1
|
Vuillefroy de Silly R, Pericou L, Seijo B, Crespo I, Irving M. Acidity suppresses CD8 + T-cell function by perturbing IL-2, mTORC1, and c-Myc signaling. EMBO J 2024; 43:4922-4953. [PMID: 39284912 DOI: 10.1038/s44318-024-00235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
CD8 + T cells have critical roles in tumor control, but a range of factors in their microenvironment such as low pH can suppress their function. Here, we demonstrate that acidity restricts T-cell expansion mainly through impairing IL-2 responsiveness, lowers cytokine secretion upon re-activation, and reduces the cytolytic capacity of CD8 + T cells expressing low-affinity TCR. We further find decreased mTORC1 signaling activity and c-Myc levels at low pH. Mechanistically, nuclear/cytoplasmic acidification is linked to mTORC1 suppression in a Rheb-, Akt/TSC2/PRAS40-, GATOR1- and Lkb1/AMPK-independent manner, while c-Myc levels drop due to both decreased transcription and higher levels of proteasome-mediated degradation. In addition, lower intracellular levels of glutamine, glutamate, and aspartate, as well as elevated proline levels are observed with no apparent impact on mTORC1 signaling or c-Myc levels. Overall, we suggest that, due to the broad impact of acidity on CD8 + T cells, multiple interventions will be required to restore T-cell function unless intracellular pH is effectively controlled.
Collapse
Affiliation(s)
- Romain Vuillefroy de Silly
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| | - Laetitia Pericou
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Bili Seijo
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Isaac Crespo
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, University of Lausanne and Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
| |
Collapse
|
2
|
Meiser J, Frezza C. Presenting metabolomics analyses: what's in a number? EMBO J 2024; 43:4444-4450. [PMID: 38664540 PMCID: PMC11480362 DOI: 10.1038/s44318-024-00098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/20/2024] [Accepted: 03/20/2024] [Indexed: 05/09/2024] Open
Abstract
As part of a metabolism methods advice series, this commentary highlights frequent pitfalls and offers guidance related to designing, processing, and communicating metabolomics analyses.
Collapse
Affiliation(s)
- Johannes Meiser
- Cancer Metabolism Group, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg.
| | - Christian Frezza
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University Hospital Cologne, Cologne, Germany.
- Institute of Genetics, Faculty of Mathematics and Natural Sciences, Faculty of Medicine, University of Cologne, Cologne, Germany.
| |
Collapse
|
3
|
Sőregi P, Zwillinger M, Vágó L, Csékei M, Kotschy A. High density information storage through isotope ratio encoding. Chem Sci 2024:d4sc03519d. [PMID: 39246345 PMCID: PMC11376023 DOI: 10.1039/d4sc03519d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
The need for reliable information storage is on a steep rise. Sequence-defined polymers, particularly oligonucleotides, are already in use in several areas, while compound mixtures also offer a simple way for storing information. We investigated the use of a set of isotopologues in information storage by mixing, where the information is stored in the form of a mass spectrometric (MS) fingerprint of the mixture. A small molecule with 24 non-labile and replaceable hydrogen atoms was selected as a model, and a set of components covering the D0-D24 deuteration range were synthesized. Theoretical analysis predicted that by mixing up to 10 out of the prepared components, one can encode over 130 million different combinations and distinguish their MS fingerprints. As a proof of principle, several mixtures predicted to have similar fingerprints were prepared and their MS fingerprints were recorded. From each measured MS fingerprint, we were able to unambiguously identify the actual composition of the mixture. It was also demonstrated that one can make the MS fingerprints of a given mixture unique, thereby making counterfeiting of the stored information very difficult. Finally, the utility of isotope ratio encoding in covalent tagging was also demonstrated.
Collapse
Affiliation(s)
- Petra Sőregi
- Servier Research Institute of Medicinal Chemistry Záhony utca 7 1031 Budapest Hungary
- Hevesy György PhD School of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A 1117 Budapest Hungary
| | - Márton Zwillinger
- Servier Research Institute of Medicinal Chemistry Záhony utca 7 1031 Budapest Hungary
| | - Lajos Vágó
- Kastély u. 49/A 2045 Törökbálint Hungary
| | - Márton Csékei
- Servier Research Institute of Medicinal Chemistry Záhony utca 7 1031 Budapest Hungary
| | - Andras Kotschy
- Servier Research Institute of Medicinal Chemistry Záhony utca 7 1031 Budapest Hungary
| |
Collapse
|
4
|
Lee HM, Muhammad N, Lieu EL, Cai F, Mu J, Ha YS, Cao G, Suchors C, Joves K, Chronis C, Li K, Ducker GS, Olszewski K, Cai L, Allison DB, Bachert SE, Ewing WR, Wong H, Seo H, Kim IY, Faubert B, Kim J, Kim J. Concurrent loss of LKB1 and KEAP1 enhances SHMT-mediated antioxidant defence in KRAS-mutant lung cancer. Nat Metab 2024; 6:1310-1328. [PMID: 38877143 DOI: 10.1038/s42255-024-01066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/16/2024] [Indexed: 06/16/2024]
Abstract
Non-small-cell lung cancer (NSCLC) with concurrent mutations in KRAS and the tumour suppressor LKB1 (KL NSCLC) is refractory to most therapies and has one of the worst predicted outcomes. Here we describe a KL-induced metabolic vulnerability associated with serine-glycine-one-carbon (SGOC) metabolism. Using RNA-seq and metabolomics data from human NSCLC, we uncovered that LKB1 loss enhanced SGOC metabolism via serine hydroxymethyltransferase (SHMT). LKB1 loss, in collaboration with KEAP1 loss, activated SHMT through inactivation of the salt-induced kinase (SIK)-NRF2 axis and satisfied the increased demand for one-carbon units necessary for antioxidant defence. Chemical and genetic SHMT suppression increased cellular sensitivity to oxidative stress and cell death. Further, the SHMT inhibitor enhanced the in vivo therapeutic efficacy of paclitaxel (first-line NSCLC therapy inducing oxidative stress) in KEAP1-mutant KL tumours. The data reveal how this highly aggressive molecular subtype of NSCLC fulfills their metabolic requirements and provides insight into therapeutic strategies.
Collapse
Affiliation(s)
- Hyun Min Lee
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | - Nefertiti Muhammad
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Elizabeth L Lieu
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Feng Cai
- Children's Medical Center Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jiawei Mu
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Korea
| | - Guoshen Cao
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Chamey Suchors
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Kenneth Joves
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Constantinos Chronis
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Kailong Li
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Gregory S Ducker
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Ling Cai
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Derek B Allison
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Sara E Bachert
- Department of Pathology and Laboratory Medicine, University of Kentucky College of Medicine, Lexington, KY, USA
| | | | - Harvey Wong
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hyosun Seo
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Isaac Y Kim
- Department of Urology, Yale School of Medicine, New Haven, CT, USA
| | - Brandon Faubert
- Department of Medicine-Hematology and Oncology, University of Chicago, Chicago, IL, USA
| | - James Kim
- Hamon Center for Therapeutic Oncology Research, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jiyeon Kim
- Department of Urology, Yale School of Medicine, New Haven, CT, USA.
- Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
5
|
Huber K, Giralt A, Dreos R, Michenthaler H, Geller S, Barquissau V, Ziegler DV, Tavernari D, Gallart-Ayala H, Krajina K, Jonas K, Ciriello G, Ivanisevic J, Prokesch A, Pichler M, Fajas L. E2F transcription factor-1 modulates expression of glutamine metabolic genes in mouse embryonic fibroblasts and uterine sarcoma cells. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119721. [PMID: 38580088 DOI: 10.1016/j.bbamcr.2024.119721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/07/2024]
Abstract
Metabolic reprogramming is considered as a hallmark of cancer and is clinically exploited as a novel target for therapy. The E2F transcription factor-1 (E2F1) regulates various cellular processes, including proliferative and metabolic pathways, and acts, depending on the cellular and molecular context, as an oncogene or tumor suppressor. The latter is evident by the observation that E2f1-knockout mice develop spontaneous tumors, including uterine sarcomas. This dual role warrants a detailed investigation of how E2F1 loss impacts metabolic pathways related to cancer progression. Our data indicate that E2F1 binds to the promoter of several glutamine metabolism-related genes. Interestingly, the expression of genes in the glutamine metabolic pathway were increased in mouse embryonic fibroblasts (MEFs) lacking E2F1. In addition, we confirm that E2f1-/- MEFs are more efficient in metabolizing glutamine and producing glutamine-derived precursors for proliferation. Mechanistically, we observe a co-occupancy of E2F1 and MYC on glutamine metabolic promoters, increased MYC binding after E2F1 depletion and that silencing of MYC decreased the expression of glutamine-related genes in E2f1-/- MEFs. Analyses of transcriptomic profiles in 29 different human cancers identified uterine sarcoma that showed a negative correlation between E2F1 and glutamine metabolic genes. CRISPR/Cas9 knockout of E2F1 in the uterine sarcoma cell line SK-UT-1 confirmed elevated glutamine metabolic gene expression, increased proliferation and increased MYC binding to glutamine-related promoters upon E2F1 loss. Together, our data suggest a crucial role of E2F1 in energy metabolism and metabolic adaptation in uterine sarcoma cells.
Collapse
Affiliation(s)
- Katharina Huber
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland; Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Albert Giralt
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Helene Michenthaler
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria
| | - Sarah Geller
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Valentin Barquissau
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Dorian V Ziegler
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Daniele Tavernari
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Léman, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Katarina Krajina
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Katharina Jonas
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland; Swiss Cancer Center Léman, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Andreas Prokesch
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Division of Cell Biology, Histology and Embryology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Translational Oncology, II. Med. Clinics, University Hospital of Augsburg, Augsburg, Germany
| | - Lluis Fajas
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Hilovsky D, Hartsell J, Young JD, Liu X. Stable Isotope Tracing Analysis in Cancer Research: Advancements and Challenges in Identifying Dysregulated Cancer Metabolism and Treatment Strategies. Metabolites 2024; 14:318. [PMID: 38921453 PMCID: PMC11205609 DOI: 10.3390/metabo14060318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolic reprogramming is a hallmark of cancer, driving the development of therapies targeting cancer metabolism. Stable isotope tracing has emerged as a widely adopted tool for monitoring cancer metabolism both in vitro and in vivo. Advances in instrumentation and the development of new tracers, metabolite databases, and data analysis tools have expanded the scope of cancer metabolism studies across these scales. In this review, we explore the latest advancements in metabolic analysis, spanning from experimental design in stable isotope-labeling metabolomics to sophisticated data analysis techniques. We highlight successful applications in cancer research, particularly focusing on ongoing clinical trials utilizing stable isotope tracing to characterize disease progression, treatment responses, and potential mechanisms of resistance to anticancer therapies. Furthermore, we outline key challenges and discuss potential strategies to address them, aiming to enhance our understanding of the biochemical basis of cancer metabolism.
Collapse
Affiliation(s)
- Dalton Hilovsky
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| | - Joshua Hartsell
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| | - Jamey D. Young
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37212, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37212, USA
| | - Xiaojing Liu
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA; (D.H.); (J.H.)
| |
Collapse
|
7
|
Turner R, Mukherjee R, Wallace M, Sanchez-Gurmaches J. Quantitative Determination of De Novo Fatty Acid Synthesis in Brown Adipose Tissue Using Deuterium Oxide. J Vis Exp 2023:10.3791/64219. [PMID: 37246886 PMCID: PMC10913692 DOI: 10.3791/64219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023] Open
Abstract
Fatty acid synthesis is a complex and highly energy demanding metabolic pathway with important functional roles in the control of whole-body metabolic homeostasis and other physiological and pathological processes. Contrary to other key metabolic pathways, such as glucose disposal, fatty acid synthesis is not routinely functionally assessed, leading to incomplete interpretations of metabolic status. In addition, there is a lack of publicly available detailed protocols suitable for newcomers in the field. Here, we describe an inexpensive quantitative method utilizing deuterium oxide and gas chromatography mass spectrometry (GCMS) for the analysis of total fatty acid de novo synthesis in brown adipose tissue in vivo. This method measures the synthesis of the products of fatty acid synthase independently of a carbon source, and it is potentially useful for virtually any tissue, in any mouse model, and under any external perturbation. Details on the sample preparation for GCMS and downstream calculations are provided. We focus on the analysis of brown fat due to its high levels of de novo fatty acid synthesis and critical roles in maintaining metabolic homeostasis.
Collapse
Affiliation(s)
- Rory Turner
- UCD Conway Institute and UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin
| | - Rajib Mukherjee
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati
| | - Martina Wallace
- UCD Conway Institute and UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin;
| | - Joan Sanchez-Gurmaches
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati; Department of Pediatrics, University of Cincinnati College of Medicine;
| |
Collapse
|
8
|
Zhang R, Chen B, Zhang H, Tu L, Luan T. Stable isotope-based metabolic flux analysis: A robust tool for revealing toxicity pathways of emerging contaminants. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Lackner M, Neef SK, Winter S, Beer-Hammer S, Nürnberg B, Schwab M, Hofmann U, Haag M. Untargeted stable isotope-resolved metabolomics to assess the effect of PI3Kβ inhibition on metabolic pathway activities in a PTEN null breast cancer cell line. Front Mol Biosci 2022; 9:1004602. [PMID: 36310598 PMCID: PMC9614656 DOI: 10.3389/fmolb.2022.1004602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of high-resolution LC-MS untargeted metabolomics with stable isotope-resolved tracing is a promising approach for the global exploration of metabolic pathway activities. In our established workflow we combine targeted isotopologue feature extraction with the non-targeted X13CMS routine. Metabolites, detected by X13CMS as differentially labeled between two biological conditions are subsequently integrated into the original targeted library. This strategy enables monitoring of changes in known pathways as well as the discovery of hitherto unknown metabolic alterations. Here, we demonstrate this workflow in a PTEN (phosphatase and tensin homolog) null breast cancer cell line (MDA-MB-468) exploring metabolic pathway activities in the absence and presence of the selective PI3Kβ inhibitor AZD8186. Cells were fed with [U-13C] glucose and treated for 1, 3, 6, and 24 h with 0.5 µM AZD8186 or vehicle, extracted by an optimized sample preparation protocol and analyzed by LC-QTOF-MS. Untargeted differential tracing of labels revealed 286 isotope-enriched features that were significantly altered between control and treatment conditions, of which 19 features could be attributed to known compounds from targeted pathways. Other 11 features were unambiguously identified based on data-dependent MS/MS spectra and reference substances. Notably, only a minority of the significantly altered features (11 and 16, respectively) were identified when preprocessing of the same data set (treatment vs. control in 24 h unlabeled samples) was performed with tools commonly used for label-free (i.e. w/o isotopic tracer) non-targeted metabolomics experiments (Profinder´s batch recursive feature extraction and XCMS). The structurally identified metabolites were integrated into the existing targeted isotopologue feature extraction workflow to enable natural abundance correction, evaluation of assay performance and assessment of drug-induced changes in pathway activities. Label incorporation was highly reproducible for the majority of isotopologues in technical replicates with a RSD below 10%. Furthermore, inter-day repeatability of a second label experiment showed strong correlation (Pearson R2 > 0.99) between tracer incorporation on different days. Finally, we could identify prominent pathway activity alterations upon PI3Kβ inhibition. Besides pathways in central metabolism, known to be changed our workflow revealed additional pathways, like pyrimidine metabolism or hexosamine pathway. All pathways identified represent key metabolic processes associated with cancer metabolism and therapy.
Collapse
Affiliation(s)
- Marcel Lackner
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Sylvia K. Neef
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Sandra Beer-Hammer
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, Interfaculty Center for Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Bernd Nürnberg
- Department of Pharmacology, Experimental Therapy and Toxicology, Institute for Experimental and Clinical Pharmacology and Pharmacogenomics, Interfaculty Center for Pharmacogenomics and Drug Research (ICePhA), University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology and of Pharmacy and Biochemistry, University of Tübingen, Tübingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tübingen, Tübingen, Germany
- *Correspondence: Mathias Haag,
| |
Collapse
|
10
|
Fonseca GG. Metabolic engineering of Kluyveromyces marxianus for biomass-based applications. 3 Biotech 2022; 12:259. [PMID: 36068842 PMCID: PMC9440961 DOI: 10.1007/s13205-022-03324-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/22/2022] [Indexed: 11/01/2022] Open
Abstract
Kluyveromyces marxianus ATCC 26,548 was cultivated in aerobic chemostats with [1-13C] and [U-13C] glucose as carbon source under three different growth conditions (0.10, 0.25, and 0.5 h-1) to evaluate metabolic fluxes. Carbon balances closed always within 97-102%. Growth was carbon limited, and the cell yield on glucose was the same. The extracellular side-product formation was very low, totaling 0.0008 C-mol C-mol-1 substrate at 0.5 h-1. The intracellular flux ratios did not show significant variation for metabolic flux analysis from labelling and biomass composition and metabolic flux ratio analysis from labelling. The observed strictly oxidative metabolism and the stability of the metabolism in terms of fluxes even at high growth rates, without triggering out the synthesis of by-products, is an extremely desired condition that underlines the potential of K. marxianus for biotechnological biomass-related applications and the comprehension of the metabolic pools and pathways is an important step to engineering this organism. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03324-x.
Collapse
Affiliation(s)
- Gustavo Graciano Fonseca
- Faculty of Natural Resource Sciences, School of Business and Science, University of Akureyri, Borgir v. Nordurslod, 600 Akureyri, Iceland
| |
Collapse
|
11
|
Schaupp S, Arriaza‐Gallardo FJ, Pan H, Kahnt J, Angelidou G, Paczia N, Costa K, Hu X, Shima S. In Vitro Biosynthesis of the [Fe]-Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors. Angew Chem Int Ed Engl 2022; 61:e202200994. [PMID: 35286742 PMCID: PMC9314073 DOI: 10.1002/anie.202200994] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 02/06/2023]
Abstract
In the FeGP cofactor of [Fe]-hydrogenase, low-spin FeII is in complex with two CO ligands and a pyridinol derivative; the latter ligates the iron with a 6-acylmethyl substituent and the pyridinol nitrogen. A guanylylpyridinol derivative, 6-carboxymethyl-3,5-dimethyl-4-guanylyl-2-pyridinol (3), is produced by the decomposition of the FeGP cofactor under irradiation with UV-A/blue light and is also postulated to be a precursor of FeGP cofactor biosynthesis. HcgC and HcgB catalyze consecutive biosynthesis steps leading to 3. Here, we report an in vitro biosynthesis assay of the FeGP cofactor using the cell extract of the ΔhcgBΔhcgC strain of Methanococcus maripaludis, which does not biosynthesize 3. We chemically synthesized pyridinol precursors 1 and 2, and detected the production of the FeGP cofactor from 1, 2 and 3. These results indicated that 1, 2 and 3 are the precursors of the FeGP cofactor, and the carboxy group of 3 is converted to the acyl ligand.
Collapse
Affiliation(s)
- Sebastian Schaupp
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | | | - Hui‐jie Pan
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 33051015LausanneSwitzerland
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Georgia Angelidou
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| | - Kyle Costa
- Department of Plant and Microbial BiologyUniversity of MinnesotaTwin CitiesSt. Paul, MNUSA
| | - Xile Hu
- Laboratory of Inorganic Synthesis and CatalysisInstitute of Chemical Sciences and EngineeringEcole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 33051015LausanneSwitzerland
| | - Seigo Shima
- Max Planck Institute for Terrestrial MicrobiologyKarl-von-Frisch-Straße 1035043MarburgGermany
| |
Collapse
|
12
|
Schaupp S, Arriaza‐Gallardo FJ, Pan H, Kahnt J, Angelidou G, Paczia N, Costa K, Hu X, Shima S. In Vitro Biosynthesis of the [Fe]‐Hydrogenase Cofactor Verifies the Proposed Biosynthetic Precursors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Schaupp
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | | | - Hui‐jie Pan
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Georgia Angelidou
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Nicole Paczia
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| | - Kyle Costa
- Department of Plant and Microbial Biology University of Minnesota Twin Cities St. Paul, MN USA
| | - Xile Hu
- Laboratory of Inorganic Synthesis and Catalysis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) ISIC-LSCI, BCH 3305 1015 Lausanne Switzerland
| | - Seigo Shima
- Max Planck Institute for Terrestrial Microbiology Karl-von-Frisch-Straße 10 35043 Marburg Germany
| |
Collapse
|
13
|
Balboa D, Barsby T, Lithovius V, Saarimäki-Vire J, Omar-Hmeadi M, Dyachok O, Montaser H, Lund PE, Yang M, Ibrahim H, Näätänen A, Chandra V, Vihinen H, Jokitalo E, Kvist J, Ustinov J, Nieminen AI, Kuuluvainen E, Hietakangas V, Katajisto P, Lau J, Carlsson PO, Barg S, Tengholm A, Otonkoski T. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells. Nat Biotechnol 2022; 40:1042-1055. [PMID: 35241836 PMCID: PMC9287162 DOI: 10.1038/s41587-022-01219-z] [Citation(s) in RCA: 152] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes. Pancreatic islets derived from stem cells are benchmarked against primary cells.
Collapse
Affiliation(s)
- Diego Balboa
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Bioinformatics and Genomics Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Tom Barsby
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Väinö Lithovius
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Oleg Dyachok
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hossam Montaser
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Per-Eric Lund
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Mingyu Yang
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anna Näätänen
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Jouni Kvist
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jarkko Ustinov
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni I Nieminen
- Metabolomics Unit, Institute for Molecular Medicine Finland, Helsinki, Finland
| | - Emilia Kuuluvainen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Molecular and Integrative Bioscience Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Pekka Katajisto
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Joey Lau
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Per-Ola Carlsson
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Sebastian Barg
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anders Tengholm
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Trompette A, Pernot J, Perdijk O, Alqahtani RAA, Domingo JS, Camacho-Muñoz D, Wong NC, Kendall AC, Wiederkehr A, Nicod LP, Nicolaou A, von Garnier C, Ubags NDJ, Marsland BJ. Gut-derived short-chain fatty acids modulate skin barrier integrity by promoting keratinocyte metabolism and differentiation. Mucosal Immunol 2022; 15:908-926. [PMID: 35672452 PMCID: PMC9385498 DOI: 10.1038/s41385-022-00524-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 02/07/2023]
Abstract
Barrier integrity is central to the maintenance of healthy immunological homeostasis. Impaired skin barrier function is linked with enhanced allergen sensitization and the development of diseases such as atopic dermatitis (AD), which can precede the development of other allergic disorders, for example, food allergies and asthma. Epidemiological evidence indicates that children suffering from allergies have lower levels of dietary fibre-derived short-chain fatty acids (SCFA). Using an experimental model of AD-like skin inflammation, we report that a fermentable fibre-rich diet alleviates systemic allergen sensitization and disease severity. The gut-skin axis underpins this phenomenon through SCFA production, particularly butyrate, which strengthens skin barrier function by altering mitochondrial metabolism of epidermal keratinocytes and the production of key structural components. Our results demonstrate that dietary fibre and SCFA improve epidermal barrier integrity, ultimately limiting early allergen sensitization and disease development.The Graphical Abstract was designed using Servier Medical Art images ( https://smart.servier.com ).
Collapse
Affiliation(s)
- Aurélien Trompette
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Julie Pernot
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Olaf Perdijk
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC Australia
| | - Rayed Ali A. Alqahtani
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Jaime Santo Domingo
- grid.5333.60000000121839049Nestlé Institute of Health, EPFL innovation Park, Lausanne, Switzerland
| | - Dolores Camacho-Muñoz
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Nicholas C. Wong
- grid.1002.30000 0004 1936 7857Monash Bioinformatics Platform, Monash University, Clayton, VIC Australia
| | - Alexandra C. Kendall
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Andreas Wiederkehr
- grid.5333.60000000121839049Nestlé Institute of Health, EPFL innovation Park, Lausanne, Switzerland
| | - Laurent P. Nicod
- Pneumologie, Clinic Cecil from Hirslanden, Lausanne, Switzerland
| | - Anna Nicolaou
- grid.5379.80000000121662407Laboratory for Lipidomics and Lipid Biology, University of Manchester, Division of Pharmacy and Optometry, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, M13 9PT UK
| | - Christophe von Garnier
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Niki D. J. Ubags
- grid.8515.90000 0001 0423 4662Division of Pulmonary Medicine, Department of Medicine, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Benjamin J. Marsland
- grid.1002.30000 0004 1936 7857Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC Australia
| |
Collapse
|
15
|
Facchinello N, Astone M, Audano M, Oberkersch RE, Spizzotin M, Calura E, Marques M, Crisan M, Mitro N, Santoro MM. Oxidative pentose phosphate pathway controls vascular mural cell coverage by regulating extracellular matrix composition. Nat Metab 2022; 4:123-140. [PMID: 35102339 PMCID: PMC7612297 DOI: 10.1038/s42255-021-00514-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/06/2021] [Indexed: 12/11/2022]
Abstract
Vascular mural cells (vMCs) play an essential role in the development and maturation of the vasculature by promoting vessel stabilization through their interactions with endothelial cells. Whether endothelial metabolism influences mural cell recruitment and differentiation is unknown. Here, we show that the oxidative pentose phosphate pathway (oxPPP) in endothelial cells is required for establishing vMC coverage of the dorsal aorta during early vertebrate development in zebrafish and mice. We demonstrate that laminar shear stress and blood flow maintain oxPPP activity, which in turn, promotes elastin expression in blood vessels through production of ribose-5-phosphate. Elastin is both necessary and sufficient to drive vMC recruitment and maintenance when the oxPPP is active. In summary, our work demonstrates that endothelial cell metabolism regulates blood vessel maturation by controlling vascular matrix composition and vMC recruitment.
Collapse
Affiliation(s)
- Nicola Facchinello
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Padua, Italy
| | - Matteo Astone
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Padua, Italy
| | - Matteo Audano
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Roxana E Oberkersch
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Padua, Italy
| | - Marianna Spizzotin
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Padua, Italy
| | - Enrica Calura
- Department of Biology, University of Padua, Padua, Italy
| | - Madalena Marques
- Centre for Cardiovascular Science and Centre for Regenerative Medicine/Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Mihaela Crisan
- Centre for Cardiovascular Science and Centre for Regenerative Medicine/Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Nico Mitro
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, Milan, Italy
| | - Massimo M Santoro
- Laboratory of Angiogenesis and Cancer Metabolism, DiBio, University of Padua, Padua, Italy.
| |
Collapse
|
16
|
Dietze J, van Pijkeren A, Egger AS, Ziegler M, Kwiatkowski M, Heiland I. Natural isotope correction improves analysis of protein modification dynamics. Anal Bioanal Chem 2021; 413:7333-7340. [PMID: 34705077 PMCID: PMC8626371 DOI: 10.1007/s00216-021-03732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/21/2021] [Accepted: 10/12/2021] [Indexed: 12/02/2022]
Abstract
Stable isotope labelling in combination with high-resolution mass spectrometry approaches are increasingly used to analyze both metabolite and protein modification dynamics. To enable correct estimation of the resulting dynamics, it is critical to correct the measured values for naturally occurring stable isotopes, a process commonly called isotopologue correction or deconvolution. While the importance of isotopologue correction is well recognized in metabolomics, it has received far less attention in proteomics approaches. Although several tools exist that enable isotopologue correction of mass spectrometry data, the majority is tailored for the analysis of low molecular weight metabolites. We here present PICor which has been developed for isotopologue correction of complex isotope labelling experiments in proteomics or metabolomics and demonstrate the importance of appropriate correction for accurate determination of protein modifications dynamics, using histone acetylation as an example.
Collapse
Affiliation(s)
- Jörn Dietze
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway
| | - Alienke van Pijkeren
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria.,Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, Groningen, The Netherlands
| | - Anna-Sophia Egger
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Mathias Ziegler
- Department of Biomedicine, University of Bergen, 5020, Bergen, Norway
| | - Marcel Kwiatkowski
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, 6020, Austria
| | - Ines Heiland
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, 9037, Tromsø, Norway. .,Department of Clinical Medicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
17
|
Bertarello A, Berruyer P, Skantze U, Sardana S, Sardana M, Elmore CS, Schade M, Chiarparin E, Schantz S, Emsley L. Quantification of magic angle spinning dynamic nuclear polarization NMR spectra. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 329:107030. [PMID: 34245958 DOI: 10.1016/j.jmr.2021.107030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Dynamic nuclear polarization (DNP) allows to dramatically enhance the sensitivity of magic angle spinning nuclear magnetic resonance (MAS NMR). DNP experiments usually rely on the detection of low-γ nuclei hyperpolarized from 1H with the use of cross polarization (CP), which assures more efficient signal enhancement. However, CP is usually not quantitative. Here we determine the quantification performance of three different approaches used in MAS NMR, (conventional CP, variable contact time CP, and multiple-contact CP) under DNP conditions, and we show that absolute quantification in MAS DNP NMR is possible, with errors below 10%.
Collapse
Affiliation(s)
- Andrea Bertarello
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pierrick Berruyer
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Urban Skantze
- Advanced Drug Delivery, Pharmaceutical Science, AstraZeneca, Gothenburg, Sweden
| | - Samiksha Sardana
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Malvika Sardana
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Charles S Elmore
- Early Chemical Development, Pharmaceutical Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Markus Schade
- Chemistry, Oncology R&D, AstraZeneca, Cambridge, United Kingdom
| | | | - Staffan Schantz
- Oral Product Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Gothenburg, Sweden
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
18
|
Gallart-Ayala H, Teav T, Ivanisevic J. Metabolomics meets lipidomics: Assessing the small molecule component of metabolism. Bioessays 2021; 42:e2000052. [PMID: 33230910 DOI: 10.1002/bies.202000052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 09/11/2020] [Indexed: 12/16/2022]
Abstract
Metabolomics, including lipidomics, is emerging as a quantitative biology approach for the assessment of energy flow through metabolism and information flow through metabolic signaling; thus, providing novel insights into metabolism and its regulation, in health, healthy ageing and disease. In this forward-looking review we provide an overview on the origins of metabolomics, on its role in this postgenomic era of biochemistry and its application to investigate metabolite role and (bio)activity, from model systems to human population studies. We present the challenges inherent to this analytical science, and approaches and modes of analysis that are used to resolve, characterize and measure the infinite chemical diversity contained in the metabolome (including lipidome) of complex biological matrices. In the current outbreak of metabolic diseases such as cardiometabolic disorders, cancer and neurodegenerative diseases, metabolomics appears to be ideally situated for the investigation of disease pathophysiology from a metabolite perspective.
Collapse
Affiliation(s)
- Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Tony Teav
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
19
|
Wiechert W, Nöh K. Quantitative Metabolic Flux Analysis Based on Isotope Labeling. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
20
|
Scott DA. Analysis of Melanoma Cell Glutamine Metabolism by Stable Isotope Tracing and Gas Chromatography-Mass Spectrometry. Methods Mol Biol 2021; 2265:91-110. [PMID: 33704708 DOI: 10.1007/978-1-0716-1205-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Glutamine is a major substrate for biosynthesis. It contributes to multiple pathways required for cell proliferation, supports antioxidant defense via glutathione synthesis, and sustains the tricarboxylic acid (TCA) cycle through anaplerosis. Glutamine-fueled anaplerosis and related biosynthesis can be studied in detail in melanoma using stable isotope (13C) labeling followed by gas chromatography-mass spectrometry (GC-MS) analysis of metabolite amounts and labeling. Detailed protocols for the assay of polar metabolites (including amino acids, TCA cycle, and glycolysis metabolites) and fatty acids by these methods following cell treatment with 13C-glutamine or 13C-glucose are presented.
Collapse
Affiliation(s)
- David A Scott
- Cancer Metabolism Core, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
21
|
Stress-induced growth rate reduction restricts metabolic resource utilization to modulate osmo-adaptation time. Cell Rep 2021; 34:108854. [PMID: 33730573 DOI: 10.1016/j.celrep.2021.108854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/18/2021] [Indexed: 01/15/2023] Open
Abstract
A near-constant feature of stress responses is a downregulation or arrest of the cell cycle, resulting in transient growth slowdown. To investigate the role of growth slowdown in the hyperosmotic shock response of S. cerevisiae, we perturbed the G1/S checkpoint protein Sic1 to enable osmo-stress response activation with diminished growth slowdown. We document that in this mutant, adaptation to stress is accelerated rather than delayed. This accelerated recovery of the mutant proceeds by liquidation of internal glycogen stores, which are then shunted into the osmo-shock response. Therefore, osmo-adaptation in wild-type cells is delayed because growth slowdown prevents full accessibility to cellular glycogen stores. However, faster adaptation comes at the cost of acute sensitivity to subsequent osmo-stresses. We suggest that stress-induced growth slowdown acts as an arbiter to regulate the resources devoted to osmo-shock, balancing short-term adaptation with long-term robustness.
Collapse
|
22
|
Capellades J, Junza A, Samino S, Brunner JS, Schabbauer G, Vinaixa M, Yanes O. Exploring the Use of Gas Chromatography Coupled to Chemical Ionization Mass Spectrometry (GC-CI-MS) for Stable Isotope Labeling in Metabolomics. Anal Chem 2021; 93:1242-1248. [PMID: 33369389 DOI: 10.1021/acs.analchem.0c02998] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Isotopic-labeling experiments have been valuable to monitor the flux of metabolic reactions in biological systems, which is crucial to understand homeostatic alterations with disease. Experimental determination of metabolic fluxes can be inferred from a characteristic rearrangement of stable isotope tracers (e.g., 13C or 15N) that can be detected by mass spectrometry (MS). Metabolites measured are generally members of well-known metabolic pathways, and most of them can be detected using both gas chromatography (GC)-MS and liquid chromatography (LC)-MS. In here, we show that GC methods coupled to chemical ionization (CI) MS have a clear advantage over alternative methodologies due to GC's superior chromatography separation efficiency and the fact that CI is a soft ionization technique that yields identifiable protonated molecular ion peaks. We tested diverse GC-CI-MS setups, including methane and isobutane reagent gases, triple quadrupole (QqQ) MS in SIM mode, or selected ion clusters using optimized narrow windows (∼10 Da) in scan mode, and standard full scan methods using high resolution GC-(q)TOF and GC-Orbitrap systems. Isobutane as a reagent gas in combination with both low-resolution (LR) and high-resolution (HR) MS showed the best performance, enabling precise detection of isotopologues in most metabolic intermediates of central carbon metabolism. Finally, with the aim of overcoming manual operations, we developed an R-based tool called isoSCAN that automatically quantifies all isotopologues of intermediate metabolites of glycolysis, TCA cycle, amino acids, pentose phosphate pathway, and urea cycle, from LRMS and HRMS data.
Collapse
Affiliation(s)
- Jordi Capellades
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
| | - Alexandra Junza
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Sara Samino
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Julia S Brunner
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090 Vienna, Austria
| | - Gernot Schabbauer
- Institute for Vascular Biology, Centre for Physiology and Pharmacology, Medical University Vienna, 1090 Vienna, Austria.,Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090 Vienna, Austria
| | - Maria Vinaixa
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
| | - Oscar Yanes
- Department of Electronic Engineering, Universitat Rovira i Virgili, Tarragona, Spain.,CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain.,Institut d'Investigació Sanitària Pere Virgili (IISPV), Metabolomics Platform, Reus, Spain
| |
Collapse
|
23
|
Nilsson R. Validity of natural isotope abundance correction for metabolic flux analysis. Math Biosci 2020; 330:108481. [PMID: 33007317 DOI: 10.1016/j.mbs.2020.108481] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 01/22/2023]
Abstract
A pervasive issue in stable isotope tracing and metabolic flux analysis is the presence of naturally occurring isotopes such as 13C. For mass isotopomer distributions (MIDs) measured by mass spectrometry, it is common practice to correct for natural occurrence of isotopes within metabolites of interest using a linear transform based on binomial distributions. The resulting corrected MIDs are often used to fit metabolic network models and infer metabolic fluxes, which implicitly assumes that corrected MIDs will yield the same flux solution as the actual observed MIDs. Although this assumption can be empirically verified in special cases by simulation studies, there seems to be no published proof of this important property for the general case. In this paper, we prove that this property holds for the case of noise-free MID data obtained at steady state. On the other hand, for noisy MID data, the flux solution will generally differ between the two representations. These results provide a theoretical foundation for the common practice of MID correction in metabolic flux analysis.
Collapse
Affiliation(s)
- Roland Nilsson
- Cardiovascular Medicine Unit, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Division of Cardiovascular Medicine, Karolinska University Hospital, Stockholm, Sweden; Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Mendonca CM, Wilkes RA, Aristilde L. Advancements in 13C isotope tracking of synergistic substrate co-utilization in Pseudomonas species and implications for biotechnology applications. Curr Opin Biotechnol 2020; 64:124-133. [DOI: 10.1016/j.copbio.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
|
25
|
Abstract
Dimethylsulfoniopropionate (DMSP) is abundant in marine environments and an important source of reduced carbon and sulfur for marine bacteria. While both Ruegeria pomeroyi and Ruegeria lacuscaerulensis possessed genes encoding the DMSP demethylation and cleavage pathways, their responses to DMSP differed. A glucose-fed, chemostat culture of R. pomeroyi consumed 99% of the DMSP even when fed a high concentration of 5 mM. At the same time, cultures released 19% and 7.1% of the DMSP as dimethylsulfide (DMS) and methanethiol, respectively. Under the same conditions, R. lacuscaerulensis consumed only 28% of the DMSP and formed one-third of the amount of gases. To examine the pathways of sulfur and methyl C assimilation, glucose-fed chemostats of both species were fed 100 μM mixtures of unlabeled and doubly labeled [dimethyl-13C, 34S]DMSP. Both species derived nearly all of their sulfur from DMSP despite high sulfate availability. In addition, only 33% and 50% of the methionine was biosynthesized from the direct capture of methanethiol in R. pomeroyi and R. lacuscaerulensis, respectively. The remaining methionine was biosynthesized by the random assembly of free sulfide and methyl-tetrahydrofolate derived from DMSP. Thus, although the two species possessed similar genes encoding DMSP metabolism, their growth responses were very different.IMPORTANCE Dimethylsulfoniopropionate (DMSP) is abundant in marine environments and an important source of reduced carbon and sulfur for marine bacteria. DMSP is the precursor for the majority of atmospheric dimethylsulfide (DMS), a climatically active gas that connects the marine and terrestrial sulfur cycles. Although research into the assimilation of DMSP has been conducted for over 20 years, the fate of DMSP in microbial biomass is not well understood. In particular, the biosynthesis of methionine from DMSP has been a focal point, and it has been widely believed that most methionine was synthesized via the direct capture of methanethiol. Using an isotopic labeling strategy, we have demonstrated that the direct capture of methanethiol is not the primary pathway used for methionine biosynthesis in two Ruegeria species, a genus comprised primarily of globally abundant marine bacteria. Furthermore, although the catabolism of DMSP by these species varied greatly, the anabolic pathways were highly conserved.
Collapse
|
26
|
Bayram S, Fürst S, Forbes M, Kempa S. Analysing central metabolism in ultra-high resolution: At the crossroads of carbon and nitrogen. Mol Metab 2020; 33:38-47. [PMID: 31928927 PMCID: PMC7056925 DOI: 10.1016/j.molmet.2019.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/13/2019] [Accepted: 12/04/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cancer cell metabolism can be characterised by adaptive metabolic alterations, which support abnormal proliferative cell growth with high energetic demand. De novo nucleotide biosynthesis is essential for providing nucleotides for RNA and DNA synthesis, and drugs targeting this biosynthetic pathway have proven to be effective anticancer therapeutics. Nevertheless, cancers are often able to circumvent chemotherapeutic interventions and become therapy resistant. Our understanding of the changing metabolic profile of the cancer cell and the mode of action of therapeutics is dependent on technological advances in biochemical analysis. SCOPE OF REVIEW This review begins with information about carbon- and nitrogen-donating pathways to build purine and pyrimidine moieties in the course of nucleotide biosynthesis. We discuss the application of stable isotope resolved metabolomics to investigate the dynamics of cancer cell metabolism and outline the benefits of high-resolution accurate mass spectrometry, which enables multiple tracer studies. CONCLUSION With the technological advances in mass spectrometry that allow for the analysis of the metabolome in high resolution, the application of stable isotope resolved metabolomics has become an important technique in the investigation of biological processes. The literature in the area of isotope labelling is dominated by 13C tracer studies. Metabolic pathways have to be considered as complex interconnected networks and should be investigated as such. Moving forward to simultaneous tracing of different stable isotopes will help elucidate the interplay between carbon and nitrogen flow and the dynamics of de novo nucleotide biosynthesis within the cell.
Collapse
Affiliation(s)
- Safak Bayram
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Susanne Fürst
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Germany
| | - Martin Forbes
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany
| | - Stefan Kempa
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany; Berlin Institute for Medical Systems Biology (BIMSB), Berlin, Germany.
| |
Collapse
|
27
|
Kanellopoulos AK, Mariano V, Spinazzi M, Woo YJ, McLean C, Pech U, Li KW, Armstrong JD, Giangrande A, Callaerts P, Smit AB, Abrahams BS, Fiala A, Achsel T, Bagni C. Aralar Sequesters GABA into Hyperactive Mitochondria, Causing Social Behavior Deficits. Cell 2020; 180:1178-1197.e20. [DOI: 10.1016/j.cell.2020.02.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/01/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
|
28
|
Fernández-García J, Altea-Manzano P, Pranzini E, Fendt SM. Stable Isotopes for Tracing Mammalian-Cell Metabolism In Vivo. Trends Biochem Sci 2020; 45:185-201. [PMID: 31955965 DOI: 10.1016/j.tibs.2019.12.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023]
Abstract
Metabolism is at the cornerstone of all cellular functions and mounting evidence of its deregulation in different diseases emphasizes the importance of a comprehensive understanding of metabolic regulation at the whole-organism level. Stable-isotope measurements are a powerful tool for probing cellular metabolism and, as a result, are increasingly used to study metabolism in in vivo settings. The additional complexity of in vivo metabolic measurements requires paying special attention to experimental design and data interpretation. Here, we review recent work where in vivo stable-isotope measurements have been used to address relevant biological questions within an in vivo context, summarize different experimental and data interpretation approaches and their limitations, and discuss future opportunities in the field.
Collapse
Affiliation(s)
- Juan Fernández-García
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium.
| | - Patricia Altea-Manzano
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium
| | - Erica Pranzini
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium; Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Herestraat 49, 3000 Leuven, Belgium; Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
29
|
Can E, Mishkovsky M, Yoshihara HAI, Kunz N, Couturier DL, Petrausch U, Doucey MA, Comment A. Noninvasive rapid detection of metabolic adaptation in activated human T lymphocytes by hyperpolarized 13C magnetic resonance. Sci Rep 2020; 10:200. [PMID: 31932697 PMCID: PMC6957688 DOI: 10.1038/s41598-019-57026-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 11/18/2022] Open
Abstract
The metabolic shift induced in human CD4+ T lymphocytes by stimulation is characterized by an upregulation of glycolysis, leading to an augmentation in lactate production. This adaptation has already been highlighted with various techniques and reported in several previous studies. We herein propose a method to rapidly and noninvasively detect the associated increase in flux from pyruvate to lactate catalyzed by lactate dehydrogenase using hyperpolarized 13C magnetic resonance, a technique which can be used for in vivo imaging. It was shown that the conversion of hyperpolarized 13C-pyruvate to 13C-lactate during the one-minute measurement increased by a mean factor of 3.6 in T cells stimulated for 5 days as compared to resting T cells. This method can be extended to other metabolic substrates and is therefore a powerful tool to noninvasively analyze T cell metabolism, possibly in vivo.
Collapse
Affiliation(s)
- Emine Can
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Mor Mishkovsky
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Hikari A I Yoshihara
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Nicolas Kunz
- Laboratory of Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Dominique-Laurent Couturier
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge, CB2 0RE, United Kingdom
| | | | - Marie-Agnès Doucey
- Department of Oncology, University Hospital Lausanne (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland
| | - Arnaud Comment
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shin Center, Robinson Way, Cambridge, CB2 0RE, United Kingdom. .,General Electric Healthcare, Chalfont St Giles, Buckinghamshire, HP8 4SP, United Kingdom.
| |
Collapse
|
30
|
Argus JP, Wilks MQ, Zhou QD, Hsieh WY, Khialeeva E, Hoi XP, Bui V, Xu S, Yu AK, Wang ES, Herschman HR, Williams KJ, Bensinger SJ. Development and Application of FASA, a Model for Quantifying Fatty Acid Metabolism Using Stable Isotope Labeling. Cell Rep 2019; 25:2919-2934.e8. [PMID: 30517876 PMCID: PMC6432944 DOI: 10.1016/j.celrep.2018.11.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/23/2018] [Accepted: 11/09/2018] [Indexed: 12/20/2022] Open
Abstract
It is well understood that fatty acids can be synthesized, imported, and modified to meet requisite demands in cells. However, following the movement of fatty acids through the multiplicity of these metabolic steps has remained difficult. To better address this problem, we developed Fatty Acid Source Analysis (FASA), a model that defines the contribution of synthesis, import, and elongation pathways to fatty acid homeostasis in saturated, monounsaturated, and polyunsaturated fatty acid pools. Application of FASA demonstrated that elongation can be a major contributor to cellular fatty acid content and showed that distinct pro-inflammatory stimuli (e.g., Toll-like receptors 2, 3, or 4) specifically reprogram homeostasis of fatty acids by differential utilization of synthetic and elongation pathways in macrophages. In sum, this modeling approach significantly advances our ability to interrogate cellular fatty acid metabolism and provides insight into how cells dynamically reshape their lipidomes in response to metabolic or inflammatory signals. Argus et al. developed Fatty Acid Source Analysis (FASA), a model that quantifies cellular fatty acid synthesis, elongation, and import. FASA is used to demonstrate that elongation can be a major contributor to cellular fatty acid content and that different stimuli reprogram macrophage fatty acid elongation pathways in distinct ways.
Collapse
Affiliation(s)
- Joseph P Argus
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Moses Q Wilks
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, 149, 13(th) Street, Charlestown, MA 02129, USA
| | - Quan D Zhou
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, P.R. China
| | - Wei Yuan Hsieh
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Elvira Khialeeva
- Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Xen Ping Hoi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Viet Bui
- Division of Rheumatology, David Geffen School of Medicine, University of California, Los Angeles, 1000 Veteran Avenue, Los Angeles, CA 90095, USA
| | - Shili Xu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Amy K Yu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Eric S Wang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Harvey R Herschman
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, 611 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Kevin J Williams
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, 615 Charles E. Young Drive East, Los Angeles, CA 90095, USA.
| |
Collapse
|
31
|
Kappelmann J, Beyß M, Nöh K, Noack S. Separation of 13C- and 15N-Isotopologues of Amino Acids with a Primary Amine without Mass Resolution by Means of O-Phthalaldehyde Derivatization and Collision Induced Dissociation. Anal Chem 2019; 91:13407-13417. [PMID: 31577133 DOI: 10.1021/acs.analchem.9b01788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Computational and experimental advances of recent years have culminated in establishing 13C-Metabolic Flux Analysis (13C-MFA) as a routine methodology to unravel the fluxome. As the acronym suggests, 13C-MFA has relied on the relative abundance of 13C-isotopes in metabolites for flux inference, most commonly measured by mass spectrometry. In this manuscript we expand the scope of labeling measurements to the case of simultaneous 13C- and 15N-labeling of amino acids. Analytically, the separation of isotopologues of this metabolite class can only be achieved at resolving power beyond 65,000. In this manuscript we harvest an overlooked property of the collision induced dissociation of amino acid adducts to discern 13C- and 15N- isotopologues of amino acids with a primary amine without separating them in the m/z domain.
Collapse
Affiliation(s)
- Jannick Kappelmann
- Institute of Bio- and Geosciences I, IBG-1: Biotechnology , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Martin Beyß
- Institute of Bio- and Geosciences I, IBG-1: Biotechnology , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Katharina Nöh
- Institute of Bio- and Geosciences I, IBG-1: Biotechnology , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences I, IBG-1: Biotechnology , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany.,Bioeconomy Science Center (BioSC) , Forschungszentrum Jülich GmbH , 52425 Jülich , Germany
| |
Collapse
|
32
|
Lorkiewicz PK, Gibb AA, Rood BR, He L, Zheng Y, Clem BF, Zhang X, Hill BG. Integration of flux measurements and pharmacological controls to optimize stable isotope-resolved metabolomics workflows and interpretation. Sci Rep 2019; 9:13705. [PMID: 31548575 PMCID: PMC6757038 DOI: 10.1038/s41598-019-50183-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Stable isotope-resolved metabolomics (SIRM) provides information regarding the relative activity of numerous metabolic pathways and the contribution of nutrients to specific metabolite pools; however, SIRM experiments can be difficult to execute, and data interpretation is challenging. Furthermore, standardization of analytical procedures and workflows remain significant obstacles for widespread reproducibility. Here, we demonstrate the workflow of a typical SIRM experiment and suggest experimental controls and measures of cross-validation that improve data interpretation. Inhibitors of glycolysis and oxidative phosphorylation as well as mitochondrial uncouplers serve as pharmacological controls, which help define metabolic flux configurations that occur under well-controlled metabolic states. We demonstrate how such controls and time course labeling experiments improve confidence in metabolite assignments as well as delineate metabolic pathway relationships. Moreover, we demonstrate how radiolabeled tracers and extracellular flux analyses integrate with SIRM to improve data interpretation. Collectively, these results show how integration of flux methodologies and use of pharmacological controls increase confidence in SIRM data and provide new biological insights.
Collapse
Affiliation(s)
- Pawel K Lorkiewicz
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, USA
| | - Andrew A Gibb
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA
- Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Benjamin R Rood
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA
| | - Liqing He
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, USA
| | - Yuting Zheng
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA
| | - Brian F Clem
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY, USA
| | - Xiang Zhang
- Department of Chemistry, Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, USA
| | - Bradford G Hill
- Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, Diabetes and Obesity Center, University of Louisville, Louisville, USA.
| |
Collapse
|
33
|
Wang LW, Shen H, Nobre L, Ersing I, Paulo JA, Trudeau S, Wang Z, Smith NA, Ma Y, Reinstadler B, Nomburg J, Sommermann T, Cahir-McFarland E, Gygi SP, Mootha VK, Weekes MP, Gewurz BE. Epstein-Barr-Virus-Induced One-Carbon Metabolism Drives B Cell Transformation. Cell Metab 2019; 30:539-555.e11. [PMID: 31257153 PMCID: PMC6720460 DOI: 10.1016/j.cmet.2019.06.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 03/14/2019] [Accepted: 06/05/2019] [Indexed: 02/05/2023]
Abstract
Epstein-Barr virus (EBV) causes Burkitt, Hodgkin, and post-transplant B cell lymphomas. How EBV remodels metabolic pathways to support rapid B cell outgrowth remains largely unknown. To gain insights, primary human B cells were profiled by tandem-mass-tag-based proteomics at rest and at nine time points after infection; >8,000 host and 29 viral proteins were quantified, revealing mitochondrial remodeling and induction of one-carbon (1C) metabolism. EBV-encoded EBNA2 and its target MYC were required for upregulation of the central mitochondrial 1C enzyme MTHFD2, which played key roles in EBV-driven B cell growth and survival. MTHFD2 was critical for maintaining elevated NADPH levels in infected cells, and oxidation of mitochondrial NADPH diminished B cell proliferation. Tracing studies underscored contributions of 1C to nucleotide synthesis, NADPH production, and redox defense. EBV upregulated import and synthesis of serine to augment 1C flux. Our results highlight EBV-induced 1C as a potential therapeutic target and provide a new paradigm for viral onco-metabolism.
Collapse
Affiliation(s)
- Liang Wei Wang
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Hongying Shen
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Luis Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Ina Ersing
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Trudeau
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Zhonghao Wang
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, People's Republic of China
| | - Nicholas A Smith
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Yijie Ma
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Bryn Reinstadler
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jason Nomburg
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Thomas Sommermann
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Ellen Cahir-McFarland
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Vamsi K Mootha
- Department of Molecular Biology and Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK.
| | - Benjamin E Gewurz
- Graduate Program in Virology, Division of Medical Sciences, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, 181 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Dall M, Trammell SAJ, Asping M, Hassing AS, Agerholm M, Vienberg SG, Gillum MP, Larsen S, Treebak JT. Mitochondrial function in liver cells is resistant to perturbations in NAD + salvage capacity. J Biol Chem 2019; 294:13304-13326. [PMID: 31320478 DOI: 10.1074/jbc.ra118.006756] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Supplementation with NAD precursors such as nicotinamide riboside (NR) has been shown to enhance mitochondrial function in the liver and to prevent hepatic lipid accumulation in high-fat diet (HFD)-fed rodents. Hepatocyte-specific knockout of the NAD+-synthesizing enzyme nicotinamide phosphoribosyltransferase (NAMPT) reduces liver NAD+ levels, but the metabolic phenotype of Nampt-deficient hepatocytes in mice is unknown. Here, we assessed Nampt's role in maintaining mitochondrial and metabolic functions in the mouse liver. Using the Cre-LoxP system, we generated hepatocyte-specific Nampt knockout (HNKO) mice, having a 50% reduction of liver NAD+ levels. We screened the HNKO mice for signs of metabolic dysfunction following 60% HFD feeding for 20 weeks ± NR supplementation and found that NR increases hepatic NAD+ levels without affecting fat mass or glucose tolerance in HNKO or WT animals. High-resolution respirometry revealed that NR supplementation of the HNKO mice did not increase state III respiration, which was observed in WT mice following NR supplementation. Mitochondrial oxygen consumption and fatty-acid oxidation were unaltered in primary HNKO hepatocytes. Mitochondria isolated from whole-HNKO livers had only a 20% reduction in NAD+, suggesting that the mitochondrial NAD+ pool is less affected by HNKO than the whole-tissue pool. When stimulated with tryptophan in the presence of [15N]glutamine, HNKO hepatocytes had a higher [15N]NAD+ enrichment than WT hepatocytes, indicating that HNKO mice compensate through de novo NAD+ synthesis. We conclude that NAMPT-deficient hepatocytes can maintain substantial NAD+ levels and that the Nampt knockout has only minor consequences for mitochondrial function in the mouse liver.
Collapse
Affiliation(s)
- Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Samuel A J Trammell
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Magnus Asping
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Anna S Hassing
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Marianne Agerholm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Sara G Vienberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Matthew P Gillum
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark
| | - Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark; Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK2200 Copenhagen, Denmark.
| |
Collapse
|
35
|
Lee MH, Malloy CR, Corbin IR, Li J, Jin ES. Assessing the pentose phosphate pathway using [2, 3- 13 C 2 ]glucose. NMR IN BIOMEDICINE 2019; 32:e4096. [PMID: 30924572 PMCID: PMC6525052 DOI: 10.1002/nbm.4096] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 05/24/2023]
Abstract
The pentose phosphate pathway (PPP) is essential for reductive biosynthesis, antioxidant processes and nucleotide production. Common tracers such as [1,2-13 C2 ]glucose rely on detection of 13 C in lactate and require assumptions to correct natural 13 C abundance. Here, we introduce a novel and specific tracer of the PPP, [2,3-13 C2 ]glucose. 13 C NMR analysis of the resulting isotopomers is informative because [1,2-13 C2 ]lactate arises from glycolysis and [2,3-13 C2 ]lactate arises exclusively through the PPP. A correction for natural abundance is unnecessary. In rats receiving [2,3-13 C2 ]glucose, the PPP was more active in the fed versus fasted state in the liver and the heart, consistent with increased expression of key enzymes in the PPP. Both the PPP and glycolysis were substantially increased in hepatoma compared with liver. In summary, [2,3-13 C2 ]glucose and 13 C NMR simplify assessment of the PPP.
Collapse
Affiliation(s)
- Min Hee Lee
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Craig R. Malloy
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX 75390
- VA North Texas Health Care System, Dallas, TX 75216
| | - Ian R. Corbin
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Junjie Li
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Eunsook S. Jin
- Department of Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
36
|
Ying M, Guo C, Hu X. The quantitative relationship between isotopic and net contributions of lactate and glucose to the tricarboxylic acid (TCA) cycle. J Biol Chem 2019; 294:9615-9630. [PMID: 31040177 DOI: 10.1074/jbc.ra119.007841] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/25/2019] [Indexed: 01/10/2023] Open
Abstract
Whether growing cancer cells prefer lactate as a fuel over glucose or vice versa is an important but controversial issue. Labeling of tricarboxylic acid (TCA) cycle intermediates with glucose or lactate isotope tracers is often used to report the relative contributions of these two metabolites to the TCA cycle. However, this approach may not yield accurate results, as isotopic labeling may not accurately reflect net contributions of each metabolite. This may be due to isotopic exchange occurring during the conversion between pyruvate and lactate. To evaluate this quantitatively, we used an equation (C G - C G' = C L' - C L) assessing the relationship between isotopic labeling and net consumption measurements in vitro. C G and C L refer to the contributions of glucose and lactate to the TCA cycle as measured by their net consumption, whereas C G' and C L' refer to glucose's and lactate's contributions determined with isotopic labeling. We found that the isotopic labeling data overestimate the net contribution of lactate to the TCA cycle and underestimate that of glucose. The overestimated amount is equal to the isotopic exchange amount between pyruvate and lactate. After excluding the interference of isotopic exchange, the major carbon contribution (i.e. acetyl-CoA) to the TCA cycle comes from glucose rather than lactate in vitro We propose that these relative contributions of glucose and lactate may also be present in cancer cells in vivo.
Collapse
Affiliation(s)
- Minfeng Ying
- From the Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Cheng Guo
- From the Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| | - Xun Hu
- From the Cancer Institute (Key Laboratory for Cancer Intervention and Prevention, China National Ministry of Education, Zhejiang Provincial Key Laboratory of Molecular Biology in Medical Sciences), The Second Affiliated Hospital, Zhejiang University School of Medicine, 310009, Hangzhou, China
| |
Collapse
|
37
|
Millard P, Delépine B, Guionnet M, Heuillet M, Bellvert F, Létisse F. IsoCor: isotope correction for high-resolution MS labeling experiments. Bioinformatics 2019; 35:4484-4487. [DOI: 10.1093/bioinformatics/btz209] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/22/2019] [Accepted: 03/20/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Summary
Mass spectrometry (MS) is widely used for isotopic studies of metabolism and other (bio)chemical processes. Quantitative applications in systems and synthetic biology require to correct the raw MS data for the contribution of naturally occurring isotopes. Several tools are available to correct low-resolution MS data, and recent developments made substantial improvements by introducing resolution-dependent correction methods, hence opening the way to the correction of high-resolution MS (HRMS) data. Nevertheless, current HRMS correction methods partly fail to determine which isotopic species are resolved from the tracer isotopologues and should thus be corrected. We present an updated version of our isotope correction software (IsoCor) with a novel correction algorithm which ensures to accurately exploit any chemical species with any isotopic tracer, at any MS resolution. IsoCor v2 also includes a novel graphical user interface for intuitive use by end-users and a command-line interface to streamline integration into existing pipelines.
Availability and implementation
IsoCor v2 is implemented in Python 3 and was tested on Windows, Unix and MacOS platforms. The source code and the documentation are freely distributed under GPL3 license at https://github.com/MetaSys-LISBP/IsoCor/ and https://isocor.readthedocs.io/.
Collapse
Affiliation(s)
- Pierre Millard
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse 31077, France
| | - Baudoin Delépine
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse 31077, France
| | - Matthieu Guionnet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse 31077, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Maud Heuillet
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse 31077, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Floriant Bellvert
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse 31077, France
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Fabien Létisse
- LISBP, Université de Toulouse, CNRS, INRA, INSA, Toulouse 31077, France
| |
Collapse
|
38
|
Jang C, Chen L, Rabinowitz JD. Metabolomics and Isotope Tracing. Cell 2019; 173:822-837. [PMID: 29727671 DOI: 10.1016/j.cell.2018.03.055] [Citation(s) in RCA: 483] [Impact Index Per Article: 96.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/21/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
Great strides have been made over the past decade toward comprehensive study of metabolism. Mass spectrometry (MS) has played a central role by enabling measurement of many metabolites simultaneously. Tracking metabolite labeling from stable isotope tracers can in addition reveal pathway activities. Here, we describe the basics of metabolite measurement by MS, including sample preparation, metabolomic analysis, and data interpretation. In addition, drawing on examples of successful experiments, we highlight the ways in which metabolomics and isotope tracing can illuminate biology.
Collapse
Affiliation(s)
- Cholsoon Jang
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544, USA
| | - Li Chen
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544, USA
| | - Joshua D Rabinowitz
- Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University, Washington Rd, Princeton, NJ 08544, USA.
| |
Collapse
|
39
|
Stocks BB, Thibeault MP, Meija J, Melanson JE. Assessing MS-based quantitation strategies for low-level impurities in peptide reference materials: application to angiotensin II. Anal Bioanal Chem 2018; 410:6963-6972. [DOI: 10.1007/s00216-018-1302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/06/2018] [Accepted: 08/01/2018] [Indexed: 01/05/2023]
|
40
|
Reijngoud DJ. Flux analysis of inborn errors of metabolism. J Inherit Metab Dis 2018; 41:309-328. [PMID: 29318410 PMCID: PMC5959979 DOI: 10.1007/s10545-017-0124-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 02/07/2023]
Abstract
Patients with an inborn error of metabolism (IEM) are deficient of an enzyme involved in metabolism, and as a consequence metabolism reprograms itself to reach a new steady state. This new steady state underlies the clinical phenotype associated with the deficiency. Hence, we need to know the flux of metabolites through the different metabolic pathways in this new steady state of the reprogrammed metabolism. Stable isotope technology is best suited to study this. In this review the progress made in characterizing the altered metabolism will be presented. Studies done in patients to estimate the residual flux through the metabolic pathway affected by enzyme deficiencies will be discussed. After this, studies done in model systems will be reviewed. The focus will be on glycogen storage disease type I, medium-chain acyl-CoA dehydrogenase deficiency, propionic and methylmalonic aciduria, urea cycle defects, phenylketonuria, and combined D,L-2-hydroxyglutaric aciduria. Finally, new developments are discussed, which allow the tracing of metabolic reprogramming in IEM on a genome-wide scale. In conclusion, the outlook for flux analysis of metabolic derangement in IEMs looks promising.
Collapse
Affiliation(s)
- D-J Reijngoud
- Section of Systems Medicine and Metabolic Signaling, Laboratory of Pediatrics, Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Center of Liver, Digestive and Metabolic Diseases, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- European Research Institute of the Biology of Ageing, Internal ZIP code EA12, A. Deusinglaan 1, 9713, AV, Groningen, The Netherlands.
| |
Collapse
|