sub2p in early mRNP biology, little is known about its function. Here, we report the presence of an N-terminal motif (NTM) conserved specifically in the Sub2p branch of RNA helicases. Mutation of the NTM causes nuclear accumulation of poly(A)(+) RNA and impaired growth without affecting core helicase functions. Thus, the NTM functions as an autonomous unit. Moreover, two sub2 mutants, that are deficient in ATP binding, act in a trans-dominant negative fashion for growth and induce high recombination rates in vivo. Although wild-type Sub2p is prevented access to transcribed loci in such a background, this does not mechanistically explain the phenotype.
Collapse
Affiliation(s)
- Cyril Saguez
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Fernando A. Gonzales
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Andreas Bøggild
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Chrysa M. Latrick
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Francisco Malagon
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Andrea Putnam
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Lee Sanderson
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Eckhard Jankowsky
- Center for RNA Molecular Biology and Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ditlev E. Brodersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Torben Heick Jensen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
26
|
Is the second sodium pump electrogenic? BIOMED RESEARCH INTERNATIONAL 2013; 2013:698674. [PMID: 23484143 PMCID: PMC3591133 DOI: 10.1155/2013/698674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 11/11/2012] [Accepted: 11/22/2012] [Indexed: 12/02/2022]
Abstract
Transepithelial sodium transport is a process that involves active Na+ transport at the basolateral membrane of the epithelial cell. This process is mediated by the Na+/K+ pump, which exchanges 3 internal Na+ by 2 external K+ inducing a net charge movement and the second Na+ pump, which transports Na+ accompanied by Cl− and water. It has been suggested that this pump could also be electrogenic. Herein, we evaluated, in MDCK cells, the short-circuit current (Isc) generated by these Na+ pumps at the basolateral membrane of the epithelial cells, using amphotericin B as an apical permeabilizing agent. In Cl−-containing media, Isc induced by amphotericin B is totally inhibited by ouabain, indicating that only the electrogenic Na+/K+ pump is detectable in the presence of Cl−. Electrogenicity of the second Na+ pump can be demonstrated in Cl−-free media. The existence of a furosemide-sensitive component of Isc, in addition to an ouabain-sensitive one, was identified in absence of chloride. Passive Cl− movement associated with the function of the second Na+ pump seems to be regulated by the pump itself. These results demonstrate that the second Na+ pump is an electroneutral mechanism result from the stoichiometric movement of Na+ and Cl− across the basolateral plasma membrane of the epithelial cell.
Collapse
|
27
|
Gámez AD, Gutiérrez AM, García R, Whittembury G. Recent experiments towards a model for fluid secretion in Rhodnius Upper Malpighian Tubules (UMT). JOURNAL OF INSECT PHYSIOLOGY 2012; 58:543-550. [PMID: 22206885 DOI: 10.1016/j.jinsphys.2011.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 12/08/2011] [Accepted: 12/14/2011] [Indexed: 05/31/2023]
Abstract
Three different methods have been used to improve a model for fluid secretion in Upper Malpighian Tubules (UMT) of the blood sucking insect Rhodnius prolixus. (I) In the first, UMT double perfusions in 5th instar Rhodnius were used to measure their fluid secretion rate. They were stimulated to secrete with 5-HT. Double perfusions allowed access separately to the basolateral and the apical cell membranes with pharmacological agents known to block different ion transport functions, namely ATPases, cotransporters and/or countertransporters and ion and water channels: ouabain, bafilomycin A1, furosemide, bumetanide, SITS, acetazolamide, amiloride, DPC, BaCl(2), pCMBS and DTT. The basic assumption is that changes in water movement reflect changes in ion transport mechanisms. (II) Intracellular Na(+) concentrations were measured with a fluorometric method in dissected R. prolixus UMT, under several experimental conditions. (III) ATPase activities were measured in R. prolixus UMT. A tentative model for the function of the UMT cell is presented. We find that (a) at the basolateral cell membrane, fundamental is a Na(+)-K(+)-2Cl(-) cotransporter; of intermediate importance are the Na(+)-K(+)-ATPase and a ouabain-insensitive Na(+)-ATPase, ion channels and Rp-MIP water channels. (b) At the apical cell membrane, most important are a V-H(+)-ATPase; and a K(+) and/or Na(+)-H(+) exchanger.
Collapse
Affiliation(s)
- Adriana D Gámez
- Instituto Venezolano de Investigaciones Científicas, Universidad Central de Venezuela, Caracas, Venezuela.
| | | | | | | |
Collapse
|
28
|
Li X, McClellan ME, Tanito M, Garteiser P, Towner R, Bissig D, Berkowitz BA, Fliesler SJ, Woodruff ML, Fain GL, Birch DG, Khan MS, Ash JD, Elliott MH. Loss of caveolin-1 impairs retinal function due to disturbance of subretinal microenvironment. J Biol Chem 2012; 287:16424-34. [PMID: 22451674 DOI: 10.1074/jbc.m112.353763] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caveolin-1 (Cav-1), an integral component of caveolar membrane domains, is expressed in several retinal cell types, including photoreceptors, retinal vascular endothelial cells, Müller glia, and retinal pigment epithelium (RPE) cells. Recent evidence links Cav-1 to ocular diseases, including autoimmune uveitis, diabetic retinopathy, and primary open angle glaucoma, but its role in normal vision is largely undetermined. In this report, we show that ablation of Cav-1 results in reduced inner and outer retinal function as measured, in vivo, by electroretinography and manganese-enhanced MRI. Somewhat surprisingly, dark current and light sensitivity were normal in individual rods (recorded with suction electrode methods) from Cav-1 knock-out (KO) mice. Although photoreceptor function was largely normal, in vitro, the apparent K(+) affinity of the RPE-expressed α1-Na(+)/K(+)-ATPase was decreased in Cav-1 KO mice. Cav-1 KO retinas also displayed unusually tight adhesion with the RPE, which could be resolved by brief treatment with hyperosmotic medium, suggesting alterations in outer retinal fluid homeostasis. Collectively, these findings demonstrate that reduced retinal function resulting from Cav-1 ablation is not photoreceptor-intrinsic but rather involves impaired subretinal and/or RPE ion/fluid homeostasis.
Collapse
Affiliation(s)
- Xiaoman Li
- Department of Ophthalmology and Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Crystal structure of a copper-transporting PIB-type ATPase. Nature 2011; 475:59-64. [PMID: 21716286 DOI: 10.1038/nature10191] [Citation(s) in RCA: 244] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 05/11/2011] [Indexed: 01/19/2023]
Abstract
Heavy-metal homeostasis and detoxification is crucial for cell viability. P-type ATPases of the class IB (PIB) are essential in these processes, actively extruding heavy metals from the cytoplasm of cells. Here we present the structure of a PIB-ATPase, a Legionella pneumophila CopA Cu(+)-ATPase, in a copper-free form, as determined by X-ray crystallography at 3.2 Å resolution. The structure indicates a three-stage copper transport pathway involving several conserved residues. A PIB-specific transmembrane helix kinks at a double-glycine motif displaying an amphipathic helix that lines a putative copper entry point at the intracellular interface. Comparisons to Ca(2+)-ATPase suggest an ATPase-coupled copper release mechanism from the binding sites in the membrane via an extracellular exit site. The structure also provides a framework to analyse missense mutations in the human ATP7A and ATP7B proteins associated with Menkes' and Wilson's diseases.
Collapse
|
30
|
Rocafull MA, Romero FJ, Thomas LE, del Castillo JR. Isolation and cloning of the K+-independent, ouabain-insensitive Na+-ATPase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1684-700. [PMID: 21334305 DOI: 10.1016/j.bbamem.2011.02.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 01/17/2011] [Accepted: 02/11/2011] [Indexed: 10/18/2022]
Abstract
Primary Na+ transport has been essentially attributed to Na+/K+ pump. However, there are functional and biochemical evidences that suggest the existence of a K+-independent, ouabain-insensitive Na+ pump, associated to a Na+-ATPase with similar characteristics, located at basolateral plasma membrane of epithelial cells. Herein, membrane protein complex associated with this Na+-ATPase was identified. Basolateral membranes from guinea-pig enterocytes were solubilized with polyoxyethylene-9-lauryl ether and Na+-ATPase was purified by concanavalin A affinity and ion exchange chromatographies. Purified enzyme preserves its native biochemical characteristics: Mg2+ dependence, specific Na+ stimulation, K+ independence, ouabain insensitivity and inhibition by furosemide (IC50: 0.5 mM) and vanadate (IC50: 9.1 μM). IgY antibodies against purified Na+-ATPase did not recognize Na+/K+-ATPase and vice versa. Analysis of purified Na+-ATPase by SDS-PAGE and 2D-electrophoresis showed that is constituted by two subunits: 90 (α) and 50 (β) kDa. Tandem mass spectrometry of α-subunit identified three peptides, also present in most Na+/K+-ATPase isoforms, which were used to design primers for cloning both ATPases by PCR from guinea-pig intestinal epithelial cells. A cDNA fragment of 1148 bp (atna) was cloned, in addition to Na+/K+-ATPase α1-isoform cDNA (1283 bp). In MDCK cells, which constitutively express Na+-ATPase, silencing of atna mRNA specifically suppressed Na+-ATPase α-subunit and ouabain-insensitive Na+-ATPase activity, demonstrating that atna transcript is linked to this enzyme. Guinea-pig atna mRNA sequence (2787 bp) was completed using RLM-RACE. It encodes a protein of 811 amino acids (88.9 kDa) with the nine structural motifs of P-type ATPases. It has 64% identity and 72% homology with guinea-pig Na+/K+-ATPase α1-isoform. These structural and biochemical evidences identify the K+-independent, ouabain-insensitive Na+-ATPase as a unique P-type ATPase.
Collapse
Affiliation(s)
- Miguel A Rocafull
- Laboratorio de Fisiología Molecular, Centro de Biofísica y Bioquímica, Instituto Venezolano de Investigaciones Científicas, Caracas, Venezuela
| | | | | | | |
Collapse
|
31
|
11-Molybdobismuthophosphate—A new reagent for the determination of ascorbic acid in batch and sequential injection systems. Talanta 2010; 80:1838-45. [DOI: 10.1016/j.talanta.2009.10.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 10/03/2009] [Accepted: 10/15/2009] [Indexed: 11/19/2022]
|
32
|
Purification and characterization of the ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon. Arch Biochem Biophys 2010; 496:21-32. [PMID: 20122893 DOI: 10.1016/j.abb.2010.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2009] [Revised: 01/26/2010] [Accepted: 01/28/2010] [Indexed: 11/21/2022]
Abstract
Distal colon absorbs K+ through a Na+-independent, ouabain-sensitive H+/K+-exchange, associated to an apical ouabain-sensitive H+/K+-ATPase. Expression of HKalpha2, gene associated with this ATPase, induces K+-transport mechanisms, whose ouabain susceptibility is inconsistent. Both ouabain-sensitive and ouabain-insensitive K+-ATPase activities have been described in colonocytes. However, native H+/K+-ATPases have not been identified as unique biochemical entities. Herein, a procedure to purify ouabain-sensitive H+/K+-ATPase from guinea-pig distal colon is described. H+/K+-ATPase is Mg2+-dependent and activated by K+, Cs+ and NH4+ but not by Na+ or Li+, independently of K+-accompanying anion. H+/K+-ATPase was inhibited by ouabain and vanadate but insensitive to SCH-28080 and bafilomycin-A. Enzyme was phosphorylated from [32P]-gamma-ATP, forming an acyl-phosphate bond, in an Mg2+-dependent, vanadate-sensitive process. K+ inhibited phosphorylation, effect blocked by ouabain. H+/K+-ATPase is an alpha/beta-heterodimer, whose subunits, identified by Tandem-mass spectrometry, seems to correspond to HKalpha2 and Na+/K+-ATPase beta1-subunit, respectively. Thus, colonic ouabain-sensitive H+/K+-ATPase is a distinctive P-type ATPase.
Collapse
|
33
|
Rosivatz E, Matthews JG, McDonald NQ, Mulet X, Ho KK, Lossi N, Schmid AC, Mirabelli M, Pomeranz KM, Erneux C, Lam EWF, Vilar R, Woscholski R. A small molecule inhibitor for phosphatase and tensin homologue deleted on chromosome 10 (PTEN). ACS Chem Biol 2006; 1:780-90. [PMID: 17240976 DOI: 10.1021/cb600352f] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a phosphoinositide 3-phosphatase, is an important regulator of insulin-dependent signaling. The loss or impairment of PTEN results in an antidiabetic impact, which led to the suggestion that PTEN could be an important target for drugs against type II diabetes. Here we report the design and validation of a small- molecule inhibitor of PTEN. Compared with other cysteine-based phosphatases, PTEN has a much wider active site cleft enabling it to bind the PtdIns(3,4,5)P3 substrate. We have exploited this feature in the design of vanadate scaffolds complexed to a range of different organic ligands, some of which show potent inhibitory activity. A vanadyl complexed to hydroxypicolinic acid was found to be a highly potent and specific inhibitor of PTEN that increases cellular PtdIns(3,4,5)P3 levels, phosphorylation of Akt, and glucose uptake in adipocytes at nanomolar concentrations. The findings presented here demonstrate the applicability of a novel and specific chemical inhibitor against PTEN in research and drug development.
Collapse
Affiliation(s)
- Erika Rosivatz
- Division of Cell and Molecular Biology, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Senn AM, Wolosiuk RA. A high-throughput screening for phosphatases using specific substrates. Anal Biochem 2005; 339:150-6. [PMID: 15766722 DOI: 10.1016/j.ab.2004.12.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Indexed: 11/19/2022]
Abstract
A high-throughput screening was developed for the detection of phosphatase activity in bacterial colonies. Unlike other methods, the current procedure can be applied to any phosphatase because it uses physiological substrates and detects the compelled product of all phosphatase reactions, that is, orthophosphate. In this method, substrates diffuse from a filter paper across a nitrocellulose membrane to bacterial colonies situated on the opposite face, and then reaction products flow back to the paper. Finally, a colorimetric reagent discloses the presence of orthophosphate in the filter paper. We validated the performance of this assay with several substrates and experimental conditions and with different phosphatases, including a library of randomly mutagenized rapeseed chloroplast fructose-1,6-bisphosphatase. This procedure could be extended to other enzymatic activities provided that an appropriate detection of reaction products is available.
Collapse
Affiliation(s)
- Alejandro M Senn
- Instituto Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Patricias Argentinas 435, C1405BWE Buenos Aires, Argentina.
| | | |
Collapse
|