1
|
Manjeri A, George SD. Hydrogel-Embedded Polydimethylsiloxane Contact Lens for Ocular Drug Delivery. ACS APPLIED BIO MATERIALS 2024. [PMID: 39425674 DOI: 10.1021/acsabm.4c00975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Topical administration is the commonly preferred method of administering ophthalmic formulations, with the majority of available medications in the form of eye drops or ointments. However, the topical application of ophthalmological medications has less bioavailability and a short residence time because of the physiological and anatomical constraints of the eye, making efficient ophthalmic drug delivery a challenging task. Microfluidic contact lenses have the advantage of delivering drugs into the eye in a controlled and on-demand manner. Here, we showcase the use of hydrogel-embedded microcavities on PDMS-based contact lenses for ocular drug delivery applications. The fabrication technique adopted here is the spontaneous formation of the spherical cavity by hydrogel monomer droplet, followed by the simultaneous thermal curing of hydrogel and PDMS, creating a spherical cavity as small as 150 μm. The spherical cavity is embedded with pH-responsive hydrogel for on-demand drug delivery. The drug loaded in the hydrogel matrix is released into the ocular environment by diffusion. The spherical cavity with a narrow opening restricts the diffusion to a minimum under normal ocular pH conditions(pH > 6). When the ocular pH reduces (pH < 6), the pH-responsive hydrogel inside the spherical cavity deswell and accelerates the drug release.
Collapse
Affiliation(s)
- Aravind Manjeri
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
| | - Sajan Daniel George
- Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal 576104, India
- Centre for Applied Nanosciences (CAN), Manipal Academy of Higher Education, Manipal 576104, India
| |
Collapse
|
2
|
Rajan A, Vishnu J, Shankar B. Tear-Based Ocular Wearable Biosensors for Human Health Monitoring. BIOSENSORS 2024; 14:483. [PMID: 39451696 PMCID: PMC11506517 DOI: 10.3390/bios14100483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Wearable tear-based biosensors have garnered substantial interest for real time monitoring with an emphasis on personalized health care. These biosensors utilize major tear biomarkers such as proteins, lipids, metabolites, and electrolytes for the detection and recording of stable biological signals in a non-invasive manner. The present comprehensive review delves deep into the tear composition along with potential biomarkers that can identify, monitor, and predict certain ocular diseases such as dry eye disease, conjunctivitis, eye-related infections, as well as diabetes mellitus. Recent technologies in tear-based wearable point-of-care medical devices, specifically the state-of-the-art and prospects of glucose, pH, lactate, protein, lipid, and electrolyte sensing from tear are discussed. Finally, the review addresses the existing challenges associated with the widespread application of tear-based sensors, which will pave the way for advanced scientific research and development of such non-invasive health monitoring devices.
Collapse
Affiliation(s)
- Arunima Rajan
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
| | - Jithin Vishnu
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| | - Balakrishnan Shankar
- Centre for Flexible Electronics and Advanced Materials, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India or (A.R.); or (J.V.)
- Department of Mechanical Engineering, Amrita Vishwa Vidyapeetham, Amritapuri 690525, India
| |
Collapse
|
3
|
Han F, Li J, Xiao P, Yang Y, Liu H, Wei Z, He Y, Xu F. Wearable smart contact lenses: A critical comparison of three physiological signals outputs for health monitoring. Biosens Bioelectron 2024; 257:116284. [PMID: 38657379 DOI: 10.1016/j.bios.2024.116284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024]
Abstract
Smart contact lenses (SCLs) have been considered as novel wearable devices for out-of-hospital and self-monitoring applications. They are capable of non-invasively and continuously monitoring physiological signals in the eyes, including vital biophysical (e.g., intraocular of pressure, temperature, and electrophysiological signal) and biochemical signals (e.g., pH, glucose, protein, nitrite, lactic acid, and ions). Recent progress mainly focuses on the rational design of wearable SCLs for physiological signal monitoring, while also facilitating the treatment of various ocular diseases. It covers contact lens materials, fabrication technologies, and integration methods. We also highlight and discuss a critical comparison of SCLs with electrical, microfluidic, and optical signal outputs in health monitoring. Their advantages and disadvantages could help researchers to make decisions when developing SCLs with desired properties for physiological signal monitoring. These unique capabilities make SCLs promising diagnostic and therapeutic tools. Despite the extensive research in SCLs, new technologies are still in their early stages of development and there are a few challenges to be addressed before these SCLs technologies can be successfully commercialized particularly in the form of rigorous clinical trials.
Collapse
Affiliation(s)
- Fei Han
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Juju Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Pingping Xiao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yanshen Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Zhao Wei
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuan He
- The Second Affiliated Hospital, Xi'an Medical University, Xi'an, 710038, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
4
|
Yan T, Weng F, Ming Y, Zhu S, Zhu M, Wang C, Guo C, Zhu K. Luminescence Probes in Bio-Applications: From Principle to Practice. BIOSENSORS 2024; 14:333. [PMID: 39056609 PMCID: PMC11274413 DOI: 10.3390/bios14070333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Bioanalysis based on optical imaging has gained significant progress in the last few decades. Luminescence probes are capable of detecting, monitoring, and tracing particular biomolecules in complex biological systems to figure out the roles of these molecules in organisms. Considering the rapid development of luminescence probes for bio-applications and their promising future, we have attempted to explore the working principles and recent advances in bio-applications of luminescence probes, in the hope of helping readers gain a detailed understanding of luminescence probes developed in recent years. In this review, we first focus on the current widely used luminescence probes, including fluorescence probes, bioluminescence probes, chemiluminescence probes, afterglow probes, photoacoustic probes, and Cerenkov luminescence probes. The working principles for each type of luminescence probe are concisely described and the bio-application of the luminescence probes is summarized by category, including metal ions detection, secretion detection, imaging, and therapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Chunsheng Wang
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Changfa Guo
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| | - Kai Zhu
- Department of Cardiovascular Surgery, Zhongshan Hospital Fudan University, Shanghai 200032, China; (T.Y.); (F.W.); (Y.M.); (S.Z.); (M.Z.)
| |
Collapse
|
5
|
Wen X, Yang X, Ge Z, Ma H, Wang R, Tian F, Teng P, Gao S, Li K, Zhang B, Sivanathan S. Self-powered optical fiber biosensor integrated with enzymes for non-invasive glucose sensing. Biosens Bioelectron 2024; 253:116191. [PMID: 38460209 DOI: 10.1016/j.bios.2024.116191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
To alleviate the discomfort associated with frequent blood glucose detection in diabetic patients, a novel non-invasive tear glucose biosensor has been developed. This involved the design and preparation of a photoelectrochemical probe based on an optical fiber and biological enzymes. One end of the optical fiber connects to a light source, acting as an energy source and imparting, self-powered capability to the biosensor. The opposite end is loaded with nanomaterials and glucose oxidase, designed for insertion into the sample to realize photoelectrochemical sensing. This innovative configuration not only improves the integration of the biosensor but is also suitable for analyzing minuscule voluminal samples. The results show that the proposed biosensor exhibits a linear range from 10 nM to 100 μM, possesses a low detection limit of 4.1 nM and a short response time of 0.7 s. Benefiting from the high selectivity of the enzyme, the proposed biosensor demonstrates excellent resistance to the interference of common tear components. In summary, this work provides a more effective method for non-invasive glucose detection and affords valuable ideas for the design and fabrication of non-invasive and self-powered biosensors.
Collapse
Affiliation(s)
- Xingyue Wen
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Xinghua Yang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Zhongxuan Ge
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Hongyu Ma
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Rui Wang
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Fengjun Tian
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China.
| | - Pingping Teng
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shuai Gao
- Key Laboratory of Photonic Materials and Devices Physics for Oceanic Applications, Ministry of Industry and Information Technology of China, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China; Key Laboratory of In-Fiber Integrated Optics of Ministry of Education, College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Kang Li
- Faculty of Computing, Engineering & Science, University of South Wales, Wales, CF37 1DL, UK
| | - Bo Zhang
- Faculty of Computing, Engineering & Science, University of South Wales, Wales, CF37 1DL, UK; Henan Academy of Special Optics Ltd., Xinxiang, 453000, China
| | - Sivagunalan Sivanathan
- Faculty of Computing, Engineering & Science, University of South Wales, Wales, CF37 1DL, UK
| |
Collapse
|
6
|
Saito T, Suzuki T, Nakayama C, Kato Y, Kakisu K, Itokawa T, Hori Y, Ushida K. Measurement of Anions in Tear Fluid Using Ion Chromatography. Cornea 2024; 43:172-177. [PMID: 37404128 DOI: 10.1097/ico.0000000000003330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/21/2023] [Indexed: 07/06/2023]
Abstract
PURPOSE Tear fluid (TF) contains a variety of electrolytes that exhibit a strong correlation with its osmotic pressure. These electrolytes are also related to the etiology of diseases on ocular surfaces such as dry eye syndromes and keratopathy. Although positive ions (cations) in TF have been investigated to understand their roles, negative ions (anions) have hardly been studied because applicable analytical methods are restricted to a few kinds. In this study, we established a method to analyze the anions involved in a sufficiently small amount of TF for in situ diagnosis of a single subject. METHODS Twenty healthy volunteers (10 men and 10 women) were recruited. Anions in their TF were measured on a commercial ion chromatograph (IC-2010, Tosoh, Japan). Tear fluid (5 μL or more) was collected from each subject with a glass capillary, diluted with 300 μL of pure water, and conveyed to the chromatograph. We successfully monitored the concentrations of bromide, nitrate, phosphate, and sulfate anions (Br - , NO 3- , HPO 42- , and SO 42- , respectively) in TF. RESULTS Br - and SO 42- were universally detected in all samples, whereas NO 3- was found in 35.0% and HPO 42- in 30.0% of them. The mean concentrations (mg/L) of each anion were Br - , 4.69 ± 0.96; NO 3- , 0.80 ± 0.68; HPO 42- , 17.48 ± 7.60; and SO 42- , 3.34 ± 2.54. As for SO 42- , no sex differences or diurnal variations were observed. CONCLUSIONS We established an efficient protocol to quantitate various inorganic anions involved in a small amount of TF using a commercially available instrument. This is the first step to elucidate the role of anions in TF.
Collapse
Affiliation(s)
- Tomohiko Saito
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan; and
| | - Chika Nakayama
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan; and
- Department of Chemistry, School of Science, Kitasato University, Kanagawa, Japan
| | - Yukina Kato
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan; and
- Department of Chemistry, School of Science, Kitasato University, Kanagawa, Japan
| | - Koji Kakisu
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan; and
| | - Takashi Itokawa
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan; and
| | - Yuichi Hori
- Department of Ophthalmology, Toho University Graduate School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Toho University Omori Medical Center, Tokyo, Japan; and
| | - Kiminori Ushida
- Department of Chemistry, School of Science, Kitasato University, Kanagawa, Japan
| |
Collapse
|
7
|
Han HH, Kim SK, Kim SJ, Choi I, Mok JW, Joo CK, Shin S, Hahn SK. Long-term stable wireless smart contact lens for robust digital diabetes diagnosis. Biomaterials 2023; 302:122315. [PMID: 37689048 DOI: 10.1016/j.biomaterials.2023.122315] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Wearable devices for digital continuous glucose monitoring (CGM) have attracted great attention as a new paradigm medical device for diabetes management. However, the relatively inaccurate performance and instability of CGM devices have limited their wide applications in the clinic. Here, we developed hyaluronate (HA) modified Au@Pt bimetallic electrodes for long-term accurate and robust CGM of smart contact lens. After glucose oxidation reaction, the bimetallic electrodes facilitated the rapid decomposition of hydrogen peroxide and charge transfer for robust CGM. The passivation of Au@Pt bimetallic electrode with branch-type thiolated HA prevented the dissolution of Au electrode by chloride ions in tears. In diabetic and normal rabbits, the smart contact lens with HA-Au@Pt bimetallic electrodes enabled the high correlation (ρ = 0.88) CGM with 98.6% clinically acceptable data for 3 weeks. Taken together, we could confirm the feasibility of our smart contact lens for long-term CGM for further clinical development.
Collapse
Affiliation(s)
- Hye Hyeon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea.
| | - Su-Kyung Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Seong-Jong Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Inhoo Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea
| | - Jee Won Mok
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 06591, South Korea
| | - Choun-Ki Joo
- Department of Ophthalmology and Visual Science, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 505, Banpo-dong, Seocho-gu, Seoul, 06591, South Korea
| | - Sangbaie Shin
- PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul, 06612, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; PHI BIOMED Co., #613, 12 Gangnam-daero 65-gil, Seocho-gu, Seoul, 06612, South Korea.
| |
Collapse
|
8
|
Lakowicz JR, Badugu R, Sivashanmugan K, Reece A. Remote Measurements of Tear Electrolyte Concentrations on Both Sides of an Inserted Contact Lens. CHEMOSENSORS (BASEL, SWITZERLAND) 2023; 11:463. [PMID: 38274567 PMCID: PMC10810336 DOI: 10.3390/chemosensors11080463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
In this paper, a method is described to perform ion concentration measurements on both sides of an inserted contact lens, without physical contact with the eye or the contact lens. The outer surface of an eye is covered with a tear film that has multiple layers. The central aqueous layer contains electrolytes and proteins. When a contact lens is inserted, it becomes localized in the central layer, which creates two layers known as the pre-lens tear film (PLTF) and the post-lens tear film (PoLTF). The PoLTF is in direct contact with the sensitive corneal epithelial cells which control electrolyte concentrations in tears. It is difficult to measure the overall electrolyte concentration in tears because of the small 7 μL volume of bulk tears. No methods are known, and no method has been proposed, to selectively measure the concentrations of electrolytes in the smaller volumes of the PLTF and the PoLTF. In this paper, we demonstrate the ability to localize fluorophores on each side of a contact lens without probe mixing or diffusion across the lens. We measured the concentration of sodium in the region of the PoLTF using a sodium-sensitive fluorophore positioned on the inner surface of a contact lens. The fluorescence measurements do not require physical contact and are mostly independent of eye motion and fluorophore concentration. The method is generic and can be combined with ion-sensitive fluorophores for the other electrolytes in tears. Instrumentation for non-contact measurements is likely to be inexpensive with modern opto-electronic devices. We expect these lenses to be used for measurements of other ions in the PLTF and the PoLTF, and thus become useful for both research and in the diagnosis of infections, keratitis and biomarkers for diseases.
Collapse
Affiliation(s)
- Joseph R. Lakowicz
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Kundan Sivashanmugan
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
| | - Albert Reece
- Center for Fluorescence Spectroscopy, Department of
Biochemistry and Molecular Biology, University of Maryland School of Medicine,
Baltimore, MD 21201, USA
- Department of Obstetrics, Gynecology and Reproductive
Sciences, University of Maryland School of Medicine, 655 W. Baltimore St.,
Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Yuan X, Ouaskioud O, Yin X, Li C, Ma P, Yang Y, Yang PF, Xie L, Ren L. Epidermal Wearable Biosensors for the Continuous Monitoring of Biomarkers of Chronic Disease in Interstitial Fluid. MICROMACHINES 2023; 14:1452. [PMID: 37512763 PMCID: PMC10385734 DOI: 10.3390/mi14071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Healthcare technology has allowed individuals to monitor and track various physiological and biological parameters. With the growing trend of the use of the internet of things and big data, wearable biosensors have shown great potential in gaining access to the human body, and providing additional functionality to analyze physiological and biochemical information, which has led to a better personalized and more efficient healthcare. In this review, we summarize the biomarkers in interstitial fluid, introduce and explain the extraction methods for interstitial fluid, and discuss the application of epidermal wearable biosensors for the continuous monitoring of markers in clinical biology. In addition, the current needs, development prospects and challenges are briefly discussed.
Collapse
Affiliation(s)
- Xichen Yuan
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Oumaima Ouaskioud
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xu Yin
- MOE Key Laboratory of Micro and Nano Systems for Aerospace, School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Pengyi Ma
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yang Yang
- Ministry of Education Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400030, China
| | - Peng-Fei Yang
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Xie
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
10
|
Liu Y, Li J, Xiao S, Liu Y, Bai M, Gong L, Zhao J, Chen D. Revolutionizing Precision Medicine: Exploring Wearable Sensors for Therapeutic Drug Monitoring and Personalized Therapy. BIOSENSORS 2023; 13:726. [PMID: 37504123 PMCID: PMC10377150 DOI: 10.3390/bios13070726] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023]
Abstract
Precision medicine, particularly therapeutic drug monitoring (TDM), is essential for optimizing drug dosage and minimizing toxicity. However, current TDM methods have limitations, including the need for skilled operators, patient discomfort, and the inability to monitor dynamic drug level changes. In recent years, wearable sensors have emerged as a promising solution for drug monitoring. These sensors offer real-time and continuous measurement of drug concentrations in biofluids, enabling personalized medicine and reducing the risk of toxicity. This review provides an overview of drugs detectable by wearable sensors and explores biosensing technologies that can enable drug monitoring in the future. It presents a comparative analysis of multiple biosensing technologies and evaluates their strengths and limitations for integration into wearable detection systems. The promising capabilities of wearable sensors for real-time and continuous drug monitoring offer revolutionary advancements in diagnostic tools, supporting personalized medicine and optimal therapeutic effects. Wearable sensors are poised to become essential components of healthcare systems, catering to the diverse needs of patients and reducing healthcare costs.
Collapse
Affiliation(s)
- Yuqiao Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Junmin Li
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Shenghao Xiao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanhui Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingxia Bai
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Lixiu Gong
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaqian Zhao
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
| | - Dajing Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou 311121, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310007, China
| |
Collapse
|
11
|
Recent Advances in Hydrogels for the Diagnosis and Treatment of Dry Eye Disease. Gels 2022; 8:gels8120816. [PMID: 36547340 PMCID: PMC9778550 DOI: 10.3390/gels8120816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Dry eye disease (DED) is the most common clinical ocular surface disease. Given its multifactorial etiology, no consensus has been reached on the diagnosis criteria for dry eye disease. Topical drug administration remains the mainstay of treatment but is limited to the rapid clearance from the eye surface. To address these problems, hydrogel-based materials were designed to detect biomarkers or act as drug delivery systems by taking advantage of their good biocompatibility, excellent physical and mechanical properties, and long-term implant stability. Biosensors prepared using biocompatible hydrogels can be sensitive in diagnosing DED, and the designed hydrogels can also improve the drug bioavailability and retention time for more effective and long-term treatment. This review summarizes recent advances in the use of hydrogels for diagnosing and treating dry eye, aiming to provide a novel reference for the eventual clinical translation of hydrogels in the context of dry eye disease.
Collapse
|
12
|
Song H, Shin H, Seo H, Park W, Joo BJ, Kim J, Kim J, Kim HK, Kim J, Park J. Wireless Non-Invasive Monitoring of Cholesterol Using a Smart Contact Lens. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203597. [PMID: 35975449 PMCID: PMC9534953 DOI: 10.1002/advs.202203597] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Herein, a wireless and soft smart contact lens that enables real-time quantitative recording of cholesterol in tear fluids for the monitoring of patients with hyperlipidemia using a smartphone is reported. This contact lens incorporates an electrochemical biosensor for the continuous detection of cholesterol concentrations, stretchable antenna, and integrated circuits for wireless communication, which makes a smartphone the only device required to operate this lens remotely without obstructing the wearer's vision. The hyperlipidemia rabbit model is utilized to confirm the correlation between cholesterol levels in tear fluid and blood and to confirm the feasibility of this smart contact lens for diagnostic application of cholesterol-related diseases. Further in vivo tests with human subjects demonstrated its good biocompatibility, wearability, and reliability as a non-invasive healthcare device.
Collapse
Affiliation(s)
- Hayoung Song
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Haein Shin
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Hunkyu Seo
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Wonjung Park
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Byung Jun Joo
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
| | - Jeongho Kim
- Department of Biomedical ScienceThe Graduate SchoolKyungpook National University680 Gukchebosang‐ro, Jung‐guDaegu41944Republic of Korea
| | - Jeonghyun Kim
- Department of Electronics Convergence EngineeringKwangwoon UniversitySeoul01897Republic of Korea
| | - Hong Kyun Kim
- Department of Biomedical ScienceThe Graduate SchoolKyungpook National University680 Gukchebosang‐ro, Jung‐guDaegu41944Republic of Korea
- Department of OphthalmologyBio‐Medical InstituteSchool of MedicineKyungpook National University Hospital130 Dongdeok‐ro, Jung‐guDaegu41944Republic of Korea
| | - Jayoung Kim
- Department of Medical EngineeringCollege of MedicineYonsei UniversitySeoul03722Republic of Korea
| | - Jang‐Ung Park
- Department of Materials Science and EngineeringCenter for Nanomedicine Institute for Basic Science (IBS)Yonsei UniversitySeoul03722Republic of Korea
- KIURI InstituteYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
13
|
Zhu Y, Li S, Li J, Falcone N, Cui Q, Shah S, Hartel MC, Yu N, Young P, de Barros NR, Wu Z, Haghniaz R, Ermis M, Wang C, Kang H, Lee J, Karamikamkar S, Ahadian S, Jucaud V, Dokmeci MR, Kim HJ, Khademhosseini A. Lab-on-a-Contact Lens: Recent Advances and Future Opportunities in Diagnostics and Therapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108389. [PMID: 35130584 PMCID: PMC9233032 DOI: 10.1002/adma.202108389] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/27/2022] [Indexed: 05/09/2023]
Abstract
The eye is one of the most complex organs in the human body, containing rich and critical physiological information (e.g., intraocular pressure, corneal temperature, and pH) as well as a library of metabolite biomarkers (e.g., glucose, proteins, and specific ions). Smart contact lenses (SCLs) can serve as a wearable intelligent ocular prosthetic device capable of noninvasive and continuous monitoring of various essential physical/biochemical parameters and drug loading/delivery for the treatment of ocular diseases. Advances in SCL technologies and the growing public interest in personalized health are accelerating SCL research more than ever before. Here, the current status and potential of SCL development through a comprehensive review from fabrication to applications to commercialization are discussed. First, the material, fabrication, and platform designs of the SCLs for the diagnostic and therapeutic applications are discussed. Then, the latest advances in diagnostic and therapeutic SCLs for clinical translation are reviewed. Later, the established techniques for wearable power transfer and wireless data transmission applied to current SCL devices are summarized. An outlook, future opportunities, and challenges for developing next-generation SCL devices are also provided. With the rise in interest of SCL development, this comprehensive and essential review can serve as a new paradigm for the SCL devices.
Collapse
Affiliation(s)
- Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Shaopei Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinghang Li
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, Hubei Province, 430205, China
| | - Natashya Falcone
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Qingyu Cui
- Department of Medicine, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Shilp Shah
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Martin C Hartel
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Bioengineering, University of California-Los Angeles, Los Angeles, CA, 90095, USA
| | - Ning Yu
- Department of Chemical and Environmental Engineering, University of California-Riverside, Riverside, CA, 92521, USA
| | - Patric Young
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | | | - Zhuohong Wu
- Department of Nanoengineering, University of California-San Diego, San Diego, CA, 92093, USA
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Canran Wang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Junmin Lee
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | | | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Vadim Jucaud
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Mehmet R Dokmeci
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
14
|
Abstract
![]()
Personalized and
point-of-care (POC) diagnoses are critical for
ocular physiology and disease diagnosis. Real-time monitoring and
continuous sampling abilities of tear fluid and user-friendliness
have become the key characteristics for the applied ophthalmic techniques.
Fluorescence technologies, as one of the most popular methods that
can fulfill the requirements of clinical ophthalmic applications for
optical sensing, have been raised and applied for tear sensing and
diagnostic platforms in recent decades. Wearable sensors in this case
have been increasingly developed for ocular diagnosis. Contact lenses,
as one of the commercialized and popular tools for ocular dysfunction,
have been developed as a platform for fluorescence sensing in tears
diagnostics and real-time monitoring. Numbers of biochemical analytes
have been examined through developed fluorescent contact lens sensors,
including pH values, electrolytes, glucose, and enzymes. These sensors
have been proven for monitoring ocular conditions, enhancing and detecting
medical treatments, and tracking efficiency of related ophthalmic
surgeries at POC settings. This review summarizes the applied ophthalmic
fluorescence sensing technologies in tears for ocular diagnosis and
monitoring. In addition, the cooperation of fabricated fluorescent
sensor with mobile phone readout devices for diagnosing ocular diseases
with specific biomarkers continuously is also discussed. Further perspectives
for the developments and applications of fluorescent ocular sensing
and diagnosing technologies are also provided.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| | - Yubing Hu
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ali K. Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, United Kingdom
| |
Collapse
|
15
|
Li MS, Wong HL, Ip YL, Peng Z, Yiu R, Yuan H, Wai Wong JK, Chan YK. Current and Future Perspectives on Microfluidic Tear Analytic Devices. ACS Sens 2022; 7:1300-1314. [PMID: 35579258 DOI: 10.1021/acssensors.2c00569] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Most current invasive analytic devices for disease diagnosis and monitoring require the collection of blood, which causes great discomfort for patients and may potentially cause infection. This explains the great need for noninvasive devices that utilize other bodily fluids like sweat, saliva, tears, or urine. Among them, eye tears are easily accessible, less complex in composition, and less susceptible to dilution. Tears also contain valuable clinical information for the diagnosis of ocular and systemic diseases as the tear analyte level shows great correlation with the blood analyte level. These unique advantages make tears a promising platform for use in clinical settings. As the volume of tear film and the rate of tear flow are only microliters in size, the use of microfluidic technology in analytic devices allows minimal sample consumption. Hence, more and more microfluidic tear analytic devices have been proposed, and their working mechanisms can be broadly categorized into four main types: (a) electrochemical, (b) photonic crystals, (c) fluorescence, and (d) colorimetry. These devices are being developed toward the application of point-of-care tests with rapid yet accurate results. This review aims to provide a general overview of the recent developmental trend of microfluidic devices for tear analysis. Moreover, the fundamental principle behind each type of device along with their strengths and weaknesses will be discussed, especially in terms of their abilities and potential in being used in point-of-care settings.
Collapse
Affiliation(s)
- Man Shek Li
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Yan Lam Ip
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Zhiting Peng
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| | - Rachel Yiu
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Hao Yuan
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, P R China
| | - Jasper Ka Wai Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
- Department of Ophthalmology, Grantham Hospital, Hong Kong West Cluster, Hong Kong SAR 000000
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR 000000
| |
Collapse
|
16
|
Elsherif M, Moreddu R, Alam F, Salih AE, Ahmed I, Butt H. Wearable Smart Contact Lenses for Continual Glucose Monitoring: A Review. Front Med (Lausanne) 2022; 9:858784. [PMID: 35445050 PMCID: PMC9013844 DOI: 10.3389/fmed.2022.858784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Diabetes mellitus is a chronic disease requiring a careful management to prevent its collateral complications, such as cardiovascular and Alzheimer's diseases, retinopathy, nephropathy, foot and hearing impairment, and neuropathy. Self-monitoring of blood glucose at point-of-care settings is an established practice for diabetic patients. However, current technologies for glucose monitoring are invasive, costly, and only provide single snapshots for a widely varying parameter. On the other hand, tears are a source of physiological information that mirror the health state of an individual by expressing different concentrations of metabolites, enzymes, vitamins, salts, and proteins. Therefore, the eyes may be exploited as a sensing site with substantial diagnostic potential. Contact lens sensors represent a viable route for targeting minimally-invasive monitoring of disease onset and progression. Particularly, glucose concentration in tears may be used as a surrogate to estimate blood glucose levels. Extensive research efforts recently have been devoted to develop smart contact lenses for continual glucose detection. The latest advances in the field are reviewed herein. Sensing technologies are described, compared, and the associated challenges are critically discussed.
Collapse
Affiliation(s)
- Mohamed Elsherif
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
- *Correspondence: Mohamed Elsherif
| | | | - Fahad Alam
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Ahmed E. Salih
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Israr Ahmed
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
| | - Haider Butt
- Department of Mechanical Engineering, Khalifa University of Science and Engineering, Abu Dhabi, United Arab Emirates
- Haider Butt
| |
Collapse
|
17
|
Ami D, Duse A, Mereghetti P, Cozza F, Ambrosio F, Ponzini E, Grandori R, Lunetta C, Tavazzi S, Pezzoli F, Natalello A. Tear-Based Vibrational Spectroscopy Applied to Amyotrophic Lateral Sclerosis. Anal Chem 2021; 93:16995-17002. [PMID: 34905686 PMCID: PMC8717331 DOI: 10.1021/acs.analchem.1c02546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Biofluid analysis
by optical spectroscopy techniques is attracting
considerable interest due to its potential to revolutionize diagnostics
and precision medicine, particularly for neurodegenerative diseases.
However, the lack of effective biomarkers combined with the unaccomplished
identification of convenient biofluids has drastically hampered optical
advancements in clinical diagnosis and monitoring of neurodegenerative
disorders. Here, we show that vibrational spectroscopy applied to
human tears opens a new route, offering a non-invasive, label-free
identification of a devastating disease such as amyotrophic lateral
sclerosis (ALS). Our proposed approach has been validated using two
widespread techniques, namely, Fourier transform infrared (FTIR) and
Raman microspectroscopies. In conjunction with multivariate analysis,
this vibrational approach made it possible to discriminate between
tears from ALS patients and healthy controls (HCs) with high specificity
(∼97% and ∼100% for FTIR and Raman spectroscopy, respectively)
and sensitivity (∼88% and ∼100% for FTIR and Raman spectroscopy,
respectively). Additionally, the investigation of tears allowed us
to disclose ALS spectroscopic markers related to protein and lipid
alterations, as well as to a reduction of the phenylalanine level,
in comparison with HCs. Our findings show that vibrational spectroscopy
is a new potential ALS diagnostic approach and indicate that tears
are a reliable and non-invasive source of ALS biomarkers.
Collapse
Affiliation(s)
- Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Alessandro Duse
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | | | - Federica Cozza
- COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy.,NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Francesca Ambrosio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicentre (NEMO), Serena Onlus Foundation, Piazza Ospedale Maggiore 3, 20162 Milano, Italy.,NEMO Lab, Piazza Ospedale Maggiore 3, 20162 Milano, Italy
| | - Silvia Tavazzi
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy.,COMiB Research Centre in Optics and Optometry, Via R. Cozzi 55, 20125 Milano, Italy
| | - Fabio Pezzoli
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
18
|
Shi Y, Jiang N, Bikkannavar P, Cordeiro MF, Yetisen AK. Ophthalmic sensing technologies for ocular disease diagnostics. Analyst 2021; 146:6416-6444. [PMID: 34591045 DOI: 10.1039/d1an01244d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Point-of-care diagnosis and personalized treatments are critical in ocular physiology and disease. Continuous sampling of tear fluid for ocular diagnosis is a need for further exploration. Several techniques have been developed for possible ophthalmological applications, from traditional spectroscopies to wearable sensors. Contact lenses are commonly used devices for vision correction, as well as for other therapeutic and cosmetic purposes. They are increasingly being developed into ocular sensors, being used to sense and monitor biochemical analytes in tear fluid, ocular surface temperature, intraocular pressure, and pH value. These sensors have had success in detecting ocular conditions, optimizing pharmaceutical treatments, and tracking treatment efficacy in point-of-care settings. However, there is a paucity of new and effective instrumentation reported in ophthalmology. Hence, this review will summarize the applied ophthalmic technologies for ocular diagnostics and tear monitoring, including both conventional and biosensing technologies. Besides applications of smart readout devices for continuous monitoring, targeted biomarkers are also discussed for the convenience of diagnosis of various ocular diseases. A further discussion is also provided for future aspects and market requirements related to the commercialization of novel types of contact lens sensors.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | | | - M Francesca Cordeiro
- UCL Institute of Ophthalmology, London, UK.,ICORG, Imperial College London, London, UK
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
19
|
Protection against corneal hyperosmolarity with soft-contact-lens wear. Prog Retin Eye Res 2021; 87:101012. [PMID: 34597771 DOI: 10.1016/j.preteyeres.2021.101012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/18/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
Hyperosmotic tear stimulates human corneal nerve endings, activates ocular immune response, and elicits dry-eye symptoms. A soft contact lens (SCL) covers the cornea preventing it from experiencing direct tear evaporation and the resulting blink-periodic salinity increases. For the cornea to experience hyperosmolarity due to tear evaporation, salt must transport across the SCL to the post-lens tear film (PoLTF) bathing the cornea. Consequently, limited salt transport across a SCL potentially protects the ocular surface from hyperosmotic tear. In addition, despite lens-wear discomfort sharing common sensations to dry eye, no correlation is available between measured tear hyperosmolarity and SCL-wear discomfort. Lack of documentation is likely because clinical measurements of tear osmolarity during lens wear do not interrogate the tear osmolarity of the PoLTF that actually overlays the cornea. Rather, tear osmolarity is clinically measured in the tear meniscus. For the first time, we mathematically quantify tear osmolarity in the PoLTF and show that it differs significantly from the clinically measured tear-meniscus osmolarity. We show further that aqueous-deficient dry eye and evaporative dry eye both exacerbate the hyperosmolarity of the PoLTF. Nevertheless, depending on lens salt-transport properties (i.e., diffusivity, partition coefficient, and thickness), a SCL can indeed protect against corneal hyperosmolarity by reducing PoLTF salinity to below that of the ocular surface during no-lens wear. Importantly, PoLTF osmolarity for dry-eye patients can be reduced to that of normal eyes with no-lens wear provided that the lens exhibits a low lens-salt diffusivity. Infrequent blinking increases PoLTF osmolarity consistent with lens-wear discomfort. Judicious design of SCL material salt-transport properties can ameliorate corneal hyperosmolarity. Our results confirm the importance of PoLTF osmolarity during SCL wear and indicate a possible relation between PoLTF osmolarity and contact-lens discomfort.
Collapse
|
20
|
Affiliation(s)
- Huixin Liu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants School of Resources & Environmental Engineering East China University of Science & Technology Shanghai 200237 PR China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes School of Resources & Environmental Engineering East China University of Science & Technology Shanghai 200237 PR China
| | - Xiaomei Yan
- Department of Chemistry Technical University of Denmark Kongens Lyngby 2800 Denmark
| | - Zhen Gu
- Department of Automation School of Information Science and Engineering East China University of Science & Technology Shanghai 200237 PR China
| | - Guangli Xiu
- Shanghai Environmental Protection Key Laboratory for Environmental Standard and Risk Management of Chemical Pollutants School of Resources & Environmental Engineering East China University of Science & Technology Shanghai 200237 PR China
- State Environmental Protection Key Lab of Environmental Risk Assessment and Control on Chemical Processes School of Resources & Environmental Engineering East China University of Science & Technology Shanghai 200237 PR China
| | - Xinxin Xiao
- Department of Chemistry Technical University of Denmark Kongens Lyngby 2800 Denmark
| |
Collapse
|
21
|
Bennet D, Khorsandian Y, Pelusi J, Mirabella A, Pirrotte P, Zenhausern F. Molecular and physical technologies for monitoring fluid and electrolyte imbalance: A focus on cancer population. Clin Transl Med 2021; 11:e461. [PMID: 34185420 PMCID: PMC8214861 DOI: 10.1002/ctm2.461] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/11/2021] [Accepted: 05/29/2021] [Indexed: 12/23/2022] Open
Abstract
Several clinical examinations have shown the essential impact of monitoring (de)hydration (fluid and electrolyte imbalance) in cancer patients. There are multiple risk factors associated with (de)hydration, including aging, excessive or lack of fluid consumption in sports, alcohol consumption, hot weather, diabetes insipidus, vomiting, diarrhea, cancer, radiation, chemotherapy, and use of diuretics. Fluid and electrolyte imbalance mainly involves alterations in the levels of sodium, potassium, calcium, and magnesium in extracellular fluids. Hyponatremia is a common condition among individuals with cancer (62% of cases), along with hypokalemia (40%), hypophosphatemia (32%), hypomagnesemia (17%), hypocalcemia (12%), and hypernatremia (1-5%). Lack of hydration and monitoring of hydration status can lead to severe complications, such as nausea/vomiting, diarrhea, fatigue, seizures, cell swelling or shrinking, kidney failure, shock, coma, and even death. This article aims to review the current (de)hydration (fluid and electrolyte imbalance) monitoring technologies focusing on cancer. First, we discuss the physiological and pathophysiological implications of fluid and electrolyte imbalance in cancer patients. Second, we explore the different molecular and physical monitoring methods used to measure fluid and electrolyte imbalance and the measurement challenges in diverse populations. Hydration status is assessed in various indices; plasma, sweat, tear, saliva, urine, body mass, interstitial fluid, and skin-integration techniques have been extensively investigated. No unified (de)hydration (fluid and electrolyte imbalance) monitoring technology exists for different populations (including sports, elderly, children, and cancer). Establishing novel methods and technologies to facilitate and unify measurements of hydration status represents an excellent opportunity to develop impactful new approaches for patient care.
Collapse
Affiliation(s)
- Devasier Bennet
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
| | - Yasaman Khorsandian
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
| | | | | | - Patrick Pirrotte
- Collaborative Center for Translational Mass SpectrometryTranslational Genomics Research InstitutePhoenixUSA
| | - Frederic Zenhausern
- Center for Applied NanoBioscience and MedicineThe University of ArizonaCollege of MedicinePhoenixUSA
- HonorHealth Research InstituteScottsdaleUSA
- Collaborative Center for Translational Mass SpectrometryTranslational Genomics Research InstitutePhoenixUSA
| |
Collapse
|
22
|
Jones L, Hui A, Phan CM, Read ML, Azar D, Buch J, Ciolino JB, Naroo SA, Pall B, Romond K, Sankaridurg P, Schnider CM, Terry L, Willcox M. CLEAR - Contact lens technologies of the future. Cont Lens Anterior Eye 2021; 44:398-430. [PMID: 33775384 DOI: 10.1016/j.clae.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Contact lenses in the future will likely have functions other than correction of refractive error. Lenses designed to control the development of myopia are already commercially available. Contact lenses as drug delivery devices and powered through advancements in nanotechnology will open up further opportunities for unique uses of contact lenses. This review examines the use, or potential use, of contact lenses aside from their role to correct refractive error. Contact lenses can be used to detect systemic and ocular surface diseases, treat and manage various ocular conditions and as devices that can correct presbyopia, control the development of myopia or be used for augmented vision. There is also discussion of new developments in contact lens packaging and storage cases. The use of contact lenses as devices to detect systemic disease has mostly focussed on detecting changes to glucose levels in tears for monitoring diabetic control. Glucose can be detected using changes in colour, fluorescence or generation of electric signals by embedded sensors such as boronic acid, concanavalin A or glucose oxidase. Contact lenses that have gained regulatory approval can measure changes in intraocular pressure to monitor glaucoma by measuring small changes in corneal shape. Challenges include integrating sensors into contact lenses and detecting the signals generated. Various techniques are used to optimise uptake and release of the drugs to the ocular surface to treat diseases such as dry eye, glaucoma, infection and allergy. Contact lenses that either mechanically or electronically change their shape are being investigated for the management of presbyopia. Contact lenses that slow the development of myopia are based upon incorporating concentric rings of plus power, peripheral optical zone(s) with add power or non-monotonic variations in power. Various forms of these lenses have shown a reduction in myopia in clinical trials and are available in various markets.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| | - Alex Hui
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Michael L Read
- Eurolens Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dimitri Azar
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA; Verily Life Sciences, San Francisco, CA, USA
| | - John Buch
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Joseph B Ciolino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shehzad A Naroo
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Brian Pall
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Kathleen Romond
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| | - Padmaja Sankaridurg
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia; Brien Holden Vision Institute, Sydney, Australia
| | | | - Louise Terry
- School of Optometry and Vision Sciences, Cardiff University, UK
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
23
|
Badugu R, Szmacinski H, Reece EA, Jeng BH, Lakowicz JR. Sodium-Sensitive Contact Lens for Diagnostics of Ocular Pathologies. SENSORS AND ACTUATORS. B, CHEMICAL 2021; 331:129434. [PMID: 33551571 PMCID: PMC7861470 DOI: 10.1016/j.snb.2021.129434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to measure all the electrolyte concentrations in tears would be valuable in ophthalmology for research and diagnosis of dry eye disease (DED) and other ocular pathologies. However, tear samples are difficult to collect and analyze because the total volume is small and the chemical composition changes rapidly. Measurements of electrolytes in tears is challenging because typical clinical assays for proteins and other biomarkers cannot be used to detect ion concentrations tears. Here, we report the contact lens which is sensitive to sodium ion (Na+), one of the dominant electrolytes in tears. The Na ions in tears is diagnostic for DED. Three sodium-sensitive fluorophores (SG-C16, SG-LPE and SG-PL) were synthesized by derivatizing the sodium green with 1-hexadecyl amine, 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine or poly-L-lysine, respectively. These probes were bound to modern silicone hydrogel (SiHG) contact lens, Biofinity from Cooper Vision. Doped lenses were tested for sodium ion dependent spectral properties of probes within the contact lens. The probes displayed changes in intensity and lifetime in response to Na+ concentration, were completely reversible, no significant probe wash-out from the lenses, were not affected by proteins in tears and were not removed after repeated washing. These results are the first step to our long-term goal, which is a lens sensitive to all the electrolytes in tears. We presented design, synthesis and implementation of three new sodium sensitive probes within a silicon hydrogel lens. Contact lenses to measure the other electrolytes in tears can be developed using the same approach by synthesis and testing of new ion-sensitive fluorophores.
Collapse
Affiliation(s)
- Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| | - Henryk Szmacinski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD 21201, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Md 21201, USA
| | - Bennie H Jeng
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, 419 W. Redwood Street, Baltimore, Md 21201, USA
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD 21201, USA
| |
Collapse
|
24
|
Yang C, Huang X, Li X, Yang C, Zhang T, Wu Q, liu D, Lin H, Chen W, Hu N, Xie X. Wearable and Implantable Intraocular Pressure Biosensors: Recent Progress and Future Prospects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002971. [PMID: 33747725 PMCID: PMC7967055 DOI: 10.1002/advs.202002971] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/24/2020] [Indexed: 05/09/2023]
Abstract
Biosensors worn on or implanted in eyes have been garnering substantial attention since being proven to be an effective means to acquire critical biomarkers for monitoring the states of ophthalmic disease, diabetes. Among these disorders, glaucoma, the second leading cause of blindness globally, usually results in irreversible blindness. Continuous intraocular pressure (IOP) monitoring is considered as an effective measure, which provides a comprehensive view of IOP changes that is beyond reach for the "snapshots" measurements by clinical tonometry. However, to satisfy the applications in ophthalmology, the development of IOP sensors are required to be prepared with biocompatible, miniature, transparent, wireless and battery-free features, which are still challenging with many current fabrication processes. In this work, the recent advances in this field are reviewed by categorizing these devices into wearable and implantable IOP sensors. The materials and structures exploited for engineering these IOP devices are presented. Additionally, their working principle, performance, and the potential risk that materials and device architectures may pose to ocular tissue are discussed. This review should be valuable for preferable structure design, device fabrication, performance optimization, and reducing potential risk of these devices. It is significant for the development of future practical IOP sensors.
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xinshuo Huang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Chengduan Yang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Tao Zhang
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- School of Biomedical EngineeringSun Yat‐Sen UniversityGuangzhou510006China
| | - Qianni Wu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Dong liu
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Haotian Lin
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Weirong Chen
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| | - Ning Hu
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and TechnologiesGuangdong Province Key Laboratory of Display Material and TechnologySchool of Electronics and Information TechnologyThe First Affiliated Hospital of Sun Yat‐Sen UniversitySun Yat‐Sen UniversityGuangzhou510006China
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐Sen UniversityGuangzhou510060China
| |
Collapse
|
25
|
Rodrigues JF, Florea L, de Oliveira MCF, Diamond D, Oliveira ON. Big data and machine learning for materials science. DISCOVER MATERIALS 2021; 1:12. [PMID: 33899049 PMCID: PMC8054236 DOI: 10.1007/s43939-021-00012-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/01/2021] [Indexed: 05/11/2023]
Abstract
Herein, we review aspects of leading-edge research and innovation in materials science that exploit big data and machine learning (ML), two computer science concepts that combine to yield computational intelligence. ML can accelerate the solution of intricate chemical problems and even solve problems that otherwise would not be tractable. However, the potential benefits of ML come at the cost of big data production; that is, the algorithms demand large volumes of data of various natures and from different sources, from material properties to sensor data. In the survey, we propose a roadmap for future developments with emphasis on computer-aided discovery of new materials and analysis of chemical sensing compounds, both prominent research fields for ML in the context of materials science. In addition to providing an overview of recent advances, we elaborate upon the conceptual and practical limitations of big data and ML applied to materials science, outlining processes, discussing pitfalls, and reviewing cases of success and failure.
Collapse
Affiliation(s)
- Jose F. Rodrigues
- Institute of Mathematical Sciences and Computing, University of São Paulo (USP), São Carlos, SP Brazil
| | - Larisa Florea
- SFI Research Centre for Advanced Materials and BioEngineering Research Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Maria C. F. de Oliveira
- Institute of Mathematical Sciences and Computing, University of São Paulo (USP), São Carlos, SP Brazil
| | - Dermot Diamond
- Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Dublin, Ireland
| | - Osvaldo N. Oliveira
- São Carlos Institute of Physics, University of São Paulo (USP), São Carlos, SP Brazil
| |
Collapse
|
26
|
Badugu R, Szmacinski H, Reece EA, Jeng BH, Lakowicz JR. Fluorescent contact lens for continuous non-invasive measurements of sodium and chloride ion concentrations in tears. Anal Biochem 2020; 608:113902. [PMID: 32800702 DOI: 10.1016/j.ab.2020.113902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 11/17/2022]
Abstract
Rapid and non-invasive measurement of hydration status is medically important because even mild levels of dehydration can have a significant impact on physical and cognitive performance. Despite the potential value of determining whole-body hydration based on the electrolytes found in tears, very few tests are available. An area of intense interest is the development of a contact lens which could measure ion concentrations in tears, specifically that of sodium (Na+) and chloride (Cl-) ions, the dominant electrolytes in blood plasma and tears. Here, we describe a method to make fluorescent contact lenses which allow determination of Na+ and Cl- ion concentrations in tears. Fluorophores known to be sensitive to Na+ and Cl- were derivatized to bind non-covalently to two commercially-available silicone hydrogel (SiHG) contact lenses-the Biofinity (Comfilcon A) or MyDay (Stenfilcon A) lenses. The sodium- and chloride-sensitive fluorophores displayed spectral changes in the physiological range for Na+ and Cl- ions in tears. The lenses for both Na+ and Cl- ions were completely reversible. The sodium responses were not sensitive to protein interference including human lysozyme, human serum albumin and mucin type 2. The chloride sensitivity was similar with both lenses, but the sodium-sensitive range was different in the Biofinity and MyDay lenses. We also fabricated a lens with both the Na+ and Cl- probes in a single MyDay lens resulting in a contact lens that independently measured Na+ and Cl- concentrations without physical separation of the fluorophores. Our findings indicated that a sodium and chloride-sensitive contact lens (NaCl-lens) could be used for rapid non-invasive detection of whole-body hydration, as well as associated diseases or other infections.
Collapse
Affiliation(s)
- Ramachandram Badugu
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD, 21201, USA.
| | - Henryk Szmacinski
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD, 21201, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Md, 21201, USA; Department of Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, Md, 21201, USA
| | - Bennie H Jeng
- Department of Ophthalmology & Visual Sciences, University of Maryland School of Medicine, 419 W. Redwood Street, Baltimore, Md, 21201, USA
| | - Joseph R Lakowicz
- Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 725 West Lombard St., Baltimore, MD, 21201, USA.
| |
Collapse
|
27
|
Chen X, Wu X, Lin X, Wang J, Xu W. Outcome, influence factor and development of CLS measurement in continuous IOP monitoring: A narrative review. Cont Lens Anterior Eye 2020; 44:101376. [PMID: 33092960 DOI: 10.1016/j.clae.2020.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/25/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
A large fluctuation in intraocular pressure (IOP) and a high peak IOP remain the risk factors for progressive visual field loss in patients with glaucoma, which is a leading cause of irreversible blindness. However, IOP measurements during working time cannot provide sufficient information on IOP to guide clinicians in setting IOP target values. Contact lenses are extensively used in ophthalmology to correct the refractive error, and recently, they are serving as platforms for detection and drug delivery. Contact lens sensor (CLS) is a feasible and promising approach to continuously monitor IOP, with superior tolerance, non-invasiveness, and without sleep disturbance. The present work reviewed the associations between progressive course and Triggerfish® CLS outputs as well as the relationship between treatments and Triggerfish® CLS outputs. Moreover, it further summarized state-of-the-art CLS devices of the past decade.
Collapse
Affiliation(s)
- Xiang Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Xingdi Wu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Xueqi Lin
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Jingwen Wang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China
| | - Wen Xu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
28
|
Oriá AP, Lacerda ADJ, Raposo ACS, Araújo NLLC, Portela R, Mendonça MA, Masmali AM. Comparison of Electrolyte Composition and Crystallization Patterns in Bird and Reptile Tears. Front Vet Sci 2020; 7:574. [PMID: 32903625 PMCID: PMC7438592 DOI: 10.3389/fvets.2020.00574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
To compare tear electrolytes and tear crystallization patterns in birds and reptiles, tears were sampled by Schirmer tear test from 10 animals each of Ara ararauna, Amazona aestiva, Tyto alba, Rupornis magnirostris, Chelonoidis carbonaria, and Caiman latirostris, and 5 of Caretta caretta. The aliquots were pooled to assess concentrations of total protein, chloride, phosphorus, iron, sodium, potassium, calcium, and urea. For the tear ferning test, samples of each species were observed under a polarized light microscope at room temperature and humidity. Crystallization patterns were graded according Rolando and Masmali scales. There was more total protein and urea in owl and sea turtle tears, respectively, than in the other animals tested. Electrolyte balance was similar for all species, with higher sodium, chloride, and iron. In birds, Rolando-scale grades of tear crystallization patterns ranged from I to II, and from 0 to 2 using the Masmali scale; in reptiles, grades were II to IV (Rolando) and 2 to 4 (Masmali). Crystallization arrangements of some species had higher scores, as caimans and sea turtles, possibly due to different the tear composition. Marine and lacustrine species presented higher. The ionic balance of lacrimal fluids of birds and reptiles was similar to that in humans, with higher values of sodium and chloride. However, a similar tear composition did not influence the crystal morphology. Crystallization classification suggested that higher grades and types are due to the different microelements present in the tears of wild species.
Collapse
Affiliation(s)
- Arianne P Oriá
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Brazil
| | - Ariane de J Lacerda
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Brazil
| | - Ana Cláudia S Raposo
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Brazil
| | - Nayone L L C Araújo
- School of Veterinary Medicine and Zootechny, Federal University of Bahia, UFBA, Salvador, Brazil
| | - Ricardo Portela
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Marcos A Mendonça
- Laboratory of Immunology and Molecular Biology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil
| | - Ali M Masmali
- Cornea Research Chair, Department of Optometry, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
29
|
Manjakkal L, Dervin S, Dahiya R. Flexible potentiometric pH sensors for wearable systems. RSC Adv 2020; 10:8594-8617. [PMID: 35496561 PMCID: PMC9050124 DOI: 10.1039/d0ra00016g] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 03/30/2020] [Accepted: 02/15/2020] [Indexed: 12/21/2022] Open
Abstract
There is a growing demand for developing wearable sensors that can non-invasively detect the signs of chronic diseases early on to possibly enable self-health management. Among these the flexible and stretchable electrochemical pH sensors are particularly important as the pH levels influence most chemical and biological reactions in materials, life and environmental sciences. In this review, we discuss the most recent developments in wearable electrochemical potentiometric pH sensors, covering the key topics such as (i) suitability of potentiometric pH sensors in wearable systems; (ii) designs of flexible potentiometric pH sensors, which may vary with target applications; (iii) materials for various components of the sensor such as substrates, reference and sensitive electrode; (iv) applications of flexible potentiometric pH sensors, and (v) the challenges relating to flexible potentiometric pH sensors.
Collapse
Affiliation(s)
- Libu Manjakkal
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Saoirse Dervin
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| | - Ravinder Dahiya
- Bendable Electronics and Sensing Technologies (BEST) Group, School of Engineering, University of Glasgow G12 8QQ UK
| |
Collapse
|
30
|
Clegg JR, Wagner AM, Shin SR, Hassan S, Khademhosseini A, Peppas NA. Modular Fabrication of Intelligent Material-Tissue Interfaces for Bioinspired and Biomimetic Devices. PROGRESS IN MATERIALS SCIENCE 2019; 106:100589. [PMID: 32189815 PMCID: PMC7079701 DOI: 10.1016/j.pmatsci.2019.100589] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
One of the goals of biomaterials science is to reverse engineer aspects of human and nonhuman physiology. Similar to the body's regulatory mechanisms, such devices must transduce changes in the physiological environment or the presence of an external stimulus into a detectable or therapeutic response. This review is a comprehensive evaluation and critical analysis of the design and fabrication of environmentally responsive cell-material constructs for bioinspired machinery and biomimetic devices. In a bottom-up analysis, we begin by reviewing fundamental principles that explain materials' responses to chemical gradients, biomarkers, electromagnetic fields, light, and temperature. Strategies for fabricating highly ordered assemblies of material components at the nano to macro-scales via directed assembly, lithography, 3D printing and 4D printing are also presented. We conclude with an account of contemporary material-tissue interfaces within bioinspired and biomimetic devices for peptide delivery, cancer theranostics, biomonitoring, neuroprosthetics, soft robotics, and biological machines.
Collapse
Affiliation(s)
- John R Clegg
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Angela M Wagner
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
| | - Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Brigham Women's Hospital, Harvard Medical School, Cambridge, Massachusetts, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California - Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute (CNSI), University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, California, USA
- Department of Bioindustrial Technologies, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Nicholas A Peppas
- Department of Biomedical Engineering, the University of Texas at Austin, Austin, Texas, USA
- McKetta Department of Chemical Engineering, the University of Texas at Austin, Austin, Texas, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, the University of Texas at Austin, Austin, Texas, USA
- Department of Surgery and Perioperative Care, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Department of Pediatrics, Dell Medical School, the University of Texas at Austin, Austin, Texas, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, the University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
31
|
Heidari M, Noorizadeh F, Wu K, Inomata T, Mashaghi A. Dry Eye Disease: Emerging Approaches to Disease Analysis and Therapy. J Clin Med 2019; 8:jcm8091439. [PMID: 31514344 PMCID: PMC6780511 DOI: 10.3390/jcm8091439] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/01/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Dry eye disease (DED) is among the most common ocular disorders affecting tens of millions of individuals worldwide; however, the condition remains incompletely understood and treated. Valuable insights have emerged from multidisciplinary approaches, including immunometabolic analyses, microbiome analyses, and bioengineering. Furthermore, we have seen new developments in clinical assessment approaches and treatment strategies in the recent past. Here, we review the emerging frontiers in the pathobiology and clinical management of DED.
Collapse
Affiliation(s)
- Mostafa Heidari
- Basir Eye Health Research Center, Tehran 1418643561, Iran.
- Farabi Eye Hospital, Department of Ophthalmology and Eye Research Center, Tehran University of Medical Sciences, Tehran 133661635, Iran.
| | | | - Kevin Wu
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, Ophthalmic Consultation Service, New York, NY 10029, USA
- New York Eye and Ear Infirmary of Mount Sinai, New York, NY 10003, USA
| | - Takenori Inomata
- Department of Ophthalmology, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan.
- Department of Strategic Operating Room Management and Improvement, Juntendo University Faculty of Medicine, Tokyo 1130033, Japan.
| | - Alireza Mashaghi
- Systems Biomedicine and Pharmacology Division, Leiden Academic Centre for Drug Research, Leiden University, 2333CC Leiden, The Netherlands.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.
- Department of Ophthalmology, Shanghai Medical College, Fudan University, Shanghai 200000, China.
| |
Collapse
|
32
|
Zhao J, Guo H, Li J, Bandodkar AJ, Rogers JA. Body-Interfaced Chemical Sensors for Noninvasive Monitoring and Analysis of Biofluids. TRENDS IN CHEMISTRY 2019. [DOI: 10.1016/j.trechm.2019.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Tseng RC, Chen CC, Hsu SM, Chuang HS. Contact-Lens Biosensors. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2651. [PMID: 30104496 PMCID: PMC6111605 DOI: 10.3390/s18082651] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022]
Abstract
Rapid diagnosis and screening of diseases have become increasingly important in predictive and preventive medicine as they improve patient treatment strategies and reduce cost as well as burden on our healthcare system. In this regard, wearable devices are emerging as effective and reliable point-of-care diagnostics that can allow users to monitor their health at home. These wrist-worn, head-mounted, smart-textile, or smart-patches devices can offer valuable information on the conditions of patients as a non-invasive form of monitoring. However, they are significantly limited in monitoring physiological signals and biomechanics, and, mostly, rely on the physical attributes. Recently, developed wearable devices utilize body fluids, such as sweat, saliva, or skin interstitial fluid, and electrochemical interactions to allow continuous physiological condition and disease monitoring for users. Among them, tear fluid has been widely utilized in the investigation of ocular diseases, diabetes, and even cancers, because of its easy accessibility, lower complexity, and minimal invasiveness. By determining the concentration change of analytes within the tear fluid, it would be possible to identify disease progression and allow patient-oriented therapies. Considering the emerging trend of tear-based biosensing technology, this review article aims to focus on an overview of the tear fluid as a detection medium for certain diseases, such as ocular disorders, diabetes, and cancer. In addition, the rise and application of minimally invasive detection and monitoring via integrated contact lens biosensors will also be addressed, in regards to their practicality and current developmental progress.
Collapse
Affiliation(s)
- Ryan Chang Tseng
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan.
| | - Ching-Chuen Chen
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan.
| | - Sheng-Min Hsu
- Department of Ophthalmology, National Cheng Kung University Hospital, Tainan City 704, Taiwan.
| | - Han-Sheng Chuang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City 701, Taiwan.
- Medical Device Innovation Center, National Cheng Kung University, Tainan City 701, Taiwan.
| |
Collapse
|
34
|
Badugu R, Reece EA, Lakowicz JR. Glucose-sensitive silicone hydrogel contact lens toward tear glucose monitoring. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-9. [PMID: 29774672 PMCID: PMC5956140 DOI: 10.1117/1.jbo.23.5.057005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/13/2018] [Indexed: 05/24/2023]
Abstract
Accurate and reliable monitoring of blood glucose is needed for the treatment of diabetes, which has many challenges, including lack of patient compliance. Measuring tear glucose is an alternative to traditional finger-stick tests used to track blood sugar levels, but glucose sensing using tears has yet to be achieved. We report a methodology for possible tear glucose monitoring using glucose-sensitive silicone hydrogel (SiHG) contact lenses, the primary type of lenses available in today's market. Initially, we assessed the interpenetrating polymer network, with nearly pure silicone and water regions, existing in the SiHGs using a polarity-sensitive probe Prodan. We then synthesized a glucose-sensitive fluorophore Quin-C18 with a hydrophobic side chain for localization of probe at the interfacial region. Using our glucose-sensing contact lens, we were able to measure varying concentrations of glucose in an in-vitro system. The Quin-C18 strongly bound to the lenses with insignificant leaching even after multiple rinses. The lenses displayed a similar response to glucose after three months of storage in water. This study demonstrates that it may be possible to develop a contact lens for continuous glucose monitoring in the near term, using our concept of fluorophore binding at the silicone-water interface.
Collapse
Affiliation(s)
- Ramachandram Badugu
- University of Maryland School of Medicine, Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Baltimore, Maryland, United States
| | - Edward Albert Reece
- University of Maryland School of Medicine, Department of Obstetrics, Gynecology and Reproductive Sciences, Baltimore, Maryland, United States
- University of Maryland School of Medicine, Department of Biochemistry and Molecular Biology, Baltimore, Maryland, United States
| | - Joseph R. Lakowicz
- University of Maryland School of Medicine, Center for Fluorescence Spectroscopy, Department of Biochemistry and Molecular Biology, Baltimore, Maryland, United States
| |
Collapse
|