1
|
Morgunova A, Ibrahim P, Chen GG, Coury SM, Turecki G, Meaney MJ, Gifuni A, Gotlib IH, Nagy C, Ho TC, Flores C. Preparation and processing of dried blood spots for microRNA sequencing. Biol Methods Protoc 2023; 8:bpad020. [PMID: 37901452 PMCID: PMC10603595 DOI: 10.1093/biomethods/bpad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
Dried blood spots (DBS) are biological samples commonly collected from newborns and in geographic areas distanced from laboratory settings for the purposes of disease testing and identification. MicroRNAs (miRNAs)-small non-coding RNAs that regulate gene activity at the post-transcriptional level-are emerging as critical markers and mediators of disease, including cancer, infectious diseases, and mental disorders. This protocol describes optimized procedural steps for utilizing DBS as a reliable source of biological material for obtaining peripheral miRNA expression profiles. We outline key practices, such as the method of DBS rehydration that maximizes RNA extraction yield, and the use of degenerate oligonucleotide adapters to mitigate ligase-dependent biases that are associated with small RNA sequencing. The standardization of miRNA readout from DBS offers numerous benefits: cost-effectiveness in sample collection and processing, enhanced reliability and consistency of miRNA profiling, and minimal invasiveness that facilitates repeated testing and retention of participants. The use of DBS-based miRNA sequencing is a promising method to investigate disease mechanisms and to advance personalized medicine.
Collapse
Affiliation(s)
- Alice Morgunova
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Pascal Ibrahim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec H3A 1A1, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
| | - Gary Gang Chen
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
| | - Saché M Coury
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Gustavo Turecki
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Michael J Meaney
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3A 2B4, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Brenner Centre for Molecular Medicine, Singapore City 138632, Singapore
| | - Anthony Gifuni
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Corina Nagy
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec H4H 1R3, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Tiffany C Ho
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
- Department of Psychology, University of California, Los Angeles, CA 90095, United States
| | - Cecilia Flores
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec H3A 0G4, Canada
- Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
2
|
DeLouize AM, Eick G, Karam SD, Snodgrass JJ. Current and future applications of biomarkers in samples collected through minimally invasive methods for cancer medicine and population-based research. Am J Hum Biol 2022; 34:e23665. [PMID: 34374148 PMCID: PMC9894104 DOI: 10.1002/ajhb.23665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/04/2023] Open
Abstract
Despite advances in cancer medicine and research, invasive and potentially risky procedures such as biopsies, venous blood tests, imaging, colonoscopy, and pap smear tests are still primarily used for screening, staging, and assessing response to therapy. The development and interdisciplinary use of biomarkers from urine, feces, saliva, scent, and capillary blood collected with minimally invasive methods represents a potential opportunity for integration with biomarker analysis for cancers, both in clinical practice (e.g., in screening, treatment, and disease monitoring, and improved quality of life for patients) and population-based research (e.g., in epidemiology/public health, studies of social and environmental determinants, and evolutionary medicine). In this article, we review the scientific rationale, benefits, challenges, and potential opportunities for measuring cancer-related biomarkers in samples collected through minimally invasive methods.
Collapse
Affiliation(s)
| | - Geeta Eick
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
| | - Sana D. Karam
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - J. Josh Snodgrass
- Department of Anthropology, University of Oregon, Eugene, Oregon, USA
- Center for Global Health, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
3
|
Carpentieri D, Colvard A, Petersen J, Marsh W, David-Dirgo V, Huentelman M, Pirrotte P, Sivakumaran TA. Mind the Quality Gap When Banking on Dry Blood Spots. Biopreserv Biobank 2021; 19:136-142. [PMID: 33567235 DOI: 10.1089/bio.2020.0131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Dry blood spots (DBS) offer many advantages over other blood banking protocols due to the reduction of time and equipment needed for collection and the ease of processing, storage, and shipment. In addition, the sample size makes it a very attractive method when considering the banking of small pediatric samples. On that note, the Centers for Disease Control and Prevention (CDC) preanalytical standards for DBS are commonly used in the worldwide mass spectrometry-based inborn errors of metabolism screening programs. However, these guidelines may not apply for analytes and protocols not included in these programs. In fact, the availability of leftover samples and the ongoing interest in protocols outside this scenario are providing us with new DBS biobanking insights. Herein, we review the literature for indicators that should be considered in the design of prospective fit for purpose DBS biobanks, especially for those focused mostly on pediatric and OMIC platforms.
Collapse
Affiliation(s)
- David Carpentieri
- Department of Pathology and Laboratory Medicine, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Amber Colvard
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - Jackie Petersen
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| | - William Marsh
- Department of Biorepository, Mayo Clinic, Phoenix, Arizona, USA
| | - Victoria David-Dirgo
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Matt Huentelman
- Neurogenomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, The Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - T A Sivakumaran
- Department of Pathology, Clinical Genomics, Phoenix Children's Hospital, Phoenix, Arizona, USA
| |
Collapse
|
4
|
Jones S, Subramaniam G, Plucinski MM, Patel D, Padilla J, Aidoo M, Talundzic E. One-step PCR: A novel protocol for determination of pfhrp2 deletion status in Plasmodium falciparum. PLoS One 2020; 15:e0236369. [PMID: 32702040 PMCID: PMC7377462 DOI: 10.1371/journal.pone.0236369] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/03/2020] [Indexed: 01/08/2023] Open
Abstract
Histidine-rich protein 2 (HRP2) detecting rapid diagnostic tests (RDTs) have played an important role in enabling prompt malaria diagnosis in remote locations. However, emergence of pfhrp2 deleted parasites is threatening the efficacy of RDTs, and the World Health Organization (WHO) has highlighted surveillance of these deletions as a priority. Nested PCR is used to confirm pfhrp2 deletion but is costly and laborious. Due to spurious amplification of paralogue pfhrp3, the identity of nested exon 1 PCR product must be confirmed by sequencing. Here we describe a new one-step PCR method for detection of pfhrp2. To determine sensitivity and specificity, all PCRs were performed in triplicate. Using photo-induced electron transfer (PET) PCR detecting 18srRNA as true positive, one-step had comparable sensitivity of 95.0% (88.7–98.4%) to nested exon 1, 99.0% (94.6–99.9%) and nested exon 2, 98.0% (93.0–99.8%), and comparable specificity 93.8% (69.8–99.8%) to nested exon 1 100.0% (79.4–100.0%) and nested exon 2, 100.0% (74.4–100.0%). Sequencing revealed that one step PCR does not amplify pfhrp3. Logistic regression models applied to measure the 95% level of detection of the one-step PCR in clinical isolates provided estimates of 133p/μL (95% confidence interval (CI): 3-793p/μL) for whole blood (WB) samples and 385p/μL (95% CI: 31–2133 p/μL) for dried blood spots (DBSs). When considering protocol attributes, the one-step PCR is less expensive, faster and more suitable for high throughput. In summary, we have developed a more accurate PCR method that may be ideal for the application of the WHO protocol for investigating pfhrp2 deletions in symptomatic individuals presenting to health care facilities.
Collapse
Affiliation(s)
- Sophie Jones
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Williams Consulting, Baltimore, Maryland, United States of America
- * E-mail:
| | - Gireesh Subramaniam
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Oak Ridge Institute for Science and Education, Atlanta, Georgia, United States of America
| | - Mateusz M. Plucinski
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- President’s Malaria Initiative, Atlanta, Georgia, United States of America
| | - Dhruviben Patel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- Williams Consulting, Baltimore, Maryland, United States of America
| | - Jasmine Padilla
- Oak Ridge Institute for Science and Education, Atlanta, Georgia, United States of America
- Biotechnology Core Facilities Branch, Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Michael Aidoo
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
5
|
Hi-Plex2: a simple and robust approach to targeted sequencing-based genetic screening. Biotechniques 2019; 67:118-122. [PMID: 31267764 DOI: 10.2144/btn-2019-0026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We have previously reported Hi-Plex, a multiplex PCR methodology for building targeted DNA sequencing libraries that offers a low-cost protocol compatible with high-throughput processing. Here, we detail an improved protocol, Hi-Plex2, that more effectively enables the robust construction of small-to-medium panel-size libraries while maintaining low cost, simplicity and accuracy benefits of the Hi-Plex platform. Hi-Plex2 was applied to three panels, comprising 291, 740 and 1193 amplicons, targeting genes associated with risk for breast and/or colon cancer. We show substantial reduction of off-target amplification to enable library construction for small-to-medium-sized design panels not possible using the previous Hi-Plex chemistry.
Collapse
|
6
|
Hopper JL, Dite GS, MacInnis RJ, Liao Y, Zeinomar N, Knight JA, Southey MC, Milne RL, Chung WK, Giles GG, Genkinger JM, McLachlan SA, Friedlander ML, Antoniou AC, Weideman PC, Glendon G, Nesci S, Andrulis IL, Buys SS, Daly MB, John EM, Phillips KA, Terry MB. Age-specific breast cancer risk by body mass index and familial risk: prospective family study cohort (ProF-SC). Breast Cancer Res 2018; 20:132. [PMID: 30390716 PMCID: PMC6215632 DOI: 10.1186/s13058-018-1056-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/02/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The association between body mass index (BMI) and risk of breast cancer depends on time of life, but it is unknown whether this association depends on a woman's familial risk. METHODS We conducted a prospective study of a cohort enriched for familial risk consisting of 16,035 women from 6701 families in the Breast Cancer Family Registry and the Kathleen Cunningham Foundation Consortium for Research into Familial Breast Cancer followed for up to 20 years (mean 10.5 years). There were 896 incident breast cancers (mean age at diagnosis 55.7 years). We used Cox regression to model BMI risk associations as a function of menopausal status, age, and underlying familial risk based on pedigree data using the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm (BOADICEA), all measured at baseline. RESULTS The strength and direction of the BMI risk association depended on baseline menopausal status (P < 0.001); after adjusting for menopausal status, the association did not depend on age at baseline (P = 0.6). In terms of absolute risk, the negative association with BMI for premenopausal women has a much smaller influence than the positive association with BMI for postmenopausal women. Women at higher familial risk have a much larger difference in absolute risk depending on their BMI than women at lower familial risk. CONCLUSIONS The greater a woman's familial risk, the greater the influence of BMI on her absolute postmenopausal breast cancer risk. Given that age-adjusted BMI is correlated across adulthood, maintaining a healthy weight throughout adult life is particularly important for women with a family history of breast cancer.
Collapse
Affiliation(s)
- John L. Hopper
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC Australia
| | - Gillian S. Dite
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC Australia
| | - Robert J. MacInnis
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC Australia
| | - Yuyan Liao
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, 7th Floor, New York, NY USA
| | - Nur Zeinomar
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, 7th Floor, New York, NY USA
| | - Julia A. Knight
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON Canada
| | - Melissa C. Southey
- Department of Pathology, Genetic Epidemiology Laboratory, The University of Melbourne, Parkville, VIC Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, CA VIC 3168 USA
| | - Roger L. Milne
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC Australia
| | - Wendy K. Chung
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY USA
- Departments of Pediatrics and Medicine, Columbia University, New York, NY USA
| | - Graham G. Giles
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC Australia
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC Australia
| | - Jeanine M. Genkinger
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, 7th Floor, New York, NY USA
| | - Sue-Anne McLachlan
- Department of Medicine, St Vincent’s Hospital, The University of Melbourne, Parkville, VIC Australia
- Department of Medical Oncology, St Vincent’s Hospital, Fitzroy, VIC Australia
| | - Michael L. Friedlander
- Prince of Wales Clinical School, University of New South Wales, Sydney, NSW Australia
- Department of Medical Oncology, Prince of Wales Hospital, Randwick, NSW Australia
| | - Antonis C. Antoniou
- Department of Public Health and Primary Care, Centre for Cancer Genetic Epidemiology, University of Cambridge, Cambridge, UK
| | - Prue C. Weideman
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC Australia
| | - Gord Glendon
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON Canada
| | - Stephanie Nesci
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - kConFab Investigators
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
- The Research Department, The Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Irene L. Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON Canada
- Departments of Molecular Genetics and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON Canada
| | - Saundra S. Buys
- Department of Medicine and Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT USA
| | - Mary B. Daly
- Department of Clinical Genetics, Fox Chase Cancer Center, Philadelphia, PA USA
| | - Esther M. John
- Department of Medicine and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA USA
| | - Kelly Anne Phillips
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, VIC Australia
- Division of Cancer Medicine, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC Australia
| | - Mary Beth Terry
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 W 168th St, 7th Floor, New York, NY USA
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY USA
| |
Collapse
|
7
|
Pope BJ, Hammet F, Nguyen-Dumont T, Park DJ. Hi-Plex for Simple, Accurate, and Cost-Effective Amplicon-based Targeted DNA Sequencing. Methods Mol Biol 2018; 1712:53-70. [PMID: 29224068 DOI: 10.1007/978-1-4939-7514-3_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hi-Plex is a suite of methods to enable simple, accurate, and cost-effective highly multiplex PCR-based targeted sequencing (Nguyen-Dumont et al., Biotechniques 58:33-36, 2015). At its core is the principle of using gene-specific primers (GSPs) to "seed" (or target) the reaction and universal primers to "drive" the majority of the reaction. In this manner, effects on amplification efficiencies across the target amplicons can, to a large extent, be restricted to early seeding cycles. Product sizes are defined within a relatively narrow range to enable high-specificity size selection, replication uniformity across target sites (including in the context of fragmented input DNA such as that derived from fixed tumor specimens (Nguyen-Dumont et al., Biotechniques 55:69-74, 2013; Nguyen-Dumont et al., Anal Biochem 470:48-51, 2015), and application of high-specificity genetic variant calling algorithms (Pope et al., Source Code Biol Med 9:3, 2014; Park et al., BMC Bioinformatics 17:165, 2016). Hi-Plex offers a streamlined workflow that is suitable for testing large numbers of specimens without the need for automation.
Collapse
Affiliation(s)
- Bernard J Pope
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Fleur Hammet
- Genomic Technologies Group, Genetic Epidemiology Laboratory, Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Tu Nguyen-Dumont
- Genomic Technologies Group, Genetic Epidemiology Laboratory, Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Daniel J Park
- Melbourne Bioinformatics, The University of Melbourne, Parkville, VIC, 3010, Australia. .,Genomic Technologies Group, Genetic Epidemiology Laboratory, Department of Medicine, The University of Melbourne, Parkville, VIC, 3010, Australia.
| |
Collapse
|