1
|
Reyna-Bolaños I, Solís-García EP, Vargas-Vargas MA, Peña-Montes DJ, Saavedra-Molina A, Cortés-Rojo C, Calderón-Cortés E. Polydatin Prevents Electron Transport Chain Dysfunction and ROS Overproduction Paralleled by an Improvement in Lipid Peroxidation and Cardiolipin Levels in Iron-Overloaded Rat Liver Mitochondria. Int J Mol Sci 2024; 25:11104. [PMID: 39456885 PMCID: PMC11508176 DOI: 10.3390/ijms252011104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/28/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Increased intramitochondrial free iron is a key feature of various liver diseases, leading to oxidative stress, mitochondrial dysfunction, and liver damage. Polydatin is a polyphenol with a hepatoprotective effect, which has been attributed to its ability to enhance mitochondrial oxidative metabolism and antioxidant defenses, thereby inhibiting reactive oxygen species (ROS) dependent cellular damage processes and liver diseases. However, it has not been explored whether polydatin is able to exert its effects by protecting the phospholipid cardiolipin against damage from excess iron. Cardiolipin maintains the integrity and function of electron transport chain (ETC) complexes and keeps cytochrome c bound to mitochondria, avoiding uncontrolled apoptosis. Therefore, the effect of polydatin on oxidative lipid damage, ETC activity, cytochrome levels, and ROS production was explored in iron-exposed rat liver mitochondria. Fe2+ increased lipid peroxidation, decreased cardiolipin and cytochromes c + c1 and aa3 levels, inhibited ETC complex activities, and dramatically increased ROS production. Preincubation with polydatin prevented all these effects to a variable degree. These results suggest that the hepatoprotective mechanism of polydatin involves the attenuation of free radical production by iron, which enhances cardiolipin levels by counteracting membrane lipid peroxidation. This prevents the loss of cytochromes, improves ETC function, and decreases mitochondrial ROS production.
Collapse
Affiliation(s)
- Itzel Reyna-Bolaños
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Ciudad Hidalgo 61100, Michoacán, Mexico; (I.R.-B.); (E.P.S.-G.)
| | - Elsa Paola Solís-García
- Instituto Tecnológico Superior de Ciudad Hidalgo, Tecnológico Nacional de México, Ciudad Hidalgo 61100, Michoacán, Mexico; (I.R.-B.); (E.P.S.-G.)
| | - Manuel Alejando Vargas-Vargas
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Donovan J. Peña-Montes
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58030, Michoacán, Mexico; (M.A.V.-V.); (D.J.P.-M.); (A.S.-M.)
| | - Elizabeth Calderón-Cortés
- Facultad de Enfermería, Universidad Michoacana de San Nicolás de Hidalgo, Morelia 58260, Michoacán, Mexico
| |
Collapse
|
2
|
Bharadwaj P, Shet SM, Bisht M, Sarkar DK, Franklin G, Sanna Kotrappanavar N, Mondal D. Suitability of Adenosine Derivatives in Improving the Activity and Stability of Cytochrome c under Stress: Insights into the Effect of Phosphate Groups. J Phys Chem B 2024; 128:86-95. [PMID: 38127495 PMCID: PMC10788901 DOI: 10.1021/acs.jpcb.3c05996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/16/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
It is well known that adenosine and its phosphate derivatives play a crucial role in biological phenomena such as apoptosis and cell signaling and act as the energy currency of the cell. Although their interactions with various proteins and enzymes have been described, the focus of this work is to demonstrate the effect of the phosphate group on the activity and stability of the native heme metalloprotein cytochrome c (Cyt c), which is important from both biological and industrial aspects. In situ and in silico characterizations are used to correlate the relationship between the binding affinity of adenosine and its phosphate groups with unfolding behavior, corresponding peroxidase activities, and stability factors. Interaction of adenosine (ADN), adenosine monophosphate (AMP), adenosine 5'-diphosphate (ADP), and adenosine 5'-triphosphate (ATP) with Cyt c increases peroxidase-like activity by up to 1.8-6.5-fold compared to native Cyt c. This activity is significantly maintained even after multiple stress conditions such as oxidative stress and the presence of a chaotropic agent such as guanidine hydrochloride (GuHCl). With binding affinities on the order of ADN < AMP < ADP < ATP, adenosine derivatives were found to stabilize Cyt c by varying the secondary structural features of the protein. Thus, in addition to being a fundamental study, the current work also proposes a way of stabilizing protein systems to be used for real-time biocatalytic applications.
Collapse
Affiliation(s)
- Pranav Bharadwaj
- Centre
for Nano and Material Sciences, Jain University, Bangalore 562112, India
- Institute
of Plant Genetics (IPG), Polish Academy
of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Sachin M. Shet
- Centre
for Nano and Material Sciences, Jain University, Bangalore 562112, India
| | - Meena Bisht
- Institute
of Plant Genetics (IPG), Polish Academy
of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Dheeraj Kumar Sarkar
- Laboratory
of Biomolecular Interactions and Transport, Department of Gene Expression,
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznanskiego 6, 61-614 Poznan, Poland
- International
Institute of Molecular and Cell Biology in Warsaw, Ks Trojdena 4, 02-109 Warsaw, Poland
| | - Gregory Franklin
- Institute
of Plant Genetics (IPG), Polish Academy
of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Nataraj Sanna Kotrappanavar
- Centre
for Nano and Material Sciences, Jain University, Bangalore 562112, India
- School of
Polymer Science and Engineering, Chonnam
National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South Korea
| | - Dibyendu Mondal
- Centre
for Nano and Material Sciences, Jain University, Bangalore 562112, India
- Institute
of Plant Genetics (IPG), Polish Academy
of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| |
Collapse
|
3
|
Thomas P, Gallagher MT, Da Silva Xavier G. Beta cell lipotoxicity in the development of type 2 diabetes: the need for species-specific understanding. Front Endocrinol (Lausanne) 2023; 14:1275835. [PMID: 38144558 PMCID: PMC10739424 DOI: 10.3389/fendo.2023.1275835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/26/2023] Open
Abstract
The propensity to develop type 2 diabetes (T2D) is known to have both environmental and hereditary components. In those with a genetic predisposition to T2D, it is widely believed that elevated concentrations of circulatory long-chain fatty acids (LC-FFA) significantly contribute towards the demise of insulin-producing pancreatic β-cells - the fundamental feature of the development of T2D. Over 25 years of research support that LC-FFA are deleterious to β-cells, through a process termed lipotoxicity. However, the work underpinning the theory of β-cell lipotoxicity is mostly based on rodent studies. Doubts have been raised as to whether lipotoxicity also occurs in humans. In this review, we examine the evidence, both in vivo and in vitro, for the pathogenic effects of LC-FFA on β-cell viability and function in humans, highlighting key species differences. In this way, we aim to uncover the role of lipotoxicity in the human pathogenesis of T2D and motivate the need for species-specific understanding.
Collapse
Affiliation(s)
- Patricia Thomas
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Meurig T. Gallagher
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| | - Gabriela Da Silva Xavier
- Institute for Metabolism and Systems Research, Birmingham Medical School, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
4
|
Zhang Q, Boundjou NB, Jia L, Wang X, Zhou L, Peisker H, Li Q, Guo L, Dörmann P, Lyu D, Zhou Y. Cytidine diphosphate diacylglycerol synthase is essential for mitochondrial structure and energy production in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:338-354. [PMID: 36789486 DOI: 10.1111/tpj.16139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 05/10/2023]
Abstract
Cytidine diphosphate diacylglycerol (CDP-DAG), an important intermediate for glycerolipid biosynthesis, is synthesized under the catalytic activity of CDP-DAG synthase (CDS) to produce anionic phosphoglycerolipids such as phosphatidylglycerol (PG) and cardiolipin (CL). Previous studies showed that Arabidopsis CDSs are encoded by a small gene family, termed CDS1-CDS5, the members of which are integral membrane proteins in endoplasmic reticulum (ER) and in plastids. However, the details on how CDP-DAG is provided for mitochondrial membrane-specific phosphoglycerolipids are missing. Here we present the identification of a mitochondrion-specific CDS, designated CDS6. Enzymatic activity of CDS6 was demonstrated by the complementation of CL synthesis in the yeast CDS-deficient tam41Δ mutant. The Arabidopsis cds6 mutant lacking CDS6 activity showed decreased mitochondrial PG and CL biosynthesis capacity, a severe growth deficiency finally leading to plant death. These defects were rescued partly by complementation with CDS6 or supplementation with PG and CL. The ultrastructure of mitochondria in cds6 was abnormal, missing the structures of cristae. The degradation of triacylglycerol (TAG) in lipid droplets and starch in chloroplasts in the cds6 mutant was impaired. The expression of most differentially expressed genes involved in the mitochondrial electron transport chain was upregulated, suggesting an energy-demanding stage in cds6. Furthermore, the contents of polar glycerolipids in cds6 were dramatically altered. In addition, cds6 seedlings lost the capacity for cell proliferation and showed a higher oxidase activity. Thus, CDS6 is indispensable for the biosynthesis of PG and CL in mitochondria, which is critical for establishing mitochondrial structure, TAG degradation, energy production and seedling development.
Collapse
Affiliation(s)
- Qiyue Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | | | - Lijun Jia
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | - Xinliang Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Ling Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Helga Peisker
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Qing Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peter Dörmann
- Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, 53115, Germany
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| | - Yonghong Zhou
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715, China
| |
Collapse
|
5
|
Tatarko M, Spagnolo S, Csiba M, Šubjaková V, Hianik T. Analysis of the Interaction between DNA Aptamers and Cytochrome C on the Surface of Lipid Films and on the MUA Monolayer: A QCM-D Study. BIOSENSORS 2023; 13:251. [PMID: 36832017 PMCID: PMC9953847 DOI: 10.3390/bios13020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
We analyzed the possibility of the detection of cytochrome c (cyt c) being physically adsorbed on lipid films or covalently bounded to 11-mercapto-1-undecanoic acid (MUA) chemisorbed on the gold layer using quartz crystal microbalance with dissipation monitoring (QCM-D). The negatively charged lipid film composed of a mixture of zwitterionic DMPC and negatively charged DMPG phospholipids at a molar ratio of 1:1 allowed the formation of a stable cyt c layer. Addition of DNA aptamers specific to cyt c, however, resulted in removal of cyt c from the surface. The interaction of cyt c with the lipid film and its removal by DNA aptamers were accompanied by changes in viscoelastic properties evaluated using the Kelvin-Voigt model. Cyt c covalently bound to MUA also provided a stable protein layer already at its relatively low concentrations (0.5 μM). A decrease in the resonant frequency following the addition of gold nanowires (AuNWs) modified by DNA aptamers was observed. The interaction of aptamers with cyt c on the surface can be a combination of specific and non-specific interactions due to electrostatic forces between negatively charged DNA aptamers and positively charged cyt c.
Collapse
|
6
|
Takla M, Saadeh K, Tse G, Huang CLH, Jeevaratnam K. Ageing and the Autonomic Nervous System. Subcell Biochem 2023; 103:201-252. [PMID: 37120470 DOI: 10.1007/978-3-031-26576-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The vertebrate nervous system is divided into central (CNS) and peripheral (PNS) components. In turn, the PNS is divided into the autonomic (ANS) and enteric (ENS) nervous systems. Ageing implicates time-related changes to anatomy and physiology in reducing organismal fitness. In the case of the CNS, there exists substantial experimental evidence of the effects of age on individual neuronal and glial function. Although many such changes have yet to be experimentally observed in the PNS, there is considerable evidence of the role of ageing in the decline of ANS function over time. As such, this chapter will argue that the ANS constitutes a paradigm for the physiological consequences of ageing, as well as for their clinical implications.
Collapse
Affiliation(s)
| | | | - Gary Tse
- Kent and Medway Medical School, Canterbury, UK
- University of Surrey, Guildford, UK
| | | | | |
Collapse
|
7
|
Ofosu J, Zhang Y, Liu Y, Sun X, Quan G, Alvarez Rodriguez M, Zhou G. Editorial: Cryopreservation of mammalian gametes and embryos: implications of oxidative and nitrosative stress and potential role of antioxidants. Front Vet Sci 2023; 10:1174756. [PMID: 37124566 PMCID: PMC10130574 DOI: 10.3389/fvets.2023.1174756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Jones Ofosu
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
| | - Yunhai Zhang
- Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Xiuzhu Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Manuel Alvarez Rodriguez
- Department of Animal Reproduction, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu, China
- *Correspondence: Guangbin Zhou
| |
Collapse
|
8
|
Bian H, Ma D, Pan F, Zhang X, Xin K, Zhang X, Yang Y, Peng X, Xiao Y. Cardiolipin-Targeted NIR-II Fluorophore Causes "Avalanche Effects" for Re-Engaging Cancer Apoptosis and Inhibiting Metastasis. J Am Chem Soc 2022; 144:22562-22573. [PMID: 36445324 DOI: 10.1021/jacs.2c08602] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Restoring innate apoptosis and simultaneously inhibiting metastasis by a molecular drug is an effective cancer therapeutic approach. Herein, a large rigid and V-shaped NIR-II dye, DUT850, is rationally designed for potential cardiolipin (CL)-targeted chemo-phototheranostic application. DUT850 displays moderate NIR-II fluorescence, excellent photodynamic therapy (PDT) and photothermal therapy (PTT) performance, and ultra-high photostability. More importantly, the unique rigid V-shaped backbone, positive charge, and lipophilicity of DUT850 afford its specific recognition and efficient binding to CL; such an interaction of DUT850-CL induced a spectrum of physiological disruptions, including translocation of cytochrome c, Ca2+ overload, reactive oxygen species burst, and ATP depletion, which not only activated cancer cell apoptosis but also inhibited tumor metastasis both in vitro and in vivo. Furthermore, the tight binding of DUT850-CL improves the phototoxicity of DUT850 toward cancer cells (IC50 as low as 90 nM) under safe 808 nm laser irradiation (330 mW cm-2). Upon encapsulation into bovine serum albumin (BSA), DUT850@BSA exerted a synergetic chemo-PDT-PTT effect on the 4T1 tumor mouse model, eventually leading to solid tumor annihilation and metastasis inhibition, which could be followed in real time with the NIR-II fluorescence of DUT850. This work contributed a promising approach for simultaneously re-engaging cancer cell apoptotic networks and activating the anti-metastasis pathway by targeting a pivotal upstream effector, which will bring a medical boon for inhibition of tumor proliferation and metastasis.
Collapse
Affiliation(s)
- Hui Bian
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Dandan Ma
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Fei Pan
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, P. R. China
| | - Xiaodong Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Kai Xin
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Youjun Yang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China
| |
Collapse
|
9
|
Jalalvand AR, Akbari V, Bahramikia S. Two- and multi-way analyses of cardiolipin-cytochrome c interactions and exploiting second-order advantage for bio-sensing of cytochrome c. SENSING AND BIO-SENSING RESEARCH 2022. [DOI: 10.1016/j.sbsr.2022.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
10
|
Cao B, Qin J, Pan B, Qazi IH, Ye J, Fang Y, Zhou G. Oxidative Stress and Oocyte Cryopreservation: Recent Advances in Mitigation Strategies Involving Antioxidants. Cells 2022; 11:cells11223573. [PMID: 36429002 PMCID: PMC9688603 DOI: 10.3390/cells11223573] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Oocyte cryopreservation is widely used in assisted-reproductive technology and animal production. However, cryopreservation not only induces a massive accumulation of reactive oxygen species (ROS) in oocytes, but also leads to oxidative-stress-inflicted damage to mitochondria and the endoplasmic reticulum. These stresses lead to damage to the spindle, DNA, proteins, and lipids, ultimately reducing the developmental potential of oocytes both in vitro and in vivo. Although oocytes can mitigate oxidative stress via intrinsic antioxidant systems, the formation of ribonucleoprotein granules, mitophagy, and the cryopreservation-inflicted oxidative damage cannot be completely eliminated. Therefore, exogenous antioxidants such as melatonin and resveratrol are widely used in oocyte cryopreservation to reduce oxidative damage through direct or indirect scavenging of ROS. In this review, we discuss analysis of various oxidative stresses induced by oocyte cryopreservation, the impact of antioxidants against oxidative damage, and their underlying mechanisms. We hope that this literature review can provide a reference for improving the efficiency of oocyte cryopreservation.
Collapse
Affiliation(s)
- Beijia Cao
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Jianpeng Qin
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Pan
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Izhar Hyder Qazi
- Department of Veterinary Anatomy, Histology, and Embryology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Jiangfeng Ye
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Fang
- Jilin Provincial Key Laboratory of Grassland Farming, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- Correspondence: (Y.F.); (G.Z.); Tel.: +86-431-8554-2291 (Y.F.); +86-28-8629-1010 (G.Z.)
| | - Guangbin Zhou
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology (Institute of Animal Genetics and Breeding), Sichuan Agricultural University, Chengdu 611130, China
- Correspondence: (Y.F.); (G.Z.); Tel.: +86-431-8554-2291 (Y.F.); +86-28-8629-1010 (G.Z.)
| |
Collapse
|
11
|
Means RE, Katz SG. Balancing life and death: BCL-2 family members at diverse ER-mitochondrial contact sites. FEBS J 2022; 289:7075-7112. [PMID: 34668625 DOI: 10.1111/febs.16241] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023]
Abstract
The outer mitochondrial membrane is a busy place. One essential activity for cellular survival is the regulation of membrane integrity by the BCL-2 family of proteins. Another critical facet of the outer mitochondrial membrane is its close approximation with the endoplasmic reticulum. These mitochondrial-associated membranes (MAMs) occupy a significant fraction of the mitochondrial surface and serve as key signaling hubs for multiple cellular processes. Each of these pathways may be considered as forming their own specialized MAM subtype. Interestingly, like membrane permeabilization, most of these pathways play critical roles in regulating cellular survival and death. Recently, the pro-apoptotic BCL-2 family member BOK has been found within MAMs where it plays important roles in their structure and function. This has led to a greater appreciation that multiple BCL-2 family proteins, which are known to participate in numerous functions throughout the cell, also have roles within MAMs. In this review, we evaluate several MAM subsets, their role in cellular homeostasis, and the contribution of BCL-2 family members to their functions.
Collapse
Affiliation(s)
- Robert E Means
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Samuel G Katz
- Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
12
|
Fox CA, Romenskaia I, Dagda RK, Ryan RO. Cardiolipin nanodisks confer protection against doxorubicin-induced mitochondrial dysfunction. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183984. [PMID: 35724738 DOI: 10.1016/j.bbamem.2022.183984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Doxorubicin (DOX) is an aqueous soluble anthracycline therapeutic widely used in cancer treatment. Although DOX anti-cancer activity is dose-dependent, increased dosage enhances the risk of cardiotoxicity. Despite intensive investigation, the molecular basis of this undesirable side effect has yet to be established. In addition to serving as a DNA intercalation agent, DOX is known to bind to the signature mitochondrial phospholipid, cardiolipin (CL). Consistent with this, DOX associates with aqueous soluble nanoparticles, termed nanodisks (ND), comprised solely of CL and an apolipoprotein scaffold. Fluorescence microscopy analysis revealed that DOX uptake, and targeting to the nucleus of cultured hepatocarcinoma (HepG2) or breast cancer (MCF7) cells, was unaffected by its association with CL-ND. Subsequent studies revealed that free DOX and DOX-CL-ND were equivalent in terms of growth inhibition activity in both cell lines. By contrast, in studies with H9C2 cardiomyocytes, DOX-CL-ND induced a lesser concentration-dependent decline in cell viability than free DOX. Whereas incubation of H9C2 cardiomyocytes with free DOX caused a steep decline in maximal oxygen consumption rate, DOX-CL-ND treated cells were largely unaffected. The data indicate that association of DOX with CL-ND does not diminish its cancer cell growth inhibition activity yet confers protection to cardiomyocytes from DOX-induced effects on aerobic respiration. This study illustrates that interaction with CL plays a role in DOX-induced mitochondrial dysfunction and suggests CL-ND provide a tool for investigating the mechanistic basis of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Colin A Fox
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Irina Romenskaia
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Ruben K Dagda
- Department of Cellular and Molecular Pharmacology and Physiology, University of Nevada, Reno, Reno, NV 89557, United States of America
| | - Robert O Ryan
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Reno, NV 89557, United States of America.
| |
Collapse
|
13
|
Hong S, Ghandriz R, Siddiqi S, Zhu XY, Saadiq IM, Jordan KL, Tang H, Ali KA, Lerman A, Eirin A, Lerman LO. Effects of Elamipretide on Autophagy in Renal Cells of Pigs with Metabolic Syndrome. Cells 2022; 11:cells11182891. [PMID: 36139466 PMCID: PMC9496989 DOI: 10.3390/cells11182891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Autophagy eliminates excessive nutrients and maintains homeostasis. Obesity and metabolic syndrome (MetS) dysregulate autophagy, possibly partly due to mitochondria injury and inflammation. Elamipretide (ELAM) improves mitochondrial function. We hypothesized that MetS blunts kidney autophagy, which ELAM would restore. Domestic pigs were fed a control or MetS-inducing diet for 16 weeks. During the 4 last weeks, MetS pigs received subcutaneous injections of ELAM (0.1 mg/kg/day, MetS + ELAM) or vehicle (MetS), and kidneys were then harvested to measure protein expression of autophagy mediators and apoptosis. Systemic and renal venous levels of inflammatory cytokines were measured to calculate renal release. The function of isolated mitochondria was assessed by oxidative stress, energy production, and pro-apoptotic activity. MetS slightly downregulated renal expression of autophagy mediators including p62, ATG5-12, mTOR, and AMPK vs. control. Increased mitochondrial H2O2 production accompanied decreased ATP production, elevated apoptosis, and renal fibrosis. In MetS + ELAM, mito-protection restored autophagic protein expression, improved mitochondrial energetics, and blunted renal cytokine release and fibrosis. In vitro, mitoprotection restored mitochondrial membrane potential and reduced oxidative stress in injured proximal tubular epithelial cells. Our study suggests that swine MetS mildly affects renal autophagy, possibly secondary to mitochondrial damage, and may contribute to kidney structural damage in MetS.
Collapse
Affiliation(s)
- Siting Hong
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Department of Cardiology, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Ramyar Ghandriz
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Sarosh Siddiqi
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiang-Yang Zhu
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Ishran M. Saadiq
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyra L. Jordan
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Hui Tang
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Khaled A. Ali
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Amir Lerman
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| | - Alfonso Eirin
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-507-293-0890
| |
Collapse
|
14
|
Tripathi R, Gupta R, Sahu M, Srivastava D, Das A, Ambasta RK, Kumar P. Free radical biology in neurological manifestations: mechanisms to therapeutics interventions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62160-62207. [PMID: 34617231 DOI: 10.1007/s11356-021-16693-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Recent advancements and growing attention about free radicals (ROS) and redox signaling enable the scientific fraternity to consider their involvement in the pathophysiology of inflammatory diseases, metabolic disorders, and neurological defects. Free radicals increase the concentration of reactive oxygen and nitrogen species in the biological system through different endogenous sources and thus increased the overall oxidative stress. An increase in oxidative stress causes cell death through different signaling mechanisms such as mitochondrial impairment, cell-cycle arrest, DNA damage response, inflammation, negative regulation of protein, and lipid peroxidation. Thus, an appropriate balance between free radicals and antioxidants becomes crucial to maintain physiological function. Since the 1brain requires high oxygen for its functioning, it is highly vulnerable to free radical generation and enhanced ROS in the brain adversely affects axonal regeneration and synaptic plasticity, which results in neuronal cell death. In addition, increased ROS in the brain alters various signaling pathways such as apoptosis, autophagy, inflammation and microglial activation, DNA damage response, and cell-cycle arrest, leading to memory and learning defects. Mounting evidence suggests the potential involvement of micro-RNAs, circular-RNAs, natural and dietary compounds, synthetic inhibitors, and heat-shock proteins as therapeutic agents to combat neurological diseases. Herein, we explain the mechanism of free radical generation and its role in mitochondrial, protein, and lipid peroxidation biology. Further, we discuss the negative role of free radicals in synaptic plasticity and axonal regeneration through the modulation of various signaling molecules and also in the involvement of free radicals in various neurological diseases and their potential therapeutic approaches. The primary cause of free radical generation is drug overdosing, industrial air pollution, toxic heavy metals, ionizing radiation, smoking, alcohol, pesticides, and ultraviolet radiation. Excessive generation of free radicals inside the cell R1Q1 increases reactive oxygen and nitrogen species, which causes oxidative damage. An increase in oxidative damage alters different cellular pathways and processes such as mitochondrial impairment, DNA damage response, cell cycle arrest, and inflammatory response, leading to pathogenesis and progression of neurodegenerative disease other neurological defects.
Collapse
Affiliation(s)
- Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Devesh Srivastava
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Ankita Das
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Delhi Technological University (Formerly Delhi College of Engineering), Delhi, India.
- , Delhi, India.
- Molecular Neuroscience and Functional Genomics Laboratory, Shahbad Daulatpur, Bawana Road, Delhi, 110042, India.
| |
Collapse
|
15
|
Koenig A, Buskiewicz-Koenig IA. Redox Activation of Mitochondrial DAMPs and the Metabolic Consequences for Development of Autoimmunity. Antioxid Redox Signal 2022; 36:441-461. [PMID: 35352943 PMCID: PMC8982130 DOI: 10.1089/ars.2021.0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Significance: Reactive oxygen species (ROS) are well known to promote innate immune responses during and in the absence of microbial infections. However, excessive or prolonged exposure to ROS provokes innate immune signaling dysfunction and contributes to the pathogenesis of many autoimmune diseases. The relatively high basal expression of pattern recognition receptors (PRRs) in innate immune cells renders them prone to activation in response to minor intrinsic or extrinsic ROS misbalances in the absence of pathogens. Critical Issues: A prominent source of ROS are mitochondria, which are also major inter-organelle hubs for innate immunity activation, since most PRRs and downstream receptor molecules are directly located either at mitochondria or at mitochondria-associated membranes. Due to their ancestral bacterial origin, mitochondria can also act as quasi-intrinsic self-microbes that mimic a pathogen invasion and become a source of danger-associated molecular patterns (DAMPs) that triggers innate immunity from within. Recent Advances: The release of mitochondrial DAMPs correlates with mitochondrial metabolism changes and increased generation of ROS, which can lead to the oxidative modification of DAMPs. Recent studies suggest that ROS-modified mitochondrial DAMPs possess increased, persistent immunogenicity. Future Directions: Herein, we discuss how mitochondrial DAMP release and oxidation activates PRRs, changes cellular metabolism, and causes innate immune response dysfunction by promoting systemic inflammation, thereby contributing to the onset or progression of autoimmune diseases. The future goal is to understand what the tipping point for DAMPs is to become oxidized, and whether this is a road without return. Antioxid. Redox Signal. 36, 441-461.
Collapse
Affiliation(s)
- Andreas Koenig
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | |
Collapse
|
16
|
Wang C, Yuan J, Du J. Resveratrol alleviates acute lung injury through regulating PLSCR-3-mediated mitochondrial dysfunction and mitophagy in a cecal ligation and puncture model. Eur J Pharmacol 2021; 913:174643. [PMID: 34808102 DOI: 10.1016/j.ejphar.2021.174643] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 01/11/2023]
Abstract
Sepsis is considered as a life-threatening organ dysfunction caused by a dysregulated response of the host to an infection. Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a life-threatening condition, and is the type of organ injury that is most commonly induced by sepsis. Resveratrol (RSV) has been shown to exert a wide range of therapeutic effects due to its anti-inflammatory and anti-oxidant properties. The present study aimed to investigate whether RSV could mitigate sepsis-induced ALI/ARDS, and also to unravel the underlying mechanism. The model of sepsis was established by applying the cecal ligation and puncture (CLP) method, and mitochondria from the lung tissue were isolated to assess mitochondrial function, as determined from measuring mitochondrial superoxide production using MitoSOX red mitochondrial superoxide indicator and the membrane potential. It was found that RSV could exert a protective role in CLP-induced ALI/ARDS, as evidenced by moderate levels of inflammatory cell infiltration and interstitial edema, as well as decreased levels of C-reactive protein (P<0.01), interleukin (IL)-6 (P<0.01), IL-1β (P<0.01) and tumor necrosis factor-α (P<0.01). Moreover, phospholipid scramblase 3 (PLSCR-3)-mediated mitochondrial dysfunction and mitophagy were shown to contribute towards the CLP-caused lung damage, which was reversed upon RSV administration, as demonstrated by improved mitochondrial function and markedly reduced increases in the protein levels of autophagy related (ATG)5 (P<0.01), ATG7 (P<0.05) and microtubule-associated protein 1A/1B-light chain 3 (LC3-Ⅰ/Ⅱ) (P<0.01), and a significantly increased expression of P62 (P<0.05). In addition, with regard to the CLP-induced lung injury in the mouse model, overexpression of PLSCR-3 was found to remove the beneficial effects observed upon RSV treatment. Taken together, the results of the present study have uncovered a novel molecular mechanism through which RSV may alleviate ALI/ARDS via regulating PLSCR-3-mediated mitochondrial dysfunction and mitophagy in CLP-induced mouse model.
Collapse
Affiliation(s)
- Changnan Wang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Jihong Yuan
- Department of Nephropathy, Shanghai Seventh People's Hospital, Shanghai, China
| | - Jiankui Du
- National Clinical Research Center for Geriatric Disorders and National International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
17
|
Laksmita YA, Sidik M, Siregar NC, Nusanti S. Neuroprotective Effects of Citicoline on Methanol-Intoxicated Retina Model in Rats. J Ocul Pharmacol Ther 2021; 37:534-541. [PMID: 34495749 DOI: 10.1089/jop.2021.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study aims to evaluate the effect of citicoline administration in suppressing retinal damage due to methanol intoxication. This study hypothesizes that citicoline will minimize the loss of retinal ganglion cells (RGCs), minimize disruption of photoreceptors, suppress ganglion layer edema, increase expression of bcl-2 as the antiapoptotic protein, and decrease expression of caspase-3 as the proapoptotic protein. Methods: Fifteen Sprague-Dawley rats were divided into 5 groups, including the control group (A); methanol groups, observed on day 3 (B1) and day 7 (B2); and methanol+citicoline groups, observed on day 3 (C1) and day 7 (C2). Rats in groups B and C were placed in an inhalation chamber filled with N2O:O2 during the experiment, then methanol was administered orally. Citicoline, 1 g/kg every 24 h, was orally administered for group C. Enucleation was performed and retinas of rats were prepared for histology and immunohistochemistry examination to evaluate photoreceptor morphology and RGC density, as well as bcl-2 and caspase-3 expression. Results: RGC density of citicoline-treated intoxicated rats was higher than no-citicoline methanol-intoxicated rats on both day 3 (P < 0.001) and day 7 (P < 0.001). The ganglion layer thickness of citicoline-treated intoxicated rats was thinner than no-citicoline intoxicated rats, which means citicoline-treated rats had milder ganglion layer edema. Citicoline-treated rats showed higher bcl-2 and lower caspase-3 expression than no-citicoline rats. No differences were found in photoreceptor findings among groups. Conclusions: This study demonstrated citicoline's potential benefits for management of ocular methanol intoxication. However, more preclinical and clinical trials are needed to obtain a preferred dosage and timing of citicoline administration.
Collapse
Affiliation(s)
- Yulinda Arty Laksmita
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Mohamad Sidik
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Nurjati Chairani Siregar
- Department of Pathological Anatomy, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Syntia Nusanti
- Department of Ophthalmology, Faculty of Medicine, Universitas Indonesia-Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| |
Collapse
|
18
|
Šonský I, Vodička P, Vodičková Kepková K, Hansíková H. Mitophagy in Huntington's disease. Neurochem Int 2021; 149:105147. [PMID: 34329735 DOI: 10.1016/j.neuint.2021.105147] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD), as well as Parkinson's disease and Alzheimer's disease, belong to a group of neurodegenerative diseases characterized by common features, such as the progressive loss of neurons and the presence of pathogenic forms of misfolded protein aggregates. A quality control system such as autophagy is crucial for the clearance of protein aggregates and dysfunctional organelles and thus essential for the maintenance of neuronal homeostasis. The constant high energy demand of neuronal tissue links neurodegeneration to mitochondria. Inefficient removal of damaged mitochondria is thought to contribute to the pathogenesis of neurodegenerative diseases such as HD. In addition, direct involvement of the huntingtin protein in the autophagic machinery has been described. In this review, we focus on mitophagy, a selective form of autophagy responsible for mitochondrial turnover. We also discuss the relevance of pharmacological regulation of mitophagy in the future therapeutic approach to neurodegenerations, including HD.
Collapse
Affiliation(s)
- I Šonský
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic
| | - P Vodička
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - K Vodičková Kepková
- Laboratory of Applied Proteome Analyses, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Libechov, Czech Republic
| | - H Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
| |
Collapse
|
19
|
Therapeutic potential of mangiferin in the treatment of various neuropsychiatric and neurodegenerative disorders. Neurochem Int 2020; 143:104939. [PMID: 33346032 DOI: 10.1016/j.neuint.2020.104939] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 11/02/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022]
Abstract
Xanthones are important chemical class of bioactive products that confers therapeutic benefits. Of several xanthones, mangiferin is known to be distributed widely across several fruits, vegetables and medicinal plants. Mangiferin has been shown to exert neuroprotective effects in both in-vitro and in-vivo models. Mangiferin attenuates cerebral infarction, cerebral edema, lipid peroxidation (MDA), neuronal damage, etc. Mangiferin further potentiate levels of endogenous antioxidants to confer protection against the oxidative stress inside the neurons. Mangiferin is involved in the regulation of various signaling pathways that influences the production and levels of proinflammatory cytokines in brain. Mangiferin cosunteracted the neurotoxic effect of amyloid-beta, MPTP, rotenone, 6-OHDA etc and confer protection to neurons. These evidence suggested that the mangiferin may be a potential therapeutic strategy for the treatment of various neurological disorders. The present review demonstrated the pharmacodynamics-pharmacokinetics of mangiferin and neurotherapeutic potential in several neurological disorders with underlying mechanisms.
Collapse
|
20
|
Cytochrome c modification and oligomerization induced by cardiolipin hydroperoxides in a membrane mimetic model. Arch Biochem Biophys 2020; 693:108568. [DOI: 10.1016/j.abb.2020.108568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/10/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
|
21
|
Zheng Z, Liu L, Zhou K, Ding L, Zeng J, Zhang W. Anti-Oxidant and Anti-Endothelial Dysfunctional Properties of Nano-Selenium in vitro and in vivo of Hyperhomocysteinemic Rats. Int J Nanomedicine 2020; 15:4501-4521. [PMID: 32606691 PMCID: PMC7320884 DOI: 10.2147/ijn.s255392] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 02/01/2023] Open
Abstract
Purpose Elevation of blood homocysteine (Hcy) level (hyperhomocysteinemia) is a risk factor for cardiovascular disorders and is closely associated with endothelial dysfunction. The present study aims to investigate the protective effect and underlying mechanism of nanoscale selenium (Nano-Se) in Hcy-mediated vascular endothelial cell dysfunction in vitro and in vivo. Materials and Methods By incubating vascular endothelial cells with exogenous Hcy and generating hyperhomocysteinemic rat model, the effects of Nano-Se on hyperhomocysteinemia-mediated endothelial dysfunction and its essential mechanisms were investigated. Results Nano-Se inhibited Hcy-induced mitochondrial oxidative damage and apoptosis by preventing the downregulation of glutathione peroxidase enzyme 1 and 4 (GPX1, GPX4) in the vascular endothelial cells, thus effectively prevented the vascular damage in vitro and in vivo in the hyperhomocysteinemic rats. Nano-Se possessed similar protective effects but lower toxicity against Hcy in vascular endothelial cells when compared with other forms of Se. Conclusion The application of Nano-Se could serve as a novel promising strategy against Hcy-mediated vascular dysfunction with reduced risk of Se toxicity.
Collapse
Affiliation(s)
- Zeqi Zheng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Lijuan Liu
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Kaiwen Zhou
- The First Clinical Medical College, School of Medicine, Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China
| | - Lu Ding
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.,Jiangxi Hypertension Research Institute, Nanchang, Jiangxi 330006, People's Republic of China
| | - Junyi Zeng
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.,Jiangxi Hypertension Research Institute, Nanchang, Jiangxi 330006, People's Republic of China
| | - Wan Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, People's Republic of China.,Jiangxi Hypertension Research Institute, Nanchang, Jiangxi 330006, People's Republic of China
| |
Collapse
|
22
|
Ghnaimawi S, Baum J, Liyanage R, Huang Y. Concurrent EPA and DHA Supplementation Impairs Brown Adipogenesis of C2C12 Cells. Front Genet 2020; 11:531. [PMID: 32595696 PMCID: PMC7303889 DOI: 10.3389/fgene.2020.00531] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/01/2020] [Indexed: 12/27/2022] Open
Abstract
Maternal dietary supplementation of n−3 polyunsaturated fatty acids (n−3 PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is considered to play positive roles in fetal neuro system development. However, maternal n−3 PUFAs may induce molecular reprogramming of uncommitted fetal myoblasts into adipocyte phenotype, in turn affecting lipid metabolism and energy expenditure of the offspring. The objective of this in vitro study was to investigate the combined effects of EPA and DHA on C2C12 cells undergoing brown adipogenic differentiation. C2C12 myoblasts were cultured to confluency and then treated with brown adipogenic differentiation medium with and without 50 μM EPA and 50 μM DHA. After differentiation, mRNA and protein samples were collected. Gene expression and protein levels were analyzed by real-time PCR and western blot. General Proteomics analysis was conducted using mass spectrometric evaluation. The effect of EPA and DHA on cellular oxygen consumption was measured using a Seahorse XFP Analyzer. Cells treated with n−3 PUFAs had significantly less (P < 0.05) expression of the brown adipocyte marker genes PGC1α, DIO2, and UCP3. Expression of mitochondrial biogenesis-related genes TFAM, PGC1α, and PGC1β were significantly downregulated (P < 0.05) by n−3 PUFAs treatment. Expression of mitochondrial electron transportation chain (ETC)-regulated genes were significantly inhibited (P < 0.05) by n−3 PUFAs, including ATP5J2, COX7a1, and COX8b. Mass spectrometric and western blot evaluation showed protein levels of enzymes which regulate the ETC and Krebs cycle, including ATP synthase α and β (F1F0 complex), citrate synthase, succinate CO-A ligase, succinate dehydrogenase (complex II), ubiquinol-cytochrome c reductase complex subunits (complex III), aconitate hydratase, cytochrome c, and pyruvate carboxylase were all decreased in the n−3 PUFAs group (P < 0.05). Genomic and proteomic changes were accompanied by mitochondrial dysfunction, represented by significantly reduced oxygen consumption rate, ATP production, and proton leak (P < 0.05). This study suggested that EPA and DHA may alter the BAT fate of myoblasts by inhibiting mitochondrial biogenesis and activity and induce white-like adipogenesis, shifting the metabolism from lipid oxidation to synthesis.
Collapse
Affiliation(s)
- Saeed Ghnaimawi
- Department of Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Jamie Baum
- Department of Food Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Rohana Liyanage
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
23
|
Cell organelles as targets of mammalian cadmium toxicity. Arch Toxicol 2020; 94:1017-1049. [PMID: 32206829 DOI: 10.1007/s00204-020-02692-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Ever increasing environmental presence of cadmium as a consequence of industrial activities is considered a health hazard and is closely linked to deteriorating global health status. General animal and human cadmium exposure ranges from ingestion of foodstuffs sourced from heavily polluted hotspots and cigarette smoke to widespread contamination of air and water, including cadmium-containing microplastics found in household water. Cadmium is promiscuous in its effects and exerts numerous cellular perturbations based on direct interactions with macromolecules and its capacity to mimic or displace essential physiological ions, such as iron and zinc. Cell organelles use lipid membranes to form complex tightly-regulated, compartmentalized networks with specialized functions, which are fundamental to life. Interorganellar communication is crucial for orchestrating correct cell behavior, such as adaptive stress responses, and can be mediated by the release of signaling molecules, exchange of organelle contents, mechanical force generated through organelle shape changes or direct membrane contact sites. In this review, cadmium effects on organellar structure and function will be critically discussed with particular consideration to disruption of organelle physiology in vertebrates.
Collapse
|
24
|
Carrera-Juliá S, Moreno ML, Barrios C, de la Rubia Ortí JE, Drehmer E. Antioxidant Alternatives in the Treatment of Amyotrophic Lateral Sclerosis: A Comprehensive Review. Front Physiol 2020; 11:63. [PMID: 32116773 PMCID: PMC7016185 DOI: 10.3389/fphys.2020.00063] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that produces a selective loss of the motor neurons of the spinal cord, brain stem and motor cortex. Oxidative stress (OS) associated with mitochondrial dysfunction and the deterioration of the electron transport chain has been shown to be a factor that contributes to neurodegeneration and plays a potential role in the pathogenesis of ALS. The regions of the central nervous system affected have high levels of reactive oxygen species (ROS) and reduced antioxidant defenses. Scientific studies propose treatment with antioxidants to combat the characteristic OS and the regeneration of nicotinamide adenine dinucleotide (NAD+) levels by the use of precursors. This review examines the possible roles of nicotinamide riboside and pterostilbene as therapeutic strategies in ALS.
Collapse
Affiliation(s)
- Sandra Carrera-Juliá
- Doctoral Degree’s School, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
- Department of Nutrition and Dietetics, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Mari Luz Moreno
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | - Carlos Barrios
- Institute for Research on Musculoskeletal Disorders, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| | | | - Eraci Drehmer
- Department of Basic Sciences, Catholic University of Valencia “San Vicente Mártir”, Valencia, Spain
| |
Collapse
|
25
|
Montero-Bullon JF, Melo T, Rosário M Domingues M, Domingues P. Liquid chromatography/tandem mass spectrometry characterization of nitroso, nitrated and nitroxidized cardiolipin products. Free Radic Biol Med 2019; 144:183-191. [PMID: 31095999 DOI: 10.1016/j.freeradbiomed.2019.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
Abstract
Cardiolipins (CL) are anionic dimeric phospholipids bearing four fatty acids, found in inner mitochondrial membrane as structural components and are involved in several processes as oxidative phosphorylation or apoptotic signalling. As other phospholipids, CL can be modified by reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can modulate various cellular functions. Modifications of CL by RNS remain largely unstudied although other nitrated lipids are emerging as bioactive molecules. In this work, we developed a C30-LC-HRMS/MS methodology to identify the nitrated and nitroxidized tetralinoleoyl-cardiolipin (TLCL), using a biomimetic model of nitration, and to disclose specific fragmentation pathways under HCD MS/MS. Using this lipidomics approach, we were able to separate and identify nitro, nitroso, nitronitroso, and nitroxidized TLCL derivatives, comprising 11 different nitrated compounds. These products were identified using accurate mass measurements and the fragmentation pattern acquired in higher-energy collision dissociation (HCD)-tandem MS/MS experiments. These spectra showed classifying fragmentation pathways, yielding phosphatidic acid (PA-), lysophosphatidic acid (LPA-), and carboxylate fragment ions with the modifying moiety. Remarkably, the typical neutral losses associated with the added moieties were not observed. In conclusion, this work has developed a new method for the identification of nitroso, nitrated and nitroxidized cardiolipin products by using a C30LC-MS platform method, potentially allowing their detection in biological samples.
Collapse
Affiliation(s)
- Javier-Fernando Montero-Bullon
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Tânia Melo
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Química & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - M Rosário M Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Departamento de Química & CESAM, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Centro de Espectrometria de Massa, Departamento de Química & QOPNA, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
26
|
González‐Arzola K, Velázquez‐Cruz A, Guerra‐Castellano A, Casado‐Combreras MÁ, Pérez‐Mejías G, Díaz‐Quintana A, Díaz‐Moreno I, De la Rosa MÁ. New moonlighting functions of mitochondrial cytochromecin the cytoplasm and nucleus. FEBS Lett 2019; 593:3101-3119. [DOI: 10.1002/1873-3468.13655] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Katiuska González‐Arzola
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandro Velázquez‐Cruz
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Alejandra Guerra‐Castellano
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. Casado‐Combreras
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Gonzalo Pérez‐Mejías
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Antonio Díaz‐Quintana
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Irene Díaz‐Moreno
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| | - Miguel Á. De la Rosa
- Institute for Chemical Research (IIQ) Scientific Research Centre Isla de la Cartuja (cicCartuja) University of Seville‐CSIC Spain
| |
Collapse
|
27
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
28
|
Szymkowicz L, Lento C, Wilson DJ. Impact of Cardiolipin and Phosphatidylcholine Interactions on the Conformational Ensemble of Cytochrome c. Biochemistry 2019; 58:3617-3626. [DOI: 10.1021/acs.biochem.9b00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Lisa Szymkowicz
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Cristina Lento
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Derek J. Wilson
- Department of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
29
|
Oxidative stress is tightly regulated by cytochrome c phosphorylation and respirasome factors in mitochondria. Proc Natl Acad Sci U S A 2018; 115:7955-7960. [PMID: 30018060 PMCID: PMC6077723 DOI: 10.1073/pnas.1806833115] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dysfunction of mitochondria, the powerhouses of living cells, favors the onset of human diseases, namely neurodegenerative diseases, cardiovascular pathologies, and cancer. Actually, respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 during the insulin-induced neuroprotection response following a brain ischemic injury. Here, we report that the decrease in neuronal death could be directly ascribed to changes in mitochondrial metabolism—including lower production of reactive oxygen species—and cell homeostasis induced by cytochrome c phosphorylation. Our findings thus provide the basis for understanding the molecular mechanism and potential use of phosphomimetic species of cytochrome c, thereby yielding new opportunities to develop more efficient therapies against acute pathologies. Respiratory cytochrome c has been found to be phosphorylated at tyrosine 97 in the postischemic brain upon neuroprotective insulin treatment, but how such posttranslational modification affects mitochondrial metabolism is unclear. Here, we report the structural features and functional behavior of a phosphomimetic cytochrome c mutant, which was generated by site-specific incorporation at position 97 of p-carboxymethyl-l-phenylalanine using the evolved tRNA synthetase method. We found that the point mutation does not alter the overall folding and heme environment of cytochrome c, but significantly affects the entire oxidative phosphorylation process. In fact, the electron donation rate of the mutant heme protein to cytochrome c oxidase, or complex IV, within respiratory supercomplexes was higher than that of the wild-type species, in agreement with the observed decrease in reactive oxygen species production. Direct contact of cytochrome c with the respiratory supercomplex factor HIGD1A (hypoxia-inducible domain family member 1A) is reported here, with the mutant heme protein exhibiting a lower affinity than the wild-type species. Interestingly, phosphomimetic cytochrome c also exhibited a lower caspase-3 activation activity. Altogether, these findings yield a better understanding of the molecular basis for mitochondrial metabolism in acute diseases, such as brain ischemia, and thus could allow the use of phosphomimetic cytochrome c as a neuroprotector with therapeutic applications.
Collapse
|
30
|
Oxidative modification of methionine80 in cytochrome c by reaction with peroxides. J Inorg Biochem 2018; 182:200-207. [DOI: 10.1016/j.jinorgbio.2018.02.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
31
|
Sullivan EM, Pennington ER, Green WD, Beck MA, Brown DA, Shaikh SR. Mechanisms by Which Dietary Fatty Acids Regulate Mitochondrial Structure-Function in Health and Disease. Adv Nutr 2018; 9:247-262. [PMID: 29767698 PMCID: PMC5952932 DOI: 10.1093/advances/nmy007] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are the energy-producing organelles within a cell. Furthermore, mitochondria have a role in maintaining cellular homeostasis and proper calcium concentrations, building critical components of hormones and other signaling molecules, and controlling apoptosis. Structurally, mitochondria are unique because they have 2 membranes that allow for compartmentalization. The composition and molecular organization of these membranes are crucial to the maintenance and function of mitochondria. In this review, we first present a general overview of mitochondrial membrane biochemistry and biophysics followed by the role of different dietary saturated and unsaturated fatty acids in modulating mitochondrial membrane structure-function. We focus extensively on long-chain n-3 (ω-3) polyunsaturated fatty acids and their underlying mechanisms of action. Finally, we discuss implications of understanding molecular mechanisms by which dietary n-3 fatty acids target mitochondrial structure-function in metabolic diseases such as obesity, cardiac-ischemia reperfusion injury, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and select cancers.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
| | - Edward Ross Pennington
- Department of Biochemistry and Molecular Biology and
- East Carolina Diabetes and Obesity Institute, Brody School of Medicine, East Carolina University, Greenville, NC
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - William D Green
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - Melinda A Beck
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, VA
| | - Saame Raza Shaikh
- Department of Nutrition, The University of North Carolina at Chapel Hill, Gillings School of Global Public Health and School of Medicine, Chapel Hill, NC
| |
Collapse
|
32
|
Sullivan EM, Pennington ER, Sparagna GC, Torres MJ, Neufer PD, Harris M, Washington J, Anderson EJ, Zeczycki TN, Brown DA, Shaikh SR. Docosahexaenoic acid lowers cardiac mitochondrial enzyme activity by replacing linoleic acid in the phospholipidome. J Biol Chem 2017; 293:466-483. [PMID: 29162722 DOI: 10.1074/jbc.m117.812834] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/19/2017] [Indexed: 12/21/2022] Open
Abstract
Cardiac mitochondrial phospholipid acyl chains regulate respiratory enzymatic activity. In several diseases, the rodent cardiac phospholipidome is extensively rearranged; however, whether specific acyl chains impair respiratory enzyme function is unknown. One unique remodeling event in the myocardium of obese and diabetic rodents is an increase in docosahexaenoic acid (DHA) levels. Here, we first confirmed that cardiac DHA levels are elevated in diabetic humans relative to controls. We then used dietary supplementation of a Western diet with DHA as a tool to promote cardiac acyl chain remodeling and to study its influence on respiratory enzyme function. DHA extensively remodeled the acyl chains of cardiolipin (CL), mono-lyso CL, phosphatidylcholine, and phosphatidylethanolamine. Moreover, DHA lowered enzyme activities of respiratory complexes I, IV, V, and I+III. Mechanistically, the reduction in enzymatic activities were not driven by a dramatic reduction in the abundance of supercomplexes. Instead, replacement of tetralinoleoyl-CL with tetradocosahexaenoyl-CL in biomimetic membranes prevented formation of phospholipid domains that regulate enzyme activity. Tetradocosahexaenoyl-CL inhibited domain organization due to favorable Gibbs free energy of phospholipid mixing. Furthermore, in vitro substitution of tetralinoleoyl-CL with tetradocosahexaenoyl-CL blocked complex-IV binding. Finally, reintroduction of linoleic acid, via fusion of phospholipid vesicles to mitochondria isolated from DHA-fed mice, rescued the major losses in the mitochondrial phospholipidome and complexes I, IV, and V activities. Altogether, our results show that replacing linoleic acid with DHA lowers select cardiac enzyme activities by potentially targeting domain organization and phospholipid-protein binding, which has implications for the ongoing debate about polyunsaturated fatty acids and cardiac health.
Collapse
Affiliation(s)
- E Madison Sullivan
- From the Department of Biochemistry and Molecular Biology.,East Carolina Diabetes and Obesity Institute, and
| | - Edward Ross Pennington
- From the Department of Biochemistry and Molecular Biology.,East Carolina Diabetes and Obesity Institute, and.,the Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Genevieve C Sparagna
- the Department of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado 80045
| | | | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute, and.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834
| | - Mitchel Harris
- From the Department of Biochemistry and Molecular Biology
| | - James Washington
- From the Department of Biochemistry and Molecular Biology.,East Carolina Diabetes and Obesity Institute, and
| | - Ethan J Anderson
- the Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, and
| | - Tonya N Zeczycki
- From the Department of Biochemistry and Molecular Biology.,East Carolina Diabetes and Obesity Institute, and
| | - David A Brown
- the Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, Blacksburg, Virginia 24060
| | - Saame Raza Shaikh
- From the Department of Biochemistry and Molecular Biology, .,East Carolina Diabetes and Obesity Institute, and.,the Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| |
Collapse
|
33
|
Kim SE, Shin SH, Lee JY, Kim CH, Chung IK, Kang HM, Park HR, Park BS, Kim IR. Resveratrol Induces Mitochondrial Apoptosis and Inhibits Epithelial-Mesenchymal Transition in Oral Squamous Cell Carcinoma Cells. Nutr Cancer 2017; 70:125-135. [DOI: 10.1080/01635581.2018.1397708] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Seong-Eon Kim
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Sang-Hun Shin
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Jae-Yeol Lee
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Chul-Hoon Kim
- Department of Oral and Maxillofacial Surgery, Medical Center, Dong-A University, Busan, South Korea
| | - In-Kyo Chung
- Department of Oral and Maxillofacial Surgery, Pusan National University Dental Hospital, Mulgeum-eup, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Hae-Mi Kang
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Hae-Ryoun Park
- Department of Oral Pathology, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - Bong-Soo Park
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
- BK21 PLUS Project, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| | - In-Ryoung Kim
- Department of Oral Anatomy, School of Dentistry, Pusan National University, Busandaehak-ro, Yangsan-si, Gyeongsangnam-do, South Korea
| |
Collapse
|
34
|
Geetha R, Sathiya Priya C, Anuradha CV. Troxerutin abrogates mitochondrial oxidative stress and myocardial apoptosis in mice fed calorie-rich diet. Chem Biol Interact 2017; 278:74-83. [PMID: 28916335 DOI: 10.1016/j.cbi.2017.09.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/24/2017] [Accepted: 09/11/2017] [Indexed: 02/07/2023]
Abstract
Mitochondrial oxidative stress plays a major role in the pathogenesis of myocardial apoptosis in metabolic syndrome (MS) patients. In this study, we investigated the effect of troxerutin (TX), an antioxidant on mitochondrial oxidative stress and apoptotic markers in heart of mice fed fat and fructose-rich diet. Adult male Mus musculus mice were fed either control diet or high fat, high fructose diet (HFFD) for 60 days to induce MS. Mice from each dietary group were divided into two on the 16th day and were either treated or untreated with TX (150 mg/kg bw, p.o) for the next 45 days. At the end of the study, mitochondrial reactive oxygen species (ROS) generation, oxidative stress markers, levels of intracellular calcium, cardiolipin content, cytochrome c release and apoptotic markers were examined in the myocardium. HFFD-feeding resulted in diminution of antioxidants and increased ROS production, lipid peroxidation and oxidatively modified adducts of 8-OHG, 4-HNE and 3-NT. Further increase in Ca2+ levels, low levels of calcium transporters and decrease in cardiolipin content were noted. Changes in the mitochondrial structure were observed by electron microscopy. Furthermore, cytochrome c release, increase in proapoptotic proteins (APAF-1, BAX, caspases-9 and-3) and decrease in antiapoptotic protein (BCL-2) in HFFD-fed mice suggest myocardial apoptosis. These changes were significantly restored by TX supplementation. TX administration effectively attenuated cardiac apoptosis and exerted a protective role by increasing antioxidant potential and by improving mitochondrial function. Thus, TX could be a promising therapeutic candidate for treating cardiac disease in MS patients.
Collapse
Affiliation(s)
- Rajagopalan Geetha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | | | - Carani Venkatraman Anuradha
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
35
|
Sullivan EM, Fix A, Crouch MJ, Sparagna GC, Zeczycki TN, Brown DA, Shaikh SR. Murine diet-induced obesity remodels cardiac and liver mitochondrial phospholipid acyl chains with differential effects on respiratory enzyme activity. J Nutr Biochem 2017; 45:94-103. [PMID: 28437736 PMCID: PMC5502532 DOI: 10.1016/j.jnutbio.2017.04.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/31/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022]
Abstract
Cardiac phospholipids, notably cardiolipin, undergo acyl chain remodeling and/or loss of content in aging and cardiovascular diseases, which is postulated to mechanistically impair mitochondrial function. Less is known about how diet-induced obesity influences cardiac phospholipid acyl chain composition and thus mitochondrial responses. Here we first tested if a high fat diet remodeled murine cardiac mitochondrial phospholipid acyl chain composition and consequently disrupted membrane packing, supercomplex formation and respiratory enzyme activity. Mass spectrometry analyses revealed that mice consuming a high fat diet displayed 0.8-3.3 fold changes in cardiac acyl chain remodeling of cardiolipin, phosphatidylcholine, and phosphatidylethanolamine. Biophysical analysis of monolayers constructed from mitochondrial phospholipids of obese mice showed impairment in the packing properties of the membrane compared to lean mice. However, the high fat diet, relative to the lean controls, had no influence on cardiac mitochondrial supercomplex formation, respiratory enzyme activity, and even respiration. To determine if the effects were tissue specific, we subsequently conducted select studies with liver tissue. Compared to the control diet, the high fat diet remodeled liver mitochondrial phospholipid acyl chain composition by 0.6-5.3-fold with notable increases in n-6 and n-3 polyunsaturation. The remodeling in the liver was accompanied by diminished complex I to III respiratory enzyme activity by 3.5-fold. Finally, qRT-PCR analyses demonstrated an upregulation of liver mRNA levels of tafazzin, which contributes to cardiolipin remodeling. Altogether, these results demonstrate that diet-induced obesity remodels acyl chains in the mitochondrial phospholipidome and exerts tissue specific impairments of respiratory enzyme activity.
Collapse
Affiliation(s)
- E Madison Sullivan
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA
| | - Amy Fix
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA
| | - Miranda J Crouch
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA
| | - Genevieve C Sparagna
- Department of Medicine, Division of Cardiology, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tonya N Zeczycki
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA
| | - David A Brown
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech Corporate Research Center, 1981 Kraft Drive, Blacksburg, VA 24060, USA
| | - Saame Raza Shaikh
- Department of Biochemistry & Molecular Biology, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA; East Carolina Diabetes & Obesity Institute, Brody School of Medicine, East Carolina University, 115 Heart Drive, Greenville, NC 27834, USA.
| |
Collapse
|
36
|
Choi EM, Suh KS, Rhee SY, Oh S, Kim SW, Pak YK, Choe W, Ha J, Chon S. Exposure to tetrabromobisphenol A induces cellular dysfunction in osteoblastic MC3T3-E1 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:561-570. [PMID: 28276884 DOI: 10.1080/10934529.2017.1284435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study was undertaken to investigate the possible involvement of oxidative stress in tetrabromobisphenol A (TBBPA)-induced toxicity in osteoblastic MC3T3-E1 cells. To examine the potential effect of TBBPA on cultured osteoblastic cells, we measured cell viability, apoptosis, reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial parameters including adenosine triphosphate (ATP) level, cardiolipin content, cytochrome c release, cyclophilin levels, and differentiation markers in osteoblastic MC3T3-E1 cells. TBBPA exposure for 48 h caused the apoptosis and cytotoxicity of MC3T3-E1 cells. TBBPA also induced ROS and mitochondrial superoxide production in a concentration-dependent manner. These results suggest that TBBPA induces osteoblast apoptosis and ROS production, resulting in bone diseases. Moreover, TBBPA induced cardiolipin peroxidation, cytochrome c release, and decreased ATP levels which induced apoptosis or necrosis. TBBPA decreased the differentiation markers, collagen synthesis, alkaline phosphatase activity, and calcium deposition in cells. Additionally, TBBPA decreased cyclophilin A and B releases. Taken together, these data support the notion that TBBPA inhibits osteoblast function and has detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Eun Mi Choi
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Sik Suh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Seungjoon Oh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sung Woon Kim
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Youngmi Kim Pak
- b Department of Physiology , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Wonchae Choe
- c Department of Biochemistry and Molecular Biology (BK21 project) , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Joohun Ha
- c Department of Biochemistry and Molecular Biology (BK21 project) , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
37
|
Kitt JP, Bryce DA, Minteer SD, Harris JM. Raman Spectroscopy Reveals Selective Interactions of Cytochrome c with Cardiolipin That Correlate with Membrane Permeability. J Am Chem Soc 2017; 139:3851-3860. [PMID: 28221789 DOI: 10.1021/jacs.7b00238] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Permeabilization of the outer mitochondrial membrane is an integral step in apoptosis. The resulting release of pro-apoptotic signaling proteins leads to cell destruction through activation of the cysteine-aspartic protease (caspase) cascade. However, the mechanism of outer mitochondrial membrane (OMM) permeabilization remains unclear. It was recently shown that cytochrome c can induce pore formation in cardiolipin-containing phospholipid membranes, leading to large dextran and protein permeability. In this work, the interaction of cytochrome c with cardiolipin-containing phospholipid vesicles, serving as models of the OMM, is investigated to probe cytochrome c-induced permeability. Lipid vesicles having either a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or mixed-DPPC/cardiolipin membrane and containing a membrane-impermeable Raman tracer 3-nitrobenzenesulfonate (3-NBS) were optically trapped, translated into a solution containing cytochrome c, and monitored for 3-NBS leakage. Cytochrome-correlated leakage was observed only in cardiolipin-containing vesicles. Structural changes observed in the Raman spectra during permeabilization indicated acyl chain disordering along with decreased intensity of the cardiolipin cis-double-bond stretching modes. When the vesicle-associated cytochrome c Raman spectrum is compared with a spectrum in buffer, heme-resonance bands are absent, indicating loss of Met-80 coordination. To verify selective interactions of cytochrome c with cardiolipin, these experiments were repeated where the DPPC acyl chains were deuterated (D62-DPPC), allowing spectral resolution of the DPPC acyl chain response from that of cardiolipin. Interestingly, D62-DPPC acyl chains were unaffected by cytochrome c accumulation, while cardiolipin showed major changes in acyl chain structure. These results suggest that cytochrome-induced permeabilization proceeds through selective interaction of cytochrome c with cardiolipin, resulting in protein unfolding, where the unfolded form interacts with cardiolipin acyl chains within the bilayer to induce permeability.
Collapse
Affiliation(s)
- Jay P Kitt
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - David A Bryce
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Shelley D Minteer
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Joel M Harris
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
38
|
Choi EM, Suh KS, Rhee SY, Oh S, Woo JT, Kim SW, Kim YS, Pak YK, Chon S. Perfluorooctanoic acid induces mitochondrial dysfunction in MC3T3-E1 osteoblast cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:281-289. [PMID: 27901621 DOI: 10.1080/10934529.2016.1253402] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Perfluorooctanoic acid (PFOA), a stable organic perfluorinated compound, is an emerging persistent organic pollutant, found widely in human and wildlife populations. Recent evidence suggests that exposure to environmental toxicants can be associated with higher risks of osteoporosis and fractures. We studied the cellular toxicology of PFOA in MC3T3-E1osteoblast cells. To examine the effect of PFOA, we measured cell viability, reactive oxygen species (ROS), mitochondrial superoxide, and mitochondrial parameters including adenosine triphosphate (ATP) level, mitochondrial membrane potential (MMP), cardiolipin content, and cytochrome c release in MC3T3-E1 cells. Incubating MC3T3-E1 cells in different concentrations of PFOA for 48 h resulted in a concentration-dependent decrease in cell viability and significant inductions of ROS and mitochondrial superoxide. Moreover, PFOA induced MMP collapse, cardiolipin peroxidation, cytochrome c release, and decreased ATP levels, which in turn induced apoptosis or necrosis. When osteoblast differentiation markers were assessed, PFOA treatment caused a significant reduction in alkaline phosphatase activity, collagen synthesis, and mineralization in the cells. In summary, we found an ROS- and mitochondria-mediated pathway for the induction of cell damage by PFOA in MC3T3-E1 cells. Together, our results indicate that mitochondrial toxicity could be a plausible mechanism for the toxic effects of PFOA on osteoblast function.
Collapse
Affiliation(s)
- Eun Mi Choi
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Kwang Sik Suh
- b Research Institute of Endocrinology, Kyung Hee University Hospital , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Seungjoon Oh
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Jeong-Taek Woo
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sung Woon Kim
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Young Seol Kim
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
- c Department of Internal Medicine , Chung Hospital , Seongnam-si , Gyeonggi-do , Republic of Korea
| | - Youngmi Kim Pak
- d Department of Physiology , Kyung Hee University, College of Medicine , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
39
|
Sharif R, Aghsami M, Gharghabi M, Sanati M, Khorshidahmad T, Vakilzadeh G, Mehdizadeh H, Gholizadeh S, Taghizadeh G, Sharifzadeh M. Melatonin reverses H-89 induced spatial memory deficit: Involvement of oxidative stress and mitochondrial function. Behav Brain Res 2017; 316:115-124. [PMID: 27555536 DOI: 10.1016/j.bbr.2016.08.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/11/2016] [Accepted: 08/20/2016] [Indexed: 01/08/2023]
|
40
|
Khatami M. Is cancer a severe delayed hypersensitivity reaction and histamine a blueprint? Clin Transl Med 2016; 5:35. [PMID: 27558401 PMCID: PMC4996813 DOI: 10.1186/s40169-016-0108-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Accepted: 07/04/2016] [Indexed: 02/08/2023] Open
Abstract
Longevity and accumulation of multiple context-dependent signaling pathways of long-standing inflammation (antigen-load or oxidative stress) are the results of decreased/altered regulation of immunity and loss of control switch mechanisms that we defined as Yin and Yang of acute inflammation or immune surveillance. Chronic inflammation is initiated by immune disruptors-induced progressive changes in physiology and function of susceptible host tissues that lead to increased immune suppression and multistep disease processes including carcinogenesis. The interrelated multiple hypotheses that are presented for the first time in this article are extension of author's earlier series of 'accidental' discoveries on the role of inflammation in developmental stages of immune dysfunction toward tumorigenesis and angiogenesis. Detailed analyses of data on chronic diseases suggest that nearly all age-associated illnesses, generally categorized as 'mild' (e.g., increased allergies), 'moderate' (e.g., hypertension, colitis, gastritis, pancreatitis, emphysema) or 'severe' (e.g., accelerated neurodegenerative and autoimmune diseases or site-specific cancers and metastasis) are variations of hypersensitivity responses of tissues that are manifested as different diseases in immune-responsive or immune-privileged tissues. Continuous release/presence of low level histamine (subclinical) in circulation could contribute to sustained oxidative stress and induction of 'mild' or 'moderate' or 'severe' (immune tsunami) immune disorders in susceptible tissues. Site-specific cancers are proposed to be 'severe' (irreversible) forms of cumulative delayed hypersensitivity responses that would induce immunological chaos in favor of tissue growth in target tissues. Shared or special features of growth from fetus development into adulthood and aging processes and carcinogenesis are briefly compared with regard to energy requirements of highly complex function of Yin and Yang. Features of Yang (growth-promoting) arm of acute inflammation during fetus and cancer growth will be compared for consuming low energy from glycolysis (Warburg effect). Growth of fetus and cancer cells under hypoxic conditions and impaired mitochondrial energy requirements of tissues including metabolism of essential branched amino acids (e.g., val, leu, isoleu) will be compared for proposing a working model for future systematic research on cancer biology, prevention and therapy. Presentation of a working model provides insightful clues into bioenergetics that are required for fetus growth (absence of external threat and lack of high energy-demands of Yin events and parasite-like survival in host), normal growth in adulthood (balance in Yin and Yang processes) or disease processes and carcinogenesis (loss of balance in Yin-Yang). Future studies require focusing on dynamics and promotion of natural/inherent balance between Yin (tumoricidal) and Yang (tumorigenic) of effective immunity that develop after birth. Lawless growth of cancerous cells and loss of cell contact inhibition could partially be due to impaired mitochondria (mitophagy) that influence metabolism of branched chain amino acids for biosynthesis of structural proteins. The author invites interested scientists with diverse expertise to provide comments, confirm, dispute and question and/or expand and collaborate on many components of the proposed working model with the goal to better understand cancer biology for future designs of cost-effective research and clinical trials and prevention of cancer. Initial events during oxidative stress-induced damages to DNA/RNA repair mechanisms and inappropriate expression of inflammatory mediators are potentially correctable, preventable or druggable, if future studies were to focus on systematic understanding of early altered immune response dynamics toward multistep chronic diseases and carcinogenesis.
Collapse
Affiliation(s)
- Mahin Khatami
- National Cancer Institute (NCI), the National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
41
|
Mohamed F, Endre ZH, Pickering JW, Jayamanne S, Palangasinghe C, Shahmy S, Chathuranga U, Wijerathna T, Shihana F, Gawarammana I, Buckley NA. Mechanism-specific injury biomarkers predict nephrotoxicity early following glyphosate surfactant herbicide (GPSH) poisoning. Toxicol Lett 2016; 258:1-10. [PMID: 27288352 DOI: 10.1016/j.toxlet.2016.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 01/22/2023]
Abstract
Acute kidney injury (AKI) is common following glyphosate surfactant herbicide (GPSH) self-poisoning. Serum creatinine (sCr) is the most widely used renal biomarker for diagnosis of AKI although a recent study in rats suggested that urinary kidney injury molecule-1 predicted AKI earlier and better after GPSH-induced nephrotoxicity. We explored the utility of a panel of biomarkers to diagnose GPSH-induced nephrotoxicity in humans. In a prospective multi-centre observational study, serial urine and blood samples were collected until discharge and at follow-up. The diagnostic performance of each biomarker at various time points was assessed. AKI was diagnosed using the Acute Kidney Injury Network (AKIN) definitions. The added value of each biomarker to sCr to diagnose AKI was assessed by the integrated discrimination improvement (IDI) metric. Of 90 symptomatic patients, 51% developed AKI and 5 patients who developed AKIN≥2 died. Increased sCr at 8 and 16h predicted moderate to severe AKI and death. None of the 10 urinary biomarkers tested increased above normal range in patients who did not develop AKI or had mild AKI (AKIN1); most of these patients also had only minor clinical toxicity. Absolute concentrations of serum and urinary cystatin C, urinary interleukin-18 (IL-18), Cytochrome C (CytoC) and NGAL increased many fold within 8h in patients who developed AKIN≥2. Maximum 8 and 16h concentrations of these biomarkers showed an excellent diagnostic performance (AUC-ROC ≥0.8) to diagnose AKIN≥2. However, of these biomarkers only uCytoC added value to sCr to diagnose AKI when assessed by IDI metrics. GPSH-induced nephrotoxicity can be diagnosed within 24h by sCr. Increases in uCytoC and uIL-18 confirm GPSH-induces apoptosis and causes mitochondrial toxicity. Use of these biomarkers may help to identify mechanism specific targeted therapies for GPSH nephrotoxicity in clinical trials.
Collapse
Affiliation(s)
- Fahim Mohamed
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka; Department of Pharmacy, Faculty of Allied Health Sciences, University of Peradeniya, Sri Lanka; Department of Nephrology, Prince Of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia; TACT Research Group, Department of Pharmacology, SOMS, Sydney Medical School, University of Sydney, NSW, Australia.
| | - Zoltan H Endre
- Department of Nephrology, Prince Of Wales Hospital and Clinical School, University of New South Wales, Sydney, Australia; Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - John W Pickering
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand; Emergency Department, Christchurch Hospital, Christchurch, New Zealand
| | - Shaluka Jayamanne
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Chathura Palangasinghe
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Seyed Shahmy
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Umesh Chathuranga
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Thilini Wijerathna
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Fathima Shihana
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Indika Gawarammana
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka
| | - Nicholas A Buckley
- South Asian Clinical Toxicology Research Collaboration, University of Peradeniya, Peradeniya, Sri Lanka; TACT Research Group, Department of Pharmacology, SOMS, Sydney Medical School, University of Sydney, NSW, Australia
| |
Collapse
|
42
|
Di Mascio P, Martinez GR, Miyamoto S, Ronsein GE, Medeiros MH, Cadet J. Singlet molecular oxygen: Düsseldorf – São Paulo, the Brazilian connection. Arch Biochem Biophys 2016; 595:161-75. [DOI: 10.1016/j.abb.2015.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 07/28/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022]
|
43
|
Sousa B, Melo T, Campos A, Moreira AS, Maciel E, Domingues P, Carvalho RP, Rodrigues TR, Girão H, Domingues MRM. Alteration in Phospholipidome Profile of Myoblast H9c2 Cell Line in a Model of Myocardium Starvation and Ischemia. J Cell Physiol 2016; 231:2266-74. [DOI: 10.1002/jcp.25344] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 02/12/2016] [Indexed: 02/02/2023]
Affiliation(s)
- Bebiana Sousa
- Department of Chemistry; Mass Spectrometry Center; QOPNA; University of Aveiro; Aveiro Portugal
| | - Tânia Melo
- Department of Chemistry; Mass Spectrometry Center; QOPNA; University of Aveiro; Aveiro Portugal
| | - Ana Campos
- Department of Chemistry; Mass Spectrometry Center; QOPNA; University of Aveiro; Aveiro Portugal
| | - Ana S.P. Moreira
- Department of Chemistry; Mass Spectrometry Center; QOPNA; University of Aveiro; Aveiro Portugal
| | - Elisabete Maciel
- Department of Chemistry; Mass Spectrometry Center; QOPNA; University of Aveiro; Aveiro Portugal
- Department of Biology & CESAM; University of Aveiro, Campus Universitário de Santiago; 3810-193 Aveiro Portugal
| | - Pedro Domingues
- Department of Chemistry; Mass Spectrometry Center; QOPNA; University of Aveiro; Aveiro Portugal
| | - Rita Pereira Carvalho
- Institute of Biomedical Imaging and Life Sciences (IBILI); Faculty of Medicine; University of Coimbra; Coimbra Portugal
| | - Teresa Ribeiro Rodrigues
- Institute of Biomedical Imaging and Life Sciences (IBILI); Faculty of Medicine; University of Coimbra; Coimbra Portugal
| | - Henrique Girão
- Institute of Biomedical Imaging and Life Sciences (IBILI); Faculty of Medicine; University of Coimbra; Coimbra Portugal
| | | |
Collapse
|
44
|
Structural and functional characterization of phosphomimetic mutants of cytochrome c at threonine 28 and serine 47. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:387-95. [PMID: 26806033 DOI: 10.1016/j.bbabio.2016.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/15/2016] [Accepted: 01/20/2016] [Indexed: 12/31/2022]
Abstract
Protein function is frequently modulated by post-translational modifications of specific residues. Cytochrome c, in particular, is phosphorylated in vivo at threonine 28 and serine 47. However, the effect of such modifications on the physiological functions of cytochrome c - namely, the transfer of electrons in the respiratory electron transport chain and the triggering of programmed cell death - is still unknown. Here we replace each of these two residues by aspartate, in order to mimic phosphorylation, and report the structural and functional changes in the resulting cytochrome c variants. We find that the T28D mutant causes a 30-mV decrease on the midpoint redox potential and lowers the affinity for the distal site of Arabidopsis thaliana cytochrome c1 in complex III. Both the T28D and S47D variants display a higher efficiency as electron donors for the cytochrome c oxidase activity of complex IV. In both protein mutants, the peroxidase activity is significantly higher, which is related to the ability of cytochrome c to leave the mitochondria and reach the cytoplasm. We also find that both mutations at serine 47 (S47D and S47A) impair the ability of cytoplasmic cytochrome c to activate the caspases cascade, which is essential for triggering programmed cell death.
Collapse
|
45
|
Ruiz-Ramírez A, Barrios-Maya MA, López-Acosta O, Molina-Ortiz D, El-Hafidi M. Cytochrome c release from rat liver mitochondria is compromised by increased saturated cardiolipin species induced by sucrose feeding. Am J Physiol Endocrinol Metab 2015; 309:E777-86. [PMID: 26353385 DOI: 10.1152/ajpendo.00617.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 08/31/2015] [Indexed: 12/30/2022]
Abstract
Cytochrome c release from mitochondria has been described to be related to reactive oxygen species (ROS) generation. With ROS generation being increased in fatty liver from sucrose-fed (SF) rats, we hypothesized that cytochrome c release might be positively associated with H2O2 generation from SF mitochondria. Surprisingly, cytochrome c release from mitochondria of SF liver was found to be significantly lower compared with control (C) mitochondria oxidizing pyruvate/malate or succinate. Exposure of mitochondria to exogenous superoxide radical generated by the xanthine/xanthine oxidase system elicits a dose-response cytochrome c release in both control and SF mitochondria, but cytochrome c release remains lower in SF mitochondria compared with C mitochondria. Furthermore, the addition of ebselen, PEG-catalase, or catalase, a H2O2 scavenger, significantly reduces cytochrome c release from C and SF mitochondria. Our results suggest that both intra- and extramitochondrial H2O2 are involved in cytochrome c release, but the persisting difference between C and SF levels can be attributed to the differences in cardiolipin compositions. Indeed, the ratio of palmitic acid-rich cardiolipin species was found to be increased in lipid membrane from SF mitochondria compared with C mitochondria, whereas that of linoleic acid-rich cardiolipin species was found decreased. In addition, the content of tafazzin, a protein responsible for cardiolipin remodeling, was decreased in SF mitochondria. Therefore, we conclude that the changes observed in the composition of cardiolipin molecular species in SF mitochondria may be involved in cytochrome c interaction with mitochondrial inner membrane lipid and in its reduced release from SF mitochondria.
Collapse
Affiliation(s)
- Angélica Ruiz-Ramírez
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico; and
| | - Miguel-Angel Barrios-Maya
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico; and
| | - Ocarol López-Acosta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico; and
| | - Dora Molina-Ortiz
- Laboratorio de Toxicología Genetica, Instituto Nacional de Pediatria, Mexico City, Mexico
| | - Mohammed El-Hafidi
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico; and
| |
Collapse
|
46
|
Zhang W, Pelicano H, Yin R, Zeng J, Wen T, Ding L, Huang R. Effective elimination of chronic lymphocytic leukemia cells in the stromal microenvironment by a novel drug combination strategy using redox-mediated mechanisms. Mol Med Rep 2015; 12:7374-88. [PMID: 26458979 PMCID: PMC4626185 DOI: 10.3892/mmr.2015.4364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 08/25/2015] [Indexed: 12/15/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is the most common type of adult leukemia, and is currently incurable due to drug resistance. A previous study indicated that the redox interaction between bone marrow stromal cells and leukemia cells profoundly affected CLL cell viability and drug response. The present study aimed to further investigate the effect of the redox interaction on drug resistance of CLL cells in the bone marrow microenvironment, and to assess a novel redox-mediated strategy to eliminate stromal-protected CLL cells, and thus to achieve maximum therapeutic efficacy of antileukemic drugs. Histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) is a potent novel anticancer agent, however, it exerts limited activity in patients with CLL. The results of the present study demonstrated that SAHA facilitated stromal‑mediated glutathione upregulation in the CLL cells, contributing to drug resistance. The addition of β‑phenylethyl isothiocyanate (PEITC) induced severe depletion of stromal and SAHA‑upregulated glutathione, enhanced SAHA‑mediated reactive oxygen species accumulation in the CLL cells and caused oxidation of mitochondrial cardilopin, leading to substantial cell death. The results further demonstrated that stromal cells and SAHA markedly upregulated antiapoptotic protein expression levels of myeloid cell leukemia 1 (Mcl1) in CLL the cells. By inducing protein deglutathionylation and degradation, PEITC suppressed the expression of Mcl1 in co‑cultured CLL cells, and increased SAHA sensitivity. The combination of SAHA and PEITC enabled the induction of marked apoptosis of CLL cells co‑cultured with bone marrow stromal cells. The present study provided a preclinical rationale, which warrants further clinical investigation for the potential use of SAHA/PEITC as a novel combination treatment strategy for CLL.
Collapse
Affiliation(s)
- Wan Zhang
- Department of Leukemia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Helene Pelicano
- Department of Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ran Yin
- Department of Cardiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Junyi Zeng
- Department of Leukemia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Tong Wen
- Department of Leukemia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lu Ding
- Department of Leukemia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Ruibin Huang
- Department of Leukemia, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
47
|
Leanza L, Venturini E, Kadow S, Carpinteiro A, Gulbins E, Becker KA. Targeting a mitochondrial potassium channel to fight cancer. Cell Calcium 2015; 58:131-8. [DOI: 10.1016/j.ceca.2014.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/10/2014] [Accepted: 09/11/2014] [Indexed: 12/11/2022]
|
48
|
Managò A, Becker KA, Carpinteiro A, Wilker B, Soddemann M, Seitz AP, Edwards MJ, Grassmé H, Szabò I, Gulbins E. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase. Antioxid Redox Signal 2015; 22:1097-110. [PMID: 25686490 PMCID: PMC4403017 DOI: 10.1089/ars.2014.5979] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AIMS Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. RESULTS Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. INNOVATION These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. CONCLUSION These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions.
Collapse
|
49
|
Ascenzi P, Coletta M, Wilson MT, Fiorucci L, Marino M, Polticelli F, Sinibaldi F, Santucci R. Cardiolipin-cytochrome c complex: Switching cytochrome c from an electron-transfer shuttle to a myoglobin- and a peroxidase-like heme-protein. IUBMB Life 2015; 67:98-109. [PMID: 25857294 DOI: 10.1002/iub.1350] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/11/2015] [Indexed: 12/18/2022]
Abstract
Cytochrome c (cytc) is a small heme-protein located in the space between the inner and the outer membrane of the mitochondrion that transfers electrons from cytc-reductase to cytc-oxidase. The hexa-coordinated heme-Fe atom of cytc displays a very low reactivity toward ligands and does not exhibit significant catalytic properties. However, upon cardiolipin (CL) binding, cytc achieves ligand binding and catalytic properties reminiscent of those of myoglobin and peroxidase. In particular, the peroxidase activity of the cardiolipin-cytochrome c complex (CL-cytc) is critical for the redistribution of CL from the inner to the outer mitochondrial membranes and is essential for the execution and completion of the apoptotic program. On the other hand, the capability of CL-cytc to bind NO and CO and the heme-Fe-based scavenging of reactive nitrogen and oxygen species may affect apoptosis. Here, the ligand binding and catalytic properties of CL-cytc are analyzed in parallel with those of CL-free cytc, myoglobin, and peroxidase to dissect the potential mechanisms of CL in modulating the pro- and anti-apoptotic actions of cytc.
Collapse
Affiliation(s)
- Paolo Ascenzi
- Interdepartmental Laboratory for Electron Microscopy, Roma Tre University, Roma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Cardiolipin linoleic acid content and mitochondrial cytochrome c oxidase activity are associated in rat skeletal muscle. Chem Phys Lipids 2015; 187:50-5. [PMID: 25727371 DOI: 10.1016/j.chemphyslip.2015.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 01/25/2015] [Accepted: 02/25/2015] [Indexed: 11/23/2022]
Abstract
Cardiolipin (CL) is an inner-mitochondrial membrane phospholipid that is important for optimal mitochondrial function. Specifically, CL and CL linoleic (18:2ω6) content are known to be positively associated with cytochrome c oxidase (COX) activity. However, this association has not been examined in skeletal muscle. In this study, rats were fed high-fat diets with a naturally occurring gradient in linoleic acid (coconut oil [CO], 5.8%; flaxseed oil [FO], 13.2%; safflower oil [SO], 75.1%) in an attempt to alter both mitochondrial CL fatty acyl composition and COX activity in rat mixed hind-limb muscle. In general, mitochondrial membrane lipid composition was fairly resistant to dietary treatments as only modest changes in fatty acyl composition were detected in CL and other major mitochondrial phospholipids such as phosphatidylcholine (PC) and phosphatidylethanolamine (PE). As a result of this resistance, CL 18:2ω6 content was not different between the dietary groups. Consistent with the lack of changes in CL 18:2ω6 content, mitochondrial COX activity was also not different between the dietary groups. However, correlational analysis using data obtained from rats across the dietary groups showed a significant relationship (p = 0.009, R(2) = 0.21). Specifically, our results suggest that CL 18:2ω6 content may positively influence mitochondrial COX activity thereby making this lipid molecule a potential factor related to mitochondrial health and function in skeletal muscle.
Collapse
|