1
|
Tasleem M, Pelletier J, Sévigny J, Hussain Z, Khan A, Al-Harrasi A, El-Kott AF, Taslimi P, Negm S, Shafiq Z, Iqbal J. Synthesis, in vitro, and in silico studies of morpholine-based thiosemicarbazones as ectonucleotide pyrophosphatase/phosphodiesterase-1 and -3 inhibitors. Int J Biol Macromol 2024; 266:131068. [PMID: 38531526 DOI: 10.1016/j.ijbiomac.2024.131068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 03/28/2024]
Abstract
An extensive range of new biologically active morpholine based thiosemicarbazones derivatives 3a-r were synthesized, characterized by spectral techniques and evaluated as inhibitors of ENPP isozymes. Most of the novel thiosemicarbazones exhibit potent inhibition towards NPP1 and NPP3 isozymes. Compound 3 h was potent inhibitor of NPP1 with IC50 value of 0.55 ± 0.02. However, the most powerful inhibitor of NPP3 was 3e with an IC50 value of 0.24 ± 0.02. Furthermore, Lineweaver-Burk plot for compound 3 h against NPP1 and for compound 3e against NPP3 was devised through enzymes kinetics studies. Molecular docking and in silico studies was also done for analysis of interaction pattern of all newly synthesized compounds. The results were further validated by molecular dynamic (MD) simulation where the stability of conformational transformation of the best protein-ligand complex (3e) were justified on the basis of RMSD and RMSF analysis.
Collapse
Affiliation(s)
- Mussarat Tasleem
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec G1V 4G2, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec G1V 4G2, Canada; Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec G1V 0A6, Canada
| | - Zahid Hussain
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Ajmal Khan
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Centre, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Sultanate of Oman.
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia; Department of Zoology, College of Science, Damanhour University, Egypt
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, 74100 Bartin, Türkiye
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan; Department of Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany.
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| |
Collapse
|
2
|
Lopez V, Schuh HJM, Mirza S, Vaaßen VJ, Schmidt MS, Sylvester K, Idris RM, Renn C, Schäkel L, Pelletier J, Sévigny J, Naggi A, Scheffler B, Lee SY, Bendas G, Müller CE. Heparins are potent inhibitors of ectonucleotide pyrophosphatase/phospho-diesterase-1 (NPP1) - a promising target for the immunotherapy of cancer. Front Immunol 2023; 14:1173634. [PMID: 37711611 PMCID: PMC10497752 DOI: 10.3389/fimmu.2023.1173634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/03/2023] [Indexed: 09/16/2023] Open
Abstract
Introduction Heparins, naturally occurring glycosaminoglycans, are widely used for thrombosis prevention. Upon application as anticoagulants in cancer patients, heparins were found to possess additional antitumor activities. Ectonucleotidases have recently been proposed as novel targets for cancer immunotherapy. Methods and results In the present study, we discovered that heparin and its derivatives act as potent, selective, allosteric inhibitors of the poorly investigated ectonucleotidase NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1, CD203a). Structure-activity relationships indicated that NPP1 inhibition could be separated from the compounds' antithrombotic effect. Moreover, unfractionated heparin (UFH) and different low molecular weight heparins (LMWHs) inhibited extracellular adenosine production by the NPP1-expressing glioma cell line U87 at therapeutically relevant concentrations. As a consequence, heparins inhibited the ability of U87 cell supernatants to induce CD4+ T cell differentiation into immunosuppressive Treg cells. Discussion NPP1 inhibition likely contributes to the anti-cancer effects of heparins, and their specific optimization may lead to improved therapeutics for the immunotherapy of cancer.
Collapse
Affiliation(s)
- Vittoria Lopez
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - H. J. Maximilian Schuh
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Victoria J. Vaaßen
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Michael S. Schmidt
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Riham M. Idris
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Christian Renn
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Laura Schäkel
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Départment de Microbiologie-Infectiologie et d’Immunologie, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Annamaria Naggi
- Institute for Chemical and Biochemical Research “G. Ronzoni”, Milan, Italy
| | - Björn Scheffler
- DKFZ Division Translational Neurooncology at the West German Cancer Center (WTZ), DKTK Partner site, University Hospital Essen and German Cancer Research Center, Heidelberg, Germany
| | - Sang-Yong Lee
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| | - Gerd Bendas
- Pharmaceutical Institute, Pharmaceutical and Cell Biological Chemistry, University of Bonn, Bonn, Germany
| | - Christa E. Müller
- Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
- PharmaCenter Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
3
|
Seneviratne HK. Nucleoside Triphosphate Diphosphohydrolase 1 Exhibits Enzymatic Activity toward Tenofovir Diphosphate. Drug Metab Dispos 2023; 51:385-391. [PMID: 36396461 DOI: 10.1124/dmd.122.000855] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 10/24/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Tenofovir (TFV; prescribed as TFV disoproxil fumarate and TFV alafenamide prodrugs) is currently used for HIV prevention and treatment. TFV must be phosphorylated twice into TFV-diphosphate (TFV-DP) to become pharmacologically active. Previously, we reported heterogeneity in TFV-DP distribution in colorectal tissue (a putative site of HIV infection) sections collected from research participants receiving a TFV-containing enema. This observed heterogeneity is likely multifactorial. Of note, TFV-DP is structurally similar to ATP. It is known that nucleotidases such as nucleoside triphosphate diphosphohydrolases (NTPDases) dephosphorylate ATP. Thus, it was hypothesized that NTPDase-mediated dephosphorylation plays a role in regulating TFV-DP levels in colorectal tissue. To test this hypothesis, recombinant NTPDase proteins (NTPDase 1, 3, 4, 5, 6, and 8) were incubated, individually, with TFV-DP to determine their abilities to dephosphorylate TFV-DP in vitro. Following incubations, TFV-DP dephosphorylation was determined using both malachite green phosphate assays and ultrahigh-performance liquid chromatography tandem mass spectrometry. From these, NTPDase 1 exhibited the highest activity toward TFV-DP. Further, enzyme kinetic analysis revealed Michaelis-Menten kinetics for NTPDase 1-mediated TFV-DP dephosphorylation. Next, immunoblot analyses were conducted to confirm the expression of NTPDase 1 protein in human colorectal tissue. Liquid chromatography coupled to mass spectrometry proteomics analysis was used to measure the relative abundance of NTPDases in human colorectal tissue among healthy adult individuals (n = 4). These analyses confirmed the high abundance of NTPDase 1 in human colorectal tissue. Taken together, results suggest that NTPDase 1 may contribute to the regulation of TFV-DP levels. The above data provide important insights into the dephosphorylation of TFV-DP. SIGNIFICANCE STATEMENT: Nucleoside triphosphate diphosphohydrolases (NTPDases) that are involved in enzymatic ATP dephosphorylation may contribute to tenofovir-diphosphate (TFV-DP) dephosphorylation, leading to its inactivation. In this study, the NTPDases responsible for TFV-DP dephosphorylation in vitro and their expression in human colorectal tissue were investigated. Through this work, it was demonstrated that NTPDase 1 has the highest activity toward TFV-DP dephosphorylation, and it was abundant in human colorectal tissue. Importantly, these studies will increase our understanding of TFV-DP disposition.
Collapse
Affiliation(s)
- Herana Kamal Seneviratne
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County and Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
4
|
Bi C, Schäkel L, Mirza S, Sylvester K, Pelletier J, Lee SY, Pillaiyar T, Sévigny J, Müller CE. Synthesis and structure-activity relationships of ticlopidine derivatives and analogs as inhibitors of ectonucleotidase CD39. Bioorg Chem 2023; 135:106460. [PMID: 37023582 DOI: 10.1016/j.bioorg.2023.106460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Ticlopidine is an antithrombotic prodrug of the thienotetrahydropyridine family. For platelet inhibition it has to undergo oxidative ring-opening by cytochrome P450 enzymes. The resulting thiol reacts with a cysteine residue of the purinergic P2Y12 receptor on thrombocytes resulting in covalent receptor blockade. Ticlopidine in its intact, not-metabolized form was previously shown to inhibit ecto-nucleoside triphosphate diphosphohydrolase-1 (NTPDase1, also known as cluster of differentiation (CD) 39). CD39 catalyzes the extracellular hydrolysis of ATP via ADP to AMP, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to adenosine. CD39 inhibition has been proposed as a novel strategy to increase the extracellular concentration of antiproliferative ATP, while decreasing immunosuppressive and cancer-promoting adenosine levels. In the present study, we performed an extensive structure-activity relationship (SAR) analysis of ticlopidine derivatives and analogs as CD39 inhibitors followed by an in-depth characterization of selected compounds. Altogether 74 compounds were synthesized, 41 of which are new, not previously described in literature. Benzotetrahydropyridines, in which the metabolically labile thiophene is replaced by a benzene ring, were discovered as a new class of allosteric CD39 inhibitors.
Collapse
|
5
|
Ponticelli M, Lela L, Moles M, Mangieri C, Bisaccia D, Faraone I, Falabella R, Milella L. The healing bitterness of Gentiana lutea L., phytochemistry and biological activities: A systematic review. PHYTOCHEMISTRY 2023; 206:113518. [PMID: 36423749 DOI: 10.1016/j.phytochem.2022.113518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Over many years, natural products have been a source of healing agents and have exhibited beneficial uses for treating human diseases. The Gentiana genus is the biggest genus in the Gentianaceae, with over 400 species distributed mainly in alpine zones of temperate countries around the world. Plants in the Gentiana genus have historically been used to treat a wide range of diseases. Still, only in the last years has particular attention been paid to the biological activities of Gentiana lutea Linn., also known as yellow Gentian or bitterwort. Several in vitro/vivo investigations and human interventional trials have demonstrated the promising activity of G. lutea extracts against oxidative stress, microbial infections, inflammation, obesity, atherosclerosis, etc.. A systematic approach was performed using Pubmed and Scopus databases to update G. lutea chemistry and activity. Specifically, this systematic review synthesized the major specialized bitter metabolites and the biological activity data obtained from different cell lines, animal models, and human interventional trials. This review aims to the exaltation of G. lutea as a source of bioactive compounds that can prevent and treat several human illnesses.
Collapse
Affiliation(s)
- Maria Ponticelli
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Ludovica Lela
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Mariapia Moles
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Claudia Mangieri
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Donatella Bisaccia
- Italian National Research Council-Water Research Institute, Viale F. De Blasio 5, 70123, Bari, Italy
| | - Immacolata Faraone
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy; Spinoff Bioactiplant Srl Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy
| | - Roberto Falabella
- Urology Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Luigi Milella
- Department of Science, University of Basilicata, Viale Dell'ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
6
|
Schäkel L, Mirza S, Pietsch M, Lee SY, Keuler T, Sylvester K, Pelletier J, Sévigny J, Pillaiyar T, Namasivayam V, Gütschow M, Müller CE. 2-Substituted thienotetrahydropyridine derivatives: Allosteric ectonucleotidase inhibitors. Arch Pharm (Weinheim) 2021; 354:e2100300. [PMID: 34697820 DOI: 10.1002/ardp.202100300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 11/10/2022]
Abstract
The antithrombotic prodrugs ticlopidine and clopidogrel are thienotetrahydro-pyridine derivatives that are metabolized in the liver to produce thiols that irreversibly block adenosine diphosphate (ADP)-activated P2Y12 receptors on thrombocytes. In their native, nonmetabolized form, both drugs were reported to act as inhibitors of ectonucleoside triphosphate diphosphohydrolase-1 (NTPDase1, CD39). CD39 catalyzes the extracellular hydrolysis of nucleoside tri- and diphosphates, mainly adenosine 5'-triphosphate (ATP) and ADP, yielding adenosine monophosphate, which is further hydrolyzed by ecto-5'-nucleotidase (CD73) to produce adenosine. While ATP has proinflammatory effects, adenosine is a potent anti-inflammatory, immunosuppressive agent. Inhibitors of CD39 and CD73 have potential as novel checkpoint inhibitors for the immunotherapy of cancer and infection. In the present study, we investigated 2-substituted thienotetrahydropyridine derivatives, structurally related to ticlopidine, as CD39 inhibitors. Due to their substituent on the 2-position, they will not be metabolically transformed into reactive thiols and can, therefore, be expected to be devoid of P2Y12 receptor-antagonistic activity in vivo. Several of the investigated 2-substituted thienotetrahydropyridine derivatives showed concentration-dependent inhibition of CD39. The most potent derivative, 32, showed similar CD39-inhibitory potency to ticlopidine, both acting as allosteric inhibitors. Compound 32 showed an improved selectivity profile: While ticlopidine blocked several NTPDase isoenzymes, 32 was characterized as a novel dual inhibitor of CD39 and CD73.
Collapse
Affiliation(s)
- Laura Schäkel
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Salahuddin Mirza
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Markus Pietsch
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany.,Faculty of Medicine and University Hospital Cologne, Institute II of Pharmacology, Centre of Pharmacology, University of Cologne, Cologne, Germany
| | - Sang-Yong Lee
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Tim Keuler
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Katharina Sylvester
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada.,Départment de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Thanigaimalai Pillaiyar
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Vigneshwaran Namasivayam
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Michael Gütschow
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| | - Christa E Müller
- Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Afzal S, Zaib S, Jafari B, Langer P, Lecka J, Sévigny J, Iqbal J. Highly Potent and Selective Ectonucleoside Triphosphate Diphosphohydrolase (ENTPDase1, 2, 3 and 8) Inhibitors Having 2-substituted-7- trifluoromethyl-thiadiazolopyrimidones Scaffold. Med Chem 2021; 16:689-702. [PMID: 31203806 DOI: 10.2174/1573406415666190614095821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/24/2019] [Accepted: 04/30/2019] [Indexed: 01/07/2023]
Abstract
BACKGROUND The ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) terminate nucleotide signaling via the hydrolysis of extracellular nucleoside-5'-triphosphate and nucleoside- 5'-diphosphate, to nucleoside-5'-monophosphate and composed of eight Ca2+/Mg2+ dependent ectonucleotidases (NTPDase1-8). Extracellular nucleotides are involved in a variety of physiological mechanisms. However, they are rapidly inactivated by ectonucleotidases that are involved in the sequential removal of phosphate group from nucleotides with the release of inorganic phosphate and their respective nucleoside. Ectonucleoside triphosphate diphosphohydrolases (NTPDases) represent the key enzymes responsible for nucleotides hydrolysis and their overexpression has been related to certain pathological conditions. Therefore, the inhibitors of NTPDases are of particular importance in order to investigate their potential to treat various diseases e.g., cancer, ischemia and other disorders of the cardiovascular and immune system. METHODS Keeping in view the importance of NTPDase inhibitors, a series of thiadiazolopyrimidones were evaluated for their potential inhibitory activity towards NTPDases by the malachite green assay. RESULTS The results suggested that some of the compounds were found as non-selective inhibitors of isozyme of NTPDases, however, most of the compounds act as potent and selective inhibitors. In case of substituted amino derivatives (4c-m), the compounds 4m (IC50 = 1.13 ± 0.09 μM) and 4g (IC50 = 1.72 ± 0.08 μM) were found to be the most potent inhibitors of h-NTPDase1 and 2, respectively. Whereas, compound 4d showed the best inhibitory potential for both h-NTPDase3 (IC50 = 1.25 ± 0.06 μM) and h-NTPDase8 (0.21 ± 0.02 μM). Among 5a-t derivatives, compounds 5e (IC50 = 2.52 ± 0.15 μM), 5p (IC50 = 3.17 ± 0.05 μM), 5n (IC50 = 1.22 ± 0.06 μM) and 5b (IC50 = 0.35 ± 0.001 μM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. Interestingly, the inhibitory concentration values of above-mentioned inhibitors were several folds greater than suramin, a reference control. In order to determine the binding interactions, molecular docking studies of the most potent inhibitors were conducted into the homology models of NTPDases and the putative binding analysis further confirmed that selective and potent compounds bind deep inside the active pocket of the respective enzymes. CONCLUSION The docking analysis proposed that the inhibitory activity correlates with the hydrogen bonds inside the binding pocket. Thus, these derivatives are of interest and may further be investigated for their importance in medicinal chemistry.
Collapse
Affiliation(s)
- Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Behzad Jafari
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany,Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Joanna Lecka
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada,Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada,Centre de Recherche du CHU de Québec – Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| |
Collapse
|
8
|
Structure-activity relationship study of NPP1 inhibitors based on uracil-N1-(methoxy)ethyl-β-phosphate scaffold. Eur J Med Chem 2019; 184:111754. [PMID: 31610377 DOI: 10.1016/j.ejmech.2019.111754] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/29/2019] [Accepted: 10/02/2019] [Indexed: 02/06/2023]
Abstract
Overexpression of ecto-nucleotide pyrophosphatase-1 (NPP1) is associated with diseases such as calcium pyrophosphate dihydrate deposition disease, calcific aortic valve disease, and type 2 diabetes. In this context, NPP1 inhibitors are potential drug candidates for the treatment of these diseases. The present study focuses on the analysis of the structure-activity relationship of NPP1 inhibitors based on acyclic uracil-nucleotides. For this purpose, we synthesized acyclic uridine-monophosphate analogs, 10-11, uridine-diphosphate analogs, 12-14, and uridine-Pα,α-dithio-triphosphate analogs, 15-17. We evaluated their inhibitory activity and selectivity towards NPP1, -3, NTPDase1, -2, -3, and -8, and P2Y2,4,6 receptors. Analogs 16 and 17 were the most selective and potent NPP1 inhibitors (Ki 0.94 and 0.73 μM, respectively) among the tested molecules. Analogs 10-17 had only minute effect on uracil-nucleotide responding P2Y2,4,6 receptors. Analog 17 (100 μM) displayed 96% inhibition of NPPase activity in osteoarthritic human chondrocytes. Analogs 14-17 displayed weak inhibitory effect on alkaline phosphatase activity at equimolar concentrations in human chondrocytes. All tested analogs showed no toxicity at human chondrocytes. We concluded that ribose-ring to chain transformation, as well as the type of the nucleobase, are parameters of minor significance to NPP1 inhibition, whereas the major parameter is Pα-dithio-substitution. In addition, the length of the phosphate chain also significantly affects inhibition. Overall, the experimental results were well reproduced by molecular docking. A correlation was observed between the activities of the compounds and the number of H-bonds and salt bridges formed between the inhibitors and NPP1 binding site residues. Uracil-N1-(methoxy)ethyl-β-Pα,α-dithio, Pβ,γ-methylene tri-phosphate, 17, was identified as the most potent, selective, and non-toxic NPP1 inhibitor among the tested analogs, and may be used as a lead structure for further drug development.
Collapse
|
9
|
González DA, Barbieri van Haaster MM, Quinteros Villarruel E, Hattab C, Ostuni MA, Orman B. Salivary extracellular vesicles can modulate purinergic signalling in oral tissues by combined ectonucleoside triphosphate diphosphohydrolases and ecto-5'-nucleotidase activities. Mol Cell Biochem 2019; 463:1-11. [PMID: 31531757 DOI: 10.1007/s11010-019-03624-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 10/26/2022]
Abstract
We reported previously that the rat submandibular gland is able to release nanovesicles capable to hydrolyse millimolar concentrations of ATP, ADP and AMP in vitro. Here, we show that rat saliva also contains nanovesicles with the ability to hydrolyse ATP. Our aim was to identify and characterize vesicular nucleotidases by using kinetic, immunological and in silico approaches. Nucleotidase activity in the absence or presence of specific inhibitors allowed us to assume the participation of NTPDase1, -2 and -3, together with ecto-5'-nucleotidase, confirmed using specific antibodies. At neutral pH, initial ATPase activity would be mostly due to NTPDase2, which was thereafter inactivated, leaving NTPDase1 and NTPDase3 to hydrolyse ATP and ADP with an efficacy ATPase/ADPase around 2. Ecto-5'nucleotidase would be mainly responsible for AMP hydrolysis and adenosine accumulation. We proposed a kinetic model for NTPDase2 as a tool to isolate and analyse the turnover of this enzyme in the presence of different ATP concentrations, including those expected in extracellular media. Our study characterizes the ectonucleotidases carried by extracellular vesicles which contribute to modulate ATP and adenosine concentrations in the oral cavity, essential players in purinergic signalling.
Collapse
Affiliation(s)
- Débora A González
- Cátedra de Biofísica y Bioestadística, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122, Buenos Aires, Argentina.
| | - Martín M Barbieri van Haaster
- Cátedra de Biofísica y Bioestadística, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122, Buenos Aires, Argentina
| | - Emmanuel Quinteros Villarruel
- Cátedra de Farmacología, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122, Buenos Aires, Argentina
| | - Claude Hattab
- Université de Paris, Integrated Biology of Red Blood Cell UMR_S1134, INSERM, 75015, Paris, France.,Institut National de la Transfusion Sanguine (INTS), 6 Rue Alexandre Cabanel, 75015, Paris, France
| | - Mariano A Ostuni
- Université de Paris, Integrated Biology of Red Blood Cell UMR_S1134, INSERM, 75015, Paris, France.,Institut National de la Transfusion Sanguine (INTS), 6 Rue Alexandre Cabanel, 75015, Paris, France
| | - Betina Orman
- Cátedra de Farmacología, Facultad de Odontología, Universidad de Buenos Aires, M. T. de Alvear 2142, 1122, Buenos Aires, Argentina
| |
Collapse
|
10
|
Hayat K, Afzal S, Saeed A, Murtaza A, Ur Rahman S, Khan KM, Saeed A, Zaib S, Lecka J, Sévigny J, Iqbal J, Hassan A. Investigation of new quinoline derivatives as promising inhibitors of NTPDases: Synthesis, SAR analysis and molecular docking studies. Bioorg Chem 2019; 87:218-226. [PMID: 30903944 DOI: 10.1016/j.bioorg.2019.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 02/07/2023]
Abstract
Nucleoside triphosphate diphosphohydrolases (NTPDases), an important class of ectonucleotidases, are responsible for the sequential hydrolysis of extracellular nucleotides. However, over-expression of NTPDases has been linked with various pathological diseases e.g. cancer. Thus, to treat these diseases, the inhibitors of this class of enzyme are of interest. The significance of this class of enzyme encouraged us to synthesize a new class of quinoline derivatives with the aim to find selective and potent inhibitors of NTPDases. Therefore, a mild and efficient synthetic route was established for the synthesis of quinoline derivatives. The reaction was catalyzed by molecular iodine to afford the substituted quinoline derivatives. All the synthetic derivatives (3a-3w) were evaluated for their potential to inhibit the h-NTPDase1, 2, 3 and 8. Most of the compounds were identified as dual inhibitors of h-NTPDase1 and 8 with lower effects on h-NTPDase2 and 3. Two compounds i.e.3f and 3t were identified as selective inhibitor of h-NTPDase1 whereas the compound 3s inhibited the h-NTPDase8 selectively. Moreover, the compounds 3p (IC50 = 0.23 ± 0.01 µM), 3j (IC50 = 21.0 ± 0.03 µM) 3d (IC50 = 5.38 ± 0.21 µM) and 3c (IC50 = 1.13 ± 0.04 µM) were found to be the most potent inhibitors of h-NTPDase1, 2, 3 and 8, respectively. To determine the binding interaction, molecular docking studies were also carried out.
Collapse
Affiliation(s)
- Komal Hayat
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Altaf Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Amna Murtaza
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Shafiq Ur Rahman
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Khalid Mohammed Khan
- H.E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75720 Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 31441, Dammam, Saudi Arabia
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Joanna Lecka
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jean Sévigny
- Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC G1V 4G2, Canada
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan.
| | - Abbas Hassan
- Department of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
11
|
Kuhrt D, Ejaz SA, Afzal S, Khan SU, Lecka J, Sévigny J, Ehlers P, Spannenberg A, Iqbal J, Langer P. Chemoselective synthesis and biological evaluation of arylated 2-(Trifluoromethyl) quinolines as nucleotide pyrophosphatase (NPPs) inhibitors. Eur J Med Chem 2017; 138:816-829. [PMID: 28735213 DOI: 10.1016/j.ejmech.2017.07.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/27/2017] [Accepted: 07/11/2017] [Indexed: 02/07/2023]
Abstract
A new approach to arylated 2-trifluoromethylquinolines based on novel regioselective Suzuki-Miyaura coupling reactions has been developed. Moreover, site-selective, chemo-selective amination reactions were performed. The new 2-trifluoromethylquinoline derivatives were tested as potential NPPs inhibitors and evaluated for their potential to inhibit two families of ecto-nucleotidases, i.e. NPPs and nucleoside triphosphate diphosphohydrolases (NTPDases). Several derivatives were active on a nanomolecular concentration. The results were validated based on docking studies to study the active binding site of the molecules.
Collapse
Affiliation(s)
- David Kuhrt
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Syeda Abida Ejaz
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Saira Afzal
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Shafi Ullah Khan
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Joanna Lecka
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Jean Sévigny
- Département de Microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec, QC, G1V 0A6, Canada; Centre de Recherche du CHU de Québec - Université Laval, Québec, QC, G1V 4G2, Canada
| | - Peter Ehlers
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Anke Spannenberg
- Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Peter Langer
- Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059 Rostock, Germany; Leibniz Institut für Katalyse an der Universität Rostock e.V. (LIKAT), Albert-Einstein-Str. 29a, 18059 Rostock, Germany
| |
Collapse
|
12
|
Pelletier J, Agonsanou H, Delvalle N, Fausther M, Salem M, Gulbransen B, Sévigny J. Generation and characterization of polyclonal and monoclonal antibodies to human NTPDase2 including a blocking antibody. Purinergic Signal 2017; 13:293-304. [PMID: 28409324 DOI: 10.1007/s11302-017-9561-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/20/2017] [Indexed: 12/12/2022] Open
Abstract
Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) is an ectonucleotidase that modulates P2 receptor activation by hydrolyzing ATP to ADP. In rodents, NTPDase2 is expressed by several specialized cell types such as vascular adventitial cells, neuroglial cells, hepatic portal fibroblasts, gustatory type I cells, and cells within the connective tissues of reproductive and gastrointestinal organs. Much less is known regarding the expression and function of NTPDase2 in humans. Here, we developed specific research tools to study human NTPDase2. We generated mouse monoclonal antibodies and rabbit polyclonal antibodies specific to human NTPDase2 and validated their specificity by western blot, immunocytochemistry, immunohistochemistry, and flow cytometry. In addition, one monoclonal antibody named hN2-D5 s specifically inhibits human NTPDase2 enzymatic activity but not mouse nor rat NTPDase2. Using these antibodies, NTPDase2 immunoreactivity was detected on glial cells of the human enteric nervous system suggesting a function of the enzyme in intestinal motility. In conclusion, the new antibodies described in our work are novel tools that will enhance future studies of NTPDase2 expression and function in humans.
Collapse
Affiliation(s)
- Julie Pelletier
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada
| | - Hervé Agonsanou
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada
| | - Ninotchska Delvalle
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Michel Fausther
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Mabrouka Salem
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada.,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada
| | - Brian Gulbransen
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jean Sévigny
- Centre de Recherche du CHU de Québec - Université Laval, CHUL, 2705 Boulevard Laurier, Office T1-49, Québec, QC, G1V 4G2, Canada. .,Département de microbiologie-infectiologie et d'immunologie, Faculté de Médecine, Université Laval, Québec city, QC, G1V 0A6, Canada.
| |
Collapse
|
13
|
Pelletier J, Salem M, Lecka J, Fausther M, Bigonnesse F, Sévigny J. Generation and Characterization of Specific Antibodies to the Murine and Human Ectonucleotidase NTPDase8. Front Pharmacol 2017; 8:115. [PMID: 28337144 PMCID: PMC5341173 DOI: 10.3389/fphar.2017.00115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 02/24/2017] [Indexed: 11/13/2022] Open
Abstract
The ectonucleotidase nucleoside triphosphate diphosphohydrolase-8 (NTPDase8) is the last member of the Ecto-NTPDase family to be discovered and characterized. It is a transmembrane protein which regulates the concentration of the agonists of P1 and P2 receptors at the cell surface. The functions of the enzyme are still not known partly due to the lack of specific tools such as antibodies. In this work, guinea pig polyclonal antibodies against mouse NTPDase8 and mouse monoclonal antibodies against human NTPDase8 have been generated and characterized. For the production of antibodies against mouse NTPDase8 several techniques have been tried. Several peptide antigens in several hosts (rabbit, rat, hamster, and guinea pig) failed to give a positive reaction suggesting that NTPDase8 is poorly immunogenic. In this study, we describe the successful process that led to anti-mouse NTPDase8, namely the cDNA immunization technique. Monoclonal antibodies to human NTPDase8 were also obtained by cDNA immunization followed by a final injection with transfected human embryonic kidney (HEK 293T) cells expressing human NTPDase8. The specificity of these antibodies was evaluated by Western blot, immunocytochemistry, immunohistochemistry and flow cytometry. In contrast, all commercial antibodies to NTPDase8 peptides that we have tested failed to give a specific positive signal against the expressed NTPDase8 protein when used to probe Western blots. In addition, immunohistochemistry experiments confirmed the presence of NTPDase8 in mouse liver canaliculi. The tools generated in this work will help characterize NTPDase8 localization and function in future studies and its contribution to the modulation of P1 and P2 receptor activation.
Collapse
Affiliation(s)
- Julie Pelletier
- Centre de recherche du CHU de Québec - Université Laval, Québec City QC, Canada
| | - Mabrouka Salem
- Centre de recherche du CHU de Québec - Université Laval, Québec CityQC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec CityQC, Canada
| | - Joanna Lecka
- Centre de recherche du CHU de Québec - Université Laval, Québec CityQC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec CityQC, Canada
| | - Michel Fausther
- Centre de recherche du CHU de Québec - Université Laval, Québec CityQC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec CityQC, Canada; Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little RockAR, USA
| | - François Bigonnesse
- Centre de recherche du CHU de Québec - Université Laval, Québec City QC, Canada
| | - Jean Sévigny
- Centre de recherche du CHU de Québec - Université Laval, Québec CityQC, Canada; Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec CityQC, Canada
| |
Collapse
|
14
|
Jafari B, Yelibayeva N, Ospanov M, Ejaz SA, Afzal S, Khan SU, Abilov ZA, Turmukhanova MZ, Kalugin SN, Safarov S, Lecka J, Sévigny J, Rahman Q, Ehlers P, Iqbal J, Langer P. Synthesis of 2-arylated thiadiazolopyrimidones by Suzuki–Miyaura cross-coupling: a new class of nucleotide pyrophosphatase (NPPs) inhibitors. RSC Adv 2016. [DOI: 10.1039/c6ra22750c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Over expression of nucleotide pyrophosphatase (NPPs) activity is associated with chondrocalcinosis, osteoarthritis, type 2 diabetes, neurodegenerative diseases, allergies and cancer metastasis.
Collapse
|
15
|
Rat submandibular glands secrete nanovesicles with NTPDase and 5'-nucleotidase activities. Purinergic Signal 2014; 11:107-16. [PMID: 25523180 DOI: 10.1007/s11302-014-9437-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 12/04/2014] [Indexed: 01/18/2023] Open
Abstract
Extracellular nucleotides modulate a wide number of biological processes such as neurotransmission, platelet aggregation, muscle contraction, and epithelial secretion acting by the purinergic pathway. Nucleotidases as NTPDases and ecto-5'-nucleotidase are membrane-anchored proteins that regulate extracellular nucleotide concentrations. In a previous work, we have partially characterized an NTPDase-like activity expressed by rat submandibular gland microsomes, giving rise to the hypothesis that membrane NTPDases could be released into salivary ducts to regulate luminal nucleotide concentrations as was previously proposed for ovarian, prostatic, and pancreatic secretions. Present results show that rat submandibular glands incubated in vitro release membrane-associated NTPDase and ecto-5'-nucleotidase activities. Electron microscopy images show that released membranes presenting nucleotidase activity correspond to exosome-like vesicles which are also present at microsomal fraction. Both exosome release and nucleotidase activities are raised by adrenergic stimulation. Nucleotidase activities present the same kinetic characteristics than microsomal nucleotidase activity, corresponding mainly to the action of NTPDase2 and NTPDase3 isoforms as well as 5'-nucleotidase. This is consistent with Western blot analysis revealing the presence of these enzymes in the microsomal fraction.
Collapse
|
16
|
Multiple ecto-nucleoside triphosphate diphosphohydrolases facilitate intracellular replication of Legionella pneumophila. Biochem J 2014; 462:279-89. [PMID: 24957128 DOI: 10.1042/bj20130923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Legionella pneumophila is an opportunistic pathogen that replicates within alveolar macrophages resulting in the onset of severe atypical pneumonia. Previously we have identified Lpg1905, a eukaryotic-type ecto-NTPDase (nucleoside triphosphate diphosphohydrolase) from L. pneumophila that was required for optimal intracellular replication and virulence in a mouse lung infection model. In the present study, we characterized the activity of a second eukaryotic-type NTPDase, Lpg0971, from L. pneumophila. We observed that recombinant Lpg0971 hydrolysed only ATP and exhibited divalent cation preference for manganese (II) ions. Similar to lpg1905, an lpg0971 mutant carrying the plasmid pMIP was attenuated in a mouse lung infection model and impaired for replication in human macrophages and amoebae. Increased trafficking of the LCV (Legionella-containing vacuole) to a LAMP-1 (lysosome-associated membrane protein-1)-positive compartment was observed for both the lpg1905 and lpg0971 mutants carrying pMIP. Complementation with either lpg1905 or lpg0971 restored intracellular replication, suggesting that a minimum level of ATPase activity was required for this function. A double lpg1905/0971 mutant was not more impaired for intracellular replication than the single mutants and complementation of the double mutant with lpg0971, but not lpg1905, restored intracellular replication. This suggested that although the NTPDases have overlapping activities they have distinct functions. Unlike many eukaryotic-type proteins from L. pneumophila, neither Lpg1905 nor Lpg0971 were translocated into the host cell by the Dot/Icm (defective in organelle trafficking/intracellular multiplication) type IV secretion system. Overall our data suggest that the ability of L. pneumophila to replicate in eukaryotic cells relies in part on the ability of the pathogen to hydrolyse ATP within an intracellular compartment.
Collapse
|
17
|
Lecka J, Gillerman I, Fausther M, Salem M, Munkonda MN, Brosseau JP, Cadot C, Martín-Satué M, d'Orléans-Juste P, Rousseau E, Poirier D, Künzli B, Fischer B, Sévigny J. 8-BuS-ATP derivatives as specific NTPDase1 inhibitors. Br J Pharmacol 2014; 169:179-96. [PMID: 23425137 DOI: 10.1111/bph.12135] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 12/17/2012] [Accepted: 01/08/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Ectonucleotidases control extracellular nucleotide levels and consequently, their (patho)physiological responses. Among these enzymes, nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), -2, -3 and -8 are the major ectonucleotidases responsible for nucleotide hydrolysis at the cell surface under physiological conditions, and NTPDase1 is predominantly located at the surface of vascular endothelial cells and leukocytes. Efficacious inhibitors of NTPDase1 are required to modulate responses induced by nucleotides in a number of pathological situations such as thrombosis, inflammation and cancer. EXPERIMENTAL APPROACH Here, we present the synthesis and enzymatic characterization of five 8-BuS-adenine nucleotide derivatives as potent and selective inhibitors of NTPDase1. KEY RESULTS The compounds 8-BuS-AMP, 8-BuS-ADP and 8-BuS-ATP inhibit recombinant human and mouse NTPDase1 by mixed type inhibition, predominantly competitive with Ki values <1 μM. In contrast to 8-BuS-ATP which could be hydrolyzed by other NTPDases, the other BuS derivatives were resistant to hydrolysis by either NTPDase1, -2, -3 or -8. 8-BuS-AMP and 8-BuS-ADP were the most potent and selective inhibitors of NTPDase1 expressed in human umbilical vein endothelial cells as well as in situ in human and mouse tissues. As expected, as a result of their inhibition of recombinant human NTPDase1, 8-BuS-AMP and 8-BuS-ADP impaired the ability of this enzyme to block platelet aggregation. Importantly, neither of these two inhibitors triggered platelet aggregation nor prevented ADP-induced platelet aggregation, in support of their inactivity towards P2Y1 and P2Y12 receptors. CONCLUSIONS AND IMPLICATIONS The 8-BuS-AMP and 8-BuS-ADP have therefore potential to serve as drugs for the treatment of pathologies regulated by NTPDase1.
Collapse
Affiliation(s)
- Joanna Lecka
- Centre de recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire (CHU) de Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ticlopidine in its prodrug form is a selective inhibitor of human NTPDase1. Mediators Inflamm 2014; 2014:547480. [PMID: 25180024 PMCID: PMC4144158 DOI: 10.1155/2014/547480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/21/2014] [Indexed: 11/17/2022] Open
Abstract
Nucleoside triphosphate diphosphohydrolase-1 (NTPDase1), like other ectonucleotidases, controls extracellular nucleotide levels and consequently their (patho)physiological responses such as in thrombosis, inflammation, and cancer. Selective NTPDase1 inhibitors would therefore be very useful. We previously observed that ticlopidine in its prodrug form, which does not affect P2 receptor activity, inhibited the recombinant form of human NTPDase1 (Ki = 14 μM). Here we tested whether ticlopidine can be used as a selective inhibitor of NTPDase1. We confirmed that ticlopidine inhibits NTPDase1 in different forms and in different assays. The ADPase activity of intact HUVEC as well as of COS-7 cells transfected with human NTPDase1 was strongly inhibited by 100 µM ticlopidine, 99 and 86%, respectively. Ticlopidine (100 µM) completely inhibited the ATPase activity of NTPDase1 in situ as shown by enzyme histochemistry with human liver and pancreas sections. Ticlopidine also inhibited the activity of rat and mouse NTPDase1 and of potato apyrase. At 100 µM ticlopidine did not affect the activity of human NTPDase2, NTPDase3, and NTPDase8, nor of NPP1 and NPP3. Weak inhibition (10–20%) of NTPDase3 and -8 was observed at 1 mM ticlopidine. These results show that ticlopidine is a specific inhibitor of NTPDase1 that can be used in enzymatic and histochemistry assays.
Collapse
|
19
|
Gillerman I, Lecka J, Simhaev L, Munkonda MN, Fausther M, Martín-Satué M, Senderowitz H, Sévigny J, Fischer B. 2-Hexylthio-β,γ-CH2-ATP is an effective and selective NTPDase2 inhibitor. J Med Chem 2014; 57:5919-34. [PMID: 24972256 DOI: 10.1021/jm401933c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
NTPDase2 catabolizes nucleoside triphosphates and consequently, through the interaction of nucleotides with P2 receptors, controls multiple biological responses. NTPDase2 inhibitors could modulate responses induced by nucleotides in thrombosis, inflammation, cancer, etc. Here we developed a set of ATP analogues as potential NTPDase inhibitors and identified a subtype-selective and potent NTPDase2 inhibitor, 2-hexylthio-β,γ-methylene-ATP, 2. Analogue 2 was stable to hydrolysis by NTPDase1, -2, -3, and -8. It inhibited hNTPDase2 with Ki 20 μM, while only marginally (5-15%) inhibiting NTPDase1, -3, and -8. Homology models of hNTPDase1 and -2 were constructed. Docking and subsequent linear interaction energy (LIE) simulations provided a correlation with r2=0.94 between calculated and experimental inhibition data for the triphosphate analogues considered in this work. The origin of selectivity of 2 for NTPDase2 over NTPDase1 is the thiohexyl moiety of 2 which is favorably located within a hydrophobic pocket, whereas in NTPDase1 it is exposed to the solvent.
Collapse
Affiliation(s)
- Irina Gillerman
- Department of Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Nadel Y, Lecka J, Gilad Y, Ben-David G, Förster D, Reiser G, Kenigsberg S, Camden J, Weisman GA, Senderowitz H, Sévigny J, Fischer B. Highly potent and selective ectonucleotide pyrophosphatase/phosphodiesterase I inhibitors based on an adenosine 5'-(α or γ)-thio-(α,β- or β,γ)-methylenetriphosphate scaffold. J Med Chem 2014; 57:4677-91. [PMID: 24846781 DOI: 10.1021/jm500196c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Aberrant nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) activity is associated with chondrocalcinosis, osteoarthritis, and type 2 diabetes. The potential of NPP1 inhibitors as therapeutic agents, and the scarceness of their structure-activity relationship, encouraged us to develop new NPP1 inhibitors. Specifically, we synthesized ATP-α-thio-β,γ-CH2 (1), ATP-α-thio-β,γ-CCl2 (2), ATP-α-CH2-γ-thio (3), and 8-SH-ATP (4) and established their resistance to hydrolysis by NPP1,3 and NTPDase1,2,3,8 (<5% hydrolysis) (NTPDase = ectonucleoside triphosphate diphosphohydrolase). Analogues 1-3 at 100 μM inhibited thymidine 5'-monophosphate p-nitrophenyl ester hydrolysis by NPP1 and NPP3 by >90% and 23-43%, respectively, and only slightly affected (0-40%) hydrolysis of ATP by NTPDase1,2,3,8. Analogue 3 is the most potent NPP1 inhibitor currently known, Ki = 20 nM and IC50 = 0.39 μM. Analogue 2a is a selective NPP1 inhibitor with Ki = 685 nM and IC50 = 0.57 μM. Analogues 1-3 were found mostly to be nonagonists of P2Y1/P2Y2/P2Y11 receptors. Docking analogues 1-3 into the NPP1 model suggested that activity correlates with the number of H-bonds with binding site residues. In conclusion, we propose analogues 2a and 3 as highly promising NPP1 inhibitors.
Collapse
Affiliation(s)
- Yael Nadel
- Department of Chemistry, Bar-Ilan University , Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5'-nucleotidase (ecto 5'-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.
Collapse
|
22
|
Lecka J, Ben-David G, Simhaev L, Eliahu S, Oscar J, Luyindula P, Pelletier J, Fischer B, Senderowitz H, Sévigny J. Nonhydrolyzable ATP analogues as selective inhibitors of human NPP1: a combined computational/experimental study. J Med Chem 2013; 56:8308-20. [PMID: 24083941 DOI: 10.1021/jm400918s] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Elevated nucleotide pyrophosphatase/phosphodiesterase-1 (NPP1) activity is implicated in health disorders including pathological calcification. Specific NPP1 inhibitors would therefore be valuable for studying this enzyme and as potential therapeutic agents. Here we present a combined computational/experimental study characterizing 13 nonhydrolyzable ATP analogues as selective human NPP1 inhibitors. All analogues at 100 μM inhibited (66-99%) the hydrolysis of pnp-TMP by both recombinant NPP1 and cell surface NPP1 activity of osteocarcinoma (HTB-85) cells. These analogues only slightly altered the activity of other ectonucleotidases, NPP3 and NTPDases. The Ki,app values of the seven most potent and selective inhibitors were in the range of 0.5-56 μM, all with mixed type inhibition, predominantly competitive. Those molecules were docked into a newly developed homology model of human NPP1. All adopted ATP-like binding modes, suggesting competitive inhibition with the endogenous ligand. NPP1 selectivity versus NPP3 could be explained in terms of the electrostatic potential of the two proteins that of NPP1 favoring negatively charged ligands. Inhibitor 2 that had the lowest Ki,app (0.5 μM) was also inactive toward P2Y receptors. Overall, analogue 2 is the most potent and selective NPP1 inhibitor described so far.
Collapse
Affiliation(s)
- Joanna Lecka
- Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval , Québec, QC G1V 0A6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Espelt MV, de Tezanos Pinto F, Alvarez CL, Alberti GS, Incicco J, Leal Denis MF, Davio C, Schwarzbaum PJ. On the role of ATP release, ectoATPase activity, and extracellular ADP in the regulatory volume decrease of Huh-7 human hepatoma cells. Am J Physiol Cell Physiol 2013; 304:C1013-26. [PMID: 23485713 DOI: 10.1152/ajpcell.00254.2012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypotonicity triggered in human hepatoma cells (Huh-7) the release of ATP and cell swelling, followed by volume regulatory decrease (RVD). We analyzed how the interaction between those processes modulates cell volume. Cells exposed to hypotonic medium swelled 1.5 times their basal volume. Swelling was followed by 41% RVD(40) (extent of RVD after 40 min of maximum), whereas the concentration of extracellular ATP (ATP(e)) increased 10 times to a maximum value at 15 min. Exogenous apyrase (which removes di- and trinucleotides) did not alter RVD, whereas exogenous Na(+)-K(+)-ATPase (which converts ATP to ADP in the extracellular medium) enhanced RVD(40) by 2.6 times, suggesting that hypotonic treatment alone produced a basal RVD, whereas extracellular ADP activated RVD to achieve complete volume regulation (i.e., RVD(40) ≈100%). Under hypotonicity, addition of 2-(methylthio)adenosine 5'-diphosphate (2MetSADP; ADP analog) increased RVD to the same extent as exposure to Na(+)-K(+)-ATPase and the same analog did not stimulate RVD when coincubated with MRS2211, a blocker of ADP receptor P2Y(13). RT-PCR and Western blot analysis confirmed the presence of P2Y(13). Cells exhibited significant ectoATPase activity, which according to RT-PCR analysis can be assigned to ENTPDase2. Both carbenoxolone, a blocker of conductive ATP release, and brefeldin A, an inhibitor of exocytosis, were able to partially decrease ATP(e) accumulation, pointing to the presence of at least two mechanisms for ATP release. Thus, in Huh-7 cells, hypotonic treatment triggered the release of ATP. Conversion of ATP(e) to ADP(e) by ENTPDase 2 activity facilitates the accumulated ADP(e) to activate P2Y(13) receptors, which mediate complete RVD.
Collapse
Affiliation(s)
- María V Espelt
- Instituto de Química y Fisicoquímica Biológicas (Facultad de Farmacia y Bioquímica), Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zimmermann H, Zebisch M, Sträter N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 2012; 8:437-502. [PMID: 22555564 PMCID: PMC3360096 DOI: 10.1007/s11302-012-9309-4] [Citation(s) in RCA: 785] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 02/01/2012] [Indexed: 12/12/2022] Open
Abstract
Ecto-nucleotidases play a pivotal role in purinergic signal transmission. They hydrolyze extracellular nucleotides and thus can control their availability at purinergic P2 receptors. They generate extracellular nucleosides for cellular reuptake and salvage via nucleoside transporters of the plasma membrane. The extracellular adenosine formed acts as an agonist of purinergic P1 receptors. They also can produce and hydrolyze extracellular inorganic pyrophosphate that is of major relevance in the control of bone mineralization. This review discusses and compares four major groups of ecto-nucleotidases: the ecto-nucleoside triphosphate diphosphohydrolases, ecto-5'-nucleotidase, ecto-nucleotide pyrophosphatase/phosphodiesterases, and alkaline phosphatases. Only recently and based on crystal structures, detailed information regarding the spatial structures and catalytic mechanisms has become available for members of these four ecto-nucleotidase families. This permits detailed predictions of their catalytic mechanisms and a comparison between the individual enzyme groups. The review focuses on the principal biochemical, cell biological, catalytic, and structural properties of the enzymes and provides brief reference to tissue distribution, and physiological and pathophysiological functions.
Collapse
Affiliation(s)
- Herbert Zimmermann
- Institute of Cell Biology and Neuroscience, Molecular and Cellular Neurobiology, Biologicum, Goethe-University Frankfurt, Max-von-Laue-Str. 13, 60438, Frankfurt am Main, Germany.
| | | | | |
Collapse
|
25
|
Fujii T, Minagawa T, Shimizu T, Takeguchi N, Sakai H. Inhibition of ecto-ATPase activity by curcumin in hepatocellular carcinoma HepG2 cells. J Physiol Sci 2012; 62:53-8. [PMID: 21932081 PMCID: PMC10717343 DOI: 10.1007/s12576-011-0176-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 08/28/2011] [Indexed: 10/17/2022]
Abstract
Effects of curcumin, a major constituent of turmeric, on ecto-nucleotidases have not been clarified. Here, we investigated whether curcumin affects ecto-nucleotidase activities in human hepatocellular carcinoma HepG2 cells. In the cells, high levels of Mg(2+)-dependent activity of ecto-nucleotidases were observed in the presence of 1 mM adenosine triphosphate (ATP). The activity was inhibited by ecto-ATPase inhibitors such as suramin, ZnCl(2) and 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid. On the other hand, the activity was significantly decreased at alkaline pH (pH 9) and was not inhibited by levamisole, an inhibitor of alkaline phosphatase. In the presence of ATP, curcumin inhibited the activity in a concentration-dependent manner (IC(50) = 6.2 μM). In contrast, curcumin had no effects on ecto-nucleotidase activity in the presence of ADP (1 mM) or AMP (1 mM). The K (m) value for ATP hydrolysis of curcumin-sensitive ecto-ATPase was similar to the value of NTPDase2, an isoform of ecto-nucleoside triphosphate diphosphohydrolase. These results suggest that curcumin is a potent inhibitor of ecto-ATPase and may affect extracellular ATP-dependent responses.
Collapse
Affiliation(s)
- Takuto Fujii
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Takuma Minagawa
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Takahiro Shimizu
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Noriaki Takeguchi
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| | - Hideki Sakai
- Department of Pharmaceutical Physiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194 Japan
| |
Collapse
|
26
|
Knowles AF. The GDA1_CD39 superfamily: NTPDases with diverse functions. Purinergic Signal 2011; 7:21-45. [PMID: 21484095 DOI: 10.1007/s11302-010-9214-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 12/21/2010] [Indexed: 01/05/2023] Open
Abstract
The first comprehensive review of the ubiquitous "ecto-ATPases" by Plesner was published in 1995. A year later, a lymphoid cell activation antigen, CD39, that had been cloned previously, was shown to be an ecto-ATPase. A family of proteins, related to CD39 and a yeast GDPase, all containing the canonical apyrase conserved regions in their polypeptides, soon started to expand. They are now recognized as members of the GDA1_CD39 protein family. Because proteins in this family hydrolyze nucleoside triphosphates and diphosphates, a unifying nomenclature, nucleoside triphosphate diphopshohydrolases (NTPDases), was established in 2000. Membrane-bound NTPDases are either located on the cell surface or membranes of intracellular organelles. Soluble NTPDases exist in the cytosol and may be secreted. In the last 15 years, molecular cloning and functional expression have facilitated biochemical characterization of NTPDases of many organisms, culminating in the recent structural determination of the ecto-domain of a mammalian cell surface NTPDase and a bacterial NTPDase. The first goal of this review is to summarize the biochemical, mutagenesis, and structural studies of the NTPDases. Because of their ability in hydrolyzing extracellular nucleotides, the mammalian cell surface NTPDases (the ecto-NTPDases) which regulate purinergic signaling have received the most attention. Less appreciated are the functions of intracellular NTPDases and NTPDases of other organisms, e.g., bacteria, parasites, Drosophila, plants, etc. The second goal of this review is to summarize recent findings which demonstrate the involvement of the NTPDases in multiple and diverse physiological processes: pathogen-host interaction, plant growth, eukaryote cell protein and lipid glycosylation, eye development, and oncogenesis.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA, 92182-1030, USA,
| |
Collapse
|
27
|
Eliahu S, Lecka J, Reiser G, Haas M, Bigonnesse F, Lévesque SA, Pelletier J, Sévigny J, Fischer B. Diadenosine 5',5''-(boranated)polyphosphonate analogues as selective nucleotide pyrophosphatase/phosphodiesterase inhibitors. J Med Chem 2010; 53:8485-97. [PMID: 21090681 DOI: 10.1021/jm100597c] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nucleotide pyrophosphatase/phosphodiesterases (NPPs) hydrolyze extracellular nucleotides and dinucleotides and thus control purinergic signaling. Enhanced NPP activity is implicated in health disorders such as osteoarthritis and cancer. We designed novel diadenosine polyphosphonate derivatives as potential NPP inhibitors. Analogues 1-4 bear a phosphonate and/or boranophosphate group and/or a 2'-H atom instead of a 2'-OH group. In comparison to ATP, analogues 1-4 were barely hydrolyzed by human NTPDase1, -2, -3, and -8 (<5% hydrolysis) and NPP1 and -3 (≤ 13%) and were not hydrolyzed by ecto-5'-nucleotidase, unlike AMP. These derivatives did not affect NTPDase activity, and analogues 1 and 2 did not inhibit ecto-5'-nucleotidase. All analogues blocked ∼80% of the NPP2-dependent hydrolysis of pnp-TMP, a specific NPP substrate, and inhibited the catabolism of pnp-TMP (K(i) and IC₅₀ both found to be between 10 and 60 μM), Ap₅A, and ATP by NPP1. The activity of NPP3 was inhibited to a lesser extent by the new analogues, with compounds 1 and 4 being the most effective in that respect. The analogues dramatically reduced the level of hydrolysis of pnp-TMP at the cell surface of both osteocarcinoma and colon cancer cells. Importantly, analogues 1-4 exhibited significantly reduced agonistic activity toward human P2Y₁,₁₁) receptors (except for analogue 1) and no activity with human P2Y₂ receptor. Our data provide strong evidence that analogue 2 is the first specific NPP inhibitor to be described.
Collapse
Affiliation(s)
- Shay Eliahu
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Li CS, Lee Y, Knowles AF. The stability of chicken nucleoside triphosphate diphosphohydrolase 8 requires both of its transmembrane domains. Biochemistry 2010; 49:134-46. [PMID: 20000380 DOI: 10.1021/bi901820c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chicken nucleoside triphosphate diphosphohydrolase 8 (NTPDase8) is a cell surface ectonucleotidase with a large extracellular domain (ECD) containing the active site and is anchored to the membrane by two transmembrane domains (TMDs) at the N- and C-termini. Unlike other cell surface NTPDases that have been characterized, the chicken NTPDase8 is not susceptible to substrate inactivation or agents that cause membrane perturbation. To determine if the stability of the enzyme is inherent in its ECD, the cDNA construct of the soluble chicken NTPDase8 was expressed and the protein purified. The ATPase activity of the purified soluble chicken NTPDase8 was less than 15% of that of the purified full-length enzyme. Strikingly, in contrast to the membrane-bound enzyme, the activity of the soluble chicken NTPDase8 decreased with time in a temperature-dependent manner as a result of inactivation by ATP, ADP, and P(i). Truncated mutants in which the ECD is anchored by a single TMD at either the N- or the C-terminus by the native chicken NTPDase TMDs or a TMD from a different NTPDase, human NTPDase2, also displayed a nonlinear time course of ATP hydrolysis. While removal of the N- or C-terminal TMD affected protein expression differently, the truncated mutants were generally similar to the soluble chicken NTPDase8 with respect to ATP, ADP, and P(i) inactivation. Other biochemical characteristics, e.g., ATPase/ADPase ratios, inhibition by azide, and affinity for ATP, were also altered when one or both of the TMDs were removed from the chicken NTPDase8. These results indicate that (1) both TMDs of the chicken NTPDase8 are required to maintain stability of the enzyme and maximal catalytic activity and (2) the conformations of the ectodomain in the soluble enzyme and the truncated mutants differ from that of the full-length chicken NTPDase8.
Collapse
Affiliation(s)
- Cheryl S Li
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, USA
| | | | | |
Collapse
|
29
|
Iqbal J, Knowles AF, Müller CE. Development of a microbioreactor with ecto-nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) immobilized on a polyacrylamide-coated capillary at the outlet. J Chromatogr A 2010; 1217:600-4. [DOI: 10.1016/j.chroma.2009.11.100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 11/28/2009] [Accepted: 11/30/2009] [Indexed: 11/29/2022]
|
30
|
Eliahu SE, Camden J, Lecka J, Weisman GA, Sévigny J, Gélinas S, Fischer B. Identification of hydrolytically stable and selective P2Y(1) receptor agonists. Eur J Med Chem 2009; 44:1525-36. [PMID: 18760862 PMCID: PMC4354951 DOI: 10.1016/j.ejmech.2008.07.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/07/2008] [Accepted: 07/11/2008] [Indexed: 11/19/2022]
Abstract
P2Y nucleotide receptors (P2YRs) are attractive pharmaceutical targets. Most P2YR agonists proposed as drugs consist of a nucleotide scaffold, but their use is limited due to their chemical and enzymatic instabilities. To identify drug candidates, we developed non-hydrolyzable P2YR agonists. We synthesized ATP-beta,gamma-CH(2) analogues 2-4, and evaluated their chemical and metabolic stabilities and activities at P2Y(1,2,4,6) receptors. Analogues 2-4 exhibited t(1/2) values of 14.5-65 h in gastric juice pH. They were completely resistant to alkaline phosphatase for 30 min at 37 degrees C and slowly hydrolyzed in human blood serum (t(1/2) 12.7-71.9 h). In comparison to ATP, analogues 2-4 were barely hydrolyzed by nucleoside triphosphate diphosphohydrolases, NTPDase1,2,3,8 (< 8% hydrolysis), and nucleotide pyrophosphatases, NPP1,3 (< or = 10% hydrolysis). Analogues 2 and 4B were selective agonists of the P2Y(1)R with EC(50)s of 0.08 and 17.2 microM, respectively. These features make analogues 2 and 4B potential therapeutic agents for health disorders involving the P2Y(1)R.
Collapse
Affiliation(s)
- Shay E. Eliahu
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Jean Camden
- Biochemistry Department, 540E Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Joanna Lecka
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Gary A. Weisman
- Biochemistry Department, 540E Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO 65211, USA
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Sylvie Gélinas
- Innodia Inc., 500 Cartier Boulevard, A Suite 132, Québec H7V5B7, Canada
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
31
|
Munkonda MN, Pelletier J, Ivanenkov VV, Fausther M, Tremblay A, Künzli B, Kirley TL, Sévigny J. Characterization of a monoclonal antibody as the first specific inhibitor of human NTP diphosphohydrolase-3 : partial characterization of the inhibitory epitope and potential applications. FEBS J 2009; 276:479-96. [PMID: 19120451 DOI: 10.1111/j.1742-4658.2008.06797.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study and therapeutic modulation of purinergic signaling is hindered by a lack of specific inhibitors for NTP diphosphohydrolases (NTPDases),which are the terminating enzymes for these processes. In addition, little is known of the NTPDase protein structural elements that affect enzymatic activity and which could be used as targets for inhibitor design. In the present study, we report the first inhibitory monoclonal antibodies specific for an NTPDase, namely human NTPDase3 (EC 3.6.1.5), as assessed by ELISA, western blotting, flow cytometry, immunohistochemistry and inhibition assays. Antibody recognition of NTPDase3 is greatly attenuated by denaturation with SDS, and abolished by reducing agents, indicating the significance of the native conformation and the disulfide bonds for epitope recognition. Using site-directed chemical cleavage, the SDS-resistant parts of the epitope were located in two fragments of the C-terminal lobe ofNTPDase3 (i.e. Leu220-Cys347 and Cys347-Pro485), which are both required for antibody binding. Additional site-directed mutagenesis revealed the importance of Ser297 and the fifth disulfide bond (Cys399-Cys422) for antibody binding, indicating that the discontinuous inhibitory epitope is located on the extracellular C-terminal lobe of NTPDase3. These antibodies inhibit recombinant NTPDase3 by 60-90%, depending on the conditions. More importantly, they also efficiently inhibit the NTPDase3expressed in insulin secreting human pancreatic islet cells in situ. Because insulin secretion is modulated by extracellular ATP and purinergic receptors, this finding suggests the potential application of these inhibitory antibodies for the study and control of insulin secretion.
Collapse
Affiliation(s)
- Mercedes N Munkonda
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Canada
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Knowles AF. The single NTPase gene of Drosophila melanogaster encodes an intracellular nucleoside triphosphate diphosphohydrolase 6 (NTPDase6). Arch Biochem Biophys 2009; 484:70-9. [PMID: 19467631 DOI: 10.1016/j.abb.2009.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 01/05/2009] [Accepted: 01/09/2009] [Indexed: 01/07/2023]
Abstract
I report here the cloning and characterization of a nucleoside triphosphate diphosphohydrolase 6 (NTPDase6) encoded by the single Dmel/NTPase gene of Drosophila melanogaster. S2 cells stably transfected with the Drosophila NTPDase6 cDNA displayed strong UDPase activity only after addition of NP-40, indicating the intracellular location of the enzyme. The enzyme hydrolyzed UDP, GDP, and IDP equally well whereas other NDP and NTP were poor substrates. It was not or only partially inhibited by several modulators of the cell surface NTPDases, but was strongly inhibited upon oxidative cross-linking by copper phenanthroline. The decrease of activity correlated with dimer formation. Mutagenesis studies indicated that dimer formation required C42 in the transmembrane domain and C447 in the exoplasmic domain. Fluorescence microscopy revealed that the protein was located primarily in the ER. The substrate specificity and cellular localization of the Drosophila NTPDase6 suggest that it participates in Drosophila glycoprotein processing.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, USA.
| |
Collapse
|
33
|
Ivanenkov VV, Sévigny J, Kirley TL. Trafficking and intracellular ATPase activity of human ecto-nucleotidase NTPDase3 and the effect of ER-targeted NTPDase3 on protein folding. Biochemistry 2008; 47:9184-97. [PMID: 18693757 PMCID: PMC2562647 DOI: 10.1021/bi800402q] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases, NTPDase1 (CD39) and NTPDase3, are integral plasma membrane proteins that hydrolyze extracellular nucleotides, thereby modulating the function of purinergic receptors. During processing in the secretory pathway, the active sites of ecto-nucleotidases are located in the lumen of vesicular compartments, thus raising the question whether the ecto-nucleotidases affect the ATP-dependent processes in these compartments, including protein folding in the endoplasmic reticulum (ER). It has been reported (J. Biol. Chem. (2001) 276, 41518-41525) that CD39 is not active until it reaches the plasma membrane, suggesting that terminal glycosylation in Golgi is critical for its activity. To investigate the subcellular location and the mechanism of ecto-nucleotidase activation, we expressed human NTPDase3 in COS-1 cells and blocked the secretory transport with monensin or brefeldin A, or by targeting to ER with a signal peptide. Cell surface biotinylation, sensitivity to glycosidases, and fluorescence microscopy analyses suggest that, in contrast to the previous report on CD39, NTPDase3 becomes catalytically active in the ER or in the ER-Golgi intermediate compartment, and that terminal glycosylation in Golgi is not essential for activity. Moreover, ER-targeted NTPDase3, but not wild-type NTPDase3 or ER-targeted inactive G221A mutant, significantly diminished the folding efficiency and the transport to the plasma membrane of coexpressed CD39 used as a reporter protein. These data suggest that ER-targeted NTPDase3 significantly depletes ATP in ER, whereas wild-type NTPDase3 is likely to acquire ATPase activity in a post-ER, but pre-Golgi, compartment, thus avoiding unproductive ATP hydrolysis and interference with protein folding in the ER. ER-targeted NTPDase3 may be a useful experimental tool to study the effects of ER ATP depletion on ER function under normal and stress conditions.
Collapse
Affiliation(s)
- Vasily V. Ivanenkov
- From the Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, P.O. Box 670575, Cincinnati, OH 45267-0575
| | - Jean Sévigny
- From the Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | - Terence L. Kirley
- From the Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, P.O. Box 670575, Cincinnati, OH 45267-0575
| |
Collapse
|
34
|
Chiang WC, Knowles AF. Inhibition of Human NTPDase 2 by Modification of an Intramembrane Cysteine by p-Chloromercuriphenylsulfonate and Oxidative Cross-Linking of the Transmembrane Domains. Biochemistry 2008; 47:8775-85. [DOI: 10.1021/bi800633d] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wei-Chieh Chiang
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| | - Aileen F. Knowles
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030
| |
Collapse
|
35
|
Brunschweiger A, Iqbal J, Umbach F, Scheiff AB, Munkonda MN, Sévigny J, Knowles AF, Müller CE. Selective nucleoside triphosphate diphosphohydrolase-2 (NTPDase2) inhibitors: nucleotide mimetics derived from uridine-5'-carboxamide. J Med Chem 2008; 51:4518-28. [PMID: 18630897 DOI: 10.1021/jm800175e] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases, subtypes 1, 2, 3, 8 of NTPDases) dephosphorylate nucleoside tri- and diphosphates to the corresponding di- and monophosphates. In the present study we synthesized adenine and uracil nucleotide mimetics, in which the phosphate residues were replaced by phosphonic acid esters attached to the nucleoside at the 5'-position by amide linkers. Among the synthesized uridine derivatives, we identified the first potent and selective inhibitors of human NTPDase2. The most potent compound was 19a (PSB-6426), which was a competitive inhibitor of NTPDase2 exhibiting a K i value of 8.2 microM and selectivity versus other NTPDases. It was inactive toward uracil nucleotide-activated P2Y 2, P2Y 4, and P2Y 6 receptor subtypes. Compound 19a was chemically and metabolically highly stable. In contrast to the few known (unselective) NTPDase inhibitors, 19a is an uncharged molecule and may be perorally bioavailable. NTPDase2 inhibitors have potential as novel cardioprotective drugs for the treatment of stroke and for cancer therapy.
Collapse
Affiliation(s)
- Andreas Brunschweiger
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, Pharmaceutical Sciences Bonn, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal 2008; 5:91-106. [PMID: 18528783 PMCID: PMC2721768 DOI: 10.1007/s11302-008-9103-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 04/10/2008] [Indexed: 12/03/2022] Open
Abstract
Reactive blue 2 (RB-2) had been characterized as a relatively potent ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) inhibitor with some selectivity for NTPDase3. In search for the pharmacophore and to analyze structure-activity relationships we synthesized a series of truncated derivatives and analogs of RB-2, including 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinones, 1-amino-2-methyl-4-arylaminoanthraquinones, 1-amino-4-bromoanthraquinone 2-sulfonic acid esters and sulfonamides, and bis-(1-amino-4-bromoanthraquinone) sulfonamides, and investigated them in preparations of rat NTPDase1, 2, and 3 using a capillary electrophoresis assay. Several 1-amino-2-sulfo-4-ar(alk)ylaminoanthraquinone derivatives inhibited E-NTPDases in a concentration-dependent manner. The 2-sulfonate group was found to be required for inhibitory activity, since 2-methyl-substituted derivatives were inactive. 1-Amino-2-sulfo-4-p-chloroanilinoanthraquinone (18) was identified as a nonselective competitive blocker of NTPDases1, 2, and 3 (Ki 16–18 μM), while 1-amino-2-sulfo-4-(2-naphthylamino)anthraquinone (21) was a potent inhibitor with preference for NTPDase1 (Ki 0.328 μM) and NTPDase3 (Ki 2.22 μM). Its isomer, 1-amino-2-sulfo-4-(1-naphthylamino)anthraquinone (20), was a potent and selective inhibitor of rat NTPDase3 (Ki 1.5 μM).
Collapse
|
37
|
Yu J, Lavoie ÉG, Sheung N, Tremblay JJ, Sévigny J, Dranoff JA. IL-6 downregulates transcription of NTPDase2 via specific promoter elements. Am J Physiol Gastrointest Liver Physiol 2008; 294:G748-56. [PMID: 18202114 PMCID: PMC5239663 DOI: 10.1152/ajpgi.00208.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bile ductular proliferation is markedly upregulated in biliary fibrosis and cirrhosis. However, the mechanisms regulating this upregulation in bile ductular proliferation have not been defined. Recently, we demonstrated that expression of the ectonucleotidase nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/Entpd2) by portal fibroblasts (PF) is a critical regulator of bile ductular proliferation. Since interleukin 6 (IL-6) is markedly upregulated in biliary cirrhosis, our aims were to determine the role and mechanism of IL-6 in the regulation of NTPDase2 by PF. We found that IL-6 downregulated NTPDase2 protein expression in a concentration-dependent and time-dependent fashion but did not alter PF alpha-smooth muscle actin expression. IL-6 markedly downregulated NTPDase2 mRNA expression. Expression of the IL-6 receptor gp130 but not the IL-6 receptor gp80 was detected in PF. Two transcription start sites were identified in rat Entpd2 by the method of RNA ligase-mediated rapid amplification of 5' cDNA ends. The minimal promoter construct, but not shorter constructs, was downregulated by IL-6. Three putative IL-6 response elements were identified in silico and mutated. Mutation of all three response elements, but not fewer elements, completely abolished the IL-6 response. Thus IL-6 transcriptionally downregulates NTPDase2 expression by PF via actions at specific promoter elements independently of myofibroblastic differentiation. This effect may represent a novel signaling pathway by which bile ductular proliferation is dysregulated in biliary cirrhosis and thus provides a potential therapeutic approach for the regulation of bile ductular growth.
Collapse
Affiliation(s)
- Jin Yu
- Yale University School of Medicine and Yale Liver Center, New Haven, Connecticut
| | - Élise G. Lavoie
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec, Quebec, Canada
| | - Nina Sheung
- Yale University School of Medicine and Yale Liver Center, New Haven, Connecticut
| | - Jacques J. Tremblay
- Ontogeny-Reproduction Research Unit, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec, Quebec, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec, Quebec, Canada
| | - Jonathan A. Dranoff
- Yale University School of Medicine and Yale Liver Center, New Haven, Connecticut
| |
Collapse
|
38
|
Chiang WC, Knowles AF. Transmembrane domain interactions affect the stability of the extracellular domain of the human NTPDase 2. Arch Biochem Biophys 2008; 472:89-99. [PMID: 18295590 DOI: 10.1016/j.abb.2008.02.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 02/07/2008] [Accepted: 02/09/2008] [Indexed: 01/15/2023]
Abstract
Human NTPDase2 and chicken NTPDase8 are cell surface nucleotidases that contain two transmembrane domains (TMD) and five apyrase conserved regions (ACRs). ACR1 is located near the N-terminal TMD whereas ACR5 is located near the C-terminal TMD. The human NTPDase2 activity is decreased by low concentration of NP-40 and at temperatures higher than 37 degrees C, and undergoes substrate inactivation, whereas the chicken NTPDase8 activity is not. When freed from membrane anchorage, the soluble human NTPDase2 is no longer inactivated by detergents, high temperature, and substrate. These characteristics are retained in the hu-ck ACR1,5 chimera in which the extracellular domain is anchored to the membrane by the two TMDs of the chicken NTPDase8. The hu-ck ACR1,5 chimera is the first chimeric NTPDase reported that shows a resistance to membrane perturbation and substrate inactivation. Our results indicate that the strengths of interaction of the respective TMD pairs of the human NTPDase2 and chicken NTPDase8 determine their different responses to membrane perturbation and substrate.
Collapse
Affiliation(s)
- Wei-Chieh Chiang
- Department of Chemistry and Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182-1030, USA
| | | |
Collapse
|
39
|
Beldi G, Enjyoji K, Wu Y, Miller L, Banz Y, Sun X, Robson SC. The role of purinergic signaling in the liver and in transplantation: effects of extracellular nucleotides on hepatic graft vascular injury, rejection and metabolism. FRONT BIOSCI-LANDMRK 2008; 13:2588-603. [PMID: 17981736 DOI: 10.2741/2868] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Extracellular nucleotides (e.g. ATP, UTP, ADP) are released by activated endothelium, leukocytes and platelets within the injured vasculature and bind specific cell-surface type-2 purinergic (P2) receptors. This process drives vascular inflammation and thrombosis within grafted organs. Importantly, there are also vascular ectonucleotidases i.e. ectoenzymes that hydrolyze extracellular nucleotides in the blood to generate nucleosides (viz. adenosine). Endothelial cell NTPDase1/CD39 has been shown to critically modulate levels of circulating nucleotides. This process tends to limit the activation of platelet and leukocyte expressed P2 receptors and also generates adenosine to reverse inflammatory events. This vascular protective CD39 activity is rapidly inhibited by oxidative reactions, such as is observed with liver ischemia reperfusion injury. In this review, we chiefly address the impact of these signaling cascades following liver transplantation. Interestingly, the hepatic vasculature, hepatocytes and all non-parenchymal cell types express several components co-ordinating the purinergic signaling response. With hepatic and vascular dysfunction, we note heightened P2- expression and alterations in ectonucleotidase expression and function that may predispose to progression of disease. In addition to documented impacts upon the vasculature during engraftment, extracellular nucleotides also have direct influences upon liver function and bile flow (both under physiological and pathological states). We have recently shown that alterations in purinergic signaling mediated by altered CD39 expression have major impacts upon hepatic metabolism, repair mechanisms, regeneration and associated immune responses. Future clinical applications in transplantation might involve new therapeutic modalities using soluble recombinant forms of CD39, altering expression of this ectonucleotidase by drugs and/or using small molecules to inhibit deleterious P2-mediated signaling while augmenting beneficial adenosine-mediated effects within the transplanted liver.
Collapse
Affiliation(s)
- Guido Beldi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Munkonda MN, Kauffenstein G, Kukulski F, Lévesque SA, Legendre C, Pelletier J, Lavoie EG, Lecka J, Sévigny J. Inhibition of human and mouse plasma membrane bound NTPDases by P2 receptor antagonists. Biochem Pharmacol 2007; 74:1524-34. [PMID: 17727821 DOI: 10.1016/j.bcp.2007.07.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/21/2007] [Accepted: 07/23/2007] [Indexed: 11/15/2022]
Abstract
The plasma membrane bound nucleoside triphosphate diphosphohydrolase (NTPDase)-1, 2, 3 and 8 are major ectonucleotidases that modulate P2 receptor signaling by controlling nucleotides' concentrations at the cell surface. In this report, we systematically evaluated the effect of the commonly used P2 receptor antagonists reactive blue 2, suramin, NF279, NF449 and MRS2179, on recombinant human and mouse NTPDase1, 2, 3 and 8. Enzymatic reactions were performed in a Tris/calcium buffer, commonly used to evaluate NTPDase activity, and in a more physiological Ringer modified buffer. Although there were some minor variations, there were no major changes either in the enzymatic activity or in the profile of NTPDase inhibition between the two buffers. Except for MRS2179, all other antagonists significantly inhibited these ecto-ATPases; NTPDase3 being the most sensitive to inhibition and NTPDase8 the most resistant. Estimated IC(50) showed that human NTPDases were generally more sensitive to the P2 receptor antagonists tested than the corresponding mouse isoforms. NF279 and reactive blue 2 were the most potent inhibitors of NTPDases which almost completely abrogated their activity at the concentration of 100 microM. In conclusion, reactive blue 2, suramin, NF279 and NF449, at the concentrations commonly used to antagonize P2 receptors, inhibit the four major ecto-ATPases. This information may reveal useful for the interpretation of some pharmacological studies of P2 receptors. In addition, NF279 is a most potent non-selective NTPDase inhibitor. Although P2 receptor antagonists do not display a strict selectivity toward NTPDases, their IC(50) values may help to discriminate some of these enzymes.
Collapse
Affiliation(s)
- Mercedes N Munkonda
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Lévesque SA, Lavoie ÉG, Lecka J, Bigonnesse F, Sévigny J. Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol 2007; 152:141-50. [PMID: 17603550 PMCID: PMC1978278 DOI: 10.1038/sj.bjp.0707361] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE ARL 67156, 6-N,N-Diethyl-D-beta-gamma-dibromomethylene adenosine triphosphate, originally named FPL 67156, is the only commercially available inhibitor of ecto-ATPases. Since the first report on this molecule, various ectonucleotidases responsible for the hydrolysis of ATP at the cell surface have been cloned and characterized. In this work, we identified the ectonucleotidases inhibited by ARL 67156. EXPERIMENTAL APPROACH The effect of ARL 67156 on recombinant NTPDase1, 2, 3 & 8 (mouse and human), NPP1, NPP3 and ecto-5'-nucleotidase (human) have been evaluated. The inhibition of the activity of NTPDases (using the following substrates: ATP, ADP, UTP), NPPs (pnp-TMP, Ap(3)A) and ecto-5'-nucleotidase (AMP) was measured by colorimetric or HPLC assays. KEY RESULTS ARL 67156 was a weak competitive inhibitor of human NTPDase1, NTPDase3 and NPP1 with K(i) of 11+/-3, 18+/-4 and 12+/-3 microM, respectively. At concentrations used in the literature (50-100 microM), ARL 67156 partially but significantly inhibited the mouse and human forms of these enzymes. NTPDase2, NTPDase8, NPP3 and ecto-5'-nucleotidase activities were less affected. Importantly, ARL 67156 was not hydrolysed by either human NTPDase1, 2, 3, 8, NPP1 or NPP3. CONCLUSIONS AND IMPLICATIONS In cell environments where NTPDase1, NTPDase3, NPP1 or mouse NTPDase8 are present, ARL 67156 would prolong the effect of endogenously released ATP on P2 receptors. However, it does not block any ectonucleotidases efficiently when high concentrations of substrates are present, such as in biochemical, pharmacological or P2X(7) assays. In addition, ARL 67156 is not an effective inhibitor of NTPDase2, human NTPDase8, NPP3 and ecto-5'-nucleotidase.
Collapse
Affiliation(s)
- S A Lévesque
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - É G Lavoie
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - J Lecka
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - F Bigonnesse
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
| | - J Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval Québec, QC, Canada
- Author for correspondence:
| |
Collapse
|
42
|
Buffon A, Wink MR, Ribeiro BV, Casali EA, Libermann TA, Zerbini LF, Robson SC, Sarkis JJF. NTPDase and 5' ecto-nucleotidase expression profiles and the pattern of extracellular ATP metabolism in the Walker 256 tumor. Biochim Biophys Acta Gen Subj 2007; 1770:1259-65. [PMID: 17574764 DOI: 10.1016/j.bbagen.2007.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 05/13/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
In this study, we evaluated the NTPDases and ecto-5'-nucleotidase (CD73) expression profiles and the pattern of adenine nucleotide hydrolysis in rats submitted to the Walker 256 tumor model, 6, 10 and 15 days after the subcutaneous inoculation. Using RT-PCR analysis, we identified mRNA for all of the members of the ecto-nucleoside triphosphate diphosphohydrolase family investigated and a 5'-nucleotidase. By quantitative real-time PCR, Entpd1 (Cd39) and Entpd2 (Cd39L1) and CD73 were identified as the dominant genes expressed by the Walker 256 tumor, at all times studied. Extracellular adenine nucleotide hydrolysis by the Walker 256 tumor was estimated by HPLC analysis. Rapid hydrolysis of extracellular ATP by the tumor cells was observed, leading to the formation of adenosine and inosine in cells obtained from solid tumors at 6 and 10 days after inoculation. Cells obtained from solid tumors at 15 days of growth presented high levels of AMP and presented adenosine as a final product after 90 min of incubation. Results demonstrate that the presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important for regulation of the extracellular adenine nucleotides/adenine nucleoside ratio, therefore leading to tumor growth.
Collapse
Affiliation(s)
- A Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, ICBS, Rua Ramiro Barcelos, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Javed R, Yarimizu K, Pelletier N, Li C, Knowles AF. Mutagenesis of Lysine 62, Asparagine 64, and Conserved Region 1 Reduces the Activity of Human Ecto-ATPase (NTPDase 2). Biochemistry 2007; 46:6617-27. [PMID: 17489562 DOI: 10.1021/bi700036e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human ecto-ATPase (NTPDase 2) contains conserved motifs including five apyrase conserved regions (ACRs) and four conserved regions (CRs) as well as conserved lysine and arginine residues that are also present in other cell surface E-NTPDases. Some of the positively charged amino acids may be involved in ATP binding. The protein also contains six potential N-linked glycosylation sites. Results obtained with seven lysine and six arginine mutants indicate the importance of K62 that is located in CR1, K182, which is downstream of ACR3, and R155, which immediately follows CR3. Mutation of asparagine at the six potential N-linked glycosylation sites individually to glutamine established the importance of N64 in CR1 and N443 in ACR5 in protein function and expression. Mutation of N64, which is conserved in all cell surface NTPDases, results in the expression of an unstable protein, the activity of which is only manifested in the presence of concanavalin A. Both K62 and N64 reside in CR1 that is conserved in all cell surface NTPDases. In the sequence of the CR1 of human ecto-ATPase, 58WPADKENDTGIV69, 65DTG67 is similar to the phosphate-binding motif (DXG) in ACR1 and 4. The D65A and G67A mutants have reduced protein expression and activity. Mutations of other residues in CR1 to alanine led to partial to complete loss of protein expression and activity except for P59. The alanine mutants of the three acidic amino acid residues, D61, E63, and D65, all have decreased affinity for divalent ions. D61 can be substituted by glutamate, but E63 appears to be invariable. Taken together, these results indicate that CR1, which follows ACR1 in the cell surface NTPDases, is an essential structural element in these enzymes.
Collapse
Affiliation(s)
- Reem Javed
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, USA
| | | | | | | | | |
Collapse
|
44
|
Buffon A, Ribeiro VB, Wink MR, Casali EA, Sarkis JJF. Nucleotide metabolizing ecto-enzymes in Walker 256 tumor cells: molecular identification, kinetic characterization and biochemical properties. Life Sci 2006; 80:950-8. [PMID: 17169379 DOI: 10.1016/j.lfs.2006.11.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2006] [Revised: 11/02/2006] [Accepted: 11/16/2006] [Indexed: 02/06/2023]
Abstract
In this study we describe the molecular identification, kinetic characterization and biochemical properties of an E-NTPDase and an 5'-nucleotidase in Walker 256 cells. For the ATP, ADP and AMP hydrolysis there were optimum pH in the range 6.5-8.0, and absolute requirement for divalent cations (Mg(2+)>Ca(2+)). A significant inhibition of ATP and ADP hydrolysis was observed in the presence of high concentrations of sodium azide and 0.5 mM of Gadolinium chloride. These activities were insensitive to ATPase, adenylate kinase and alkaline phosphatase classical inhibitors. The K(m) values were 464.2+/-86.6 microM (mean+/-SEM, n=4), 137.0+/-31 microM (mean+/-SEM, n=5) and 44.8+/-10.2 microM (mean+/-SEM, n=4), and V(max) values were 655.0+/-94.6 (mean+/-SEM, n=4), 236.3+/-27.2 (mean+/-SEM, n=5) and 177.6+/-13.8 (mean+/-SEM, n=5) nmol of inorganic phosphate min(-1) mg of protein(-1) for ATP, ADP and AMP, respectively. Using RT-PCR analysis we identified the mRNA of two members of the ecto-nucleoside triphosphate diphosphohydrolase family (NTPDase 2 and 5) and a 5'-nucleotidase. The presence of NTPDases and 5'-nucleotidase enzymes in Walker 256 tumor cells may be important to regulate the ratio adenine nucleotides/adenine nucleoside extracellularly, therefore motivating tumor growth.
Collapse
Affiliation(s)
- Andréia Buffon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600 ANEXO, CEP 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | |
Collapse
|
45
|
Knowles AF, Li C. Molecular cloning and characterization of expressed human ecto-nucleoside triphosphate diphosphohydrolase 8 (E-NTPDase 8) and its soluble extracellular domain. Biochemistry 2006; 45:7323-33. [PMID: 16752921 DOI: 10.1021/bi052268e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An ecto-nucleoside triphosphate diphosphohydrolase (ecto-NTPDase) has been cloned from human liver RNA by RT-PCR. The 1.5 kb cDNA codes for a protein of 495 amino acids. Sequence analysis indicated that it is most closely related to a chicken ecto-ATPDase previously cloned in our laboratory [Knowles et al. (2002) Eur. J. Biochem. 269, 2373-2382] and a mouse homologue that has been designated as E-NTPDase 8 [Bigonnesses et al. (2004) Biochemistry 43, 5511-5519]. The human E-NTPDase 8 has similar topology as the avian and mouse E-NTPDase 8 but has fewer potential N-glycosylation sites and only two amino acid residues in the cytoplasm at its C-terminus. Despite 52% identity in primary structures, enzymatic properties of human E-NTPDase 8 expressed in HEK293 cells differ from that of the chicken E-NTPDase 8. In contrast to the chicken E-NTPDase 8, the human E-NTPDase 8 hydrolyzes MgADP poorly and is inhibited by several detergents as well as benzyl alcohol; the latter attribute may be related to weaker interaction of the transmembranous domains of the human E-NTPDase 8. To demonstrate that inhibition by detergents is mediated by the transmembranous domains, a recombinant pSecTag2 plasmid containing the extracellular domain (ECD) of the human E-NTPDase 8 was constructed. The soluble human E-NTPDase 8 which was secreted into the culture media of transfected HEK293 cells was purified by ammonium sulfate fractionation and nickel affinity chromatography. Besides becoming resistant to detergent inhibition, the soluble human E-NTPDase 8 ECD displays greater activity with Ca nucleotide substrates, an increased affinity for ATP, different pH dependence, and a decreased sensitivity to azide inhibition when compared to the membrane-bound enzyme. These differences may result from the different conformations that the ECD assume without or with constraints exerted by the transmembranous domains. These results indicate that the transmembranous domains are important in regulating enzyme activity as well as in determining the structure of human E-NTPDase 8.
Collapse
Affiliation(s)
- Aileen F Knowles
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, USA.
| | | |
Collapse
|
46
|
CD39, NTPDase 1, is attached to the plasma membrane by two transmembrane domains. Why? Purinergic Signal 2006; 2:391-8. [PMID: 18404478 PMCID: PMC2254477 DOI: 10.1007/s11302-005-5907-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2005] [Revised: 12/14/2005] [Accepted: 12/14/2005] [Indexed: 11/20/2022] Open
Abstract
Since the identification of CD39 and other members of the e-NTPDase (ecto-nucleoside triphosphate diphosphohydrolase) family as the primary enzymes responsible for cell surface nucleotide hydrolysis, one of their most intriguing features has been their unusual topology. The active site lies in the large extracellular region, but instead of being anchored in the membrane by a single transmembrane domain or lipid link like other ectoenzymes, CD39 has two transmembrane domains, one at each end. In this review we discuss evidence that the structure and dynamics of the transmembrane helices are intricately connected to enzymatic function. Removal of either or both transmembrane domains or disruption of their native state by detergent solubilization reduces activity by 90%, indicating that native function requires both transmembrane domains to be present and in the membrane. Enzymatic and mutational analysis of the native and truncated forms has shown that the active site can exist in distinct functional states characterized by different total activities, substrate specificities, hydrolysis mechanisms, and intermediate ADP release during ATP hydrolysis, depending on the state of the transmembrane domains. Disulfide crosslinking of cysteines introduced within the transmembrane helices revealed that they interact within and between molecules, in particular near the extracellular domain, and that activity depends on their organization. Both helices exhibit a high degree of rotational mobility, and the ability to undergo dynamic motions is required for activity and regulated by substrate binding. Recent reports suggest that membrane composition can regulate NTPDase activity. We propose that mechanical bilayer properties, potentially elasticity, might regulate CD39 by altering the balance between stability and mobility of its transmembrane domains.
Collapse
|
47
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
48
|
Pinheiro CM, Martins-Duarte ES, Ferraro RB, Fonseca de Souza AL, Gomes MT, Lopes AHCS, Vannier-Santos MA, Santos ALS, Meyer-Fernandes JR. Leishmania amazonensis: Biological and biochemical characterization of ecto-nucleoside triphosphate diphosphohydrolase activities. Exp Parasitol 2006; 114:16-25. [PMID: 16603157 DOI: 10.1016/j.exppara.2006.02.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 02/02/2006] [Accepted: 02/06/2006] [Indexed: 10/24/2022]
Abstract
The presence of Leishmania amazonensis ecto-nucleoside triphosphate triphosphohydrolase activities was demonstrated using antibodies against different NTPDase members by Western blotting, flow cytometry, and immunoelectron microscopy analysis. Living promastigote cells sequentially hydrolyzed the ATP molecule generating ADP, AMP, and adenosine, indicating that this surface enzyme may play a role in the salvage of purines from the extracellular medium. The L. amazonensis ecto-NTPDase activities were insensitive to Triton X-100, but they were enhanced by divalent cations, such as Mg(2+). In addition, the ecto-NTPDase activities decreased with time for 96 h when promastigotes were grown in vitro. On the other hand, these activities increased considerably when measured in living amastigote forms. Furthermore, the treatment with adenosine, a mediator of several relevant biological phenomena, induced a decrease in the reactivity with anti-CD39 antibody, raised against mammalian E-NTPDase, probably because of down regulation in the L. amazonensis ecto-NTPDase expression. Also, adenosine and anti-NTPDase antibodies induced a significant diminishing in the interaction between promastigotes of L. amazonensis and mouse peritoneal macrophages.
Collapse
Affiliation(s)
- Carla M Pinheiro
- Instituto de Bioquímica Médica (IBqM), Universidade Federal do Rio de Janeiro (UFRJ), Centro de Ciências da Saúde (CCS), Bloco H, Cidade Universitária, Ilha do Fundão, 21541-590 Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction. Purinergic Signal 2005; 1:349-58. [PMID: 18404519 PMCID: PMC2096555 DOI: 10.1007/s11302-005-8076-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 03/23/2005] [Accepted: 03/24/2005] [Indexed: 10/25/2022] Open
Abstract
A capillary electrophoresis (CE) method for the characterization of recombinant NTPDases 1, 2, and 3, and for assaying NTPDase inhibitors has been developed performing the enzymatic reaction within the capillary. After hydrodynamic injection of plugs of substrate solution with or without inhibitor in reaction buffer, followed by a suspension of an enzyme-containing membrane preparation, and subsequent injection of another plug of substrate solution with or without inhibitor, the reaction took place close to the capillary inlet. After 5 min, the electrophoretic separation of the reaction products was initiated by applying a constant current of -60 muA. The method employing a polyacrylamide-coated capillary and reverse polarity mode provided baseline resolution of substrates and products within a short separation time of less than 7 min. A 50 mM phosphate buffer (pH 6.5) was used for the separations and the products were detected by their UV absorbance at 210 nm. The Michaelis-Menten constants (K (m)) for the recombinant rat NTPDases 1, 2, and 3 obtained with this method were consistent with previously reported data. The inhibition studies revealed pronounced differences in the potency of reactive blue 2, pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS), suramin, and N (6)-diethyl-beta,gamma-dibromomethylene-ATP (ARL67156) towards the NTPDase isoforms. Notably, ARL67156 does not inhibit all NTPDases, having only a minor inhibitory effect on NTPDase2. Dipyridamole is not an inhibitor of the NTPDase isoforms investigated. The new method is fast and accurate, it requires only tiny amounts of material (nanoliter scale), no sample pretreatment and can be fully automated; thus it is clearly superior to the current standard methods.
Collapse
|
50
|
Mukasa T, Lee Y, Knowles AF. Either the carboxyl- or the amino-terminal region of the human ecto-ATPase (E-NTPDase 2) confers detergent and temperature sensitivity to the chicken ecto-ATP-diphosphohydrolase (E-NTPDase 8). Biochemistry 2005; 44:11160-70. [PMID: 16101300 DOI: 10.1021/bi050019k] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human ecto-ATPase (E-NTPDase 2) and chicken ecto-ATP-diphosphohydrolase (E-NTPDase 8) are cell surface nucleotidases with two transmembranous domains, one each at the N- and C-termini. Hydrolysis of substrates occurs in active sites residing in their extracellular domains. Human ecto-ATPase activity is decreased by NP-40 and at temperatures higher than 37 degrees C. Reduction of activity is abolished by prior cross-linking of the ecto-ATPase by lectin and chemical cross-linking agents [Knowles, A. F., and Chiang, W.-C. (2003) Arch. Biochem. Biophys. 418, 217-227]. In contrast, the chicken ecto-ATP-diphosphohydrolase is not inhibited by NP-40, and activity is approximately 2-fold higher at 55 degrees C. To determine if the transmembranous domains of the two E-NTPDases mediate their respective responses to detergents and high temperature, we first constructed a chimera (ck-hu ACR5) in which the C-terminus of the chicken ecto-ATP-diphosphohydrolase is substituted by the corresponding region of the human ecto-ATPase. While this chimera displays many similar enzymatic characteristics as the parental chicken ecto-ATP-diphosphohydrolase, its inhibition by NP-40, high temperature, and substrate resemble that of the human ecto-ATPase, which donates the C-terminus including the C-terminal transmembranous domain. Additionally, comparison of the effects of ConA, disuccinimidyl suberate, and glutaraldehyde on the parental enzymes and the chimera indicated that catalysis which occurs in the extracellular domains of the two E-NTPDases responds differently to conformational constraints. Enzyme activity of a second chimera (ck-hu ACR1) in which the N-terminus of the chicken ecto-ATP-diphosphohydrolase is substituted by the corresponding region of the human ecto-ATPase is also inhibited by NP-40 and is less active at 55 degrees C; however, its temperature dependence differs from that of ck-hu ACR5. These results indicate that (1) the C- and N-termini of the two E-NTPDases encompassing the two transmembranous domains are important elements in determining the sensitivity of the human ecto-ATPase to NP-40 and high temperatures; (2) incorporation of either the C- or N-terminus of the human ecto-ATPase alone in the chicken ecto-ATP-diphosphohydrolase is sufficient to impart negative regulation on ATP hydrolysis due to membrane perturbation; and (3) interactions of the two sets of heterologous transmembranous domains are not equivalent, which are most likely related to their different amino acid sequences.
Collapse
Affiliation(s)
- Takashi Mukasa
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182-1030, USA
| | | | | |
Collapse
|