1
|
Isanta-Navarro J, Peoples LM, Bras B, Church MJ, Elser JJ. Elemental and macromolecular plasticity of Chlamydomonas reinhardtii (Chlorophyta) in response to resource limitation and growth rate. JOURNAL OF PHYCOLOGY 2024; 60:418-431. [PMID: 38196398 DOI: 10.1111/jpy.13417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 01/11/2024]
Abstract
With the ongoing differential disruption of the biogeochemical cycles of major elements that are essential for all life (carbon, nitrogen, and phosphorus), organisms are increasingly faced with a heterogenous supply of these elements in nature. Given that photosynthetic primary producers form the base of aquatic food webs, impacts of changed elemental supply on these organisms are particularly important. One way that phytoplankton cope with the differential availability of nutrients is through physiological changes, resulting in plasticity in macromolecular and elemental biomass composition. Here, we assessed how the green alga Chlamydomonas reinhardtii adjusts its macromolecular (e.g., carbohydrates, lipids, and proteins) and elemental (C, N, and P) biomass pools in response to changes in growth rate and the modification of resources (nutrients and light). We observed that Chlamydomonas exhibits considerable plasticity in elemental composition (e.g., molar ratios ranging from 124 to 971 for C:P, 4.5 to 25.9 for C:N, and 15.1 to 61.2 for N:P) under all tested conditions, pointing to the adaptive potential of Chlamydomonas in a changing environment. Exposure to low light modified the elemental and macromolecular composition of cells differently than limitation by nutrients. These observed differences, with potential consequences for higher trophic levels, included smaller cells, shifts in C:N and C:P ratios (due to proportionally greater N and P contents), and differential allocation of C among macromolecular pools (proportionally more lipids than carbohydrates) with different energetic value. However, substantial pools of N and P remained unaccounted for, especially at fast growth, indicating accumulation of N and P in forms we did not measure.
Collapse
Affiliation(s)
- Jana Isanta-Navarro
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Logan M Peoples
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Benedicta Bras
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Matthew J Church
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - James J Elser
- Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| |
Collapse
|
2
|
Morowvat MH, Kazemi K, Jaberi MA, Amini A, Gholami A. Biosynthesis and Antimicrobial Evaluation of Zinc Oxide Nanoparticles Using Chlorella vulgaris Biomass against Multidrug-Resistant Pathogens. MATERIALS (BASEL, SWITZERLAND) 2023; 16:842. [PMID: 36676578 PMCID: PMC9863921 DOI: 10.3390/ma16020842] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The rampant increase in antibiotic resistance has created a global barrier to the treatment of multidrug-resistant infections. Biogenic synthesis of nanomaterials is a novel approach to producing nanostructures with biological resources. Algae are known to be clean, nontoxic, cost-beneficial, and environmentally acceptable. Chlorella vulgaris is a popular microalga for its broad applications in food, supplements, pharmaceuticals, and cosmetics. In this study, we used Chlorella vulgaris biomass lyophilized powder as our green resource for the biosynthesis ZnONPs. Chlorella vulgaris culture was harvested at the end of the logarithmic phase, and the biomass was lyophilized. ZnONPs were synthesized using lyophilized biomass and 20 mM zinc acetate dihydrate at a temperature of 70 °C and continuous stirring in a water bath overnight. At the end of the reaction, UV-Vis absorption of colloidal suspension proved the synthesis of ZnONPs. The physicochemical characteristics of nanoparticles were analyzed using FTIR, DLS, TEM, and XRD. Based on FTIR spectra. The antibacterial activity of green synthesized nanostructures was evaluated against methicillin-resistant staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE). The synthesized ZnONPs have oxygen-containing groups on the surface that show the synthesized nanoparticles' stabilization. The Zeta potential was -27.4 mV, and the mean particle size was measured as 33.4 nanometers. Biogenic ZnONPs produced in this method have a notable size distribution and excellent surface energy, which can have vast applications like antimicrobial potential in pharmaceuticals as topical forms. Additionally, in order to evaluate the antimicrobial activity of ZnO nanoparticles, we used MRSA and VRE strains and the results showed the anti-MRSA activity at 400 and 625 μg mL-1, respectively. Thus, these biogenic ZnO nanoparticles revealed a substantial antibacterial effect against multidrug-resistant pathogens, associated with several serious systemic infections, and have the potential as an antimicrobial agent for further study.
Collapse
Affiliation(s)
- Mohammad Hossein Morowvat
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
| | - Kimia Kazemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
| | - Maral Ansari Jaberi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
| | - Abbas Amini
- Department of Mechanical Engineering, Australian University (AU)-Kuwait, Mishref, Safat 13015, Kuwait
- Center for Infrastructure Engineering, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz P.O. Box 71468-64685, Iran
| |
Collapse
|
3
|
A standardized method for the quantification of polysaccharides: An example of polysaccharides from Tremella fuciformis. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Kurzyna-Szklarek M, Cybulska J, Zdunek A. Analysis of the chemical composition of natural carbohydrates - An overview of methods. Food Chem 2022; 394:133466. [PMID: 35716502 DOI: 10.1016/j.foodchem.2022.133466] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 11/19/2022]
Abstract
Natural carbohydrates are gaining importance over a wide spectrum of human activity due to their versatile functionalities. The properties of carbohydrates are currently used in many branches of industry and new possibilities of their utilization, like in medicine or materials science, are demonstrated systematically. The attractive properties of carbohydrates result from their chemical structure and ability to form macromolecules and derivatives. Each application of carbohydrate requires a knowledge of their chemical composition, which due to the number and differentiation of monosaccharides and their spatial forms is often challenging. This review presents an overview on sample preparation and the methods used for the determination of the fine chemical structure of natural carbohydrates. Most popular and reliable colorimetric, chromatographic and spectroscopic methods are presented with an emphasis on their pros and cons.
Collapse
Affiliation(s)
| | - Justyna Cybulska
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland.
| | - Artur Zdunek
- Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland
| |
Collapse
|
5
|
Tedeschi AM, Di Caprio F, Piozzi A, Pagnanelli F, Francolini I. Sustainable Bioactive Packaging Based on Thermoplastic Starch and Microalgae. Int J Mol Sci 2021; 23:ijms23010178. [PMID: 35008606 PMCID: PMC8745059 DOI: 10.3390/ijms23010178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022] Open
Abstract
This study combines the use of corn starch and Tetradesmus obliquus microalgae for the production of antioxidant starch films as flexible packaging material. Starch was plasticized with glycerol and blended with 1 w% polyallylamine chosen as an agent to modify the film physical properties. The addition of polyallylamine improved film water stability and water vapor transmission rate as well as mechanical stiffness and tenacity. The dried Tetradesmus obliquus microalgae, which showed an EC50 value of 2.8 mg/mg DPPH (2.2-Diphenyl-1-picrylhydrazyl radical), was then used as antioxidant filler. The addition of microalgae provided the films with good antioxidant activity, which increased with microalgae content increasing. To our knowledge, this is the first study reporting the development of sustainable bioactive packaging films composed of almost 100% starch, and follows the European union's goals on plastics strategy concerning the promotion of bio-based, compostable plastics and the setting up of approaches to prevent food waste with a simple plastic packaging.
Collapse
|
6
|
Zhu C, Liu Z, Ren L, Jiao S, Zhang X, Wang Q, Li Z, Du Y, Li JJ. Overexpression and biochemical characterization of a truncated endo-α (1 → 3)-fucoidanase from alteromonas sp. SN-1009. Food Chem 2021; 353:129460. [PMID: 33725543 DOI: 10.1016/j.foodchem.2021.129460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022]
Abstract
Endo-fucoidanases are important in structural analysis of fucoidans and preparation of fuco-oligosaccharides. However their enzymological properties and analysis of degradation products are scarcely investigated. Truncated endo-α (1 → 3)-fucoidanase Fda1 (tFda1B from Alteromonas sp. was overexpressed and characterized, showing highest activity at pH 7.0, 35 °C, and 1.0 M NaCl. Its Km and kcat were 3.88 ± 0.81 mg/mL and 0.82 ± 0.17 min-1. Fe3+ and Mn2+ enhanced activity by 100% and 19.5% respectively. Co2+ and Cu2+ completely inactivated tFda1B, whereas Ni2+, Mg2+, Zn2+, Pb2+, Ca2+, Ba2+ and Li+ decreased activity by 58.8%, 56.0%, 50.6%, 47.7%, 28.9%, 15.6% and 37.5%, respectively. Catalytic residues were identified through structure and sequence alignment, and confirmed by mutagenesis. Degradation products of Kjellmaniella crassifolia fucoidan by tFda1B were characterized by LC-ESI-MS/MS, confirming tFda1B belongs to endo-(1 → 3)-fucoidanases, and backbone of K. crassifolia fucoidan is 1 → 3 fucoside linkage. This endo-α (1 → 3)-fucoidanase would be useful for elucidating fucoidan structures, and be used as a food enzyme.
Collapse
Affiliation(s)
- Chenlu Zhu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China; National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zebin Liu
- College of Life Sciences, Capital Normal University, Beijing 10048, China
| | - Lishi Ren
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Siming Jiao
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuebing Zhang
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiukuan Wang
- National R & D Branch Center for Seaweed Processing, Key Laboratory of Aquatic Product Processing and Utilization of Liaoning Province, College of Food Science and Engineering, Dalian Ocean University, Dalian 116023, China
| | - Zhimin Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yuguang Du
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Jian-Jun Li
- National Key Laboratory of Biochemical Engineering, National Engineering Research Center for Biotechnology (Beijing), Key Laboratory of Biopharmaceutical Production & Formulation Engineering, PLA, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Influence of preservation methods on biochemical composition and downstream processing of cultivated Saccharina latissima biomass. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Identifying a marine microalgae with high carbohydrate productivities under stress and potential for efficient flocculation. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.02.034] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Harmonization of experimental approach and data collection to streamline analysis of biomass composition from algae in an inter-laboratory setting. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.03.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Total Carbohydrate Content Determination of Microalgal Biomass by Acid Hydrolysis Followed by Spectrophotometry or Liquid Chromatography. Methods Mol Biol 2017; 1980:191-202. [PMID: 29199377 DOI: 10.1007/7651_2017_106] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The carbohydrate fraction of microalgal biomass is complex and consists of a combination of neutral, acidic, amino sugars, and sugar alcohols. These carbohydrate amalgamations can be difficult to accurately quantify with the most analytical carbohydrate determination techniques. The method described here provides a straightforward two-step sulfuric acid hydrolysis followed by soluble carbohydrate quantification by either a spectrophotometric method (based on aldehyde functional group derivatization), for an overall combined monomeric sugar concentration determination, or a liquid chromatography method, for a more specific monomeric sugar profile.
Collapse
|