1
|
Wölkart G, Gissing S, Stessel H, Fassett EK, Klösch B, Greene RW, Mayer B, Fassett JT. An adenosinergic positive feedback loop extends pharmacological cardioprotection duration. Br J Pharmacol 2024; 181:4920-4936. [PMID: 39256947 DOI: 10.1111/bph.17331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/25/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND AND PURPOSE Adenosine receptor activation induces delayed, sustained cardioprotection against ischaemia-reperfusion (IR) injury (24-72 h), but the mechanisms underlying extended cardioprotection duration remain unresolved. We hypothesized that a positive feedback loop involving adenosine receptor-induced proteasomal degradation of adenosine kinase (ADK) and decreased myocardial adenosine metabolism extends the duration of cardioprotection. EXPERIMENTAL APPROACH Mice were administered an ADK inhibitor, ABT-702, to induce endogenous adenosine signalling. Cardiac ADK protein and mRNA levels were analysed 24-120 h later. Theophylline or bortezomib was administered 24 h after ABT-702 to examine the late roles of adenosine receptors or proteasomal activity, respectively, in ADK expression and cardioprotection at 72 h. Coronary flow and IR tolerance were analysed by Langendorff technique. The potential for continuous adenosinergic cardioprotection was examined using heterozygous, cardiac-specific ADK KO (cADK+/-) mice. Cardiac ADK expression was also examined after A1 or A3 receptor agonist, phenylephrine, lipopolysaccharide or sildenafil administration. KEY RESULTS ABT-702 treatment decreased ADK protein content and provided cardioprotection from 24 to 72 h. ADK mRNA upregulation restored ADK protein after 96-120 h. Adenosine receptor or proteasome inhibition at 24 h reversed ABT-702-induced ADK protein deficit and cardioprotection at 72 h. cADK+/- hearts exhibited continuous cardioprotection. Diverse preconditioning agents also diminished cardiac ADK protein expression. CONCLUSION AND IMPLICATIONS A positive feedback loop driven by adenosine receptor-induced ADK degradation and renewed adenosine signalling extends the duration of cardioprotection by ABT-702 and possibly other preconditioning agents. The therapeutic potential of continuous adenosinergic cardioprotection is demonstrated in cADK+/- hearts.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Simon Gissing
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Erin K Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - Burkhard Klösch
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Arthritis and Rehabilitation, University of Graz, Graz, Austria
| | - Robert W Greene
- Department of Psychiatry and Neuroscience, Peter O'Donnell Brain Institute, UTSW Medical Center, Dallas, Texas, USA
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| | - John T Fassett
- Department of Pharmacology and Toxicology, University of Graz, Graz, Austria
| |
Collapse
|
2
|
Lee HM, Kim TH, Park JH, Heo NY, Kim HS, Kim DE, Lee MK, Lee GM, You J, Kim YG. Sialyllactose supplementation enhances sialylation of Fc-fusion glycoprotein in recombinant Chinese hamster ovary cell culture. J Biotechnol 2024; 392:180-189. [PMID: 39038661 DOI: 10.1016/j.jbiotec.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/03/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Sialylation during N-glycosylation plays an important role in the half-life of therapeutic glycoproteins in vivo and has sparked interest in the production of therapeutic proteins using recombinant Chinese hamster ovary (rCHO) cells. To improve the sialylation of therapeutic proteins, we examined the effect of sialyllactose supplementation on sialylation of Fc-fusion glycoproteins produced in rCHO cells. Two enzymatically-synthesized sialyllactoses, 3'-sialyllactose (3'-SL) and 6'-sialyllactose (6'-SL), were administered separately to two rCHO cell lines producing the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44, respectively. Two sialyllactoses successfully increased sialylation of Fc-fusion glycoprotein in both cell lines, as evidenced by isoform distribution, sialylated N-glycan formation, and sialic acid content. Increased sialylation by adding sialyllactose was likely the result of increased amount of intracellular CMP-sialic acid (CMP-SA), the direct nucleotide sugar for sialylation. Furthermore, the degree of sialylation enhanced by sialyllactoses was slightly effective or nearly similar compared with the addition of N-acetylmannosamine (ManNAc), a representative nucleotide sugar precursor, to increase sialylation of glycoproteins. The effectiveness of sialyllactose was also confirmed using three commercially available CHO cell culture media. Taken together, these results suggest that enzymatically-synthesized sialyllactose represents a promising candidate for culture media supplementation to increase sialylation of glycoproteins in rCHO cell culture.
Collapse
Affiliation(s)
- Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Tae-Ho Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea
| | - Jong-Ho Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Na-Yeong Heo
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Hyun-Seung Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Dae Eung Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jungmok You
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, South Korea.
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, South Korea; Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
3
|
Liu H, Li J, Wu N, She Y, Luo Y, Huang Y, Quan H, Fu W, Li X, Zeng D, Jia Y. Supplementing Glucose Intake Reverses the Inflammation Induced by a High-Fat Diet by Increasing the Expression of Siglec-E Ligands on Erythrocytes. Inflammation 2024; 47:609-625. [PMID: 38448631 DOI: 10.1007/s10753-023-01932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/10/2023] [Accepted: 11/10/2023] [Indexed: 03/08/2024]
Abstract
Siglec-9/E is a cell surface receptor expressed on immune cells and can be activated by sialoglycan ligands to play an immunosuppressive role. Our previous study showed that increasing the expression of Siglec-9 (the human paralog of mouse Siglec-E) ligands maintains functionally quiescent immune cells in the bloodstream, but the biological effects of Siglec-9 ligand alteration on atherogenesis were not further explored. In the present study, we demonstrated that the atherosclerosis risk factor ox-LDL or a high-fat diet could decrease the expression of Siglec-9/E ligands on erythrocytes. Increased expression of Siglec-E ligands on erythrocytes caused by dietary supplementation with glucose (20% glucose) had anti-inflammatory effects, and the mechanism was associated with glucose intake. In high-fat diet-fed apoE-/- mice, glucose supplementation decreased the area of atherosclerotic lesions and peripheral inflammation. These data suggested that increased systemic inflammation is attenuated by increasing the expression of Siglec-9/E ligands on erythrocytes. Therefore, Siglec-9/E ligands might be valuable targets for atherosclerosis therapy.
Collapse
Affiliation(s)
- Hongmei Liu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Jin Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Niting Wu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yuanting She
- Department of Haematology, Daping Hospital of Army Medical University, Chongqing, 400042, China
| | - Yadan Luo
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Yan Huang
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Hongyu Quan
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Wenying Fu
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Xiaohui Li
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China
| | - Dongfeng Zeng
- Department of Haematology, Daping Hospital of Army Medical University, Chongqing, 400042, China.
| | - Yi Jia
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
4
|
Sugiyama C, Furusho A, Todoroki K, Sugiyama E. Selective analysis of intracellular UDP-GlcNAc and UDP-GalNAc by hydrophilic interaction liquid chromatography-mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1821-1825. [PMID: 38433563 DOI: 10.1039/d4ay00122b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc) is one of the major nucleotide sugars in living organisms and serves as the key donor substrate for the post-translational modification of protein O-GlcNAcylation. It undergoes interconversion to its epimer uridine diphosphate-N-acetylgalactosamine (UDP-GalNAc), which acts as a sugar donor initiating mucin-type O-linked glycosylation. The intracellular levels of the two differ between the cell lines and largely fluctuate in response to metabolic perturbations, and recent studies have focused on the details of their biosynthesis or turnover. However, due to their similar chemical properties, sufficient resolution for the two epimers required non-volatile mobile phases that cannot be applied directly to a mass spectrometer. In this study, to implement simple liquid chromatography-mass spectrometry for UDP-GlcNAc and UDP-GalNAc, we optimized a condition of hydrophilic interaction liquid chromatography-mass spectrometry. We found that the use of ammonium hydroxide and an amide column with an optimized water-acetonitrile ratio, flow rate, and column temperature, provided complete separation of the two. The method allowed the analysis of intracellular levels, a stable isotope-labeled target, and patterns of product ion spectra in a single run with fewer sample preparation steps. The new method can be widely used for mass spectrometric analysis of UDP-GlcNAc and UDP-GalNAc.
Collapse
Affiliation(s)
- Chanudporn Sugiyama
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Aogu Furusho
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Kenichiro Todoroki
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Eiji Sugiyama
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
5
|
Lee HM, Park JH, Kim TH, Kim HS, Kim DE, Lee MK, You J, Lee GM, Kim YG. Effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoprotein in recombinant CHO cells. Appl Microbiol Biotechnol 2024; 108:224. [PMID: 38376550 PMCID: PMC10879319 DOI: 10.1007/s00253-024-13059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024]
Abstract
The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: • The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. • The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. • Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.
Collapse
Affiliation(s)
- Hoon-Min Lee
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Ho Park
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Tae-Ho Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Hyun-Seung Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Dae Eung Kim
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju, 28160, Korea
| | - Jungmok You
- Department of Plant and Environmental New Resources, Graduate School of Biotechnology, College of Life Science, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon, Korea
| | - Yeon-Gu Kim
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon, Korea.
- Department of Bioprocess Engineering, KRIBB School of Biotechnology, University of Science and Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
6
|
Mukherjee MM, Bond MR, Abramowitz LK, Biesbrock D, Woodroofe CC, Kim EJ, Swenson RE, Hanover JA. Tools and tactics to define specificity of metabolic chemical reporters. Front Mol Biosci 2023; 10:1286690. [PMID: 38143802 PMCID: PMC10740162 DOI: 10.3389/fmolb.2023.1286690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Metabolic chemical reporters (MCRs) provide easily accessible means to study glycans in their native environments. However, because monosaccharide precursors are shared by many glycosylation pathways, selective incorporation has been difficult to attain. Here, a strategy for defining the selectivity and enzymatic incorporation of an MCR is presented. Performing β-elimination to interrogate O-linked sugars and using commercially available glycosidases and glycosyltransferase inhibitors, we probed the specificity of widely used azide (Ac4GalNAz) and alkyne (Ac4GalNAlk and Ac4GlcNAlk) sugar derivatives. Following the outlined strategy, we provide a semiquantitative assessment of the specific and non-specific incorporation of this bioorthogonal sugar (Ac4GalNAz) into numerous N- and O-linked glycosylation pathways. This approach should be generally applicable to other MCRs to define the extent of incorporation into the various glycan species.
Collapse
Affiliation(s)
- Mana Mohan Mukherjee
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Michelle R. Bond
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lara K. Abramowitz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Devin Biesbrock
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Carolyn C. Woodroofe
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Fredrick, MD, United States
| | - Eun Ju Kim
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - Rolf E. Swenson
- Department of Chemistry Education, Daegu University, Gyeongsan-si, South Korea
| | - John A. Hanover
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
7
|
Kopra K, Mahran R, Yli-Hollo T, Tabata S, Vuorinen E, Fujii Y, Vuorinen I, Ogawa-Iio A, Hirayama A, Soga T, Sasaki AT, Härmä H. Homogeneous luminescent quantitation of cellular guanosine and adenosine triphosphates (GTP and ATP) using QT-Luc GTP&ATP assay. Anal Bioanal Chem 2023; 415:6689-6700. [PMID: 37714971 PMCID: PMC10598090 DOI: 10.1007/s00216-023-04944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
Guanosine triphosphate (GTP) and adenosine triphosphate (ATP) are essential nucleic acid building blocks and serve as energy molecules for a wide range of cellular reactions. Cellular GTP concentration fluctuates independently of ATP and is significantly elevated in numerous cancers, contributing to malignancy. Quantitative measurement of ATP and GTP has become increasingly important to elucidate how concentration changes regulate cell function. Liquid chromatography-coupled mass spectrometry (LC-MS) and capillary electrophoresis-coupled MS (CE-MS) are powerful methods widely used for the identification and quantification of biological metabolites. However, these methods have limitations related to specialized instrumentation and expertise, low throughput, and high costs. Here, we introduce a novel quantitative method for GTP concentration monitoring (GTP-quenching resonance energy transfer (QRET)) in homogenous cellular extracts. CE-MS analysis along with pharmacological control of cellular GTP levels shows that GTP-QRET possesses high dynamic range and accuracy. Furthermore, we combined GTP-QRET with luciferase-based ATP detection, leading to a new technology, termed QT-LucGTP&ATP, enabling high-throughput compatible dual monitoring of cellular GTP and ATP in a homogenous fashion. Collectively, GTP-QRET and QT-LucGTP&ATP offer a unique, high-throughput opportunity to explore cellular energy metabolism, serving as a powerful platform for the development of novel therapeutics and extending its usability across a range of disciplines.
Collapse
Affiliation(s)
- Kari Kopra
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland.
| | - Randa Mahran
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Titta Yli-Hollo
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Sho Tabata
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Emmiliisa Vuorinen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Yuki Fujii
- Department of Internal Medicine, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH, 45267-0508, USA
| | - Iida Vuorinen
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| | - Aki Ogawa-Iio
- Department of Internal Medicine, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH, 45267-0508, USA
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
| | - Atsuo T Sasaki
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan
- Department of Internal Medicine, University of Cincinnati College of Medicine, 3125 Eden Ave, Cincinnati, OH, 45267-0508, USA
- Department of Clinical and Molecular Genetics, Hiroshima University Hospital, Hiroshima, 734-8551, Japan
| | - Harri Härmä
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500, Turku, Finland
| |
Collapse
|
8
|
Wang K, Yang X, Zhang S, Zhang P, Huang S. Nanopore Discrimination of Nucleotide Sugars. NANO LETTERS 2023; 23:8620-8627. [PMID: 37690030 DOI: 10.1021/acs.nanolett.3c02455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Nucleotide sugars, the glycosyl donors in the biosynthesis of carbohydrates, are critical ingredients in the growth and development of all living organisms. A variety of nucleotide sugars simultaneously exist in biological samples. They, however, have only minor structural differences, which make them extremely difficult to discriminate. In this work, a phenylboronic acid (PBA)-modified Mycobacterium smegmatis porin A (MspA) hetero-octamer was applied to sense nucleotide sugars. Five representative nucleotide sugars, including guanosine diphosphate mannose (GDP-Man), adenosine diphosphate glucose (ADP-Glc), uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), uridine diphosphate glucose (UDP-Glc), and uridine diphosphate glucoronic acid (UDP-GlcA), were successfully distinguished. A custom machine learning algorithm was also employed to automatically identify events, reporting a general accuracy of 99.4%. This sensing strategy provides a rapid, direct, and accurate method for identifying different nucleotide sugars. However, single-molecule identification of nucleotide sugars has never been previously reported, to the best of our knowledge.
Collapse
Affiliation(s)
- Kefan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Xian Yang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Shanyu Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, 210023 Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023 Nanjing, China
| |
Collapse
|
9
|
Zhang J, Li Z, Pang Y, Fan Y, Ai HW. Genetically Encoded Boronolectin as a Specific Red Fluorescent UDP-GlcNAc Biosensor. ACS Sens 2023; 8:2996-3003. [PMID: 37480329 PMCID: PMC10663054 DOI: 10.1021/acssensors.3c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
There is great interest in developing boronolectins that are synthetic lectin mimics containing a boronic acid functional group for reversible recognition of diol-containing molecules, such as glycans and ribonucleotides. However, it remains a significant challenge to gain specificity. Here, we present a genetically encoded boronolectin which is a hybrid protein consisting of a noncanonical amino acid (ncAA) p-boronophenylalanine (pBoF), natural-lectin-derived peptide sequences, and a circularly permuted red fluorescent protein (cpRFP). The genetic encodability permitted a straightforward protein engineering process to derive a red fluorescent biosensor that can specifically bind uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), an important nucleotide sugar involved in metabolic sensing and cell signaling. We further characterized the resultant boronic acid- and peptide-assisted UDP-GlcNAc sensor (bapaUGAc) both in vitro and in live mammalian cells. Because UDP-GlcNAc in the endoplasmic reticulum (ER) and Golgi apparatus plays essential roles in glycosylating biomolecules in the secretory pathway, we genetically expressed bapaUGAc in the ER and Golgi and validated the sensor for its responses to metabolic disruption and pharmacological inhibition. In addition, we combined bapaUGAc with UGAcS, a recently reported green fluorescent UDP-GlcNAc sensor based on an alternative sensing mechanism, to monitor UDP-GlcNAc level changes in the ER and cytosol simultaneously. We expect our work to facilitate the future development of specific boronolectins for carbohydrates. In addition, this newly developed genetically encoded bapaUGAc sensor will be a valuable tool for studying UDP-GlcNAc and glycobiology.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Zefan Li
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
| | - Yichong Fan
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
| | - Hui-wang Ai
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, 1340 Jefferson Park Ave, Charlottesville, Virginia, 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia School of Medicine, Charlottesville, Virginia, 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, Virginia, 22904, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, Virginia, 22903, USA
| |
Collapse
|
10
|
Wölkart G, Stessel H, Fassett E, Teschl E, Friedl K, Trummer M, Schrammel A, Kollau A, Mayer B, Fassett J. Adenosine kinase (ADK) inhibition with ABT-702 induces ADK protein degradation and a distinct form of sustained cardioprotection. Eur J Pharmacol 2022; 927:175050. [PMID: 35618039 DOI: 10.1016/j.ejphar.2022.175050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/18/2022]
Abstract
Pharmacological inhibition of adenosine kinase (ADK), the major route of myocardial adenosine metabolism, can elicit acute cardioprotection against ischemia-reperfusion (IR) by increasing adenosine signaling. Here, we identified a novel, extended effect of the ADK inhibitor, ABT-702, on cardiac ADK protein longevity and investigated its impact on sustained adenosinergic cardioprotection. We found that ABT-702 treatment significantly reduced cardiac ADK protein content in mice 24-72 h after administration (IP or oral). ABT-702 did not alter ADK mRNA levels, but strongly diminished (ADK-L) isoform protein content through a proteasome-dependent mechanism. Langendorff perfusion experiments revealed that hearts from ABT-702-treated mice maintain higher adenosine release long after ABT-702 tissue elimination, accompanied by increased basal coronary flow (CF) and robust tolerance to IR. Sustained cardioprotection by ABT-702 did not involve increased nitric oxide synthase expression, but was completely dependent upon increased adenosine release in the delayed phase (24 h), as indicated by the loss of cardioprotection and CF increase upon perfusion of adenosine deaminase or adenosine receptor antagonist, 8-phenyltheophylline. Importantly, blocking adenosine receptor activity with theophylline during ABT-702 administration prevented ADK degradation, preserved late cardiac ADK activity, diminished CF increase and abolished delayed cardioprotection, indicating that early adenosine receptor signaling induces late ADK degradation to elicit sustained adenosine release. Together, these results indicate that ABT-702 induces a distinct form of delayed cardioprotection mediated by adenosine receptor-dependent, proteasomal degradation of cardiac ADK and enhanced adenosine signaling in the late phase. These findings suggest ADK protein stability may be pharmacologically targeted to achieve sustained adenosinergic cardioprotection.
Collapse
Affiliation(s)
- Gerald Wölkart
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Heike Stessel
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Erin Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Eva Teschl
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Katrin Friedl
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Modesta Trummer
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Astrid Schrammel
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Alexander Kollau
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria
| | - John Fassett
- Department of Pharmacology and Toxicology, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
11
|
Caron P, Van Long FN, Rouleau M, Bujold E, Fortin P, Mohammadi S, Lévesque É, Breton S, Guillemette C. A liquid chromatography-mass spectrometry assay for the quantification of nucleotide sugars in human plasma and urine specimens and its clinical application. J Chromatogr A 2022; 1677:463296. [DOI: 10.1016/j.chroma.2022.463296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
12
|
Savizi ISP, Motamedian E, E Lewis N, Jimenez Del Val I, Shojaosadati SA. An integrated modular framework for modeling the effect of ammonium on the sialylation process of monoclonal antibodies produced by CHO cells. Biotechnol J 2021; 16:e2100019. [PMID: 34021707 DOI: 10.1002/biot.202100019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Monoclonal antibodies (mABs) have emerged as one of the most important therapeutic recombinant proteins in the pharmaceutical industry. Their immunogenicity and therapeutic efficacy are influenced by post-translational modifications, specifically the glycosylation process. Bioprocess conditions can influence the intracellular process of glycosylation. Among all the process conditions that have been recognized to affect the mAB glycoforms, the detailed mechanism underlying how ammonium could perturb glycosylation remains to be fully understood. It was shown that ammonium induces heterogeneity in protein glycosylation by altering the sialic acid content of glycoproteins. Hence, understanding this mechanism would aid pharmaceutical manufacturers to ensure consistent protein glycosylation. METHODS Three different mechanisms have been proposed to explain how ammonium influences the sialylation process. In the first, the inhibition of CMP-sialic acid transporter, which transports CMP-sialic acid (sialylation substrate) into the Golgi, by an increase in UDP-GlcNAc content that is brought about by the augmented incorporation of ammonium into glucosamine formation. In the second, ammonia diffuses into the Golgi and raises its pH, thereby decreasing the sialyltransferase enzyme activity. In the third, the reduction of sialyltransferase enzyme expression level in the presence of ammonium. We employed these mechanisms in a novel integrated modular platform to link dynamic alteration in mAB sialylation process with extracellular ammonium concentration to elucidate how ammonium alters the sialic acid content of glycoproteins. RESULTS Our results show that the sialylation reaction rate is insensitive to the first mechanism. At low ammonium concentration, the second mechanism is the controlling mechanism in mAB sialylation and by increasing the ammonium level (< 8 mM) the third mechanism becomes the controlling mechanism. At higher ammonium concentrations (> 8 mM) the second mechanism becomes predominant again. CONCLUSION The presented model in this study provides a connection between extracellular ammonium and the monoclonal antibody sialylation process. This computational tool could help scientists to develop and formulate cell culture media. The model illustrated here can assist the researchers to select culture media that ensure consistent mAB sialylation.
Collapse
Affiliation(s)
- Iman Shahidi Pour Savizi
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Motamedian
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, La Jolla, California, USA.,School of Medicine, Novo Nordisk Foundation Center for Biosustainability at the University of California, La Jolla, California, USA.,Department of Pediatrics, School of Medicine, University of California, La Jolla, California, USA
| | | | - Seyed Abbas Shojaosadati
- Faculty of Chemical Engineering, Biotechnology Department, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Qu Y, Wang W, Chen T, Yang Y, Zhang Y, Wang D. The neuroprotection of deproteinized calf blood extractives injection against Alzheimer's disease via regulation of Nrf-2 signaling. Aging (Albany NY) 2021; 13:11150-11169. [PMID: 33819182 PMCID: PMC8109110 DOI: 10.18632/aging.202776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 02/12/2021] [Indexed: 12/29/2022]
Abstract
Alzheimer’s disease (AD) is characterized by cognitive decline due to the accumulation of extracellular β-amyloid (Aβ) plaques and neurofibrillary tangles in the brain, which impair glutamate (Glu) metabolism. Deproteinized Calf Blood Extractive Injection (DCBEI) is a biopharmaceutical that contains 17 types of amino acids and 5 types of nucleotides. In this study, we found that DCBEI pretreatment reduced L-Glu-dependent neuroexcitation toxicity by maintaining normal mitochondrial function in HT22 cells. DCBEI treatment also reduced the expression of pro-apoptosis proteins and increased the expression of anti-apoptosis proteins. Furthermore, DCBEI attenuated AD-like behaviors (detected via the Morris water maze test) in B6C3-Tg (APPswePSEN1dE9)/Nju double transgenic (APP/PS1) mice; this effect was associated with a reduction in the amount of Aβ and neurofibrillary tangle deposition and the concomitant reduction of phospho-Tau in the hippocampus. Metabonomic profiling revealed that DCBEI regulated the level of neurotransmitters in the hippocampus of APP/PS1 mice. Label-free proteomics revealed that DCBEI regulated the expression of Nrf-2 and its downstream targets, as well as the levels of phospho-protein kinase B and mitogen-activated protein kinase. Together, these data show that DCBEI can ameliorate AD symptoms by upregulating Nrf2-mediated antioxidative pathways and thus preventing mitochondrial apoptosis.
Collapse
Affiliation(s)
- Yidi Qu
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Wenqi Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Tianrui Chen
- Department of Bone Tumor Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Yumin Yang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yizhi Zhang
- Department of Neurology, The Second Hospital of Jilin University, Jilin University, Changchun 130041, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Characterization of dynamic regulation in Chinese hamster ovary (CHO) cell cultures in the late exponential phase. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
16
|
Involvement of NDPK-B in Glucose Metabolism-Mediated Endothelial Damage via Activation of the Hexosamine Biosynthesis Pathway and Suppression of O-GlcNAcase Activity. Cells 2020; 9:cells9102324. [PMID: 33086728 PMCID: PMC7588982 DOI: 10.3390/cells9102324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/21/2022] Open
Abstract
Our previous studies identified that retinal endothelial damage caused by hyperglycemia or nucleoside diphosphate kinase-B (NDPK-B) deficiency is linked to elevation of angiopoietin-2 (Ang-2) and the activation of the hexosamine biosynthesis pathway (HBP). Herein, we investigated how NDPK-B is involved in the HBP in endothelial cells (ECs). The activities of NDPK-B and O-GlcNAcase (OGA) were measured by in vitro assays. Nucleotide metabolism and O-GlcNAcylated proteins were assessed by UPLC-PDA (Ultra-performance liquid chromatography with Photodiode array detection) and immunoblot, respectively. Re-expression of NDPK-B was achieved with recombinant adenoviruses. Our results show that NDPK-B depletion in ECs elevated UDP-GlcNAc levels and reduced NDPK activity, similar to high glucose (HG) treatment. Moreover, the expression and phosphorylation of glutamine:fructose-6-phosphate amidotransferase (GFAT) were induced, whereas OGA activity was suppressed. Furthermore, overall protein O-GlcNAcylation, along with O-GlcNAcylated Ang-2, was increased in NDPK-B depleted ECs. Pharmacological elevation of protein O-GlcNAcylation using Thiamet G (TMG) or OGA siRNA increased Ang-2 levels. However, the nucleoside triphosphate to diphosphate (NTP/NDP) transphosphorylase and histidine kinase activity of NDPK-B were dispensable for protein O-GlcNAcylation. NDPK-B deficiency hence results in the activation of HBP and the suppression of OGA activity, leading to increased protein O-GlcNAcylation and further upregulation of Ang-2. The data indicate a critical role of NDPK-B in endothelial damage via the modulation of the HBP.
Collapse
|
17
|
Lovy A, Ahumada-Castro U, Bustos G, Farias P, Gonzalez-Billault C, Molgó J, Cardenas C. Concerted Action of AMPK and Sirtuin-1 Induces Mitochondrial Fragmentation Upon Inhibition of Ca 2+ Transfer to Mitochondria. Front Cell Dev Biol 2020; 8:378. [PMID: 32523953 PMCID: PMC7261923 DOI: 10.3389/fcell.2020.00378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/27/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles constantly undergoing fusion and fission. Ca2+ regulates many aspects of mitochondrial physiology by modulating the activity of several mitochondrial proteins. We previously showed that inhibition of constitutive IP3R-mediated Ca2+ transfer to the mitochondria leads to a metabolic cellular stress and eventually cell death. Here, we show that the decline of mitochondrial function generated by a lack of Ca2+ transfer induces a DRP-1 independent mitochondrial fragmentation that at an early time is mediated by an increase in the NAD+/NADH ratio and activation of SIRT1. Subsequently, AMPK predominates and drives the fragmentation. SIRT1 activation leads to the deacetylation of cortactin, favoring actin polymerization, and mitochondrial fragmentation. Knockdown of cortactin or inhibition of actin polymerization prevents fragmentation. These data reveal SIRT1 as a new player in the regulation of mitochondrial fragmentation induced by metabolic/bioenergetic stress through regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States.,Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Ulises Ahumada-Castro
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Paula Farias
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Christian Gonzalez-Billault
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,Department of Biology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Jordi Molgó
- Université Paris-Saclay, CEA, Institut des Sciences du Vivant Frédéric Joliot, ERL CNRS n° 9004, Département Médicaments et Technologies pour la Santé, Service d'Ingénierie Moléculaire pour la Santé (SIMoS), Gif-sur-Yvette, France
| | - Cesar Cardenas
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
18
|
Sha S, Handelman G, Agarabi C, Yoon S. A high-resolution measurement of nucleotide sugars by using ion-pair reverse chromatography and tandem columns. Anal Bioanal Chem 2020; 412:3683-3693. [PMID: 32300845 DOI: 10.1007/s00216-020-02608-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/08/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023]
Abstract
N-Linked glycosylation is a cellular process transferring sugars from glycosyl donors to proteins or lipids. Biopharmaceutical products widely produced by culturing mammalian cells such as Chinese hamster ovary (CHO) cells are typically glycosylated during biosynthesis. For some biologics, the N-linked glycan is a critical quality attribute of the drugs. Nucleotide sugars are the glycan donors and impact the intracellular glycosylation process. In current analytical methods, robust separation of nucleotide sugar isomers such as UDP glucose and UDP galactose remains a challenge because of their structural similarity. In this study, we developed a strategy to resolve the separation of major nucleotide sugars including challenging isomers based on the use of ion-pair reverse phase (IP-RP) chromatography. The strategy applies core-shell columns and connects multiple columns in tandem to increase separation power and ultimately enables high-resolution detection of nucleotide sugars from cell extracts. The key parameters in the IP-RP method, including temperature, mobile phase, and flow rates, have been systematically evaluated in this work and the theoretical mechanisms of the chromatographic behavior were proposed. Graphical abstract.
Collapse
Affiliation(s)
- Sha Sha
- Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Garry Handelman
- Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Cyrus Agarabi
- U.S. FDA, CDER/OBP/Division of Biotechnology Review and Research II, Silver Spring, MD, 20993, USA
| | - Seongkyu Yoon
- Biomedical Engineering and Biotechnology, University of Massachusetts Lowell, Lowell, MA, 01854, USA. .,Chemical Engineering, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| |
Collapse
|
19
|
Stach CS, McCann MG, O’Brien CM, Le TS, Somia N, Chen X, Lee K, Fu HY, Daoutidis P, Zhao L, Hu WS, Smanski M. Model-Driven Engineering of N-Linked Glycosylation in Chinese Hamster Ovary Cells. ACS Synth Biol 2019; 8:2524-2535. [PMID: 31596566 PMCID: PMC7034315 DOI: 10.1021/acssynbio.9b00215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Chinese hamster ovary (CHO) cells are used for industrial production of protein-based therapeutics (i.e., "biologics"). Here we describe a method for combining systems-level kinetic models with a synthetic biology platform for multigene overexpression to rationally perturb N-linked glycosylation. Specifically, we sought to increase galactose incorporation on a secreted Immunoglobulin G (IgG) protein. We rationally design, build, and test a total of 23 transgenic cell pools that express single or three-gene glycoengineering cassettes comprising a total of 100 kilobases of engineered DNA sequence. Through iterative engineering and model refinement, we rationally increase the fraction of bigalactosylated glycans five-fold from 11.9% to 61.9% and simultaneously decrease the glycan heterogeneity on the secreted IgG. Our approach allows for rapid hypothesis testing and identification of synergistic behavior from genetic perturbations by bridging systems and synthetic biology.
Collapse
Affiliation(s)
- Christopher S. Stach
- Department of Biochemistry, Molecular Biology & Biophysics and Biotechnology Institute
| | | | | | - Tung S. Le
- Department of Chemical Engineering and Materials Science
| | - Nikunj Somia
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
| | - Xinning Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Kyoungho Lee
- Department of Chemical Engineering and Materials Science
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science
| | | | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science
| | - Michael Smanski
- Department of Biochemistry, Molecular Biology & Biophysics and Biotechnology Institute
| |
Collapse
|
20
|
Sun Z, Ji Q, Evans AR, Lewis MJ, Mo J, Hu P. High-throughput LC-MS quantitation of cell culture metabolites. Biologicals 2019; 61:44-51. [DOI: 10.1016/j.biologicals.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/29/2019] [Indexed: 10/26/2022] Open
|
21
|
Rautengarten C, Heazlewood JL, Ebert B. Profiling Cell Wall Monosaccharides and Nucleotide-Sugars from Plants. ACTA ACUST UNITED AC 2019; 4:e20092. [PMID: 31187943 DOI: 10.1002/cppb.20092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cell wall is an intricate mesh largely composed of polysaccharides that vary in structure and abundance. Apart from cellulose biosynthesis, the assembly of matrix polysaccharides such as pectin and hemicellulose occur in the Golgi apparatus before being transported via vesicles to the cell wall. Matrix polysaccharides are biosynthesized from activated precursors or nucleotide sugars. The composition and assembly of the cell wall is an important aspect in plant development and plant biomass utilization. The application of anion-exchange chromatography to determine the monosaccharide composition of the insoluble matrix polysaccharides enables a complete profile of all major sugars in the cell wall from a single run. While porous carbon graphite chromatography and tandem mass spectrometry delivers a sensitive and robust nucleotide sugar profile from plant extracts. Here we describe detailed methodology to quantify nucleotide sugars within the cell and profile the non-cellulosic monosaccharide composition of the cell wall. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Fu X, Deja S, Kucejova B, Duarte JAG, McDonald JG, Burgess SC. Targeted Determination of Tissue Energy Status by LC-MS/MS. Anal Chem 2019; 91:5881-5887. [PMID: 30938977 PMCID: PMC6506803 DOI: 10.1021/acs.analchem.9b00217] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
Intracellular
nucleotides and acyl-CoAs are metabolites that are
central to the regulation of energy metabolism. They set the cellular
energy charge and redox state, act as allosteric regulators, modulate
signaling and transcription factors, and thermodynamically activate
substrates for oxidation or biosynthesis. Unfortunately, no method
exists to simultaneously quantify these biomolecules in tissue extracts.
A simple method was developed using ion-pairing reversed-phase high-performance
liquid chromatography–electrospray-ionization tandem mass spectrometry
(HPLC-ESI-MS/MS) to simultaneously quantify adenine nucleotides (AMP,
ADP, and ATP), pyridine dinucleotides (NAD+ and NADH),
and short-chain acyl-CoAs (acetyl, malonyl, succinyl, and propionyl).
Quantitative analysis of these molecules in mouse liver was achieved
using stable-isotope-labeled internal standards. The method was extensively
validated by determining the linearity, accuracy, repeatability, and
assay stability. Biological responsiveness was confirmed in assays
of liver tissue with variable durations of ischemia, which had substantial
effects on tissue energy charge and redox state. We conclude that
the method provides a simple, fast, and reliable approach to the simultaneous
analysis of nucleotides and short-chain acyl-CoAs.
Collapse
|
23
|
Brito Santos R, Pereira da Silva R, Akihiro Melo Otsuka F, de Jesus Trindade D, Costa Santos A, Reis Matos H. An HPLC method for the determination of adenosine diphosphate: An important marker of hexokinase activity in metabolic diseases. Biomed Chromatogr 2019; 33:e4473. [PMID: 30567013 DOI: 10.1002/bmc.4473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 11/10/2022]
Abstract
Hexokinases play a critical role in the cellular uptake and utilization of glucose. As such, they are of fundamental importance to all cells. By catalyzing glucose to produce glucose-6-phosphate, hexokinases control the first irreversible step of glucose metabolism and initiate all major pathways of glucose consumption. Our objective was to develop and validate highly sensitive and selective high-performance liquid chromatography with photodiode array detector (HPLC-PDA) assays allowing the determination of adenosine diphosphate, which was used for the determination of hexokinase activity. Samples were analyzed by HPLC-PDA using a C18 analytical column (250 × 4.6 mm) for chromatographic separation. Optimal detection was achieved based on isocratic elution with a mobile phase consisting of a mixture of sodium phosphate monobasic buffer and methanol. This method met all of the requirements of specificity, sensitivity, linearity, precision, accuracy and stability generally accepted in bioanalytical chemistry and was successfully applied to a study of hexokinase activity in an alloxan-induced diabetic rat model. Determination of hexokinase activity will permit characterization of cellular metabolic state in many diseases, such as cancer and diabetes.
Collapse
Affiliation(s)
- Rodrigo Brito Santos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Railmara Pereira da Silva
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Felipe Akihiro Melo Otsuka
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Danielle de Jesus Trindade
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Aline Costa Santos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Humberto Reis Matos
- Laboratório de Estresse Oxidativo e Patologias Relacionadas - LEOPAR. Departamento de Fisiologia, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
24
|
Naik HM, Majewska NI, Betenbaugh MJ. Impact of nucleotide sugar metabolism on protein N-glycosylation in Chinese Hamster Ovary (CHO) cell culture. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Taparra K, Wang H, Malek R, Lafargue A, Barbhuiya MA, Wang X, Simons BW, Ballew M, Nugent K, Groves J, Williams RD, Shiraishi T, Verdone J, Yildirir G, Henry R, Zhang B, Wong J, Wang KKH, Nelkin BD, Pienta KJ, Felsher D, Zachara NE, Tran PT. O-GlcNAcylation is required for mutant KRAS-induced lung tumorigenesis. J Clin Invest 2018; 128:4924-4937. [PMID: 30130254 DOI: 10.1172/jci94844] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/16/2018] [Indexed: 12/13/2022] Open
Abstract
Mutant KRAS drives glycolytic flux in lung cancer, potentially impacting aberrant protein glycosylation. Recent evidence suggests aberrant KRAS drives flux of glucose into the hexosamine biosynthetic pathway (HBP). HBP is required for various glycosylation processes, such as protein N- or O-glycosylation and glycolipid synthesis. However, its function during tumorigenesis is poorly understood. One contributor and proposed target of KRAS-driven cancers is a developmentally conserved epithelial plasticity program called epithelial-mesenchymal transition (EMT). Here we showed in novel autochthonous mouse models that EMT accelerated KrasG12D lung tumorigenesis by upregulating expression of key enzymes of the HBP pathway. We demonstrated that HBP was required for suppressing KrasG12D-induced senescence, and targeting HBP significantly delayed KrasG12D lung tumorigenesis. To explore the mechanism, we investigated protein glycosylation downstream of HBP and found elevated levels of O-linked β-N-acetylglucosamine (O-GlcNAcylation) posttranslational modification on intracellular proteins. O-GlcNAcylation suppressed KrasG12D oncogene-induced senescence (OIS) and accelerated lung tumorigenesis. Conversely, loss of O-GlcNAcylation delayed lung tumorigenesis. O-GlcNAcylation of proteins SNAI1 and c-MYC correlated with the EMT-HBP axis and accelerated lung tumorigenesis. Our results demonstrated that O-GlcNAcylation was sufficient and required to accelerate KrasG12D lung tumorigenesis in vivo, which was reinforced by epithelial plasticity programs.
Collapse
Affiliation(s)
- Kekoa Taparra
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center.,Program in Cellular and Molecular Medicine
| | - Hailun Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Reem Malek
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Audrey Lafargue
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Mustafa A Barbhuiya
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Xing Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Brian W Simons
- Department of Urology, James Buchanan Brady Urological Institute
| | - Matthew Ballew
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Katriana Nugent
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | | | - Russell D Williams
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Takumi Shiraishi
- Department of Urology, James Buchanan Brady Urological Institute
| | - James Verdone
- Department of Urology, James Buchanan Brady Urological Institute
| | | | | | - Bin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center
| | - Barry D Nelkin
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kenneth J Pienta
- Department of Biological Chemistry, and.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dean Felsher
- Division of Medical Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, and.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Phuoc T Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center.,Program in Cellular and Molecular Medicine.,Department of Urology, James Buchanan Brady Urological Institute.,Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
26
|
Bais VS, Batra S, Prakash B. Identification of two highly promiscuous thermostable sugar nucleotidylyltransferases for glycorandomization. FEBS J 2018; 285:2840-2855. [PMID: 29806742 DOI: 10.1111/febs.14521] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 04/14/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023]
Abstract
Glycorandomization is a process that improves the efficacy of glycoconjugates by the addition of a diverse array of sugars to secondary metabolites and antibiotics of pharmaceutical importance. This process, which employs sugar nucleotidylyltransferases (SNTs) and glycosyl transferases (GTs) in tandem, would benefit by the employment of promiscuous enzymes, i.e. those with the ability to utilize diverse noncanonical substrates. As promiscuous GTs are available, here we set out to identify promiscuous SNTs. For this, we began with a detailed family-wide characterization of SNTs. Earlier, we had proposed that SNTs could be classified into two major groups - I and II. They share a common structural framework and utilize a similar catalytic mechanism. Subtle variations in the way two magnesium ions - MgA2+ and MgB2+ - are stabilized by metal ion coordination motifs led to their classification into diverse subgroups viz. I-A, I-B, I-C, II-A, and II-B. Based on this classification, here we investigate promiscuity across the entire family of SNTs. We study the utilization of several sugar phosphates and nucleotides by the various subgroups of SNTs to understand substrate specificity and promiscuity in these. We find that promiscuity is prevalent among SNTs; and in particular, in the thermophilic homologs. In principle, promiscuity profiling identified four new SNTs that can be employed for the production of sugar-nucleotide libraries. However, assaying for their ability to simultaneously utilize multiple substrates in a single-pot reaction, we find two thermophilic SNTs- TMGA , an adenylyltransferase from Thermotoga maritima and PHGT , a thymidylyltransferase from Pyrococcus horikoshii that are readily employable for the production of diverse sugar-nucleotides.
Collapse
Affiliation(s)
- Vaibhav Singh Bais
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Sahil Batra
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Balaji Prakash
- Department of Molecular Nutrition, CSIR-Central Food Technological Research Institute, Mysore, India
| |
Collapse
|
27
|
Qin X, Wang X. Quantification of nucleotides and their sugar conjugates in biological samples: Purposes, instruments and applications. J Pharm Biomed Anal 2018; 158:280-287. [PMID: 29902692 DOI: 10.1016/j.jpba.2018.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 01/23/2023]
Abstract
Nucleotides and their sugar conjugates are fundamental molecules in life, participating in processes of DNA/RNA composition, cell wall build-up, glycosylation reactions, and signal conduction. Therefore, the quantification of these compounds in biological samples significantly benefits the understanding of their functions. However, nucleotides and nucleotide sugars are extremely hydrophilic, causing bad retention and peak symmetry on regular C18 chromatographic columns. To solve this problem, ion-pair (IP) chromatography, ion-exchange (IE) chromatography and hydrophilic interaction chromatography (HILIC) were applied, of which differentiated mechanisms were utilized to increase the retention of the analytes on the stationary phases. IP-HPLC and HILIC were convenient for coupling with many kinds of detectors (ultraviolet, UV or mass spectrometry, MS). Combining these two kinds of techniques, the advantages of better separation and retention were increased, while disadvantages like irreversible adsorption by stationary phases were greatly decreased. Due to the high concentrations of nonvolatile buffer salts used, IE-HPLC was not suitable for MS detectors. Protein precipitation and solid phase extraction were the common methods for sample treatment in the analysis of nucleotides and nucleotide sugars. By carefully optimizing the LCUV or LCMS conditions, high sensitivities could be achieved, and the methods could be applied to the analysis of many kinds of biological samples (cells, tissues, plants, bacteria, etc.). Developing new analyzing techniques may help the utilization of nucleotides and nucleotide sugars in the diagnosis and therapy of diseases.
Collapse
Affiliation(s)
- Xuan Qin
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xin Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
28
|
Raffel S, Falcone M, Kneisel N, Hansson J, Wang W, Lutz C, Bullinger L, Poschet G, Nonnenmacher Y, Barnert A, Bahr C, Zeisberger P, Przybylla A, Sohn M, Tönjes M, Erez A, Adler L, Jensen P, Scholl C, Fröhling S, Cocciardi S, Wuchter P, Thiede C, Flörcken A, Westermann J, Ehninger G, Lichter P, Hiller K, Hell R, Herrmann C, Ho AD, Krijgsveld J, Radlwimmer B, Trumpp A. BCAT1 restricts αKG levels in AML stem cells leading to IDHmut-like DNA hypermethylation. Nature 2017; 551:384-388. [PMID: 29144447 DOI: 10.1038/nature24294] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
The branched-chain amino acid (BCAA) pathway and high levels of BCAA transaminase 1 (BCAT1) have recently been associated with aggressiveness in several cancer entities. However, the mechanistic role of BCAT1 in this process remains largely uncertain. Here, by performing high-resolution proteomic analysis of human acute myeloid leukaemia (AML) stem-cell and non-stem-cell populations, we find the BCAA pathway enriched and BCAT1 protein and transcripts overexpressed in leukaemia stem cells. We show that BCAT1, which transfers α-amino groups from BCAAs to α-ketoglutarate (αKG), is a critical regulator of intracellular αKG homeostasis. Further to its role in the tricarboxylic acid cycle, αKG is an essential cofactor for αKG-dependent dioxygenases such as Egl-9 family hypoxia inducible factor 1 (EGLN1) and the ten-eleven translocation (TET) family of DNA demethylases. Knockdown of BCAT1 in leukaemia cells caused accumulation of αKG, leading to EGLN1-mediated HIF1α protein degradation. This resulted in a growth and survival defect and abrogated leukaemia-initiating potential. By contrast, overexpression of BCAT1 in leukaemia cells decreased intracellular αKG levels and caused DNA hypermethylation through altered TET activity. AML with high levels of BCAT1 (BCAT1high) displayed a DNA hypermethylation phenotype similar to cases carrying a mutant isocitrate dehydrogenase (IDHmut), in which TET2 is inhibited by the oncometabolite 2-hydroxyglutarate. High levels of BCAT1 strongly correlate with shorter overall survival in IDHWTTET2WT, but not IDHmut or TET2mut AML. Gene sets characteristic for IDHmut AML were enriched in samples from patients with an IDHWTTET2WTBCAT1high status. BCAT1high AML showed robust enrichment for leukaemia stem-cell signatures, and paired sample analysis showed a significant increase in BCAT1 levels upon disease relapse. In summary, by limiting intracellular αKG, BCAT1 links BCAA catabolism to HIF1α stability and regulation of the epigenomic landscape, mimicking the effects of IDH mutations. Our results suggest the BCAA-BCAT1-αKG pathway as a therapeutic target to compromise leukaemia stem-cell function in patients with IDHWTTET2WT AML.
Collapse
Affiliation(s)
- Simon Raffel
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.,Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Mattia Falcone
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Niclas Kneisel
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jenny Hansson
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Wei Wang
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Christoph Lutz
- Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Lars Bullinger
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Gernot Poschet
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Yannic Nonnenmacher
- Department of Bioinfomatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technical University Braunschweig, 38106 Braunschweig, Germany.,Luxemburg Centre for Systems Biomedicine, University of Luxemburg, L-4367 Belvaux, Luxemburg
| | - Andrea Barnert
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Carsten Bahr
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Petra Zeisberger
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Adriana Przybylla
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Markus Sohn
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Martje Tönjes
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Patrizia Jensen
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Claudia Scholl
- Division of Applied Functional Genomics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Stefan Fröhling
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Section for Personalized Oncology, Heidelberg University Hospital, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Sibylle Cocciardi
- Department of Internal Medicine III, University Hospital Ulm, 89081 Ulm, Germany
| | - Patrick Wuchter
- Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany.,Institute of Transfusion Medicine and Immunology Mannheim, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany
| | - Christian Thiede
- Medical Department 1, University Hospital Carl Gustav Carus, 01307 Dresden, Germany
| | - Anne Flörcken
- Department of Hematology, Oncology and Tumor Immunology; Charité-University Medicine Berlin, Campus Virchow Klinikum, 13353 Berlin, Germany
| | - Jörg Westermann
- Department of Hematology, Oncology and Tumor Immunology; Charité-University Medicine Berlin, Campus Virchow Klinikum, 13353 Berlin, Germany
| | - Gerhard Ehninger
- Department of Hematology, Oncology and Tumor Immunology; Charité-University Medicine Berlin, Campus Virchow Klinikum, 13353 Berlin, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Karsten Hiller
- Department of Bioinfomatics and Biochemistry and Braunschweig Integrated Center of Systems Biology (BRICS), Technical University Braunschweig, 38106 Braunschweig, Germany.,Luxemburg Centre for Systems Biomedicine, University of Luxemburg, L-4367 Belvaux, Luxemburg
| | - Rüdiger Hell
- Centre for Organismal Studies (COS), University of Heidelberg, 69120 Heidelberg, Germany
| | - Carl Herrmann
- Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,Institute of Pharmacy and Molecular Biotechnology, and Bioquant Center, University of Heidelberg, 69120 Heidelberg, Germany
| | - Anthony D Ho
- Department of Internal Medicine V, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Bernhard Radlwimmer
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| | - Andreas Trumpp
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), 69120 Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.,German Cancer Consortium (DKTK), DKFZ, 69120 Heidelberg, Germany
| |
Collapse
|
29
|
Abstract
PurposePhosphoglucomutase-1 deficiency is a subtype of congenital disorders of glycosylation (PGM1-CDG). Previous casereports in PGM1-CDG patients receiving oral D-galactose (D-gal) showed clinical improvement. So far no systematic in vitro and clinical studies have assessed safety and benefits of D-gal supplementation. In a prospective pilot study, we evaluated the effects of oral D-gal in nine patients.MethodsD-gal supplementation was increased to 1.5 g/kg/day (maximum 50 g/day) in three increments over 18 weeks. Laboratory studies were performed before and during treatment to monitor safety and effect on serum transferrin-glycosylation, coagulation, and liver and endocrine function. Additionally, the effect of D-gal on cellular glycosylation was characterized in vitro.ResultsEight patients were compliant with D-gal supplementation. No adverse effects were reported. Abnormal baseline results (alanine transaminase, aspartate transaminase, activated partial thromboplastin time) improved or normalized already using 1 g/kg/day D-gal. Antithrombin-III levels and transferrin-glycosylation showed significant improvement, and increase in galactosylation and whole glycan content. In vitro studies before treatment showed N-glycan hyposialylation, altered O-linked glycans, abnormal lipid-linked oligosaccharide profile, and abnormal nucleotide sugars in patient fibroblasts. Most cellular abnormalities improved or normalized following D-gal treatment. D-gal increased both UDP-Glc and UDP-Gal levels and improved lipid-linked oligosaccharide fractions in concert with improved glycosylation in PGM1-CDG.ConclusionOral D-gal supplementation is a safe and effective treatment for PGM1-CDG in this pilot study. Transferrin glycosylation and ATIII levels were useful trial end points. Larger, longer-duration trials are ongoing.
Collapse
|
30
|
Karst DJ, Steinhoff RF, Kopp MRG, Serra E, Soos M, Zenobi R, Morbidelli M. Intracellular CHO Cell Metabolite Profiling Reveals Steady-State Dependent Metabolic Fingerprints in Perfusion Culture. Biotechnol Prog 2017; 33:879-890. [PMID: 27997765 DOI: 10.1002/btpr.2421] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/01/2016] [Indexed: 11/08/2022]
Abstract
Perfusion cell culture processes allow the steady-state culture of mammalian cells at high viable cell density, which is beneficial for overall product yields and homogeneity of product quality in the manufacturing of therapeutic proteins. In this study, the extent of metabolic steady state and the change of the metabolite profile between different steady states of an industrial Chinese hamster ovary (CHO) cell line producing a monoclonal antibody (mAb) was investigated in stirred tank perfusion bioreactors. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF-MS) of daily cell extracts revealed more than a hundred peaks, among which 76 metabolites were identified by tandem MS (MS/MS) and high resolution Fourier transform ion cyclotron resonance (FT-ICR) MS. Nucleotide ratios (Uridine (U)-ratio, nucleotide triphosphate (NTP)-ratio and energy charge (EC)) and multivariate analysis of all features indicated a consistent metabolite profile for a stable culture performed at 40 × 106 cells/mL over 26 days of culture. Conversely, the reactor was operated continuously so as to reach three distinct steady states one after the other at 20, 60, and 40 × 106 cells/mL. In each case, a stable metabolite profile was achieved after an initial transient phase of approximately three days at constant cell density when varying between these set points. Clear clustering according to cell density was observed by principal component analysis, indicating steady-state dependent metabolite profiles. In particular, varying levels of nucleotides, nucleotide sugar, and lipid precursors explained most of the variance between the different cell density set points. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:879-890, 2017.
Collapse
Affiliation(s)
- Daniel J Karst
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Robert F Steinhoff
- Dept. of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Marie R G Kopp
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Elisa Serra
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Miroslav Soos
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland.,Dept. of Chemical Engineering, University of Chemistry and Technology, Prague, 166 28, Czech Republic
| | - Renato Zenobi
- Dept. of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zurich, Zurich, Switzerland
| | - Massimo Morbidelli
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Abstract
Sugar nucleotides are essential building blocks for the glycobiology of all living organisms. Detailed information on the types of sugar nucleotides present in a particular cell and how they change as a function of metabolic, developmental, or disease status is vital. The extraction, identification, and quantification of sugar nucleotides in a given sample present formidable challenges. In this chapter, currently used techniques for sugar nucleotide extraction from cells, separation from complex biological matrices, and detection by optical and mass spectrometry methods are discussed.
Collapse
|
32
|
Shah S, Carriveau WJ, Li J, Campbell SL, Kopinski PK, Lim HW, Daurio N, Trefely S, Won KJ, Wallace DC, Koumenis C, Mancuso A, Wellen KE. Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism. Oncotarget 2016; 7:43713-43730. [PMID: 27248322 PMCID: PMC5190055 DOI: 10.18632/oncotarget.9666] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/08/2016] [Indexed: 01/18/2023] Open
Abstract
The androgen receptor (AR) plays a central role in prostate tumor growth. Inappropriate reactivation of the AR after androgen deprivation therapy promotes development of incurable castration-resistant prostate cancer (CRPC). In this study, we provide evidence that metabolic features of prostate cancer cells can be exploited to sensitize CRPC cells to AR antagonism. We identify a feedback loop between ATP-citrate lyase (ACLY)-dependent fatty acid synthesis, AMPK, and the AR in prostate cancer cells that could contribute to therapeutic resistance by maintaining AR levels. When combined with an AR antagonist, ACLY inhibition in CRPC cells promotes energetic stress and AMPK activation, resulting in further suppression of AR levels and target gene expression, inhibition of proliferation, and apoptosis. Supplying exogenous fatty acids can restore energetic homeostasis; however, this rescue does not occur through increased β-oxidation to support mitochondrial ATP production. Instead, concurrent inhibition of ACLY and AR may drive excess ATP consumption as cells attempt to cope with endoplasmic reticulum (ER) stress, which is prevented by fatty acid supplementation. Thus, fatty acid metabolism plays a key role in coordinating ER and energetic homeostasis in CRPC cells, thereby sustaining AR action and promoting proliferation. Consistent with a role for fatty acid metabolism in sustaining AR levels in prostate cancer in vivo, AR mRNA levels in human prostate tumors correlate positively with expression of ACLY and other fatty acid synthesis genes. The ACLY-AMPK-AR network can be exploited to sensitize CRPC cells to AR antagonism, suggesting novel therapeutic opportunities for prostate cancer.
Collapse
Affiliation(s)
- Supriya Shah
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Whitney J Carriveau
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jinyang Li
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sydney L Campbell
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Piotr K Kopinski
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Philadelphia, PA 19104, USA
| | - Hee-Woong Lim
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Natalie Daurio
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sophie Trefely
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony Mancuso
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
33
|
St. Amand MM, Hayes J, Radhakrishnan D, Fernandez J, Meyer B, Robinson AS, Ogunnaike BA. Identifying a robust design space for glycosylation during monoclonal antibody production. Biotechnol Prog 2016; 32:1149-1162. [DOI: 10.1002/btpr.2316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 05/08/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Melissa M. St. Amand
- Dept. of Chemical and Biomolecular Engineering; University of Delaware; Newark DE 19716
| | - James Hayes
- Biopharm Process Development, GlaxoSmithKline; King of Prussia PA 19406
| | - Devesh Radhakrishnan
- Dept. of Chemical and Biomolecular Engineering; University of Delaware; Newark DE 19716
| | - Janice Fernandez
- Biopharm Process Development, GlaxoSmithKline; King of Prussia PA 19406
| | - Bill Meyer
- Biopharm Process Development, GlaxoSmithKline; King of Prussia PA 19406
| | - Anne S. Robinson
- Dept. of Chemical and Biomolecular Engineering; University of Delaware; Newark DE 19716
- Dept. of Chemical and Biomolecular Engineering; Tulane University; New Orleans LA 70118
| | | |
Collapse
|
34
|
Villiger TK, Roulet A, Périlleux A, Stettler M, Broly H, Morbidelli M, Soos M. Controlling the time evolution of mAb N-linked glycosylation, Part I: Microbioreactor experiments. Biotechnol Prog 2016; 32:1123-1134. [PMID: 27254475 DOI: 10.1002/btpr.2305] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/24/2016] [Indexed: 01/28/2023]
Abstract
N-linked glycosylation is of key importance for the efficacy of many biotherapeutic proteins such as monoclonal antibodies (mAbs). Media components and cell culture conditions have been shown to significantly affect N-linked glycosylation during the production of glycoproteins using mammalian cell fed-batch cultures. These parameters inevitably change in modern industrial processes with concentrated feed additions and cell densities beyond 2 × 107 cells/mL. In order to control the time-dependent changes of protein glycosylation, an automated microbioreactor system was used to investigate the effects of culture pH, ammonia, galactose, and manganese chloride supplementation on nucleotide sugars as well as mAb N-linked glycosylation in a time-dependent way. Two different strategies comprising of a single shift of culture conditions as well as multiple media supplementations along the culture duration were applied to obtain changing and constant glycosylation profiles. The different feeding approaches enabled constant glycosylation patterns throughout the entire culture duration at different levels. By modulating the time evolution of the mAb glycan pattern, not only the endpoint but also the ratios between different glycosylation structures could be modified. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1123-1134, 2016.
Collapse
Affiliation(s)
- Thomas K Villiger
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Anaïs Roulet
- Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, ZI B 1809, Switzerland
| | - Arnaud Périlleux
- Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, ZI B 1809, Switzerland
| | - Matthieu Stettler
- Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, ZI B 1809, Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck-Serono S.A., Corsier-sur-Vevey, ZI B 1809, Switzerland
| | - Massimo Morbidelli
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Miroslav Soos
- Dept. of Chemistry and Applied Biosciences, Inst. for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland. .,Dept. of Chemical Engineering, University of Chemistry and Technology, Prague, Czech Republic.
| |
Collapse
|
35
|
Qiu WQ, Chen SS, Xie J, Qu YH, Song X. Analysis of 10 nucleotides and related compounds in Litopenaeus vannamei during chilled storage by HPLC-DAD. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
36
|
Daurio NA, Tuttle SW, Worth AJ, Song EY, Davis JM, Snyder NW, Blair IA, Koumenis C. AMPK Activation and Metabolic Reprogramming by Tamoxifen through Estrogen Receptor-Independent Mechanisms Suggests New Uses for This Therapeutic Modality in Cancer Treatment. Cancer Res 2016; 76:3295-306. [PMID: 27020861 DOI: 10.1158/0008-5472.can-15-2197] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/14/2016] [Indexed: 12/23/2022]
Abstract
Tamoxifen is the most widely used adjuvant chemotherapeutic for the treatment of estrogen receptor (ER)-positive breast cancer, yet a large body of clinical and preclinical data indicates that tamoxifen can modulate multiple cellular processes independently of ER status. Here, we describe the ER-independent effects of tamoxifen on tumor metabolism. Using combined pharmacologic and genetic knockout approaches, we demonstrate that tamoxifen inhibits oxygen consumption via inhibition of mitochondrial complex I, resulting in an increase in the AMP/ATP ratio and activation of the AMP-activated protein kinase (AMPK) signaling pathway in vitro and in vivo AMPK in turn promotes glycolysis and alters fatty acid metabolism. We also show that tamoxifen-induced cytotoxicity is modulated by isoform-specific effects of AMPK signaling, in which AMPKα1 promotes cell death through inhibition of the mTOR pathway and translation. By using agents that concurrently target distinct adaptive responses to tamoxifen-mediated metabolic reprogramming, we demonstrate increased cytotoxicity through synergistic therapeutic approaches. Our results demonstrate novel metabolic perturbations by tamoxifen in tumor cells, which can be exploited to expand the therapeutic potential of tamoxifen treatment beyond ER(+) breast cancer. Cancer Res; 76(11); 3295-306. ©2016 AACR.
Collapse
Affiliation(s)
- Natalie A Daurio
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen W Tuttle
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Worth
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ethan Y Song
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julianne M Davis
- SUPERS Program, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathaniel W Snyder
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Ian A Blair
- Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
37
|
Evaluation of Quenching and Extraction Methods for Nucleotide/Nucleotide Sugar Analysis. Methods Mol Biol 2016; 1321:361-72. [PMID: 26082234 DOI: 10.1007/978-1-4939-2760-9_24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Nucleotide sugars are the donor substrates of glycosyltransferases and their availability is known to have an impact on the glycosylation of recombinant proteins including monoclonal antibodies. In addition, the intracellular concentration levels of these metabolites can provide information about the physiological/energetic state of the cell. Therefore, the ability to qualitatively and quantitatively determine the intracellular nucleotides and nucleotide sugars can give valuable insight into the metabolism associated with the glycosylation processes in cells. However, in order to be able to perform a consistent and reliable time specific analysis of these metabolites during a cell culture the metabolism of the cell needs to be stopped immediately at the point of sampling and an efficient extraction needs to be performed. Once the nucleotides and nucleotide sugars are extracted from the cell sample an efficient HPLC method is needed to separate all or most of the metabolites of interest to allow for their identification and quantification. Here, we describe an optimized method for the analysis of the intracellular nucleotide/nucleotide sugar pool in CHO suspension cells which includes protocols for quenching, extraction and HPLC analysis.
Collapse
|
38
|
Yang JW, Kim HS, Im JH, Kim JW, Jun DW, Lim SC, Lee K, Choi JM, Kim SK, Kang KW. GPR119: a promising target for nonalcoholic fatty liver disease. FASEB J 2016; 30:324-35. [PMID: 26399788 DOI: 10.1096/fj.15-273771] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/08/2015] [Indexed: 02/05/2023]
Abstract
Nonalcoholic fatty liver disease is associated with metabolic syndrome and has the unique characteristic of excess lipid accumulation in liver. G-protein-coupled receptor 119 (GPR119) is a promising target for type 2 diabetes. However, the role of GPR119 activation in hepatic steatosis and its precise mechanism has not been investigated. In primary cultured hepatocytes from wild-type and GPR119 knockout (KO) mice, expression of lipogenic enzymes was elevated in GPR119 KO hepatocytes. Treatment of hepatocytes and HepG2 cells with GPR119 agonists in phase 2 clinical trials (MBX-2982 [MBX] and GSK1292263) inhibited protein expression of both nuclear and total sterol regulatory element binding protein (SREBP)-1, a key lipogenesis transcription factor. Oral administration of MBX in mice fed a high-fat diet potently inhibited hepatic lipid accumulation and expression levels of SREBP-1 and lipogenesis-related genes, whereas the hepatic antilipogenesis effects of MBX were abolished in GPR119 KO mice. MBX activated AMPK and increased Ser-372 phosphorylation of SREBP-1c, an inhibitory form of SREBP-1c. Moreover, inhibition of AMPK recovered MBX-induced down-regulation of SREBP-1. These findings demonstrate for the first time that the GPR119 ligand alleviates hepatic steatosis by inhibiting SREBP-1-mediated lipogenesis in hepatocytes.
Collapse
Affiliation(s)
- Jin Won Yang
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Hyo Seon Kim
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Hye Im
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Ji Won Kim
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Dae Won Jun
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sung Chul Lim
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Kyeong Lee
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Jong Min Choi
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Sang Kyum Kim
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Keon Wook Kang
- *College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea; Department of Internal Medicine, Han Yang University, Seoul, Republic of Korea; Department of Pathology, College of Medicine, Chosun University, Gwangju, Republic of Korea; College of Pharmacy, Dongguk University, Goyang, Republic of Korea; and College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
39
|
Simultaneous determination of intracellular UDP-sugars in hyaluronic acid-producing Streptococcus zooepidemicus. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 997:194-9. [PMID: 26114654 DOI: 10.1016/j.jchromb.2015.05.038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 11/22/2022]
Abstract
Two chromatographic methods for the quantitative analysis of uridine diphosphate (UDP) sugars involved in hyaluronan pathway of Streptococcus zooepidemicus (SEZ) were developed and compared. The sample preparation protocol using centrifugation and extraction in hot ethanol was employed prior to the analyses. Separation was achieved using an anion exchange Spherisorb SAX column or a Shodex QA-825 column connected with a photodiode array (PDA) detector. To increase the throughput of the chromatography method employing the Spherisorb SAX column, the solid phase extraction (SPE) procedure was introduced. Method validation results displayed that limits of detection (LODs) of UDP-glucose (UDP-Glc), UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-glucuronic acid (UDP-GlcA) calculated according to QC Expert software were in the low micromolar range and the coefficient of correlation (R(2)) was above 0.997. However, the analytical technique using the Spherisorb SAX column resulted in 80-90% recoveries and low LODs (≤6.19μM), the Shodex QA-825 column showed better long-term stability and reproducible chromatographic properties (RSD≤5.60%). The Shodex QA-825 column was successfully used to monitor UDP-sugar levels during the growth rate of SEZ cells.
Collapse
|
40
|
Zhou Y, Yan H, Xie Q, Yao S. Determination of guanine and adenine by high-performance liquid chromatography with a self-fabricated wall-jet/thin-layer electrochemical detector at a glassy carbon electrode. Talanta 2015; 134:354-359. [DOI: 10.1016/j.talanta.2014.11.042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
|
41
|
Two UDP-glucuronic acid decarboxylases involved in the biosynthesis of a bacterial exopolysaccharide in Paenibacillus elgii. Appl Microbiol Biotechnol 2015; 99:3127-39. [PMID: 25573472 DOI: 10.1007/s00253-014-6362-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 12/11/2022]
Abstract
Xylose is described as a component of bacterial exopolysaccharides in only a limited number of bacterial strains. A bacterial strain, Paenibacillus elgii, B69 was shown to be efficient in producing a xylose-containing exopolysaccharide. Sequence analysis was performed to identify the genes encoding the uridine diphosphate (UDP)-glucuronic acid decarboxylase required for the synthesis of UDP-xylose, the precursor of the exopolysaccharide. Two sequences, designated as Peuxs1 and Peuxs2, were found as the candidate genes for such enzymes. The activities of the UDP-glucuronic acid decarboxylases were proven by heterologous expression and real-time nuclear magnetic resonance analysis. The intracellular activity and effect of these genes on the synthesis of exopolysaccharide were further investigated by developing a thymidylate synthase based knockout system. This system was used to substitute the conventional antibiotic resistance gene system in P. elgii, a natural multi-antibiotic resistant strain. Results of intracellular nucleotide sugar analysis showed that the intracellular UDP-xylose and UDP-glucuronic acid levels were affected in Peuxs1 or Peuxs2 knockout strains. The knockout of either Peuxs1 or Peuxs2 reduced the polysaccharide production and changed the monosaccharide ratio. No polysaccharide was found in the Peuxs1/Peuxs2 double knockout strain. Our results show that P. elgii can be efficient in forming UDP-xylose, which is then used for the synthesis of xylose-containing exopolysaccharide.
Collapse
|
42
|
Steinhoff RF, Ivarsson M, Habicher T, Villiger TK, Boertz J, Krismer J, Fagerer SR, Soos M, Morbidelli M, Pabst M, Zenobi R. High-throughput nucleoside phosphate monitoring in mammalian cell fed-batch cultivation using quantitative matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Biotechnol J 2014; 10:190-8. [PMID: 25139677 DOI: 10.1002/biot.201400292] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/19/2014] [Accepted: 08/18/2014] [Indexed: 01/07/2023]
Abstract
Current methods for monitoring multiple intracellular metabolite levels in parallel are limited in sample throughput capabilities and analyte selectivity. This article presents a novel high-throughput method based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry (TOF-MS) for monitoring intracellular metabolite levels in fed-batch processes. The MALDI-TOF-MS method presented here is based on a new microarray sample target and allows the detection of nucleoside phosphates and various other metabolites using stable isotope labeled internal standards. With short sample preparation steps and thus high sample throughput capabilities, the method is suitable for monitoring mammalian cell cultures, such as antibody producing hybridoma cell lines in industrial environments. The method is capable of reducing the runtime of standard LC-UV methods to approximately 1 min per sample (including 10 technical replicates). Its performance is exemplarily demonstrated in an 8-day monitoring experiment of independently controlled fed-batches, containing an antibody producing mouse hybridoma cell culture. The monitoring profiles clearly confirmed differences between cultivation conditions. Hypothermia and hyperosmolarity were studied in four bioreactors, where hypothermia was found to have a positive effect on the longevity of the cell culture, whereas hyperosmolarity lead to an arrest of cell proliferation. The results are in good agreement with HPLC-UV cross validation experiments. Subsequent principal component analysis (PCA) clearly separates the different bioreactor conditions based on the measured mass spectral profiles. This method is not limited to any cell line and can be applied as a process analytical tool in biotechnological processes.
Collapse
|
43
|
St. Amand MM, Radhakrishnan D, Robinson AS, Ogunnaike BA. Identification of manipulated variables for a glycosylation control strategy. Biotechnol Bioeng 2014; 111:1957-70. [DOI: 10.1002/bit.25251] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/12/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Melissa M. St. Amand
- Department of Chemical and Biomolecular Engineering; University of Delaware; 150 Academy Street Newark Delaware 19716
| | - Devesh Radhakrishnan
- Department of Chemical and Biomolecular Engineering; University of Delaware; 150 Academy Street Newark Delaware 19716
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering; University of Delaware; 150 Academy Street Newark Delaware 19716
- Department of Chemical and Biomolecular Engineering; Tulane University; New Orleans Louisiana
| | - Babatunde A. Ogunnaike
- Department of Chemical and Biomolecular Engineering; University of Delaware; 150 Academy Street Newark Delaware 19716
| |
Collapse
|
44
|
Poór M, Veres B, Jakus PB, Antus C, Montskó G, Zrínyi Z, Vladimir-Knežević S, Petrik J, Kőszegi T. Flavonoid diosmetin increases ATP levels in kidney cells and relieves ATP depleting effect of ochratoxin A. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 132:1-9. [PMID: 24556581 DOI: 10.1016/j.jphotobiol.2014.01.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 02/03/2023]
Abstract
Diosmetin (DIOS) is a flavone aglycone commonly occurring in citrus species and olive leaves, in addition it is one of the active ingredients of some medications. Based on both in vitro and in vivo studies several beneficial effects are attributed to DIOS but the biochemical background of its action seems to be complex and it has not been completely explored yet. Previous investigations suggest that most of the flavonoid aglycones have negative effect on ATP synthesis in a dose dependent manner. In our study 17 flavonoids were tested and interestingly DIOS caused a significant elevation of intracellular ATP levels after 6- and 12-h incubation in MDCK kidney cells. In order to understand the mechanism of action, intracellular ATP and protein levels, ATP/ADP ratio, cell viability and ROS levels were determined after DIOS treatment. In addition, impacts of different enzyme inhibitors and effect of DIOS on isolated rat liver mitochondria were also tested. Finally, the influence of DIOS on the ATP depleting effect of the mycotoxin, ochratoxin A was also investigated. Our major conclusions are the followings: DIOS increases intracellular ATP levels both in kidney and in liver cells. Inhibition of glycolysis or citric acid cycle does not decrease the observed effect. DIOS-induced elevation of ATP levels is completely abolished by the inhibition of ATP synthase. DIOS is able to completely reverse the ATP-depleting effect of the mycotoxin, ochratoxin A. Most probably the DIOS-induced impact on ATP system does not originate from the antioxidant property of DIOS. Based on our findings DIOS may be promising agent to positively influence ATP depletion caused by some metabolic poisons.
Collapse
Affiliation(s)
- Miklós Poór
- Institute of Laboratory Medicine, University of Pécs, Pécs H-7624, Hungary
| | - Balázs Veres
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs H-7624, Hungary
| | - Péter B Jakus
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs H-7624, Hungary
| | - Csenge Antus
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs H-7624, Hungary
| | - Gergely Montskó
- Institute of Laboratory Medicine, University of Pécs, Pécs H-7624, Hungary
| | - Zita Zrínyi
- Institute of Laboratory Medicine, University of Pécs, Pécs H-7624, Hungary
| | - Sanda Vladimir-Knežević
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - József Petrik
- Department of Medical Biochemistry and Haematology, Faculty of Pharmacy and Biochemistry, University of Zagreb, HR-10000 Zagreb, Croatia
| | - Tamás Kőszegi
- Institute of Laboratory Medicine, University of Pécs, Pécs H-7624, Hungary.
| |
Collapse
|
45
|
Analysis of Chinese hamster ovary cell metabolism through a combined computational and experimental approach. Cytotechnology 2013; 66:945-66. [PMID: 24292563 DOI: 10.1007/s10616-013-9648-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 09/20/2013] [Indexed: 01/22/2023] Open
Abstract
Optimization of cell culture processes can benefit from the systematic analysis of experimental data and their organization in mathematical models, which can be used to decipher the effect of individual process variables on multiple outputs of interest. Towards this goal, a kinetic model of cytosolic glucose metabolism coupled with a population-level model of Chinese hamster ovary cells was used to analyse metabolic behavior under batch and fed-batch cell culture conditions. The model was parameterized using experimental data for cell growth dynamics, extracellular and intracellular metabolite profiles. The results highlight significant differences between the two culture conditions in terms of metabolic efficiency and motivate the exploration of lactate as a secondary carbon source. Finally, the application of global sensitivity analysis to the model parameters highlights the need for additional experimental information on cell cycle distribution to complement metabolomic analyses with a view to parameterize kinetic models.
Collapse
|
46
|
Borate-aided anion exchange high-performance liquid chromatography of uridine diphosphate-sugars in brain, heart, adipose and liver tissues. J Chromatogr A 2013; 1323:82-6. [PMID: 24309714 DOI: 10.1016/j.chroma.2013.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 12/28/2022]
Abstract
In this paper we describe a method optimized for the purification of uridine diphosphate (UDP)-sugars from liver, adipose tissue, brain, and heart, with highly reproducible up to 85% recoveries. Rapid tissue homogenization in cold ethanol, lipid removal by butanol extraction, and purification with a graphitized carbon column resulted in isolation of picomolar quantities of the UDP-sugars from 10 to 30mg of tissue. The UDP-sugars were baseline separated from each other, and from all major nucleotides using a CarboPac PA1 anion exchange column eluted with a gradient of acetate and borate buffers. The extraction and purification protocol produced samples with few unidentified peaks. UDP-N-acetylglucosamine was a dominant UDP-sugar in all the rat tissues studied. However, brain and adipose tissue showed high UDP-glucose levels, equal to that of UDP-N-acetylglucosamine. The UDP-N-acetylglucosamine showed 2.3-2.7 times higher levels than UDP-N-acetylgalactosamine in all tissues, and about the same ratio was found between UDP-glucose and UDP-galactose in adipose tissue and brain (2.6 and 2.8, respectively). Interestingly, the UDP-glucose/UDP-galactose ratio was markedly lower in liver (1.1) and heart (1.7). The UDP-N-acetylglucosamine/UDP-glucuronic acid ratio was also constant, between 9.7 and 7.7, except in liver with the ratio as low as 1.8. The distinct UDP-glucose/galactose ratio, and the abundance of UDP-glucuronic acid may reflect the specific role of liver in glycogen synthesis, and metabolism of hormones and xenobiotics, respectively, using these UDP-sugars as substrates.
Collapse
|
47
|
del Val IJ, Kyriakopoulos S, Polizzi KM, Kontoravdi C. An optimized method for extraction and quantification of nucleotides and nucleotide sugars from mammalian cells. Anal Biochem 2013; 443:172-80. [PMID: 24036437 DOI: 10.1016/j.ab.2013.09.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/16/2013] [Accepted: 09/04/2013] [Indexed: 10/26/2022]
Abstract
Glycosylation is a critical attribute of therapeutic proteins given its impact on the clinical safety and efficacy of these molecules. The biochemical process of glycosylation is inextricably dependent on metabolism and ensuing availability of nucleotides and nucleotide sugars (NSs) during cell culture. Herein, we present a comprehensive methodology to extract and quantify these metabolites from cultured cells. To establish the full protocol, two methods for the extraction of these compounds were evaluated for efficiency, and the requirement for quenching and washing the sample was assessed. A chromatographic method based on anion exchange has been optimized to separate and quantify eight nucleotides and nine NSs in less than 30 min. Degradation of nucleotides and NSs under extraction conditions was evaluated to aid in selection of the most efficient extraction protocol. We conclude that the optimized chromatographic method is quick, robust, and sensitive for quantifying nucleotides and NSs. Furthermore, our results show that samples taken from cell culture should be treated with 50% v/v acetonitrile and do not require quenching or washing for reliable extraction of nucleotides and NSs. This comprehensive protocol should prove useful in determining the impact of nucleotide and NS metabolism on protein glycosylation.
Collapse
Affiliation(s)
- Ioscani Jimenez del Val
- Department of Chemical Engineering and Chemical Technology, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | | | | | |
Collapse
|
48
|
Padivitage NLT, Dissanayake MK, Armstrong DW. Separation of nucleotides by hydrophilic interaction chromatography using the FRULIC-N column. Anal Bioanal Chem 2013; 405:8837-48. [PMID: 23995506 DOI: 10.1007/s00216-013-7315-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/13/2013] [Accepted: 08/15/2013] [Indexed: 11/28/2022]
Abstract
A stationary phase composed of silica-bonded cyclofructan 6 (FRULIC-N) was evaluated for the separation of four cyclic nucleotides, six nucleoside monophosphates, four nucleoside diphosphates, and five nucleoside triphosphates via hydrophilic interaction chromatography (HILIC) in both isocratic and gradient conditions. The gradient conditions gave significantly better separations by narrowing peak widths. Sixteen out of nineteen nucleotides were baseline separated on the FRULIC-N column in one run. Unlike other known HILIC stationary phases, there can be dual-retention mechanisms unique to this media. Traditional hydrogen bonding/dipolar interactions can be supplemented by dynamic ion interaction effects for anionic analytes. This occurs because the FRULIC-N stationary phase is able to bind certain buffer cations. The extent of the ion interaction is tunable, in comparison to stationary phases with embedded charged groups, where the inherent ionic properties are fixed. The best mobile phase conditions were determined by varying the organic modifier (acetonitrile) content, as well as salt type/concentration and electrolyte pH. The thermodynamic characteristic of the FRULIC-N column was investigated by evaluating the column temperature effect on retention and utilizing van't Hoff plots. This study shows that there is a greater entropic contribution for the retention of nucleotide di and triphosphates, whereas there is a greater enthalphic contribution for the cyclic nucleotides with the FRULIC-N column.
Collapse
Affiliation(s)
- Nilusha L T Padivitage
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA
| | | | | |
Collapse
|
49
|
Garcia AD, Chavez JL, Mechref Y. Sugar nucleotide quantification using multiple reaction monitoring liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:1794-1800. [PMID: 23821573 DOI: 10.1002/rcm.6631] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 05/14/2013] [Accepted: 05/19/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE Glycosylation of proteins and lipids is reliant on the availability of monosaccharide-activated donors known as sugar nucleotides. They are responsible for glycosylation in cells. Reliable quantification of these sugar nucleotides might provide an insight into their biological roles and attributes. METHODS Herein, a method is described for the quantification of sugar nucleotides using ultra high pressure liquid chromatography (UHPLC) tandem mass spectrometry, allowing selective detection of sugar nucleotides in a biological sample. Seven model sugar nucleotide standards commonly associated with lipid and protein glycosylation were separated on a porous graphitic carbon column using an UHPLC system coupled to a triple stage quadrupole mass spectrometer utilizing a multiple reaction monitoring approach. RESULTS Successful baseline separation of these metabolites was attained in 6 min using an ammonium formate buffer and acetonitrile, circumventing the use of MS-unfriendly pairing reagents. The linear dynamic range of this procedure was established over almost three orders of magnitude from 20 pg to 1 ng (40 pg to 2 ng for the isomers UDP-GlcNAc/GalNAc). The limit of detection ranged from 15 pg to 30 pg while the limit of quantification ranged from 50 pg to 100 pg. Furthermore, viability of this method was tested using three different breast cancer cell lines (MDA-MB-231, MDA-MB-231-BR, and MDA-MB-361) with the successful identification and quantification of all seven targeted sugar nucleotides. CONCLUSIONS The described method permitted the quantitative analysis of sugar nucleotides in 10 min, thus allowing the practical use of this approach in high-throughput settings. The method was also very effective for the quantification of sugar nucleotides derived from three different breast cancer cell lines. The distribution of sugar nucleotides was different among the different cell lines and unique for each cell line.
Collapse
Affiliation(s)
- Aldo D Garcia
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | | | | |
Collapse
|
50
|
Zhang C, Liu Z, Liu X, Wei L, Liu Y, Yu J, Sun L. Targeted metabolic analysis of nucleotides and identification of biomarkers associated with cancer in cultured cell models. Acta Pharm Sin B 2013. [DOI: 10.1016/j.apsb.2013.06.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|