1
|
Nevyhoštěná M, Komersová A, Pejchal V, Štěpánková Š, Česla P, Matzick K, Macháčková J, Svoboda R. New biologically active sulfonamides as potential drugs for Alzheimer's disease. Arch Pharm (Weinheim) 2024; 357:e2400191. [PMID: 38941614 DOI: 10.1002/ardp.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/30/2024]
Abstract
A family of new compounds with sulfonamide and amide functional groups as potential Alzheimer's disease drugs were prepared by multistep synthesis. Thermal stability measurements recorded the initial decomposition in the range of 200-220°C, close above the melting point. The final compounds were tested for their ability to inhibit acetylcholinesterase and butyrylcholinesterase, and the in vitro dissolution behavior of selected compounds was studied through both lipophilic and hydrophilic matrix tablets. All nine tested derivatives were even more active in inhibiting acetylcholinesterase than the clinically used rivastigmine. Regression analysis of the obtained dissolution profiles was performed, and the effects of the pH and the release mechanism were determined. Some substances showed remarkable biological activity and became a subject of interest for further extensive study.
Collapse
Affiliation(s)
- Marie Nevyhoštěná
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Alena Komersová
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Vladimír Pejchal
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Šárka Štěpánková
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Petr Česla
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Kevin Matzick
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Jana Macháčková
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Roman Svoboda
- Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| |
Collapse
|
2
|
Phanrang PT, Upadhyaya J, Chandra AK, Sarmah A, Hobza P, Aguan K, Mitra S. Bio-Nano Synergy in Therapeutic Applications: Drug-Graphene Oxide Nanocomposites for Modulated Acetylcholinesterase Inhibition and Radical Scavenging. J Phys Chem B 2024; 128:7427-7437. [PMID: 39021051 DOI: 10.1021/acs.jpcb.4c03351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The current study explores the synergistic application of biophysical chemistry and nanotechnology in therapeutic treatments, focusing specifically on the development of advanced biomaterials to repurpose FDA-approved Alzheimer's disease (AD) drugs as potent antioxidants. By integration of AD drugs into graphene oxide (GO) nanocomposites, an attempt to enhance the acetylcholinesterase (AChE) inhibition and increase radical scavenging activity is proposed. This bionano synergy is designed to leverage the unique properties of both the nanomaterial surface and the bioactive compounds, improving treatment effectiveness. The nanocomposites also promise targeted drug delivery, as GO can traverse the blood-brain barrier to inhibit AChE more effectively in AD patients. Furthermore, the drug-GO nanocomposite exhibits enhanced radical scavenging capabilities, offering additional therapeutic benefits. This study also elucidates a molecular level understanding on how the properties of the drugs are modified when integrated into nanocomposites with GO, enabling the development of more effective materials. The interdisciplinary approach presented in this study exploits the potential of nanotechnology to enhance drug delivery systems and achieve superior therapeutic outcomes through bionano synergy.
Collapse
Affiliation(s)
| | - Jahnabi Upadhyaya
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Asit K Chandra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Amrit Sarmah
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague 6 CZ-16610, Czech Republic
| | - Kripamoy Aguan
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong 793022, India
| | - Sivaprasad Mitra
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| |
Collapse
|
3
|
Wei Z, Zhang D, Liu X, Nie H, Ouyang Q, Zhang X, Zheng Z. Screening of efficient salicylaldoxime reactivators for DFP and paraoxon-inhibited acetylcholinesterase. RSC Med Chem 2024; 15:1225-1235. [PMID: 38665821 PMCID: PMC11042241 DOI: 10.1039/d3md00628j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/25/2024] [Indexed: 04/28/2024] Open
Abstract
Previously we reported two salicylaldoxime conjugates (L7R3 and L7R5) showing equal or even higher reactivating efficiency for both organophosphorus nerve agent and pesticide inhibited acetylcholinesterase in comparison to obidoxime and HI-6. In this study, L7R3 and L7R5 were selected as lead compounds and refined by employing a fragment-based drug design strategy, and a total of 32 novel salicylaldoxime conjugates were constructed and screened for DFP and paraoxon inhibited acetylcholinesterase. The findings demonstrate that the conjugate L73R3, which contains a 4-nitrophenyl group, exhibited a higher reactivation efficacy against paraoxon-inhibited acetylcholinesterase compared to obidoxime and HI-6. It was confirmed that the combination of a 4-pyridinyl or 4-nitrophenyl peripheral site ligand, a piperazine linker and a methyl or chloro-substituted salicylaldoxime could construct efficient nonquaternary oxime reactivators. The results hold promise for developing a new generation of highly effective antidotes for organophosphate poisoning.
Collapse
Affiliation(s)
- Zhao Wei
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Dongxu Zhang
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Xueying Liu
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Huifang Nie
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Qin Ouyang
- Department of Medicinal Chemistry, School of Pharmacy, Third Military Medical University Chongqing 400038 China
| | - Xinlei Zhang
- Department of Medicinal Chemistry and Pharmaceutical analysis, School of Pharmacy, Air Force Medical University Xi'an 300071 China
| | - Zhibing Zheng
- Department of Medicinal Chemistry, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences Beijing 100850 China
| |
Collapse
|
4
|
Martin-Romera J, Borrego-Marin E, Jabalera-Ortiz PJ, Carraro F, Falcaro P, Barea E, Carmona FJ, Navarro JAR. Organophosphate Detoxification and Acetylcholinesterase Reactivation Triggered by Zeolitic Imidazolate Framework Structural Degradation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9900-9907. [PMID: 38344949 PMCID: PMC10910433 DOI: 10.1021/acsami.3c18855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/15/2024]
Abstract
Organophosphate (OP) toxicity is related to inhibition of acetylcholinesterase (AChE) activity, which plays a key role in the neurotransmission process. In this work, we report the ability of different zinc zeolitic imidazolate frameworks (ZIFs) to behave as potential antidotes against OP poisoning. The Zn-L coordination bond (L = purine, benzimidazole, imidazole, or 2-methylimidazole) is sensitive to the G-type nerve agent model compounds diisopropylfluorophosphate (DIFP) and diisopropylchlorophosphate, leading to P-X (X = F or Cl) bond breakdown into nontoxic diisopropylphosphate. P-X hydrolysis is accompanied by ZIF structural degradation (Zn-imidazolate bond hydrolysis), with the concomitant release of the imidazolate linkers and zinc ions representing up to 95% of ZIF particle dissolution. The delivered imidazolate nucleophilic attack on the OP@AChE adduct gives rise to the recovery of AChE enzymatic function. P-X bond breakdown, ZIF structural degradation, and AChE reactivation are dependent on imidazolate linker nucleophilicity, framework topology, and particle size. The best performance is obtained for 20 nm nanoparticles (NPs) of Zn(2-methylimidazolate)2 (sod ZIF-8) exhibiting a DIFP degradation half-life of 2.6 min and full recovery of AChE activity within 1 h. 20 nm sod ZIF-8 NPs are not neurotoxic, as proven by in vitro neuroblastoma cell culture viability tests.
Collapse
Affiliation(s)
- Javier
D. Martin-Romera
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Emilio Borrego-Marin
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Pedro J. Jabalera-Ortiz
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Francesco Carraro
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgasse 9, Graz A-8010, Austria
| | - Paolo Falcaro
- Institute
of Physical and Theoretical Chemistry, TU
Graz, Stremayrgasse 9, Graz A-8010, Austria
| | - Elisa Barea
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Francisco J. Carmona
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| | - Jorge A. R. Navarro
- Departamento
de Química Inorgánica, Universidad
de Granada, Av. Fuentenueva S/N, Granada 18071, Spain
| |
Collapse
|
5
|
Dirak M, Chan J, Kolemen S. Optical imaging probes for selective detection of butyrylcholinesterase. J Mater Chem B 2024; 12:1149-1167. [PMID: 38196348 DOI: 10.1039/d3tb02468g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Butyrylcholinesterase (BChE), a member of the human serine hydrolase family, is an essential enzyme for cholinergic neurotransmission as it catalyzes the hydrolysis of acetylcholine. It also plays central roles in apoptosis, lipid metabolism, and xenobiotic detoxification. On the other side, abnormal levels of BChE are directly associated with the formation of pathogenic states such as neurodegenerative diseases, psychiatric and cardiovascular disorders, liver damage, diabetes, and cancer. Thus, selective and sensitive detection of BChE level in living organisms is highly crucial and is of great importance to further understand the roles of BChE in both physiological and pathological processes. However, it is a very complicated task due to the potential interference of acetylcholinesterase (AChE), the other human cholinesterase, as these two enzymes share a very similar substrate scope. To this end, optical imaging probes have attracted immense attention in recent years as they have modular structures, which can be tuned precisely to satisfy high selectivity toward BChE, and at the same time they offer real time and nondestructive imaging opportunities with a high spatial and temporal resolution. Here, we summarize BChE selective imaging probes by discussing the critical milestones achieved during the development process of these molecular sensors over the years. We put a special emphasis on design principles and biological applications of highly promising new generation activity-based probes. We also give a comprehensive outlook for the future of BChE-responsive probes and highlight the ongoing challenges. This collection marks the first review article on BChE-responsive imaging agents.
Collapse
Affiliation(s)
- Musa Dirak
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450 Istanbul, Turkey.
| |
Collapse
|
6
|
Sun YL, Chang HF, Chiang PH, Lin MW, Lin CH, Kuo CM, Lin TC, Lin CS. Fabrication and application of glutathione biosensing SPCE strips with gold nanoparticle modification. RSC Adv 2024; 14:3808-3819. [PMID: 38274165 PMCID: PMC10809000 DOI: 10.1039/d3ra08290c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Glutathione (GSH) is a major antioxidant in organisms. An alteration in GSH concentration has been implicated in a number of pathological conditions. Therefore, GSH sensing has become a critical issue. In this study, a disposable strip used for tyrosinase-modified electrochemical testing was fabricated for the detection of GSH levels in vivo. The system is based on tyrosinase as a biorecognition element and a screen-printed carbon electrode (SPCE) as an amperometric transducer. On the tyrosinase-SPCE strips, the oxidation reaction from catechol to o-quinone was catalyzed by tyrosinase. The tyrosinase-SPCE strips were modified with gold nanoparticles (AuNPs). In the presence of AuNPs of 25 nm diameter, the cathodic peak current of cyclic voltammetry (CV) was significantly enhanced by 5.2 fold. Under optimized conditions (250 μM catechol, 50 mM phosphate buffer, and pH 6.5), the linear response of the tyrosinase-SPCE strips ranged from 31.25 to 500 μM GSH, with a detection limit of approximately 35 μM (S/N > 3). The tyrosinase-SPCE strips have been used to detect real samples of plasma and tissue homogenates in a mouse experiment. The mice were orally administrated with N-acetylcysteine (NAC) 100 mg kg-1 once a day for 7 days; the plasma GSH significantly enhanced 2.8 fold as compared with saline-treated mice (1123 vs. 480 μM μg-1 protein). NAC administration also could alleviate the adverse effect of GSH reduction in the mice treated with doxorubicin.
Collapse
Affiliation(s)
- Yu-Ling Sun
- Aquatic Technology Research Center, Agricultural Technology Research Institute Hsinchu 300 Taiwan
| | - Hui-Fang Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
- Division of Endocrinology, Department of Internal Medicine, Hsinchu Mackay Memorial Hospital Hsinchu 300 Taiwan
| | - Ping-Hsuan Chiang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
| | - Chiu-Mei Kuo
- Department of Chemical Engineering, Chung Yuan Christian University Taoyuan City 320 Taiwan
| | - Tzu-Ching Lin
- Division of Pharmacy, Koo Foundation Sun Yat-Sen Cancer Center Taipei 100 Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University Hsinchu 300 Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University Hsinchu 300 Taiwan
| |
Collapse
|
7
|
Krátký M, Nováčková K, Svrčková K, Švarcová M, Štěpánková Š. New 3-amino-2-thioxothiazolidin-4-one-based inhibitors of acetyl- and butyryl-cholinesterase: synthesis and activity. Future Med Chem 2024; 16:59-74. [PMID: 38047370 DOI: 10.4155/fmc-2023-0268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aim: 2-Thioxothiazolidin-4-one represents a versatile scaffold in drug development. The authors used it to prepare new potent acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors that can be utilized, e.g., to treat Alzheimer's disease. Materials & methods: 3-Amino-2-thioxothiazolidin-4-one was modified at the amino group or active methylene, using substituted benzaldehydes. The derivatives were evaluated for inhibition of AChE and BChE (Ellman's method). Results & conclusion: The derivatives were obtained with yields of 52-94%. They showed dual inhibition with IC50 values from 13.15 μM; many compounds were superior to rivastigmine. The structure-activity relationship favors nitrobenzylidene and 3,5-dihalogenosalicylidene scaffolds. AChE was inhibited noncompetitively, whereas BChE was inhibited with a mixed type of inhibition. Molecular docking provided insights into molecular interactions. Each enzyme is inhibited by a different binding mode.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Karolína Nováčková
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
| | - Katarína Svrčková
- Department of Biological & Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| | - Markéta Švarcová
- Department of Organic & Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 03, Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Pasteurova 3632/15, 400 96, Ústí nad Labem, Czech Republic
| | - Šárka Štěpánková
- Department of Biological & Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10, Pardubice, Czech Republic
| |
Collapse
|
8
|
Šinko G. Modeling of a near-attack conformation of oxime in phosphorylated acetylcholinesterase via a reactivation product, a phosphorylated oxime. Chem Biol Interact 2023; 383:110656. [PMID: 37579936 DOI: 10.1016/j.cbi.2023.110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/26/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
At the present, only four antidotes are in use in therapy for poisoning by organophosphorus compounds: 2-PAM, HI-6, obidoxime and trimedoxime. Numerous compounds have been designed and synthetized to be more effective reactivators than those currently in use. Many of those new compounds fail at the enzyme level because interactions formed within the AChE active site are not favourable ones that lead to a successful reactivation. The approach in which the modeling of a phosphorylated oxime (POX), a product of successful reactivation in the AChE active site, may be a way to better understand the role of active site residues during the process of formation of the Michaelis type of complex between an enzyme and oxime. After reactivation, a change in phosphorus stereochemistry occurs leading to a different spatial arrangement of attached substituents, now including an oxime. To study interactions between the AChE oxyanion hole and a phosphorylated oxime, an S203G mutant was used to avoid the steric hindrance caused by the catalytic serine. In this way, the POX could be positioned close to the oxyanion hole. In the final step, the oxime without a phosphoester moiety was transferred into the phosphorylated AChE and molecular dynamics was used to test the stability of the near-attack conformation of the oxime near the phosphorylated serine.
Collapse
Affiliation(s)
- Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000, Zagreb, Croatia.
| |
Collapse
|
9
|
Kim SG, Lee HK, Subba SH, Oh MH, Lee G, Park SY. Electrochemical and fluorescent dual-mode sensor of acetylcholinesterase activity and inhibition based on MnO 2@PD-coated surface. Anal Chim Acta 2023; 1257:341171. [PMID: 37062569 DOI: 10.1016/j.aca.2023.341171] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/18/2023]
Abstract
We developed an electrochemical and fluorescent dual-mode sensor for assessing acetylcholinesterase (AChE) activity and inhibition by taking advantage of the high redox sensitivity of surface-coated mesoporous MnO2@polymer dot (MnO2@PD) towards AChE. The following phenomena constitute the basis of the detection mechanism: fluorescence resonance energy transfer (FRET) effect between MnO2 and PD; catalytic hydrolysis of acetylthiocholine (ATCh) to thiocholine (TCh) by AChE expressed by PC-12 cells, inducing fluorescence restoration and change in the conductivity of the system due to MnO2 decomposition; the presence of the inhibitor neostigmine preventing the conversion of ATCh to TCh. The surface-coated biosensor presents both fluorescence-based and electrochemical approaches for effectively monitoring AChE activity and inhibition. The fluorescence approach is based on the fluorescent "on/off" property of the system caused by MnO2 breakdown after interaction with TCh and the subsequent release of PDs. The conductivity of the coated electrode decreased dramatically as AChE concentration increased, resulting in electrochemical sensing of AChE activity and inhibition screening. Real-time wireless sensing can be conducted using a smartphone to monitor the resistance change, investigating the potential use of MnO2@PD nanocomposites in biological studies, and offering a real-time redox-fluorescent test for AChE activity monitoring and inhibitor screening.
Collapse
Affiliation(s)
- Seul Gi Kim
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Green Bio Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Hye Kyung Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Sunu Hangma Subba
- Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Min Hee Oh
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea
| | - Gibaek Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| | - Sung Young Park
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of Green Bio Engineering, Korea National University of Transportation, Chungju, 27469, Republic of Korea; Department of IT and Energy Convergence (BK21 FOUR), Korea National University of Transportation, Chungju, 27469, Republic of Korea.
| |
Collapse
|
10
|
Zhang M, Wang C, Wang Y, Li F, Zhu D. Visual evaluation of acetylcholinesterase inhibition by an easy-to-operate assay based on N-doped carbon nanozyme with high stability and oxidase-like activity. J Mater Chem B 2023; 11:4014-4019. [PMID: 37067450 DOI: 10.1039/d3tb00238a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Acetylcholinesterase (AChE) is the key enzyme associated with neurotransmission, and thus many drugs have been explored for their inhibitory effect on AChE, such as donepezil for Alzheimer's disease and organophosphorus pesticides (OPs). Compared with clinical trials, in vitro screening bioassays for AChE inhibitors are preferable in terms of operability and cost. Herein, we developed an easy-to-operate nanozyme-based colorimetric assay for the evaluation of AChE inhibitory strength with excellent anti-interference ability and low dependence on professional equipment. The metal-free carbon nanozyme NC900 played an important role in the signal output due to its features of efficient oxidase-like activity, excellent water dispersibility, high stability and low color interference. Employing various AChE-targeted or non-targeted pesticides as examples, the as-proposed assay exhibited excellent distinguishing ability for different chemicals. The higher absorption intensity at 652 nm represents a stronger inhibitory effect, as well as blue color. In addition, this method was used to study the influence of pH on the degradation of prodrugs, and the efficiency of mixed pesticides. This work provides a simple and reliable assay to screen AChE inhibitors, which is promising for the preliminary evaluation of a large number of potential candidates.
Collapse
Affiliation(s)
- Mengli Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Cui Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Yongqi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao, 266109, People's Republic of China
| | - Dangqiang Zhu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
11
|
Gonzalez G, Kvasnica M, Svrčková K, Štěpánková Š, Santos JRC, Peřina M, Jorda R, Lopes SMM, Melo TMVDPE. Ring-fused 3β-acetoxyandrost-5-enes as novel neuroprotective agents with cholinesterase inhibitory properties. J Steroid Biochem Mol Biol 2023; 225:106194. [PMID: 36162631 DOI: 10.1016/j.jsbmb.2022.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 02/01/2023]
Abstract
Alzheimer´s disease (AD) is an intellectual disorder caused by organic brain damage and cerebral atrophy, characterized by the loss of memory, judgment, and abstract thinking followed by declining cognitive functions, language, and the ability to perform daily living activities. Many efforts have been made to decrease the effects of the disease but also to block the neurodegenerative process. Cholinesterase inhibitors (ChEIs) are a group of medicines that act at the neurotransmission of acetylcholine, preventing its excessive breakdown and helping to improve cognitive functions in patients with AD. In this work, 16 chiral steroids, namely ring-fused 3β-acetoxyandrost-5-ene derivatives, their precursor and two 16-dehydroprogesterone-derived dioximes, were assessed as cholinesterase inhibitors and neuroprotective agents. The results demonstrated that some of the tested steroids are cholinesterase inhibitors and the majority selective for acetylcholinesterase inhibition. Albeit, one ring-fused 3β-acetoxyandrost-5-ene containing N-methylpiperidine ring (compound 2g) demonstrated to be a selective and potent inhibitor of the butyrylcholinesterase enzyme. (S)- 4,4a,5,6,7,8-(hexahydronaphthalen-2-one)-fused 3β-acetoxyandrost-5-ene (compound 6) showed high neuroprotective effect, high ability to restore the mitochondrial membrane potential from glutamate intoxication, and dramatic improvement in cell morphology. The described results provided relevant structure-activity relationship data.
Collapse
Affiliation(s)
- Gabriel Gonzalez
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc, I. P. Pavlova 6, 77520 Olomouc, Czech Republic
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Faculty of Science, Palacký University Olomouc, and Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 53210 Pardubice, Czech Republic
| | - Joana R C Santos
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Miroslav Peřina
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Radek Jorda
- Department of Experimental Biology, Palacky University Olomouc, Faculty of Science, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Susana M M Lopes
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal.
| | - Teresa M V D Pinho E Melo
- University of Coimbra, Coimbra Chemistry Centre-Institute of Molecular Sciences (CQC-IMS), Department of Chemistry, 3004-535 Coimbra, Portugal
| |
Collapse
|
12
|
Toosi Moghadam F, Mamashli F, Khoobi M, Ghasemi A, Pirhaghi M, Delavari B, Mahmoudi Aznaveh H, Nikkhah M, Saboury AA. A dual responsive robust human serum albumin-based nanocarrier for doxorubicin. Biotechnol Appl Biochem 2022; 69:2496-2506. [PMID: 34894353 DOI: 10.1002/bab.2299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/30/2021] [Indexed: 12/27/2022]
Abstract
Targeted drug therapy against cancer has been introduced as a smart strategy to combat the unwanted side effects due to systemic administration of chemotherapeutics. A human serum albumin (HSA)-based nanocarrier was fabricated with the aim to target reductive media and acidic pH of the tumor tissues. α-Lipoic acid (LA) was applied to increase the number of disulfide bonds in the nanocarrier to target higher glutathione concentrations present in tumor tissues and polyethylene glycol was used to target the acidic pH of tumors. UV illumination, ethanol desolvation, oxygen bubbling, and a mixture of redox buffers were employed to prepare doxorubicin-loaded HSA-LA nanoparticles. The nanocarrier was supposed to release the loaded doxorubicin in reductive and acidic pH media. Fourier-transform infrared spectroscopy and energy dispersive X-ray analysis indicated successful attachment of LA to HSA. The prepared nanoplatform presented improved doxorubicin loading efficiency and content and successfully released the loaded doxorubicin in the expected conditions. Protein corona study indicated that positively charged plasma proteins with molecular weights of nearly 80 kDa are absorbed to the surface of the nanoparticles. Furthermore, it showed desirable UV and storage stability, which implied its robustness and improved shelf life if applied in nanomedicine.
Collapse
Affiliation(s)
- Fatemeh Toosi Moghadam
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Fatemeh Mamashli
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mehdi Khoobi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Biomaterials Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Atiyeh Ghasemi
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Mitra Pirhaghi
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Behdad Delavari
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Hooman Mahmoudi Aznaveh
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Nikkhah
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Akbar Saboury
- Department of Biophysics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Li J, Yang G, Shi W, Fang X, Han L, Cao Y. Anti-Alzheimer's disease active components screened out and identified from Hedyotis diffusa combining bioaffinity ultrafiltration LC-MS with acetylcholinesterase. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115460. [PMID: 35714878 DOI: 10.1016/j.jep.2022.115460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedyotis diffusa is a traditional ethnomedicinal plant in local communities in northeastern Asia and used to treat inflammation, nervous breakdown, among others. In recent years, it has been applied in the treatment of Alzheimer's disease (AD), while the specific chemical components responsible for the activity remain need to be explored. AIM OF THE STUDY To prepare, screen and identify the potential anti-AD active components from Hedyotis diffusa. MATERIALS AND METHODS The acetylcholinesterase (AChE) inhibitory activity of four different extracts of Hedyotis diffusa were initially assessed using a spectrophotometric Ellman's method. A more accurate LC-MS/MS screening method combining functional enzyme assay and affinity ultrafiltration (AU) screening assay was developed and applied for the screening of natural compound inhibitors of AChE from Hedyotis diffusa. The binding mode was further investigated between protein and ligands via molecular docking. Subsequently, CL4176, a transgenic nematode model for AD, was used for activity validation of one of these components. RESULTS N-butanol extract of Hedyotis diffusa (NHD) appeared significant inhibitory activities on AChE, were chosen to delve deeper. Five bioactive components targeting AChE were screened out and identified using AU coupled to liquid chromatography-mass spectrometry. Molecular docking technique further confirmed the results of the screening assay. Finally, quercetin-3-O-sophoroside (QS) was confirmed as a potent anti-AD agent by in vivo experiments in C. elegans. CONCLUSION This study explores a new idea for screening anti-AD active components from traditional medicine. The findings provide a molecular structure and bioactivity basis for future potential applications of Hedyotis diffusa in medical industries.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Guangyi Yang
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, 430065, China; Shenzhen Bao'an Traditional Chinese Medical Hospital, Shenzhen, 518000, China
| | - Wenfeng Shi
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xiaoping Fang
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Lintao Han
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Cao
- Key Laboratory of Education Ministry on Traditional Chinese Medicine Resource and Compound Prescription, Hubei University of Chinese Medicine, Wuhan, 430065, China.
| |
Collapse
|
14
|
Anbarani HM, Pordel M, Bozorgmehr MR. Interaction of Imidazo[4,5-a]Acridines with Acetylcholinesterase. Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02707-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Takagi H, Yamamoto K, Matsuo Y, Furuie M, Kasayuki Y, Ohtani R, Shiotani M, Hasegawa T, Ohnishi T, Ohashi M, Johzuka K, Kurata A, Uegaki K. Influence of mutation in the regulatory domain of α-isopropylmalate synthase from Saccharomyces cerevisiae on its activity and feedback inhibition. Biosci Biotechnol Biochem 2022; 86:755-762. [PMID: 35333283 DOI: 10.1093/bbb/zbac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/16/2022] [Indexed: 11/14/2022]
Abstract
Isoamyl alcohol (i-AmOH) is produced from α-ketoisocaproate in the l-leucine biosynthetic pathway in yeast and controlled by the negative feedback regulation of α-isopropylmalate synthase (IPMS), which senses the accumulation of l-leucine. It is known that i-AmOH production increases when mutations in the regulatory domain reduce the susceptibility to feedback inhibition. However, the impact of mutations in this domain on the IPMS activity has not been examined. In this study, we obtained 5 IPMS mutants, encoding the LEU4 gene, N515D/S520P/S542F/A551D/A551V, that are tolerant to 5,5,5-trifluoro-dl-leucine. All mutant proteins were purified and examined for both IPMS activity and negative feedback activity by in vitro experiments. The results showed that not only the negative-feedback regulation by l-leucine was almost lost in all mutants, but also the IPMS activity was greatly decreased and the difference in IPMS activity among Leu4 mutants in the presence of l-leucine was significantly correlated with i-AmOH production.
Collapse
Affiliation(s)
- Hironobu Takagi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Kazuki Yamamoto
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Yoshifumi Matsuo
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Miki Furuie
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Yasuha Kasayuki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Rina Ohtani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Mizuki Shiotani
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Tetsuya Hasegawa
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Toru Ohnishi
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Masataka Ohashi
- Nara Prefecture Institute of Industrial Development, 129-1 Kashiwagi, Nara, Japan
| | - Katsuki Johzuka
- Astrobiology Center, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Aichi, Japan
| | - Atsushi Kurata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan
| | - Koichi Uegaki
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, 3327-204 Nakamachi, Nara, Japan.,Agricultural Technology and Innovation Research Institute, Kindai University, 3327-204 Nakamachi, Nara, Japan
| |
Collapse
|
16
|
Pflégr V, Štěpánková Š, Svrčková K, Švarcová M, Vinšová J, Krátký M. 5-Aryl-1,3,4-oxadiazol-2-amines Decorated with Long Alkyl and Their Analogues: Synthesis, Acetyl- and Butyrylcholinesterase Inhibition and Docking Study. Pharmaceuticals (Basel) 2022; 15:ph15040400. [PMID: 35455397 PMCID: PMC9029695 DOI: 10.3390/ph15040400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022] Open
Abstract
2,5-Disubstituted 1,3,4-oxadiazoles are privileged versatile scaffolds in medicinal chemistry that have exhibited diverse biological activities. Acetyl- (AChE) and butyrylcholinesterase (BChE) inhibitors are used, e.g., to treat dementias and myasthenia gravis. 5-Aryl-1,3,4-oxadiazoles decorated with dodecyl linked via nitrogen, sulfur or directly to this heterocycle have been designed as potential inhibitors of AChE and BChE. They were prepared from commercially available or in-house prepared hydrazides by reaction with dodecyl isocyanate to form hydrazine-1-carboxamides 2 (yields 67–98%) followed by cyclization using p-toluenesulfonyl chloride and triethylamine in 41–100% yields. Thiadiazole isostere was also synthesized. The derivatives were screened for inhibition of AChE and BChE using Ellman’s spectrophotometric method. The compounds showed a moderate dual inhibition with IC50 values of 12.8–99.2 for AChE and from 53.1 µM for BChE. All the heterocycles were more efficient inhibitors of AChE. The most potent inhibitor, N-dodecyl-5-(pyridin-4-yl)-1,3,4-thiadiazol-2-amine 3t, was subjected to advanced reversibility and type of inhibition evaluation. Structure–activity relationships were identified. Many oxadiazoles showed lower IC50 values against AChE than established drug rivastigmine. According to molecular docking, the compounds interact non-covalently with AChE and BChE and block entry into enzyme gorge and catalytic site, respectively.
Collapse
Affiliation(s)
- Václav Pflégr
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (V.P.); (M.Š.); (J.V.)
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic; (Š.Š.); (K.S.)
| | - Markéta Švarcová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (V.P.); (M.Š.); (J.V.)
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Pasteurova 3632/15, 400 96 Ústí nad Labem, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (V.P.); (M.Š.); (J.V.)
| | - Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic; (V.P.); (M.Š.); (J.V.)
- Correspondence:
| |
Collapse
|
17
|
Rajput A, Butani S. Donepezil HCl Liposomes: Development, Characterization, Cytotoxicity, and Pharmacokinetic Study. AAPS PharmSciTech 2022; 23:74. [PMID: 35149912 DOI: 10.1208/s12249-022-02209-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/04/2022] [Indexed: 01/24/2023] Open
Abstract
The current research work aims to study the pharmacokinetic and nasal ciliotoxicity of donepezil liposome-based in situ gel to treat Alzheimer's disease. The physicochemical properties and first-pass metabolism of donepezil HCl result in low concentrations reaching the brain post oral administration. To overcome this problem, donepezil HCl-loaded liposomes were formulated using the ethanol injection method. The donepezil HCl-loaded liposomes were spherical with a size of 103 ± 6.2 nm, polydispersity index of 0.108 ± 0.008, and entrapment efficiency of 93 ± 5.33 %. The optimized in situ gel with donepezil HCl-loaded liposomes showed 80.11 ± 7.77 % drug permeation than donepezil HCl solution-based in situ gel (13.12 ± 4.84 %) across sheep nasal mucosa. The nasal ciliotoxicity study indicated the safety of developed formulation for administration via nasal route. The pharmacokinetics and biodistribution study of developed formulation showed higher drug concentration (1239.61 ± 123.60 pg/g) in the brain after nasal administration indicating its better potential via the nasal pathway. To treat Alzheimer's disease, the administration of liposome-based in situ gel through the nasal pathway can therefore be considered as an effective and promising mode of drug delivery.
Collapse
|
18
|
Miličević A, Šinko G. Use of connectivity index and simple topological parameters for estimating the inhibition potency of acetylcholinesterase. Saudi Pharm J 2022; 30:369-376. [PMID: 35527825 PMCID: PMC9068751 DOI: 10.1016/j.jsps.2022.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/30/2022] [Indexed: 11/14/2022] Open
Abstract
Acetylcholinesterase (AChE) has proven to be an effective drug target in the treatment of neurodegenerative diseases such as Alzheimer’s, Parkinson’s and dementia. We developed a novel QSAR regression model for estimating potency to inhibit AChE, pKi, on a set of 75 structurally different compounds including oximes, N-hydroxyiminoacetamides, 4-aminoquinolines and flavonoids. Although the model included only three simple descriptors, the valence molecular connectivity index of the zero-order, 0χv, the number of 10-membered rings (nR10) and the number of hydroxyl groups (nOH), it yielded excellent statistics (r = 0.937, S.E. = 0.51). The stability of the model was evaluated when an initial set of 75 compounds was broadened to 165 compounds in total, with the increase of the range of pKi (exp) from 6.0 to 10.2, yielding r = 0.882 and S.E. = 0.89. The predictive power of the model was evaluated by calculating pKi values for 55 randomly chosen compounds (S.E.test = 0.90) from the calibration model created on other 110 compounds (S.E. = 0.89), all taken from the pool of 165 compounds.
Collapse
|
19
|
OUP accepted manuscript. Toxicol Res (Camb) 2022; 11:529-536. [DOI: 10.1093/toxres/tfac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 11/14/2022] Open
|
20
|
Novel propargylamine-based inhibitors of cholinesterases and monoamine oxidases: Synthesis, biological evaluation and docking study. Bioorg Chem 2021; 116:105301. [PMID: 34492558 DOI: 10.1016/j.bioorg.2021.105301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/21/2023]
Abstract
A combination of several pharmacophores in one molecule has been successfully used for multi-target-directed ligands (MTDL) design. New propargylamine substituted derivatives combined with salicylic and cinnamic scaffolds were designed and synthesized as potential cholinesterases and monoamine oxidases (MAOs) inhibitors. They were evaluated invitro for inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE) using Ellman's method. All the compounds act as dual inhibitors. Most of the derivatives are stronger inhibitors of AChE, the best activity showed 5-bromo-N-(prop-2-yn-1-yl)salicylamide 1e (IC50 = 8.05 µM). Carbamates (4-bromo-2-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2d and 2,4-dibromo-6-[(prop-2-yn-1-yl)carbamoyl]phenyl ethyl(methyl)carbamate 2e were selective and the most active for BuChE (25.10 and 26.09 µM). 4-Bromo-2-[(prop-2-yn-1-ylimino)methyl]phenol 4a was the most potent inhibitor of MAOs (IC50 of 3.95 and ≈10 µM for MAO-B and MAO-A, respectively) along with a balanced inhibition of both cholinesterases being a real MTDL. The mechanism of action was proposed, and binding modes of the hits were studied by molecular docking on human enzymes. Some of the derivatives also exhibited antioxidant properties. Insilico prediction of physicochemical parameters affirm that the molecules would be active after oral administration and able to reach brain tissue.
Collapse
|
21
|
Trimethoxycinnamates and Their Cholinesterase Inhibitory Activity. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104691] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A series of twelve nature-inspired 3,4,5-trimethoxycinnamates were prepared and characterized. All compounds, including the starting 3,4,5-trimethoxycinnamic acid, were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro; the selectivity index (SI) was also determined. 2-Fluororophenyl (2E)-3-(3,4,5-trimethoxyphenyl)-prop-2-enoate demonstrated the highest SI (1.71) in favor of BChE inhibition. 2-Chlorophenyl (2E)-3-(3,4,5-trimethoxyphenyl)prop-2-enoate showed the highest AChE-inhibiting (IC50 = 46.18 µM) as well as BChE-inhibiting (IC50 = 32.46 µM) activity with an SI of 1.42. The mechanism of action of the most potent compound was determined by the Lineweaver–Burk plot as a mixed type of inhibition. An in vitro cell viability assay confirmed the insignificant cytotoxicity of the discussed compounds on the two cell lines. Trends between structure, physicochemical properties and activity were discussed.
Collapse
|
22
|
Krátký M, Štěpánková Š, Brablíková M, Svrčková K, Švarcová M, Vinšová J. Novel Iodinated Hydrazide-hydrazones and their Analogues as Acetyl- and Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2021; 20:2106-2117. [PMID: 32814531 DOI: 10.2174/1568026620666200819155503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/17/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Hydrazide-hydrazones have been known as scaffold with various biological activities including inhibition of acetyl- (AChE) and butyrylcholinesterase (BuChE). Cholinesterase inhibitors are mainstays of dementias' treatment. OBJECTIVE Twenty-five iodinated hydrazide-hydrazones and their analogues were designed as potential central AChE and BuChE inhibitors. METHODS Hydrazide-hydrazones were synthesized from 4-substituted benzohydrazides and 2-/4- hydroxy-3,5-diiodobenzaldehydes. The compounds were investigated in vitro for their potency to inhibit AChE from electric eel and BuChE from equine serum using Ellman's method. We calculated also physicochemical and structural parameters for CNS delivery. RESULTS The derivatives exhibited a moderate dual inhibition with IC50 values ranging from 15.1-140.5 and 35.5 to 170.5 μmol.L-1 for AChE and BuChE, respectively. Generally, the compounds produced a balanced or more potent inhibition of AChE. N'-[(E)-(4-Hydroxy-3,5-diiodophenyl)methylidene]-4- nitrobenzohydrazide 2k and 4-fluoro-N'-(2-hydroxy-3,5-diiodobenzyl)benzohydrazide 3a were the most potent inhibitors of AChE and BuChE, respectively. Structure-activity relationships were established, and molecular docking studies confirmed interaction with enzymes. CONCLUSION Many novel hydrazide-hydrazones showed lower IC50 values than rivastigmine against AChE and some of them were comparable for BuChE to this drug used for the treatment of dementia. They interact with cholinesterases via non-covalent binding into the active site. Based on the BOILEDEgg approach, the majority of the derivatives met the criteria for blood-brain-barrier permeability.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Michaela Brablíková
- Unipetrol Centre of Research and Education, 436 70 Litvínov-Záluží 1, Czech Republic
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Markéta Švarcová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.,Department of Chemistry, Faculty of Science, J. E. Purkinje University, Eeske mladeze 8, 400 96 Usti nad Labem, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
23
|
Miličević A, Šinko G. Development of a simple QSAR model for reliable evaluation of acetylcholinesterase inhibitor potency. Eur J Pharm Sci 2021; 160:105757. [PMID: 33588047 DOI: 10.1016/j.ejps.2021.105757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
With the aging of the western population, more and more people are affected by the neurodegenerative Alzheimer's and Parkinson's disease. Inhibitors of acetylcholinesterase (AChE) have proven to be effective in the treatment of disease symptoms. We report the QSAR regression model for the estimation of potency of a set of 94 structurally diverse compounds (oximes, N-hydroxyiminoacetamides, 4-aminoquinolines and flavonoids) to inhibit AChE, pKi (AChE). The model is based on three simple descriptors: the valence molecular connectivity index of the zero-order, 0χv, combined with the number of 10-membered rings (nR10) and number of hydroxyl groups in a molecule (nOH). QSAR model yielded r = 0.947, S.E. = 0.51 and S.E.cv= 0.53; the range of pKi (exp) = 6.03. It showed its stability when the set of 94 compounds was enlarged, comprising 184 compounds in total (r = 0.886, S.E. = 0.85 and S.E.cv = 0.88; the range of pKi (exp) = 10.21), resulting in regression parameters which were similar, although only for 0χv coefficients within the limits of S.E. (0.167(13) and 0.172(16) for the set with 94 and 184 compounds, respectively. The predictive power of the model was shown by the prediction of pKi values for 61 randomly chosen compounds (S.E.test = 0.86) from the calibration model made on the other 123 compounds (S.E. = 0.85), all taken from the pool of 184 compounds. QSAR descriptors 0χv, nR10 and nOH were well chosen for describing the interactions of the AChE active site (amino acid interaction) with ligands through the estimation of the inhibitory potency.
Collapse
Affiliation(s)
- Ante Miličević
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10 000 Zagreb, Croatia.
| |
Collapse
|
24
|
Kos J, Kozik V, Pindjakova D, Jankech T, Smolinski A, Stepankova S, Hosek J, Oravec M, Jampilek J, Bak A. Synthesis and Hybrid SAR Property Modeling of Novel Cholinesterase Inhibitors. Int J Mol Sci 2021; 22:ijms22073444. [PMID: 33810550 PMCID: PMC8037530 DOI: 10.3390/ijms22073444] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/24/2022] Open
Abstract
A library of novel 4-{[(benzyloxy)carbonyl]amino}-2-hydroxybenzoic acid amides was designed and synthesized in order to provide potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors; the in vitro inhibitory profile and selectivity index were specified. Benzyl(3-hydroxy-4-{[2-(trifluoromethoxy)phenyl]carbamoyl}phenyl)carbamate was the best AChE inhibitor with the inhibitory concentration of IC50 = 36.05 µM in the series, while benzyl{3-hydroxy-4-[(2-methoxyphenyl)carbamoyl]phenyl}-carbamate was the most potent BChE inhibitor (IC50 = 22.23 µM) with the highest selectivity for BChE (SI = 2.26). The cytotoxic effect was evaluated in vitro for promising AChE/BChE inhibitors. The newly synthesized adducts were subjected to the quantitative shape comparison with the generation of an averaged pharmacophore pattern. Noticeably, three pairs of fairly similar fluorine/bromine-containing compounds can potentially form the activity cliff that is manifested formally by high structure–activity landscape index (SALI) numerical values. The molecular docking study was conducted for the most potent AChE/BChE inhibitors, indicating that the hydrophobic interactions were overwhelmingly generated with Gln119, Asp70, Pro285, Thr120, and Trp82 aminoacid residues, while the hydrogen bond (HB)-donor ones were dominated with Thr120. π-stacking interactions were specified with the Trp82 aminoacid residue of chain A as well. Finally, the stability of chosen liganded enzymatic systems was assessed using the molecular dynamic simulations. An attempt was made to explain the noted differences of the selectivity index for the most potent molecules, especially those bearing unsubstituted and fluorinated methoxy group.
Collapse
Affiliation(s)
- Jiri Kos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic;
- Correspondence: (J.K.); (A.B.)
| | - Violetta Kozik
- Department of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland;
| | - Dominika Pindjakova
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (D.P.); (T.J.)
| | - Timotej Jankech
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (D.P.); (T.J.)
- NT-LAB o.z., Teplicka 35, 92101 Piestany, Slovakia
| | - Adam Smolinski
- GiG Research Institute, Pl. Gwarkow 1, 40166 Katowice, Poland;
| | - Sarka Stepankova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 53210 Pardubice, Czech Republic;
| | - Jan Hosek
- Department of Pharmacology and Toxicology, Veterinary Research Institute, Hudcova 296/70, 62100 Brno, Czech Republic;
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic;
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacky University, Slechtitelu 27, 78371 Olomouc, Czech Republic;
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia; (D.P.); (T.J.)
| | - Andrzej Bak
- Department of Chemistry, University of Silesia, Szkolna 9, 40007 Katowice, Poland;
- Correspondence: (J.K.); (A.B.)
| |
Collapse
|
25
|
Development of Rapid and High-Precision Colorimetric Device for Organophosphorus Pesticide Detection Based on Microfluidic Mixer Chip. MICROMACHINES 2021; 12:mi12030290. [PMID: 33803445 PMCID: PMC8000396 DOI: 10.3390/mi12030290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 11/17/2022]
Abstract
The excessive pesticide residues in cereals, fruit and vegetables is a big threat to human health, and it is necessary to develop a portable, low-cost and high-precision pesticide residue detection scheme to replace the large-scale laboratory testing equipment for rapid detection of pesticide residues. In this study, a colorimetric device for rapid detection of organophosphorus pesticide residues with high precision based on a microfluidic mixer chip was proposed. The microchannel structure with high mixing efficiency was determined by fluid dynamics simulation, while the corresponding microfluidic mixer chip was designed. The microfluidic mixer chip was prepared by a self-developed liquid crystal display (LCD) mask photo-curing machine. The influence of printing parameters on the accuracy of the prepared chip was investigated. The light source with the optimal wavelength of the device was determined by absorption spectrum measurement, and the relationship between the liquid reservoir depth and detection limit was studied by experiments. The correspondence between pesticide concentration and induced voltage was derived. The minimum detection concentration of the device could reach 0.045 mg·L-1 and the average detection time was reduced to 60 s. The results provide a theoretical and experimental basis for portable and high-precision detection of pesticide residues.
Collapse
|
26
|
Abd Rashed A, Abd Rahman AZ, Rathi DNG. Essential Oils as a Potential Neuroprotective Remedy for Age-Related Neurodegenerative Diseases: A Review. Molecules 2021; 26:1107. [PMID: 33669787 PMCID: PMC7922935 DOI: 10.3390/molecules26041107] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the improvements in life expectancy, neurodegenerative conditions have arguably become the most dreaded maladies of older people. The neuroprotective and anti-ageing potentials of essential oils (EOs) are widely evaluated around the globe. The objective of this review is to analyse the effectiveness of EOs as neuroprotective remedies among the four common age-related neurodegenerative diseases. The literature was extracted from three databases (PubMed, Web of Science and Google Scholar) between the years of 2010 to 2020 using the medical subject heading (MeSH) terms "essential oil", crossed with "Alzheimer's disease (AD)", "Huntington's disease (HD)", "Parkinson's disease (PD)" or "amyotrophic lateral sclerosis (ALS)". Eighty three percent (83%) of the studies were focused on AD, while another 12% focused on PD. No classifiable study was recorded on HD or ALS. EO from Salvia officinalis has been recorded as one of the most effective acetylcholinesterase and butyrylcholinesterase inhibitors. However, only Cinnamomum sp. has been assessed for its effectiveness in both AD and PD. Our review provided useful evidence on EOs as potential neuroprotective remedies for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Ahmad Zuhairi Abd Rahman
- Cancer Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| | - Devi Nair Gunasegavan Rathi
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Malaysia;
| |
Collapse
|
27
|
Kiełczewska U, Jorda R, Gonzalez G, Morzycki JW, Ajani H, Svrčková K, Štěpánková Š, Wojtkielewicz A. The synthesis and cholinesterase inhibitory activities of solasodine analogues with seven-membered F ring. J Steroid Biochem Mol Biol 2021; 205:105776. [PMID: 33130020 DOI: 10.1016/j.jsbmb.2020.105776] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/22/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
Solasodine analogues containing a seven-membered F ring with a nitrogen atom placed at position 22a were prepared from diosgenin or tigogenin in a four-step synthesis comprising of the simultaneous opening of the F-ring and introduction of cyanide in position 22α, activation of the 26-hydroxyl group as mesylate, nitrile reduction, and N-cyclization. Solasodine, six obtained 22a(N)-homo analogues, as well as four 26a-homosolasodine derivatives and their open-chain precursors (13 in total) were tested as potential inhibitors of acetyl- and butyryl-cholinesterases and showed activity at micromolar concentrations. The structure-activity relationship study revealed that activities against studied esterases are affected by the structure of E/F rings and the substitution pattern of ring A. The most potent compound 8 acted as non-competitive inhibitors and exerted IC50 = 8.51 μM and 7.05 μM for eeAChE and eqBChE, respectively. Molecular docking studies revealed the hydrogen bond interaction of 8 with S293 of AChE; further rings are stabilized via hydrophobic interaction (ring A) or interaction with Y341 and W286 (rings B and C). Biological experiments showed no neurotoxicity of differentiated SH-SY5Y cells. More importantly, results from neuroprotective assay based on glutamate-induced cytotoxicity revealed that most derivatives had the ability to increase the viability of differentiated SH-SY5Y cells in comparison to galantamine and lipoic acid assayed as standards. The newly synthesized solasodine analogues are able to inhibit and to bind cholinesterases in noncompetitive mode of inhibition and exhibited neuroprotection potential of differentiated neuroblastoma cells after Glu-induced toxicity.
Collapse
Affiliation(s)
- Urszula Kiełczewska
- Faculty of Chemistry, University of Białystok, K. Ciołkowskiego 1K, 15-245, Białystok, Poland
| | - Radek Jorda
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany of The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 5, 77900, Olomouc, Czech Republic
| | - Gabriel Gonzalez
- Laboratory of Growth Regulators, Palacký University & Institute of Experimental Botany of The Czech Academy of Sciences, Šlechtitelů 27, 78371, Olomouc, Czech Republic; Department of Neurology, University Hospital Olomouc and Faculty of Medicine and Dentistry, Palacky University Olomouc, Czech Republic
| | - Jacek W Morzycki
- Faculty of Chemistry, University of Białystok, K. Ciołkowskiego 1K, 15-245, Białystok, Poland
| | - Haresh Ajani
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 166 10, Prague 6, Czech Republic
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Technology, University of Pardubice, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Technology, University of Pardubice, Czech Republic
| | - Agnieszka Wojtkielewicz
- Faculty of Chemistry, University of Białystok, K. Ciołkowskiego 1K, 15-245, Białystok, Poland.
| |
Collapse
|
28
|
Sensitive and reversible perylene derivative-based fluorescent probe for acetylcholinesterase activity monitoring and its inhibitor. Anal Biochem 2020; 607:113835. [PMID: 32739347 DOI: 10.1016/j.ab.2020.113835] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/31/2020] [Accepted: 06/16/2020] [Indexed: 01/09/2023]
Abstract
A reversible fluorescence probe for acetylcholinesterase activity detection was developed based on water soluble perylene derivative, N,N'-di(2-aspartic acid)-perylene-3,4,9,10-tetracarboxylic diimide (PASP). Based on the photo-induced electron transfer (PET), PASP fluorescence in aqueous is quenched after combining with copper ions (Cu2+). Acetylcholinesterase (AChE) is well known to catalyze the hydrolysis of acetylcholine (ATCh) to produce thiocholine, whose affinity is strong enough to capture Cu2+ by thiol (-SH) group from the complex PASP-Cu, resulting in the fluorescence signal of PASP recovers up to 90%. This optical switch is highly sensitive depended on the coordination and dissociation between PASP and Cu2+. We proposed its application for AChE activity detection, as well as its inhibitor screening. According to the change of fluorescence intensity, quantifying the detection limit of AChE was 1.78 mU·mL-1. Classical inhibitors, tacrine and organophosphate pesticide diazinon, were further evaluated for drug screening. The IC50 value of tacrine was calculated to be 0.43 μM, and the detection limit of diazinon was 0.22 μM. Both of these performances were much better than previous results, revealing our probe is sensitive and reversible for screening applications.
Collapse
|
29
|
Krátký M, Jaklová K, Štěpánková Š, Svrčková K, Pflégr V, Vinšová J. N-[3,5-Bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide Analogues: Novel Acetyl- and Butyrylcholinesterase Inhibitors. Curr Top Med Chem 2020; 20:2094-2105. [PMID: 32814530 DOI: 10.2174/1568026620666200819154722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/01/2020] [Accepted: 07/20/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Development of acetyl- (AChE) and butyrylcholinesterase (BuChE) inhibitors belongs to viable strategies for the treatment of dementia and other diseases related to decrease in cholinergic neurotransmission. OBJECTIVE That is why we designed twenty-two analogues of a dual AChEBuChE salicylanilide inhibitor, N-[3,5-bis(trifluoromethyl)phenyl]-5-bromo-2-hydroxybenzamide 1, to improve its potency. METHODS We prepared N,N-disubstituted (thio)carbamates via direct acylation with (thio)carbamoyl chloride, N-n-alkyl monosubstituted carbamates using isocyanates as well as its salicylanilide core analogues. The derivatives were evaluated in vitro against AChE from electric eel and BuChE from equine serum using spectrophotometric Ellman's method. RESULTS The compounds showed moderate inhibition of both AChE and BuChE with IC50 from 18.2 to 196.6 μmol.L-1 and 9.2 to 196.2 μmol.L-1, respectively. Importantly, based on the substitution pattern, it is possible to modulate selectivity against AChE or BuChE and some derivatives also produced a balanced inhibition. In general, the most promising analogues were N-alkyl (C2-C6) carbamates and isomers with a changed position of phenolic hydroxyl. N-[3,5-Bis(trifluoromethyl)phenyl]-3-bromo-5- hydroxybenzamide 4a was the best inhibitor of both cholinesterases. CONCLUSION A wide range of the derivatives improved the activity of the hit 1, they were superior to carbamate drug rivastigmine against AChE and some of them also against BuChE. The most promising derivatives also fit physicochemical space and structural features for CNS drugs together with an escalated lipophilicity.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Karolína Jaklová
- Department of Chemistry, Faculty of Science, J. E. Purkinje University, Ceske mladeze 8, 400 96 Ústi nad Labem, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Katarína Svrčková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic
| | - Václav Pflégr
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| |
Collapse
|
30
|
N-Alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides and Their Analogues: Synthesis and Multitarget Biological Activity. Molecules 2020; 25:molecules25102268. [PMID: 32408517 PMCID: PMC7287908 DOI: 10.3390/molecules25102268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 02/06/2023] Open
Abstract
Based on the isosterism concept, we have designed and synthesized homologous N-alkyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides (from C1 to C18) as potential antimicrobial agents and enzyme inhibitors. They were obtained from 4-(trifluoromethyl)benzohydrazide by three synthetic approaches and characterized by spectral methods. The derivatives were screened for their inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) via Ellman’s method. All the hydrazinecarboxamides revealed a moderate inhibition of both AChE and BuChE, with IC50 values of 27.04–106.75 µM and 58.01–277.48 µM, respectively. Some compounds exhibited lower IC50 for AChE than the clinically used drug rivastigmine. N-Tridecyl/pentadecyl-2-[4-(trifluoromethyl)benzoyl]hydrazine-1-carboxamides were identified as the most potent and selective inhibitors of AChE. For inhibition of BuChE, alkyl chain lengths from C5 to C7 are optimal substituents. Based on molecular docking study, the compounds may work as non-covalent inhibitors that are placed in a close proximity to the active site triad. The compounds were evaluated against Mycobacterium tuberculosis H37Rv and nontuberculous mycobacteria (M. avium, M. kansasii). Reflecting these results, we prepared additional analogues of the most active carboxamide (n-hexyl derivative 2f). N-Hexyl-5-[4-(trifluoromethyl)phenyl]-1,3,4-oxadiazol-2-amine (4) exhibited the lowest minimum inhibitory concentrations within this study (MIC ≥ 62.5 µM), however, this activity is mild. All the compounds avoided cytostatic properties on two eukaryotic cell lines (HepG2, MonoMac6).
Collapse
|
31
|
Krátký M, Štěpánková Š, Houngbedji NH, Vosátka R, Vorčáková K, Vinšová J. 2-Hydroxy- N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules 2019; 9:biom9110698. [PMID: 31694272 PMCID: PMC6920847 DOI: 10.3390/biom9110698] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
The development of novel inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) represents a viable approach to alleviate Alzheimer’s disease. Thirty-six halogenated 2-hydroxy-N-phenylbenzamides (salicylanilides) with various substitution patterns and their esters with phosphorus-based acids were synthesized in yields of 72% to 92% and characterized. They were evaluated for in vitro inhibition of AChE from electric eel and BuChE from equine serum using modified Ellman’s spectrophotometric method. The benzamides exhibited a moderate inhibition of AChE with IC50 values in a narrow concentration range from 33.1 to 85.8 µM. IC50 values for BuChE were higher (53.5–228.4 µM). The majority of derivatives inhibit AChE more efficiently than BuChE and are comparable or superior to rivastigmine—an established cholinesterases inhibitor used in the treatment of Alzheimer’s disease. Phosphorus-based esters especially improved the activity against BuChE with 5-chloro-2-{[4-(trifluoromethyl)phenyl]carbamoyl}phenyl diethyl phosphite 5c superiority (IC50 = 2.4 µM). This derivative was also the most selective inhibitor of BuChE. It caused a mixed inhibition of both cholinesterases and acted as a pseudo-irreversible inhibitor. Several structure-activity relationships were identified, e.g., favouring esters and benzamides obtained from 5-halogenosalicylic acids and polyhalogenated anilines. Both 2-hydroxy-N-phenylbenzamides and esters share convenient physicochemical properties for blood-brain-barrier penetration and thus central nervous system delivery.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Neto-Honorius Houngbedji
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Rudolf Vosátka
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
32
|
Bak A, Pizova H, Kozik V, Vorcakova K, Kos J, Treml J, Odehnalova K, Oravec M, Imramovsky A, Bobal P, Smolinski A, Trávníček Z, Jampilek J. SAR-mediated Similarity Assessment of the Property Profile for New, Silicon-Based AChE/BChE Inhibitors. Int J Mol Sci 2019; 20:E5385. [PMID: 31671776 PMCID: PMC6862691 DOI: 10.3390/ijms20215385] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/25/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022] Open
Abstract
A set of 25 novel, silicon-based carbamate derivatives as potential acetyl- and butyrylcholinesterase (AChE/BChE) inhibitors was synthesized and characterized by their in vitro inhibition profiles and the selectivity indexes (SIs). The prepared compounds were also tested for their inhibition potential on photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. In fact, some of the newly prepared molecules revealed comparable or even better inhibitory activities compared to the marketed drugs (rivastigmine or galanthamine) and commercially applied pesticide Diuron®, respectively. Generally, most compounds exhibited better inhibition potency towards AChE; however, a wider activity span was observed for BChE. Notably, benzyl N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(2-hydroxyphenyl)carbamoyl]ethyl]-carbamate (2) and benzyl N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(3-hydroxyphenyl)carbamoyl]ethyl]-carbamate (3) were characterized by fairly high selective indexes. Specifically, compound 2 was prescribed with the lowest IC50 value that corresponds quite well with galanthamine inhibition activity, while the inhibitory profiles of molecules 3 and benzyl-N-[(1S)-2-[(tert-butyldimethylsilyl)oxy]-1-[(4-hydroxyphenyl)carbamoyl]ethyl]carbamate (4) are in line with rivastigmine activity. Moreover, a structure-activity relationship (SAR)-driven similarity evaluation of the physicochemical properties for the carbamates examined appeared to have foreseen the activity cliffs using a similarity-activity landscape index for BChE inhibitory response values. The 'indirect' ligand-based and 'direct' protein-mediated in silico approaches were applied to specify electronic/steric/lipophilic factors that are potentially valid for quantitative (Q)SAR modeling of the carbamate analogues. The stochastic model validation was used to generate an 'average' 3D-QSAR pharmacophore pattern. Finally, the target-oriented molecular docking was employed to (re)arrange the spatial distribution of the ligand property space for BChE and photosystem II (PSII).
Collapse
Affiliation(s)
- Andrzej Bak
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland.
| | - Hana Pizova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 612 42 Brno, Czech Republic.
| | - Violetta Kozik
- Institute of Chemistry, University of Silesia, Szkolna 9, 40 007 Katowice, Poland.
| | - Katarina Vorcakova
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic.
| | - Jiri Kos
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic, (J.K.).
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 612 42 Brno, Czech Republic.
| | - Klara Odehnalova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 612 42 Brno, Czech Republic.
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic.
| | - Ales Imramovsky
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentska 573, 532 10 Pardubice, Czech Republic.
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 612 42 Brno, Czech Republic.
| | - Adam Smolinski
- Department of Energy Saving and Air Protection, Central Mining Institute, Plac Gwarkow 1, 40 166 Katowice, Poland.
| | - Zdeněk Trávníček
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic, (J.K.).
| | - Josef Jampilek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic, (J.K.).
| |
Collapse
|
33
|
A new sensitive spectrofluorimetric method for measurement of activity and kinetic study of cholinesterases. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140270. [PMID: 31518689 DOI: 10.1016/j.bbapap.2019.140270] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/22/2019] [Accepted: 09/02/2019] [Indexed: 01/24/2023]
Abstract
A new spectrofluorimetric method more sensitive than the Ellman method was developed for determination of both acetylcholinesterase and butyrylcholinesterase activity and for kinetic analysis of these enzymes and their mutants. Two selected mutants of human butyrylcholinesterase (E197Q and E197G) were included in this work. As for the Ellman's method, substrates are thiocholine esters, but the chromogenic reagent, DTNB (dithio-bisnitro benzoic acid) is replaced by a fluorogenic probe, "Calbiochem Probe IV", (3-(7-Hydroxy-2-oxo-2H-chromen-3-ylcarbamoyl)acrylic acid methylester). Compared to the classical Ellman's method, the sensitivity of this new spectrofluorimetric assay is 2 orders of magnitude higher. The method allows measurement of activity in media containing <10-11 M of cholinesterase active sites at low substrate concentrations, either under first order conditions, [S] << Km, or under conditions where kinetics obeys the Michaelis-Menten model, i.e. at [S] < 1 mM for wild-type enzymes. The method adapted to titration plate reader assays is suitable for clinical and toxicological routine analyses, for high throughput screening of novel cholinesterase mutants and screening of inhibitor libraries of pharmacological interest.
Collapse
|
34
|
Sharma S, Singh N, Nepovimova E, Korabecny J, Kuca K, Satnami ML, Ghosh KK. Interaction of synthesized nitrogen enriched graphene quantum dots with novel anti-Alzheimer’s drugs: spectroscopic insights. J Biomol Struct Dyn 2019; 38:1822-1837. [DOI: 10.1080/07391102.2019.1619625] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Srishti Sharma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Namrata Singh
- Ramrao Adik Institute of Technology, DY Patil University, Navi Mumbai, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- National Institute of Mental Health, Klecany, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Manmohan L. Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| | - Kallol K. Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur, India
| |
Collapse
|
35
|
A novel fluorescence based assay for the detection of organophosphorus pesticide exposed cholinesterase activity using 1-naphthyl acetate. Biochimie 2019; 160:100-112. [DOI: 10.1016/j.biochi.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/22/2019] [Indexed: 01/18/2023]
|
36
|
Novel Benzene-Based Carbamates for AChE/BChE Inhibition: Synthesis and Ligand/Structure-Oriented SAR Study. Int J Mol Sci 2019; 20:ijms20071524. [PMID: 30934674 PMCID: PMC6479915 DOI: 10.3390/ijms20071524] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 12/26/2022] Open
Abstract
A series of new benzene-based derivatives was designed, synthesized and comprehensively characterized. All of the tested compounds were evaluated for their in vitro ability to potentially inhibit the acetyl- and butyrylcholinesterase enzymes. The selectivity index of individual molecules to cholinesterases was also determined. Generally, the inhibitory potency was stronger against butyryl- compared to acetylcholinesterase; however, some of the compounds showed a promising inhibition of both enzymes. In fact, two compounds (23, benzyl ethyl(1-oxo-1-phenylpropan-2-yl)carbamate and 28, benzyl (1-(3-chlorophenyl)-1-oxopropan-2-yl) (methyl)carbamate) had a very high selectivity index, while the second one (28) reached the lowest inhibitory concentration IC50 value, which corresponds quite well with galanthamine. Moreover, comparative receptor-independent and receptor-dependent structure–activity studies were conducted to explain the observed variations in inhibiting the potential of the investigated carbamate series. The principal objective of the ligand-based study was to comparatively analyze the molecular surface to gain insight into the electronic and/or steric factors that govern the ability to inhibit enzyme activities. The spatial distribution of potentially important steric and electrostatic factors was determined using the probability-guided pharmacophore mapping procedure, which is based on the iterative variable elimination method. Additionally, planar and spatial maps of the host–target interactions were created for all of the active compounds and compared with the drug molecules using the docking methodology.
Collapse
|
37
|
Chowdhary S, Bhattacharyya R, Banerjee D. 1-Naphthyl acetate: A chromogenic substrate for the detection of erythrocyte acetylcholinesterase activity. Biochimie 2018; 154:194-209. [PMID: 30201403 DOI: 10.1016/j.biochi.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 09/01/2018] [Indexed: 11/26/2022]
Abstract
Erythrocyte acetylcholinesterase (AChE) is a preferred biomarker for the detection of organophosphorus poisoning. Acetylthiocholine (ATCh) is the most popular substrate for the detection of AChE activity. However, oximolysis is a prominent feature with ATCh. In this context, we have searched alternative substrates for AChE using in silico tools for screening of a better substrate. The in silico approach was performed to understand the fitness and the Total Interaction Energy (TIE) of substrates for AChE. The alternative substrates for AChE were screened in terms of high Goldscore and favorable TIE in comparison to acetylcholine (ACh)-AChE complex and other relevant esterases. Among the screened substrates, 1-Naphthyl acetate (1-NA) exhibited the most favorable interaction with AChE in terms of highest TIE and corresponding high Goldscore. The Molecular Dynamic (MD) simulation of the 1-NA-AChE complex showed a stable complex formation over a period of 5 ns. The results obtained in the in silico studies were validated in vitro using pure erythrocyte AChE and hemolysate. We observed 1-NA to be a better alternative substrate for AChE than ATCh in terms of lower Km value. Its specificity appeared at least similar to ATCh. Therefore, we propose that 1-NA can be an attractive chromogenic substrate for the measurement of AChE activity, and it possess the potential to detect organophosphorus pesticide (OP) poisoning.
Collapse
Affiliation(s)
- Sheemona Chowdhary
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India.
| |
Collapse
|
38
|
Discovery of a potent non-oxime reactivator of nerve agent inhibited human acetylcholinesterase. Eur J Med Chem 2018; 157:151-160. [DOI: 10.1016/j.ejmech.2018.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 06/29/2018] [Accepted: 08/04/2018] [Indexed: 11/23/2022]
|
39
|
Shetab-Boushehri SV. Ellman's method is still an appropriate method for measurement of cholinesterases activities. EXCLI JOURNAL 2018; 17:798-799. [PMID: 30233277 PMCID: PMC6141829 DOI: 10.17179/excli2018-1536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/06/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Seyed Vahid Shetab-Boushehri
- Department of Toxicology & Pharmacology, School of Pharmacy, International Campus, Iran University of Medical Sciences, Tehran, Iran.,Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Oxime-assisted reactivation of tabun-inhibited acetylcholinesterase analysed by active site mutations. Toxicology 2018; 406-407:104-113. [DOI: 10.1016/j.tox.2018.05.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/08/2018] [Accepted: 05/13/2018] [Indexed: 11/18/2022]
|
41
|
Krátký M, Štěpánková Š, Vorčáková K, Vinšová J. Investigation of salicylanilide and 4-chlorophenol-based N-monosubstituted carbamates as potential inhibitors of acetyl- and butyrylcholinesterase. Bioorg Chem 2018; 80:668-673. [PMID: 30059892 DOI: 10.1016/j.bioorg.2018.07.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/13/2018] [Accepted: 07/15/2018] [Indexed: 11/15/2022]
Abstract
Based on the presence of carbamate moiety, twenty salicylanilide N-monosubstituted carbamates concomitantly with their parent salicylanilides and five newly prepared 4-chlorophenyl carbamates obtained from isocyanates were investigated using Ellman's method for their in vitro inhibitory activity against acetylcholinesterase (AChE) from electric eel and butyrylcholinesterase (BChE) from equine serum. The carbamates and salicylanilides exhibited mostly a moderate inhibition of both cholinesterase enzymes with IC50 values ranging from 5 to 235 µM. IC50 values for AChE were in a narrower concentration range when compared to BChE, but many of the compounds produced a balanced inhibition of both cholinesterases. The derivatives were comparable or superior to rivastigmine for AChE inhibition, but only a few of carbamates also for BChE. Several structure-activity relationships were identified, e.g., N-phenethylcarbamates produce clearly favourable BChE inhibition. The compounds also share convenient physicochemical properties for CNS penetration.
Collapse
Affiliation(s)
- Martin Krátký
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Jarmila Vinšová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
42
|
Vorčáková K, Májeková M, Horáková E, Drabina P, Sedlák M, Štěpánková Š. Synthesis and characterization of new inhibitors of cholinesterases based on N-phenylcarbamates: In vitro study of inhibitory effect, type of inhibition, lipophilicity and molecular docking. Bioorg Chem 2018; 78:280-289. [PMID: 29621640 DOI: 10.1016/j.bioorg.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/09/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Abstract
Based on current treatment of Alzheimer's disease, where the carbamate inhibitor Rivastigmine is used, two series of carbamate derivatives were prepared: (i) N-phenylcarbamates with additional carbamate group (1-12) and (ii) N-phenylcarbamates with monosaccharide moiety (13-24). All compounds were tested for the inhibitory effect on both of the cholinesterases, electric eel acetylcholinesterase (eeAChE) and butyrylcholinesterase from equine serum (eqBChE) and the inhibitory activity (expressed as IC50 values) was compared with that of the established drugs Galanthamine and Rivastigmine. The compounds with two carbamate groups 1-12 revealed higher inhibitory efficiency on both cholinesterases in compared with monosaccharide derived carbamates 13-24 and with Rivastigmine. The significant decrease of inhibitory efficiency on eqBChE (also for eeAChE but in less manner) was observed after deacetalization of monosaccharide. Moreover, the type of inhibitory mechanism of five chosen compounds was studied. It was found, that compounds with two carbamate groups act presumably via a mixed inhibitory mechanism and the compounds with monosaccharide moiety act as non-competitive inhibitors. The lipophilicity of tested compounds was determined using partition coefficient. Specific positions of the inhibitors in the binding sites of cholinesterases were determined using molecular modeling and the results indicate the importance of phenylcarbamate orientation in the catalytic gorges of both enzymes.
Collapse
Affiliation(s)
- Katarína Vorčáková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Magdaléna Májeková
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology & Toxicology, Slovak Academy of Science, Bratislava, Slovak Republic
| | - Eva Horáková
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Pavel Drabina
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Miloš Sedlák
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic
| | - Šárka Štěpánková
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Pardubice, Czech Republic.
| |
Collapse
|
43
|
Islam MM, Rohman MA, Gurung AB, Bhattacharjee A, Aguan K, Mitra S. Correlation of cholinergic drug induced quenching of acetylcholinesterase bound thioflavin-T fluorescence with their inhibition activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:250-257. [PMID: 28822269 DOI: 10.1016/j.saa.2017.08.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/17/2017] [Accepted: 08/02/2017] [Indexed: 06/07/2023]
Abstract
The development of new acetylcholinesterase inhibitors (AChEIs) and subsequent assay of their inhibition efficiency is considered to be a key step for AD treatment. The fluorescence intensity of thioflavin-T (ThT) bound in the active site of acetylcholinesterase (AChE) quenches substantially in presence of standard AChEI drugs due to the dynamic replacement of the fluorophore from the AChE active site as confirmed from steady state emission as well as time-resolved fluorescence anisotropy measurement and molecular dynamics simulation in conjunction with docking calculation. The parametrized % quenching data for individual system shows excellent correlation with enzyme inhibition activity measured independently by standard Ellman AChE assay method in a high throughput plate reader system. The results are encouraging towards design of a fluorescence intensity based AChE inhibition assay method and may provide a better toolset to rapidly evaluate as well as develop newer AChE-inhibitors for AD treatment.
Collapse
Affiliation(s)
- Mullah Muhaiminul Islam
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Mostofa Ataur Rohman
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India
| | - Arun Bahadur Gurung
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Atanu Bhattacharjee
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Kripamoy Aguan
- Department of Biotechnology & Bio-informatics, North-Eastern Hill University, Shillong 793 022, India
| | - Sivaprasad Mitra
- Center for Advanced Studies in Chemistry, North-Eastern Hill University, Shillong 793 022, India.
| |
Collapse
|
44
|
Maček Hrvat N, Zorbaz T, Šinko G, Kovarik Z. The estimation of oxime efficiency is affected by the experimental design of phosphylated acetylcholinesterase reactivation. Toxicol Lett 2017; 293:222-228. [PMID: 29180286 DOI: 10.1016/j.toxlet.2017.11.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 11/27/2022]
Abstract
Reactivation of acetylcholinesterase (AChE), an essential enzyme in neurotransmission, is a key point in the treatment of acute poisoning by nerve agents and pesticides, which structurally belong to organophosphorus compounds (OP). Due to the high diversity of substituents on the phosphorous atom, there is a variety of OP-AChE conjugates deriving from AChE inhibition, and therefore not only is there no universal reactivator efficient enough for the most toxic OPs, but for some nerve agents there is still a lack of any reactivator at all. The endeavor of many chemists to find more efficient reactivators resulted in thousands of newly-designed and synthesized oximes-potential reactivators of AChE. For an evaluation of the oximés reactivation efficiency, many research groups employ a simple spectrophotometric Ellman method. Since parameters that describe reactivator efficiency are often incomparable among laboratories, we tried to emphasize the critical steps in the determination of reactivation parameters as well as in the experimental design of a reactivation assay. We highlighted the important points in evaluation of reactivation kinetic parameters with an aim to achieve better agreement and comparability between the results obtained by different laboratories and overall, a more efficient evaluation of in vitro reactivation potency.
Collapse
Affiliation(s)
- Nikolina Maček Hrvat
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| | - Tamara Zorbaz
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| | - Goran Šinko
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| | - Zrinka Kovarik
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, HR-10000 Zagreb, Croatia.
| |
Collapse
|
45
|
Proline-Based Carbamates as Cholinesterase Inhibitors. Molecules 2017; 22:molecules22111969. [PMID: 29135926 PMCID: PMC6150311 DOI: 10.3390/molecules22111969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/28/2017] [Accepted: 11/10/2017] [Indexed: 12/25/2022] Open
Abstract
Series of twenty-five benzyl (2S)-2-(arylcarbamoyl)pyrrolidine-1-carboxylates was prepared and completely characterized. All the compounds were tested for their in vitro ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), and the selectivity of compounds to individual cholinesterases was determined. Screening of the cytotoxicity of all the compounds was performed using a human monocytic leukaemia THP-1 cell line, and the compounds demonstrated insignificant toxicity. All the compounds showed rather moderate inhibitory effect against AChE; benzyl (2S)-2-[(2-chlorophenyl)carbamoyl]pyrrolidine-1-carboxylate (IC50 = 46.35 μM) was the most potent agent. On the other hand, benzyl (2S)-2-[(4-bromophenyl)-] and benzyl (2S)-2-[(2-bromophenyl)carbamoyl]pyrrolidine-1-carboxylates expressed anti-BChE activity (IC50 = 28.21 and 27.38 μM, respectively) comparable with that of rivastigmine. The ortho-brominated compound as well as benzyl (2S)-2-[(2-hydroxyphenyl)carbamoyl]pyrrolidine-1-carboxylate demonstrated greater selectivity to BChE. The in silico characterization of the structure–inhibitory potency for the set of proline-based carbamates considering electronic, steric and lipophilic properties was provided using comparative molecular surface analysis (CoMSA) and principal component analysis (PCA). Moreover, the systematic space inspection with splitting data into the training/test subset was performed to monitor the statistical estimators performance in the effort to map the probability-guided pharmacophore pattern. The comprehensive screening of the AChE/BChE profile revealed potentially relevant structural and physicochemical features that might be essential for mapping of the carbamates inhibition efficiency indicating qualitative variations exerted on the reaction site by the substituent in the 3′-/4′-position of the phenyl ring. In addition, the investigation was completed by a molecular docking study of recombinant human AChE.
Collapse
|
46
|
New Cinchona Oximes Evaluated as Reactivators of Acetylcholinesterase and Butyrylcholinesterase Inhibited by Organophosphorus Compounds. Molecules 2017; 22:molecules22071234. [PMID: 28737687 PMCID: PMC6151989 DOI: 10.3390/molecules22071234] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/18/2017] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
For the last six decades, researchers have been focused on finding efficient reactivators of organophosphorus compound (OP)-inhibited acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). In this study, we have focused our research on a new oxime scaffold based on the Cinchona structure since it was proven to fit the cholinesterases active site and reversibly inhibit their activity. Three Cinchona oximes (C1, C2, and C3), derivatives of the 9-oxocinchonidine, were synthesized and investigated in reactivation of various OP-inhibited AChE and BChE. As the results showed, the tested oximes were more efficient in the reactivation of BChE and they reactivated enzyme activity to up to 70% with reactivation rates similar to known pyridinium oximes used as antidotes in medical practice today. Furthermore, the oximes showed selectivity towards binding to the BChE active site and the determined enzyme-oxime dissociation constants supported work on the future development of inhibitors in other targeted studies (e.g., in treatment of neurodegenerative disease). Also, we monitored the cytotoxic effect of Cinchona oximes on two cell lines Hep G2 and SH-SY5Y to determine the possible limits for in vivo application. The cytotoxicity results support future studies of these compounds as long as their biological activity is targeted in the lower micromolar range.
Collapse
|
47
|
Ramsay RR, Tipton KF. Assessment of Enzyme Inhibition: A Review with Examples from the Development of Monoamine Oxidase and Cholinesterase Inhibitory Drugs. Molecules 2017; 22:E1192. [PMID: 28714881 PMCID: PMC6152246 DOI: 10.3390/molecules22071192] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 11/16/2022] Open
Abstract
The actions of many drugs involve enzyme inhibition. This is exemplified by the inhibitors of monoamine oxidases (MAO) and the cholinsterases (ChE) that have been used for several pharmacological purposes. This review describes key principles and approaches for the reliable determination of enzyme activities and inhibition as well as some of the methods that are in current use for such studies with these two enzymes. Their applicability and potential pitfalls arising from their inappropriate use are discussed. Since inhibitor potency is frequently assessed in terms of the quantity necessary to give 50% inhibition (the IC50 value), the relationships between this and the mode of inhibition is also considered, in terms of the misleading information that it may provide. Incorporation of more than one functionality into the same molecule to give a multi-target-directed ligands (MTDLs) requires careful assessment to ensure that the specific target effects are not significantly altered and that the kinetic behavior remains as favourable with the MTDL as it does with the individual components. Such factors will be considered in terms of recently developed MTDLs that combine MAO and ChE inhibitory functions.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews KY16 8QP, UK.
| | - Keith F Tipton
- School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
48
|
Aouani I, Sellami B, Lahbib K, Cavalier JF, Touil S. Efficient synthesis of novel dialkyl-3-cyanopropylphosphate derivatives and evaluation of their anticholinesterase activity. Bioorg Chem 2017; 72:301-307. [DOI: 10.1016/j.bioorg.2017.05.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 04/30/2017] [Accepted: 05/04/2017] [Indexed: 10/19/2022]
|
49
|
Karasova JZ, Maderycova Z, Tumova M, Jun D, Rehacek V, Kuca K, Misik J. Activity of cholinesterases in a young and healthy middle-European population: Relevance for toxicology, pharmacology and clinical praxis. Toxicol Lett 2017; 277:24-31. [PMID: 28465191 DOI: 10.1016/j.toxlet.2017.04.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 01/05/2023]
Abstract
The activity of human cholinesterases, erythrocyte acetylcholinesterase (AChE; EC 3.1.1.7) and plasma butyrylcholinesterase (BChE; EC 3.1.1.8) represents an important marker when monitoring exposure to pesticides/nerve agents, and may also be used in occupational medicine in diagnosis and prognosis of some diseases. In this study "normal/baseline" AChE and BChE activity has been investigated in a young and healthy population, with subsequent evaluation of several intra-population factors including sex, age (categories 18-25, 26-35 and 36-45 years old) and smoker status. The modified Ellman's method was used for enzyme activity assessment in 387 young and healthy individuals (201 males and 186 females aged 18-45). A significant inter-sexual difference in AChE and BChE activity was found (AChE: 351±67 for males and 377±65 for females, (μmol/min)/(μmol of hemoglobin), p<0.001; BChE: 140±33 for males and 109±29 for females, μkat/l, p<0.001; mean±SD). Despite the finding that mean AChE activity somewhat decreased whereas BChE activity grew within the age categories of the tested subjects, no significant effect of age on cholinesterase activity was found (p>0.05). Smoking influenced cholinesterase activity - AChE activity in smokers was elevated (approx. 3% in males; 8% in females) relative to that in non-smokers (p<0.05). Smoking was found not to have any effect on BChE activity. Reference values based on confidence intervals for AChE and BChE activity were established. The presented results might be useful in routine clinical practice where the monitoring of blood AChE and plasma BChE activity is crucial for prognosis and diagnosis of organophosphate poisoning, in occupational medicine and in relevant mass casualty scenarios.
Collapse
Affiliation(s)
- Jana Zdarova Karasova
- Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic.
| | - Zuzana Maderycova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Martina Tumova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Daniel Jun
- Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Vit Rehacek
- Transfusion Department, University Hospital, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic; Department of Cellular Biology and Pharmacology, College of Medicine, Florida, International University, Miami, USA
| | - Jan Misik
- Biomedical Research Center, University Hospital, Hradec Kralove, Czech Republic; Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, Hradec Kralove, Czech Republic
| |
Collapse
|
50
|
Li S, Huang R, Solomon S, Liu Y, Zhao B, Santillo MF, Xia M. Identification of acetylcholinesterase inhibitors using homogenous cell-based assays in quantitative high-throughput screening platforms. Biotechnol J 2017; 12. [PMID: 28294544 DOI: 10.1002/biot.201600715] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/09/2017] [Accepted: 03/13/2017] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) is an enzyme responsible for metabolism of acetylcholine, a neurotransmitter associated with muscle movement, cognition, and other neurobiological processes. Inhibition of AChE activity can serve as a therapeutic mechanism, but also cause adverse health effects and neurotoxicity. In order to efficiently identify AChE inhibitors from large compound libraries, homogenous cell-based assays in high-throughput screening platforms are needed. In this study, a fluorescent method using Amplex Red (10-acetyl-3,7-dihydroxyphenoxazine) and the Ellman absorbance method were both developed in a homogenous format using a human neuroblastoma cell line (SH-SY5Y). An enzyme-based assay using Amplex Red was also optimized and used to confirm the potential inhibitors. These three assays were used to screen 1368 compounds, which included a library of pharmacologically active compounds (LOPAC) and 88 additional compounds from the Tox21 program, at multiple concentrations in a quantitative high-throughput screening (qHTS) format. All three assays exhibited exceptional performance characteristics including assay signal quality, precision, and reproducibility. A group of inhibitors were identified from this study, including known (e.g. physostigmine and neostigmine bromide) and potential novel AChE inhibitors (e.g. chelerythrine chloride and cilostazol). These results demonstrate that this platform is a promising means to profile large numbers of chemicals that inhibit AChE activity.
Collapse
Affiliation(s)
- Shuaizhang Li
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruili Huang
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Samuel Solomon
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yitong Liu
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Bin Zhao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Michael F Santillo
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Menghang Xia
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|