1
|
Viswanath D, Shin SH, Yoo J, Torregrosa-Allen SE, Harper HA, Cervantes HE, Elzey BD, Won YY. Radiation-induced photodynamic therapy using calcium tungstate nanoparticles and 5-aminolevulinic acid prodrug. Biomater Sci 2023; 11:6311-6324. [PMID: 37552121 DOI: 10.1039/d3bm00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA) prodrug is a clinically tried and proven treatment modality for surface-level lesions. However, its use for deep-seated tumors has been limited due to the poor penetration depth of visible light needed to activate the photosensitizer protoporphyrin IX (PPIX), which is produced from ALA metabolism. Herein, we report the usage of poly(ethylene glycol-b-lactic acid) (PEG-PLA)-encapsulated calcium tungstate (CaWO4, CWO for short) nanoparticles (PEG-PLA/CWO NPs) as energy transducers for X-ray-activated PDT using ALA. Owing to the spectral overlap between radioluminescence afforded by the CWO core and the absorbance of PPIX, these NPs can serve as an in situ visible light activation source during radiotherapy (RT), thereby mitigating the limitation of penetration depth. We demonstrate that this effect is observed across different cell lines with varying radio-sensitivity. Importantly, both PPIX and PEG-PLA/CWO NPs exhibit no significant toxicities at therapeutic doses in the absence of radiation. To assess the efficacy of this approach, we conducted a study using a syngeneic mouse model subcutaneously implanted with inherently radio-resistant 4T1 tumors. The results show a significantly improved prognosis compared to conventional RT, even with as few as 2 fractions of 4 Gy X-rays. Taken together, these results suggest that PEG-PLA/CWO NPs are promising agents for application of ALA-PDT in deep-seated tumors, thereby significantly expanding the utility of the already established treatment strategy.
Collapse
Affiliation(s)
- Dhushyanth Viswanath
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Sung-Ho Shin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Jin Yoo
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Sandra E Torregrosa-Allen
- Purdue University Institute for Cancer Research, West Lafayette, Indiana 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Haley A Harper
- Purdue University Institute for Cancer Research, West Lafayette, Indiana 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Heidi E Cervantes
- Purdue University Institute for Cancer Research, West Lafayette, Indiana 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | - Bennett D Elzey
- Purdue University Institute for Cancer Research, West Lafayette, Indiana 47907, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.
- Purdue University Institute for Cancer Research, West Lafayette, Indiana 47907, USA
| |
Collapse
|
2
|
Viswanath D, Won YY. Combining Radiotherapy (RT) and Photodynamic Therapy (PDT): Clinical Studies on Conventional RT-PDT Approaches and Novel Nanoparticle-Based RT-PDT Approaches under Preclinical Evaluation. ACS Biomater Sci Eng 2022; 8:3644-3658. [PMID: 36000986 PMCID: PMC11975461 DOI: 10.1021/acsbiomaterials.2c00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Radiotherapy (RT) is the primary standard of care for many locally advanced cancers. Often times, however, the efficacy of RT is limited due to radio-resistance that cancer cells develop. Photodynamic therapy (PDT) has gained importance as an alternative local therapy. Because its mechanism involves minimal acquired resistance, PDT is a useful adjunct to RT. This review discusses recent advances in combining RT with PDT for cancer treatment. In the first part of this review, we will discuss clinical trials on RT + PDT combination therapies. All these approaches suffer from the same inherent limitations as any current PDT methods; (i) visible light has a short penetration depth in human tissue (<∼10 mm), and (ii) it is difficult to illuminate the entire tumor homogeneously by external/interstitial laser irradiation. To address these limitations, scintillating nanoparticle-mediated RT-PDT approaches have been explored in which nanoparticles convert X-rays (RT) into visible light (PDT); high-energy X-rays can reach deep into the body to irradiate cancers uniformly and precisely. The second part of this review will discuss recent efforts in developing and applying nanoparticles for RT-PDT applications.
Collapse
Affiliation(s)
- Dhushyanth Viswanath
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - You-Yeon Won
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
- Purdue University Center for Cancer Research, West Lafayette, Indiana 47906, USA
| |
Collapse
|
3
|
Chertkova RV, Firsov AM, Brazhe NA, Nikelshparg EI, Bochkova ZV, Bryantseva TV, Semenova MA, Baizhumanov AA, Kotova EA, Kirpichnikov MP, Maksimov GV, Antonenko YN, Dolgikh DA. Multiple Mutations in the Non-Ordered Red Ω-Loop Enhance the Membrane-Permeabilizing and Peroxidase-like Activity of Cytochrome c. Biomolecules 2022; 12:665. [PMID: 35625593 PMCID: PMC9138828 DOI: 10.3390/biom12050665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/27/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
A key event in the cytochrome c-dependent apoptotic pathway is the permeabilization of the outer mitochondrial membrane, resulting in the release of various apoptogenic factors, including cytochrome c, into the cytosol. It is believed that the permeabilization of the outer mitochondrial membrane can be induced by the peroxidase activity of cytochrome c in a complex with cardiolipin. Using a number of mutant variants of cytochrome c, we showed that both substitutions of Lys residues from the universal binding site for oppositely charged Glu residues and mutations leading to a decrease in the conformational mobility of the red Ω-loop in almost all cases did not affect the ability of cytochrome c to bind to cardiolipin. At the same time, the peroxidase activity of all mutant variants in a complex with cardiolipin was three to five times higher than that of the wild type. A pronounced increase in the ability to permeabilize the lipid membrane in the presence of hydrogen peroxide, as measured by calcein leakage from liposomes, was observed only in the case of four substitutions in the red Ω-loop (M4 mutant). According to resonance and surface-enhanced Raman spectroscopy, the mutations caused significant changes in the heme of oxidized cytochrome c molecules resulting in an increased probability of the plane heme conformation and the enhancement of the rigidity of the protein surrounding the heme. The binding of wild-type and mutant forms of oxidized cytochrome c to cardiolipin-containing liposomes caused the disordering of the acyl lipid chains that was more pronounced for the M4 mutant. Our findings indicate that the Ω-loop is important for the pore formation in cardiolipin-containing membranes.
Collapse
Affiliation(s)
- Rita V. Chertkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Z.V.B.); (T.V.B.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Alexander M. Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.M.F.); (E.A.K.); (Y.N.A.)
| | - Nadezda A. Brazhe
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.I.N.); (A.A.B.); (G.V.M.)
| | - Evelina I. Nikelshparg
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.I.N.); (A.A.B.); (G.V.M.)
| | - Zhanna V. Bochkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Z.V.B.); (T.V.B.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.I.N.); (A.A.B.); (G.V.M.)
| | - Tatyana V. Bryantseva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Z.V.B.); (T.V.B.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Marina A. Semenova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Z.V.B.); (T.V.B.); (M.A.S.); (M.P.K.); (D.A.D.)
| | - Adil A. Baizhumanov
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.I.N.); (A.A.B.); (G.V.M.)
| | - Elena A. Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.M.F.); (E.A.K.); (Y.N.A.)
| | - Mikhail P. Kirpichnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Z.V.B.); (T.V.B.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, 119899 Moscow, Russia
| | - Georgy V. Maksimov
- Biophysics Department, Biological Faculty, Lomonosov Moscow State University, 119234 Moscow, Russia; (E.I.N.); (A.A.B.); (G.V.M.)
- Federal State Autonomous Educational Institution of Higher Education “National Research Technological University “MISiS””, 119049 Moscow, Russia
| | - Yuriy N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (A.M.F.); (E.A.K.); (Y.N.A.)
| | - Dmitry A. Dolgikh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (Z.V.B.); (T.V.B.); (M.A.S.); (M.P.K.); (D.A.D.)
- Biology Department, Lomonosov Moscow State University, 119899 Moscow, Russia
| |
Collapse
|
4
|
A Novel 89Zr-labeled DDS Device Utilizing Human IgG Variant (scFv): "Lactosome" Nanoparticle-Based Theranostics for PET Imaging and Targeted Therapy. Life (Basel) 2021; 11:life11020158. [PMID: 33670777 PMCID: PMC7923095 DOI: 10.3390/life11020158] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022] Open
Abstract
“Theranostics,” a new concept of medical advances featuring a fusion of therapeutic and diagnostic systems, provides promising prospects in personalized medicine, especially cancer. The theranostics system comprises a novel 89Zr-labeled drug delivery system (DDS), derived from the novel biodegradable polymeric micelle, “Lactosome” nanoparticles conjugated with specific shortened IgG variant, and aims to successfully deliver therapeutically effective molecules, such as the apoptosis-inducing small interfering RNA (siRNA) intracellularly while offering simultaneous tumor visualization via PET imaging. A 27 kDa-human single chain variable fragment (scFv) of IgG to establish clinically applicable PET imaging and theranostics in cancer medicine was fabricated to target mesothelin (MSLN), a 40 kDa-differentiation-related cell surface glycoprotein antigen, which is frequently and highly expressed by malignant tumors. This system coupled with the cell penetrating peptide (CPP)-modified and photosensitizer (e.g., 5, 10, 15, 20-tetrakis (4-aminophenyl) porphyrin (TPP))-loaded Lactosome particles for photochemical internalized (PCI) driven intracellular siRNA delivery and the combination of 5-aminolevulinic acid (ALA) photodynamic therapy (PDT) offers a promising nano-theranostic-based cancer therapy via its targeted apoptosis-inducing feature. This review focuses on the combined advances in nanotechnology and material sciences utilizing the “89Zr-labeled CPP and TPP-loaded Lactosome particles” and future directions based on important milestones and recent developments in this platform.
Collapse
|
5
|
Tsubone TM, Martins WK, Franco MSF, Silva MN, Itri R, Baptista MS. Cellular compartments challenged by membrane photo-oxidation. Arch Biochem Biophys 2020; 697:108665. [PMID: 33159891 DOI: 10.1016/j.abb.2020.108665] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/20/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022]
Abstract
The lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage. Photochemical reactions occur naturally in many biological membranes and are responsible for diverse processes such as photosynthesis and vision/phototaxis. However, excessive exposure to light in the presence of absorbing molecules produces excited states and other oxidant species that may cause cell aging/death, mutations and innumerable diseases including cancer. At the same time, targeting key compartments of diseased cells with light can be a promising strategy to treat many diseases in a clinical procedure called Photodynamic Therapy. Here we analyze the relationships between membrane alterations induced by photo-oxidation and the biochemical responses in mammalian cells. We specifically address the impact of photosensitization reactions in membranes of different organelles such as mitochondria, lysosome, endoplasmic reticulum, and plasma membrane, and the subsequent responses of eukaryotic cells.
Collapse
Affiliation(s)
| | | | - Marcia S F Franco
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil
| | | | - Rosangela Itri
- Department of Applied Physics, Institute of Physics, University of São Paulo, SP, Brazil
| | - Mauricio S Baptista
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Tsubone TM, Baptista MS, Itri R. Understanding membrane remodelling initiated by photosensitized lipid oxidation. Biophys Chem 2019; 254:106263. [DOI: 10.1016/j.bpc.2019.106263] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/13/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
|
7
|
Wei Q, Jiang S, Zhu R, Wang X, Wang S, Wang Q. Injectable Peptide Hydrogel Enables Integrated Tandem Enzymes' Superactivity for Cancer Therapy. iScience 2019; 14:27-35. [PMID: 30921734 PMCID: PMC6438909 DOI: 10.1016/j.isci.2019.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/15/2019] [Accepted: 03/08/2019] [Indexed: 12/19/2022] Open
Abstract
Elevation of the levels of reactive oxygen species and other toxic radicals is an emerging strategy to treat certain cancers by modulating the redox status of cancer cells. The biocatalytic upregulation of singlet oxygen by neutrophilic leukocytes should utilize robust enzymes and design carriers with protective microenvironment. Here, we utilize GOx-CPO as integrated tandem enzymes to in situ generate singlet oxygen, which could be not only for oxidative cross-linking of injectable hydrogel carriers but also for continuous tumor treatment by adjustable bioconversion of blood oxygen, glucose, and chloride ion. The tandem enzymes self-restrained within peptide hydrogel exhibited superactivity for upregulating singlet oxygen relative to free enzymes, which also avoids the diffusion of enzymes from tumor. This work will not only deepen the study of enzymes in biocatalysis but also offer an enzyme therapeutic modality for treating cancers.
Collapse
Affiliation(s)
- Qingcong Wei
- School of Chemical Science and Engineering, Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Shan Jiang
- School of Chemical Science and Engineering, Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Rongrong Zhu
- School of Chemical Science and Engineering, Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xia Wang
- School of Chemical Science and Engineering, Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shilong Wang
- School of Chemical Science and Engineering, Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| | - Qigang Wang
- School of Chemical Science and Engineering, Research Center for Translational Medicine at East Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Schwake M, Nemes A, Dondrop J, Schroeteler J, Schipmann S, Senner V, Stummer W, Ewelt C. In-Vitro Use of 5-ALA for Photodynamic Therapy in Pediatric Brain Tumors. Neurosurgery 2018; 83:1328-1337. [PMID: 29538709 DOI: 10.1093/neuros/nyy054] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 02/01/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Light irradiation (635 nm) of cells containing protoporphyrin IX (PPIX) after 5- aminolevulinic acid (5-ALA) pretreatment causes cell death via different pathways including apoptosis and necrosis, as previously demonstrated for malignant glioma cells. OBJECTIVE To elucidate whether various malignant pediatric brain tumors, which have been shown to accumulate PPIX, would also be susceptible to photodynamic therapy (PDT). METHODS Medulloblastoma (DAOY, UW228), pNET (PFSK-1), and rhabdoid tumor (BT16) cell lines were incubated with 5-ALA in variable concentrations for 4 h. Consequently, cells were irradiated by 635 nm diode laser light. After 12 h, cell viability was measured by WST-1 testing and these results were compared to control cells incubated with 5-ALA without irradiation or irradiation only without prior incubation with 5-ALA. RESULTS We demonstrated significant cell death in malignant pediatric tumor cells after incubation with 5-ALA and laser irradiation in comparison to control groups. In all cell lines, we noticed significant cell death above a 5-ALA concentration of 50 μg/ml (P < .05). Neither 5-ALA incubation alone nor irradiation alone caused cell death. DAOY and PFSK cell lines were more susceptible than UW228 and BT16 cells. CONCLUSION We conclude that PDT causes cell death with higher PPIX concentrations after exposure to 5-ALA in vitro in accordance to similar studies with glioma cells. This indicates that PDT might be feasible for eliminating brain tumor cells in malignant pediatric brain tumors. Additionally, we noticed a dependency between fluorescence intensity and death rates.
Collapse
Affiliation(s)
- Michael Schwake
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Andrei Nemes
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Jana Dondrop
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | | | | | - Volker Senner
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Christian Ewelt
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
9
|
Lou W, Ting HC, Reynolds CA, Tyurina YY, Tyurin VA, Li Y, Ji J, Yu W, Liang Z, Stoyanovsky DA, Anthonymuthu TS, Frasso MA, Wipf P, Greenberger JS, Bayır H, Kagan VE, Greenberg ML. Genetic re-engineering of polyunsaturated phospholipid profile of Saccharomyces cerevisiae identifies a novel role for Cld1 in mitigating the effects of cardiolipin peroxidation. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1354-1368. [PMID: 29935382 PMCID: PMC6641546 DOI: 10.1016/j.bbalip.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/18/2023]
Abstract
Cardiolipin (CL) is a unique phospholipid localized almost exclusively within the mitochondrial membranes where it is synthesized. Newly synthesized CL undergoes acyl remodeling to produce CL species enriched with unsaturated acyl groups. Cld1 is the only identified CL-specific phospholipase in yeast and is required to initiate the CL remodeling pathway. In higher eukaryotes, peroxidation of CL, yielding CLOX, has been implicated in the cellular signaling events that initiate apoptosis. CLOX can undergo enzymatic hydrolysis, resulting in the release of lipid mediators with signaling properties. Our previous findings suggested that CLD1 expression is upregulated in response to oxidative stress, and that one of the physiological roles of CL remodeling is to remove peroxidized CL. To exploit the powerful yeast model to study functions of CLD1 in CL peroxidation, we expressed the H. brasiliensis Δ12-desaturase gene in yeast, which then synthesized poly unsaturated fatty acids(PUFAs) that are incorporated into CL species. Using LC-MS based redox phospholipidomics, we identified and quantified the molecular species of CL and other phospholipids in cld1Δ vs. WT cells. Loss of CLD1 led to a dramatic decrease in chronological lifespan, mitochondrial membrane potential, and respiratory capacity; it also resulted in increased levels of mono-hydroperoxy-CLs, particularly among the highly unsaturated CL species, including tetralinoleoyl-CL. In addition, purified Cld1 exhibited a higher affinity for CLOX, and treatment of cells with H2O2 increased CLD1 expression in the logarithmic growth phase. These data suggest that CLD1 expression is required to mitigate oxidative stress. The findings from this study contribute to our overall understanding of CL remodeling and its role in mitigating oxidative stress.
Collapse
Affiliation(s)
- Wenjia Lou
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Hsiu-Chi Ting
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christian A Reynolds
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vladimir A Tyurin
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yiran Li
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Jiajia Ji
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Zhuqing Liang
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Detcho A Stoyanovsky
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Tamil S Anthonymuthu
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Michael A Frasso
- Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Peter Wipf
- Chemistry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel S Greenberger
- Radiation Oncology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hülya Bayır
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States; Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA, United States; Chemistry, University of Pittsburgh, Pittsburgh, PA, United States; Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States; Laboratory of Navigational Redox Lipidomics,and Department of Human Pathology, IM Sechenov Moscow State Medical University, Moscow, Russian Federation.
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
10
|
Mastrangelopoulou M, Grigalavicius M, Berg K, Ménard M, Theodossiou TA. Cytotoxic and Photocytotoxic Effects of Cercosporin on Human Tumor Cell Lines. Photochem Photobiol 2018; 95:387-396. [PMID: 30107033 DOI: 10.1111/php.12997] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/02/2018] [Indexed: 01/14/2023]
Abstract
Cercosporin is a naturally occurring perylenequinone. Although other perylenequinones have been extensively studied as photosensitizers in photodynamic therapy of cancer (PDT), cercosporin has been studied in this light only within the remits of phytopathology. Herein, we investigated the photocytotoxicity of cercosporin against two glioblastoma multiforme (T98G and U87) and one breast adenocarcinoma (MCF7) human cell lines. Cercosporin was found to be a potent singlet oxygen producer upon 532 nm excitation, while its cell loading was similar for MCF7 and U87, but approximately threefold higher for T98G cells. The subcellular localization of cercosporin was in all cases in both mitochondria and the endoplasmic reticulum. Light irradiation of cercosporin-incubated cells around 450 nm showed that T98G cells were more susceptible to cercosporin PDT, mainly due to their higher cercosporin uptake. Metabolic studies before and 1 h following cercosporin PDT showed that cercosporin PDT instigated a bioenergetic collapse in both the respiratory and glycolytic activities of all cell lines. In the dark, cercosporin exhibited a synergistic cytotoxicity with copper only in the most respiratory cell lines (MCF7 and T98G). Cercosporin is a potent photosensitizer, but with a short activation wavelength, mostly suitable for superficial PDT treatments, especially when it is necessary to avoid perforations.
Collapse
Affiliation(s)
- Maria Mastrangelopoulou
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Mantas Grigalavicius
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Kristian Berg
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Mathilde Ménard
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| | - Theodossis A Theodossiou
- Department of Radiation Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
11
|
Lakomkin N, Hadjipanayis CG. Fluorescence-guided surgery for high-grade gliomas. J Surg Oncol 2018; 118:356-361. [PMID: 30125355 DOI: 10.1002/jso.25154] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Accepted: 06/11/2018] [Indexed: 12/23/2022]
Abstract
5-aminolevulinic acid (5-ALA) is a prodrug that results in the fluorescence of high-grade gliomas relative to the surrounding brain parenchyma. 5-ALA has been increasingly utilized in fluorescence-guided surgery for these tumors, and its intraoperative use has been associated with a significantly improved extent of resection and progression-free survival. This review outlines the growing body of evidence that has culminated in the recent Food and Drug Administration approval of 5-ALA, as well as emerging applications for this agent.
Collapse
Affiliation(s)
- Nikita Lakomkin
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York.,Department of Neurosurgery, Icahn School of Medicine, Mount Sinai Beth Israel, Mount Sinai Health System, New York, New York
| | - Constantinos G Hadjipanayis
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York.,Department of Neurosurgery, Icahn School of Medicine, Mount Sinai Beth Israel, Mount Sinai Health System, New York, New York
| |
Collapse
|
12
|
Schroeteler J, Ewelt C, Wölfer J, Schipmann S, Schwake M, Stummer W. 5 ALA-PDT in neurosurgery. Photodiagnosis Photodyn Ther 2017. [DOI: 10.1016/j.pdpdt.2017.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Evers G, Kamp M, Warneke N, Berdel W, Sabel M, Stummer W, Ewelt C. 5-Aminolaevulinic Acid-Induced Fluorescence in Primary Central Nervous System Lymphoma. World Neurosurg 2016; 98:375-380. [PMID: 27838426 DOI: 10.1016/j.wneu.2016.11.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Diagnosis of primary central nervous system lymphoma (PCNSL) is usually confirmed by brain biopsy and subsequent neuropathologic workup. 5-Aminolevulinic acid (5-ALA)-induced fluorescence has been established for diagnostic and therapeutic purposes in glioma treatment during the last few years and is discussed for use in other cranial tumors. Its role in diagnosis and treatment of PCNSL is still elusive. METHODS This retrospective study includes clinical, magnetic resonance imaging, pathologic and surgical data of selected 11 patients with PCNSL at two university hospitals within the last 4 years undergoing surgical treatment for resection because of imminent mass effect or suspected cerebral glioma. Patients received 5-ALA for fluorescence-guided resection preoperatively. RESULTS The 11 subjects age ranged from 59 to 81 years. Postsurgical pathologic workup revealed malignant B cell lymphoma with morphologic features of diffuse large B cell lymphoma. Eight of these 11 patients with PCNSL showed a clear fluorescence induced by 5-ALA. After surgical resection, patients were treated with combination chemotherapy regimens. CONCLUSION In patients with glioma, the use of 5-ALA is known to be associated with increased extent of resection and survival benefit. Our data and retrospective analysis of a larger patient cohort suggest that the use of 5-ALA in PCNSL should be included in a surgical approach, if this is reconsidered for select patients within a clinical study. In addition, even photodynamic therapy in combination with 5-ALA might be studied.
Collapse
Affiliation(s)
- Georg Evers
- Department of Medicine, Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Marcel Kamp
- Department of Neurosurgery, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Nils Warneke
- Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany
| | - Wolfgang Berdel
- Department of Medicine, Hematology and Oncology, University Hospital of Muenster, Muenster, Germany
| | - Michael Sabel
- Department of Neurosurgery, University Hospital of Düsseldorf, Düsseldorf, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany
| | - Christian Ewelt
- Department of Neurosurgery, University Hospital of Muenster, Muenster, Germany.
| |
Collapse
|
14
|
Nemes A, Fortmann T, Poeschke S, Greve B, Prevedello D, Santacroce A, Stummer W, Senner V, Ewelt C. 5-ALA Fluorescence in Native Pituitary Adenoma Cell Lines: Resection Control and Basis for Photodynamic Therapy (PDT)? PLoS One 2016; 11:e0161364. [PMID: 27583461 PMCID: PMC5008746 DOI: 10.1371/journal.pone.0161364] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 08/04/2016] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Pituitary adenomas (PA), especially invasive ones, are often not completely resectable. Usage of 5-aminolevulinic acid (5-ALA) for fluorescence guided surgery could improve the rate of total resection and, additionally, open the doors for photodynamic therapy (PDT) in case of unresectable or partially resected PAs. The aim of this study was to investigate the uptake of 5-ALA and the effect of 5-ALA based PDT in cell lines. METHODS GH3 and AtT-20 cell lines were incubated with different concentrations of 5-ALA, protoporphyrin IX (PPIX) fluorescence was measured by flow cytometry and fluorescencespectrometry. WST-1 assays were performed to determine the surviving fraction of cells after PDT. PPIX fluorescence intensities and PDT effect of the pituitary adenoma cells were compared to U373MG, a well-known glioblastoma cell line. RESULTS Both cell lines showed a 5-ALA dependent intracellular PPIX fluorescence. Significant differences after 24hrs of incubation were observed in AtT-20 cells in comparison to GH3. Regardless of the incubation or metabolism time, there was a proliferation inhibiting effect after PDT, with no statistical significance. CONCLUSION Since GH3 cells showed a heterogenous uptake of 5-ALA in the flow cytometry profile, but not constantly high concentrations they might have a 5-ALA efflux mechanism, which still needs to be determined. In the case of AtT-20, the cells might need a longer time for the uptake due to their size or slow metabolism. We showed that the different cell lines have different uptake and metabolism mechanisms, which needs to be further investigated. The general uptake of 5-ALA allows the possibility of resection control and PDT for pituitary adenomas. But, the role of PDT for unresectable pituitary adenomas deserves further investigations.
Collapse
Affiliation(s)
- Andrei Nemes
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Thomas Fortmann
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Stephan Poeschke
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Muenster, Muenster, Germany
| | - Daniel Prevedello
- Department of Neurological Surgery, Ohio State University, Columbus, United States of America
| | - Antonio Santacroce
- Department of Neurosurgery, University Hospital Tuebingen, Tuebingen, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Christian Ewelt
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
- * E-mail:
| |
Collapse
|
15
|
The hydroxypyridinone iron chelator CP94 increases methyl-aminolevulinate-based photodynamic cell killing by increasing the generation of reactive oxygen species. Redox Biol 2016; 9:90-99. [PMID: 27454766 PMCID: PMC4961297 DOI: 10.1016/j.redox.2016.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/23/2016] [Accepted: 07/05/2016] [Indexed: 11/22/2022] Open
Abstract
Methyl-aminolevulinate-based photodynamic therapy (MAL-PDT) is utilised clinically for the treatment of non-melanoma skin cancers and pre-cancers and the hydroxypyridinone iron chelator, CP94, has successfully been demonstrated to increase MAL-PDT efficacy in an initial clinical pilot study. However, the biochemical and photochemical processes leading to CP94-enhanced photodynamic cell death, beyond the well-documented increases in accumulation of the photosensitiser protoporphyrin IX (PpIX), have not yet been fully elucidated. This investigation demonstrated that MAL-based photodynamic cell killing of cultured human squamous carcinoma cells (A431) occurred in a predominantly necrotic manner following the generation of singlet oxygen and ROS. Augmenting MAL-based photodynamic cell killing with CP94 co-treatment resulted in increased PpIX accumulation, MitoSOX-detectable ROS generation (probably of mitochondrial origin) and necrotic cell death, but did not affect singlet oxygen generation. We also report (to our knowledge, for the first time) the detection of intracellular PpIX-generated singlet oxygen in whole cells via electron paramagnetic resonance spectroscopy in conjunction with a spin trap. Augmentation of MAL-based photodynamic cell killing with CP94 increases necrosis. CP94 augmentation increases generation of ROS, likely to be mitochondria-localised. PpIX-generated 1O2 was detected in whole cells by EPR spectroscopy. Photodynamic cell killing was dependent primarily on 1O2. Superoxide/other ROS also contributed to the efficacy of photodynamic cell killing.
Collapse
|
16
|
de Bruijn HS, Brooks S, van der Ploeg-van den Heuvel A, ten Hagen TLM, de Haas ERM, Robinson DJ. Light Fractionation Significantly Increases the Efficacy of Photodynamic Therapy Using BF-200 ALA in Normal Mouse Skin. PLoS One 2016; 11:e0148850. [PMID: 26872051 PMCID: PMC4752243 DOI: 10.1371/journal.pone.0148850] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/25/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Light fractionation significantly increases the efficacy of 5-aminolevulinic acid (ALA) based photodynamic therapy (PDT) using the nano-emulsion based gel formulation BF-200. PDT using BF-200 ALA has recently been clinically approved and is under investigation in several phase III trials for the treatment of actinic keratosis. This study is the first to compare BF-200 ALA with ALA in preclinical models. RESULTS In hairless mouse skin there is no difference in the temporal and spatial distribution of protoporphyrin IX determined by superficial imaging and fluorescence microscopy in frozen sections. In the skin-fold chamber model, BF-200 ALA leads to more PpIX fluorescence at depth in the skin compared to ALA suggesting an enhanced penetration of BF-200 ALA. Light fractionated PDT after BF-200 ALA application results in significantly more visual skin damage following PDT compared to a single illumination. Both ALA formulations show the same visual skin damage, rate of photobleaching and change in vascular volume immediately after PDT. Fluorescence immunohistochemical imaging shows loss of VE-cadherin in the vasculature at day 1 post PDT which is greater after BF-200 ALA compared to ALA and more profound after light fractionation compared to a single illumination. DISCUSSION The present study illustrates the clinical potential of light fractionated PDT using BF-200 ALA for enhancing PDT efficacy in (pre-) malignant skin conditions such as basal cell carcinoma and vulval intraepithelial neoplasia and its application in other lesion such as cervical intraepithelial neoplasia and oral squamous cell carcinoma where current approaches have limited efficacy.
Collapse
Affiliation(s)
- Henriëtte S. de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology and Head & Neck Surgery, Erasmus MC, Rotterdam, The Netherlands
| | - Sander Brooks
- Department of Dermatology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | | | - Dominic J. Robinson
- Center for Optical Diagnostics and Therapy, Department of Otolaryngology and Head & Neck Surgery, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
17
|
Juarez AV, Sosa LDV, De Paul AL, Costa AP, Farina M, Leal RB, Torres AI, Pons P. Riboflavin acetate induces apoptosis in squamous carcinoma cells after photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 153:445-54. [DOI: 10.1016/j.jphotobiol.2015.10.030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 10/26/2015] [Accepted: 10/31/2015] [Indexed: 12/24/2022]
|
18
|
Ewelt C, Nemes A, Senner V, Wölfer J, Brokinkel B, Stummer W, Holling M. Fluorescence in neurosurgery: Its diagnostic and therapeutic use. Review of the literature. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 148:302-309. [PMID: 26000742 DOI: 10.1016/j.jphotobiol.2015.05.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 05/05/2015] [Accepted: 05/07/2015] [Indexed: 12/27/2022]
Abstract
Fluorescent agents, e.g. 5-aminolevulinic acid (5-ALA), fluorescein and indocyanine green (ICG) are in common use in neurosurgery for tumor resection and neurovascular surgery. Protoporphyrine IX (PPIX) as major metabolite of 5-ALA is a strong fluorescent substance accumulated within malignant glioma tissue and a very sensitive and specific tool for visualizing high grade glioma tissue during surgery. Furthermore, 5-ALA or rather PPIX also offers an intratumoral therapeutic option stimulated by laser light in specific wavelength. Fluorescein was demonstrated to show similar fluorescent reactions in neurosurgery, but is controversial in its use, especially in high grade tumor surgery. Intraoperative angiography during resection of arterio-venous malformations, extracranial-intracranial-bypass or aneurysm surgery is supported by ICG fluorescence. Generally ICG will provide beneficial information for both, exposure of the pathology and illustration of healthy structures. This manuscript shows an overview of the literature focussing fluorescence in neurosurgery.
Collapse
Affiliation(s)
- Christian Ewelt
- Department of Neurosurgery, University Hospital, Münster, Germany.
| | - Andrei Nemes
- Institute of Neuropathology, University Hospital, Münster, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital, Münster, Germany
| | - Johannes Wölfer
- Department of Neurosurgery, University Hospital, Münster, Germany
| | | | - Walter Stummer
- Department of Neurosurgery, University Hospital, Münster, Germany
| | - Markus Holling
- Department of Neurosurgery, University Hospital, Münster, Germany
| |
Collapse
|
19
|
Peroxidative permeabilization of liposomes induced by cytochrome c/cardiolipin complex. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:767-74. [DOI: 10.1016/j.bbamem.2014.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 11/21/2014] [Accepted: 11/25/2014] [Indexed: 01/23/2023]
|
20
|
3B, a novel of photosensitizer, exhibited anti-tumor effects via mitochondrial apoptosis pathway in MCF-7 human breast carcinoma cells. Tumour Biol 2015; 36:5597-606. [DOI: 10.1007/s13277-015-3231-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/05/2015] [Indexed: 10/23/2022] Open
|
21
|
Tsesin N, Khalfin B, Nathan I, Parola AH. Cardiolipin plays a role in KCN-induced necrosis. Chem Phys Lipids 2014; 183:159-68. [PMID: 24995676 DOI: 10.1016/j.chemphyslip.2014.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/12/2014] [Accepted: 06/22/2014] [Indexed: 01/28/2023]
Abstract
Cardiolipin (CL) is a unique anionic, dimeric phospholipid found almost exclusively in the inner mitochondrial membrane and is essential for the function of numerous enzymes that are involved in mitochondrial energy metabolism. While the role of cardiolipin in apoptosis is well established, its involvement in necrosis is enigmatic. In the present study, KCN-induced necrosis in U937 cells was used as an experimental model to assess the role of CL in necrosis. KCN addition to U937 cells induced reactive oxygen species (ROS) formation, while the antioxidants inhibited necrosis, indicating that ROS play a role in KCN-induced cell death. Further, CL oxidation was confirmed by the monomer green fluorescence of 10-N-nonyl acridine orange (NAO) and by TLC. Utilizing the red fluorescence of the dimeric NAO, redistribution of CL in mitochondrial membrane during necrosis was revealed. We also showed that the catalytic activity of purified adenosine triphosphate (ATP) synthase complex, known to be modulated by cardiolipin, decreased following KCN treatment. All these events occurred at an early phase of the necrotic process prior to rupture of the cell membrane. Furthermore, CL-deficient HeLa cells were found to be resistant to KCN-induced necrosis as compared with the wild type cells. We suggest that KCN, an effective reversible inhibitor of cytochrome oxidase and thereby of the respiratory chain leads to ROS increase, which in turn oxidizes CL (amongst other membrane phospholipids) and leads to mitochondrial membrane lipid reorganization and loss of CL symmetry. Finally, the resistance of CL-deficient cells to necrosis further supports the notion that CL, which undergoes oxidation during necrotic cell death, is an integral part of the milieu of events taking place in mitochondria leading to membrane disorganization and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Natalia Tsesin
- Departments of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Boris Khalfin
- Departments of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ilana Nathan
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Hematology Institute, Soroka University Medical Center, Beer-Sheva, Israel.
| | - Abraham H Parola
- Departments of Chemistry, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
22
|
Tyurina YY, Domingues RM, Tyurin VA, Maciel E, Domingues P, Amoscato AA, Bayir H, Kagan VE. Characterization of cardiolipins and their oxidation products by LC-MS analysis. Chem Phys Lipids 2014; 179:3-10. [PMID: 24333544 PMCID: PMC4025908 DOI: 10.1016/j.chemphyslip.2013.12.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 12/15/2022]
Abstract
Cardiolipins, a class of mitochondria-specific lipid molecules, is one of the most unusual and ancient phospholipids found in essentially all living species. Typical of mammalian cells is the presence of vulnerable to oxidation polyunsaturated fatty acid resides in CL molecules. The overall role and involvement of cardiolipin oxidation (CLox) products in major intracellular signaling as well as extracellular inflammatory and immune responses have been established. However, identification of individual peroxidized molecular species in the context of their ability to induce specific biological responses has not been yet achieved. This is due, at least in part, to technological difficulties in detection, identification, structural characterization and quantitation of CLox associated with their very low abundance and exquisite diversification. This dictates the need for the development of new methodologies for reliable, sensitive and selective analysis of both CLox. LC-MS-based oxidative lipidomics with high mass accuracy instrumentation as well as new software packages are promising in achieving the goals of expedited and reliable analysis of cardiolipin oxygenated species in biosamples.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA.
| | - Rosario M Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vladimir A Tyurin
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elisabete Maciel
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Center, University of Aveiro, 3810-193 Aveiro, Portugal; QOPNA, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrew A Amoscato
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Hülya Bayir
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Valerian E Kagan
- Center for Free Radical and Antioxidant Health, University of Pittsburgh, Pittsburgh, PA 15219, USA; Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
23
|
Gamal-Eldeen AM, Fouad LM, El-Daly SM, El-Hussieny EA, El Denshary ES. Photodynamic therapeutic role of indocyanine green in tumor-associated inflammation in skin cancer. Photodiagnosis Photodyn Ther 2014; 11:239-49. [PMID: 24632333 DOI: 10.1016/j.pdpdt.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/28/2014] [Accepted: 03/01/2014] [Indexed: 01/08/2023]
Abstract
BACKGROUND Indocyanine green (ICG) is a promising water-soluble photosensitizer for photodynamic therapy (PDT) of tumors. It was reported to have promising phototoxic effect on different cell lines. This study aimed to evaluate the efficacy of ICG as an efficient PS agent for skin cancer induced in mice. METHODS Skin squamous cell carcinoma was induced in female CD-1 mice by 7,12-dimethylbenzanthracene and 12-O-tetradecanoyl-phorbol-13-acetate followed by an ICG/PDT treatment. The laser irradiation for PDT was adjusted to cover the whole body of the mice to make sure that the treatment protocol will be delivered to multiple tumors. RESULTS The treatment of skin cancer by ICG/PDT using intravenously injected ICG initiated tumor cell death and significantly decreased cell proliferation as indicated by the reduction in proliferating cell nuclear antigen positivity. A significant reduction in the inflammatory mediators; tumor necrosis factor-α, nitric oxide and 5-lipoxygenase was reported, however the level of cyclooxygenase-2 (COX-2) was significantly elevated after ICG/PDT treatment. CONCLUSION The proposed ICG/PDT treatment modality showed a significant anti-tumor and anti-inflammatory activity against skin cancer accompanied with COX-2 elevation.
Collapse
Affiliation(s)
- Amira M Gamal-Eldeen
- Cancer Biology Laboratory, Center of Excellence for Advanced Sciences, National Research Center, Cairo, Egypt; Department of Biochemistry, National Research Center, Cairo, Egypt.
| | - Lamiaa M Fouad
- Pharmaceutical Technical Examination, Egyptian Patent Office, Academy of Scientific Research and Technology, Cairo, Egypt
| | - Sherien M El-Daly
- Department of Medical Biochemistry, National Research Center, Cairo, Egypt
| | - Enas A El-Hussieny
- Zoology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Ezzeddin S El Denshary
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
24
|
Barron GA, Moseley H, Woods JA. Differential sensitivity in cell lines to photodynamic therapy in combination with ABCG2 inhibition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2013; 126:87-96. [PMID: 23911860 DOI: 10.1016/j.jphotobiol.2013.07.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 07/01/2013] [Accepted: 07/02/2013] [Indexed: 12/20/2022]
Abstract
BACKGROUND ABCG2 is an ATP-binding cassette transporter protein which has a role in the regulation of endogenous protoporphyrin IX (PpIX) levels. OBJECTIVE To understand the influence of ABCG2 on porphyrin-based photodynamic therapy (PDT) and fluorescence diagnosis (FD), we examined the role of endogenous ABCG2 in four human cell lines from the epidermis (HaCaT keratinocytes), oesophagus (OE19 adenocarcinoma), brain (SH-SY5Y neuroblastoma) and bladder (HT1197 carcinoma). METHODS Cells were incubated with ALA or MAL in the presence or absence of the ABCG2 activity inhibitor Ko-143. Porphyrin accumulation was detected by spectrofluorimetric analysis and high performance liquid chromatography (HPLC) with porphyrin localisation observed by confocal laser scanning microscopy. PDT efficacy was assessed 24h post irradiation (1.5J/cm(2) red light) by the neutral red (NR) assay. RESULTS We show cell-specific differences when Ko-143 was co-incubated with ALA or, in particular with, MAL. Enhanced PDT-induced cell kill was shown in HaCaT, OE19 and HT1197 cells, but not SH-SY5Y cells and could be explained by porphyrin accumulation and expression of ABCG2. We have also found that despite high levels of intracellular PpIX, the OE19 cells were protected from phototoxic cell death by PpIX compartmentalisation. This could be reversed by Ko-143. CONCLUSION The results from this study show a possible cause of reduced sensitivity to ALA/MAL-PDT, with a potential solution to overcome this effect in certain tissue types. The potential to improve PDT with Ko-143 remains promising.
Collapse
Affiliation(s)
- Gemma A Barron
- Photobiology Unit, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland DD1 9SY, United Kingdom.
| | | | | |
Collapse
|
25
|
Devi DG, Cibin TR, Abraham A. Bis (3,5-diiodo-2,4,6-trihydroxyphenyl) squaraine photodynamic therapy induces in vivo tumor ablation by triggering cytochrome c dependent mitochondria mediated apoptosis. Photodiagnosis Photodyn Ther 2013; 10:510-7. [PMID: 24284104 DOI: 10.1016/j.pdpdt.2013.04.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 04/28/2013] [Accepted: 04/29/2013] [Indexed: 11/26/2022]
Abstract
BACKGROUND Despite findings that photodynamic treatment with bis (3,5-diiodo-2,4,6-trihydroxyphenyl) squaraine initiated tumor regression in mice skin, queries regarding its mode of action - answers to which will be functional to design clinical trials on squaraine based photodynamic therapy - remain unanswered. Our investigation reveals the in vivo mechanism of action of the photosensitizer. METHODS Skin tumor was induced in Swiss albino mice using 7,12-dimethyl benzanthacene. After the intraperitoneal administration of the dye in tumor induced mice, its concentration in subcellular fractions of the tumor tissue was determined fluorimetrically. Cytochrome c release from the mitochondrial membrane after the photodynamic treatment was analyzed. The observations stemming from this part lead to histopathological examination of tumor tissues. Apoptotic markers like caspase-3, Bcl-2 and Bax were also studied. RESULTS Major portion of the dye accumulated in the mitochondria. Cytochrome c leakage from mitochondria after squaraine PDT suggests loss of mitochondrial membrane integrity, which was further confirmed by the results of histopathological analysis. The activity of caspase-3 was elevated, expression of Bcl-2 diminished and that of Bax increased - all these results show enhancement of apoptosis in the tumor region after the treatment. CONCLUSIONS The results lead to the elucidation of mechanism of tumor destruction which proves to be mitochondria mediated apoptotic damage of tumor tissue. The study assumes significance since it defines the in vivo mode of action of a photosensitizer. Also, the query of how a squaraine based photosensitizer evokes tumor response is being dealt with here, for the first time.
Collapse
Affiliation(s)
- D Gayathri Devi
- Department of Biochemistry, University of Kerala, Kariavattom, Thiruvananthapuram 695581, Kerala, India
| | | | | |
Collapse
|
26
|
Machado AHA, Soares PC, Da Silva NS, Moraes KC. Cellular and molecular studies of the initial process of the photodynamic therapy in HEp-2 cells using LED light source and two different photosensitizers. Cell Biol Int 2013; 33:785-95. [DOI: 10.1016/j.cellbi.2009.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/12/2009] [Accepted: 04/14/2009] [Indexed: 01/22/2023]
|
27
|
Marí M, Morales A, Colell A, García-Ruiz C, Kaplowitz N, Fernández-Checa JC. Mitochondrial glutathione: features, regulation and role in disease. Biochim Biophys Acta Gen Subj 2012; 1830:3317-28. [PMID: 23123815 DOI: 10.1016/j.bbagen.2012.10.018] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/12/2012] [Accepted: 10/23/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mitochondria are the powerhouse of mammalian cells and the main source of reactive oxygen species (ROS) associated with oxygen consumption. In addition, they also play a strategic role in controlling the fate of cells through regulation of death pathways. Mitochondrial ROS production fulfills a signaling role through regulation of redox pathways, but also contributes to mitochondrial damage in a number of pathological states. SCOPE OF REVIEW Mitochondria are exposed to the constant generation of oxidant species, and yet the organelle remains functional due to the existence of an armamentarium of antioxidant defense systems aimed to repair oxidative damage, of which mitochondrial glutathione (mGSH) is of particular relevance. Thus, the aim of the review is to cover the regulation of mGSH and its role in disease. MAJOR CONCLUSIONS Cumulating evidence over recent years has demonstrated the essential role for mGSH in mitochondrial physiology and disease. Despite its high concentration in the mitochondrial matrix, mitochondria lack the enzymes to synthesize GSH de novo, so that mGSH originates from cytosolic GSH via transport through specific mitochondrial carriers, which exhibit sensitivity to membrane dynamics. Depletion of mGSH sensitizes cells to stimuli leading to oxidative stress such as TNF, hypoxia or amyloid β-peptide, thereby contributing to disease pathogenesis. GENERAL SIGNIFICANCE Understanding the regulation of mGSH may provide novel insights to disease pathogenesis and toxicity and the opportunity to design therapeutic targets of intervention in cell death susceptibility and disease. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
Affiliation(s)
- Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
28
|
de Bruijn HS, Casas AG, Di Venosa G, Gandara L, Sterenborg HJCM, Batlle A, Robinson DJ. Light fractionated ALA-PDT enhances therapeutic efficacy in vitro; the influence of PpIX concentration and illumination parameters. Photochem Photobiol Sci 2012; 12:241-5. [PMID: 23108451 DOI: 10.1039/c2pp25287b] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Light fractionation, with a long dark interval, significantly increases the response to ALA-PDT in pre-clinical models and in non-melanoma skin cancer. We investigated if this increase in efficacy can be replicated in PAM 212 cells in vitro. The results show a significant decrease in cell survival after light fractionation which is dependent on the PpIX concentration and light dose of the first light fraction. This study supports the hypothesis that an underlying cellular mechanism is involved in the response to light fractionation in which a first light fraction leads to sub-lethally damaged cells that are sensitised to a second light fraction 2 hours later. The current study reveals the in vitro circumstances under which we can investigate the cellular pathways involved.
Collapse
Affiliation(s)
- Henriëtte S de Bruijn
- Center for Optical Diagnostics and Therapy, Department of Radiation Oncology, Erasmus MC, PO Box 2040, 3000 CA Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
29
|
Yoo JO, Ha KS. New insights into the mechanisms for photodynamic therapy-induced cancer cell death. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 295:139-74. [PMID: 22449489 DOI: 10.1016/b978-0-12-394306-4.00010-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Photodynamic therapy (PDT) is a promising therapeutic modality for cancer treatment; however, a more detailed understanding is needed to improve the clinical use of this therapy. PDT induces cancer cell death by apoptosis, necrosis, and autophagy, and these mechanisms can be concurrently occurred. PDT destroys cancer cells by inducing apoptosis through diverse signaling pathways coupled with Bcl-2 family members, caspases, and apopotosis-inducing factor. When the apoptotic pathway is unavailable, PDT can cause cancer cell death through induction of a necrotic or autophagic mechanism. Autophagy is occurred in a Bax-independent manner and can be stimulated in parallel with apoptosis. PDT directly destroys cancer cells by inducing either apoptotic or necrotic death. PDT also can induce autophagy as a death or a survival mechanism. These mechanisms are dependent on a variety of parameters including the nature of the photosensitizer, PDT dose, and cell genotype. Understanding the complex cross talk between these pathways may improve the effectiveness of PDT. Here, we discuss the interplay between these mechanisms based on recent evidence and suggest prospects with regard to advances in PDT.
Collapse
Affiliation(s)
- Je-Ok Yoo
- Department of Molecular and Cellular Biochemistry, Kangwon National University School of Medicine, Chuncheon, Kangwon-do, South Korea
| | | |
Collapse
|
30
|
Rubio N, Coupienne I, Di Valentin E, Heirman I, Grooten J, Piette J, Agostinis P. Spatiotemporal autophagic degradation of oxidatively damaged organelles after photodynamic stress is amplified by mitochondrial reactive oxygen species. Autophagy 2012; 8:1312-24. [PMID: 22889744 PMCID: PMC3442878 DOI: 10.4161/auto.20763] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although reactive oxygen species (ROS) have been reported to evoke different autophagic pathways, how ROS or their secondary products modulate the selective clearance of oxidatively damaged organelles is less explored. To investigate the signaling role of ROS and the impact of their compartmentalization in autophagy pathways, we used murine fibrosarcoma L929 cells overexpressing different antioxidant enzymes targeted to the cytosol or mitochondria and subjected them to photodynamic (PD) stress with the endoplasmic reticulum (ER)-associated photosensitizer hypericin. We show that following apical ROS-mediated damage to the ER, predominantly cells overexpressing mitochondria-associated glutathione peroxidase 4 (GPX4) and manganese superoxide dismutase (SOD2) displayed attenuated kinetics of autophagosome formation and overall cell death, as detected by computerized time-lapse microscopy. Consistent with a primary ER photodamage, kinetics and colocalization studies revealed that photogenerated ROS induced an initial reticulophagy, followed by morphological changes in the mitochondrial network that preceded clearance of mitochondria by mitophagy. Overexpression of cytosolic and mitochondria-associated GPX4 retained the tubular mitochondrial network in response to PD stress and concomitantly blocked the progression toward mitophagy. Preventing the formation of phospholipid hydroperoxides and H(2)O(2) in the cytosol as well as in the mitochondria significantly reduced cardiolipin peroxidation and apoptosis. All together, these results show that in response to apical ER photodamage ROS propagate to mitochondria, which in turn amplify ROS production, thereby contributing to two antagonizing processes, mitophagy and apoptosis.
Collapse
Affiliation(s)
- Noemi Rubio
- Virology and Immunology Unit; GIGA-R, GIGA B34; University of Liège; Liège, Belgium
- Cell Death Research & Therapy Laboratory; Cellular and Molecular Medicine Department; KU Leuven; Leuven, Belgium
| | - Isabelle Coupienne
- Virology and Immunology Unit; GIGA-R, GIGA B34; University of Liège; Liège, Belgium
| | - Emmanuel Di Valentin
- Virology and Immunology Unit; GIGA-R, GIGA B34; University of Liège; Liège, Belgium
| | - Ingeborg Heirman
- Molecular Immunology Laboratory; Ghent University; Ghent, Belgium
| | - Johan Grooten
- Molecular Immunology Laboratory; Ghent University; Ghent, Belgium
| | - Jacques Piette
- Virology and Immunology Unit; GIGA-R, GIGA B34; University of Liège; Liège, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy Laboratory; Cellular and Molecular Medicine Department; KU Leuven; Leuven, Belgium
| |
Collapse
|
31
|
Korytowski W, Basova LV, Pilat A, Kernstock RM, Girotti AW. Permeabilization of the mitochondrial outer membrane by Bax/truncated Bid (tBid) proteins as sensitized by cardiolipin hydroperoxide translocation: mechanistic implications for the intrinsic pathway of oxidative apoptosis. J Biol Chem 2011; 286:26334-43. [PMID: 21642428 PMCID: PMC3143596 DOI: 10.1074/jbc.m110.188516] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 05/12/2011] [Indexed: 12/31/2022] Open
Abstract
Cytochrome c (cyt c) release upon oxidation of cardiolipin (CL) in the mitochondrial inner membrane (IM) under oxidative stress occurs early in the intrinsic apoptotic pathway. We postulated that CL oxidation mobilizes not only cyt c but also CL itself in the form of hydroperoxide (CLOOH) species. Relatively hydrophilic CLOOHs could assist in apoptotic signaling by translocating to the outer membrane (OM), thus promoting recruitment of the pro-apoptotic proteins truncated Bid (tBid) and Bax for generation of cyt c-traversable pores. Initial testing of these possibilities showed that CLOOH-containing liposomes were permeabilized more readily by tBid plus Ca(2+) than CL-containing counterparts. Moreover, CLOOH translocated more rapidly from IM-mimetic to OM-mimetic liposomes than CL and permitted more extensive OM permeabilization. We found that tBid bound more avidly to CLOOH-containing membranes than to CL counterparts, and binding increased with increasing CLOOH content. Permeabilization of CLOOH-containing liposomes in the presence of tBid could be triggered by monomeric Bax, consistent with tBid/Bax cooperation in pore formation. Using CL-null mitochondria from a yeast mutant, we found that tBid binding and cyt c release were dramatically enhanced by transfer acquisition of CLOOH. Additionally, we observed a pre-apoptotic IM-to-OM transfer of oxidized CL in cardiomyocytes treated with the Complex III blocker, antimycin A. These findings provide new mechanistic insights into the role of CL oxidation in the intrinsic pathway of oxidative apoptosis.
Collapse
Affiliation(s)
- Witold Korytowski
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
- the Institute of Molecular Biology, Jagiellonian University, Krakow 30-387, Poland
| | - Liana V. Basova
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Anna Pilat
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Robert M. Kernstock
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Albert W. Girotti
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| |
Collapse
|
32
|
Ogino T, Kobuchi H, Munetomo K, Fujita H, Yamamoto M, Utsumi T, Inoue K, Shuin T, Sasaki J, Inoue M, Utsumi K. Serum-dependent export of protoporphyrin IX by ATP-binding cassette transporter G2 in T24 cells. Mol Cell Biochem 2011; 358:297-307. [PMID: 21748335 DOI: 10.1007/s11010-011-0980-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/29/2011] [Indexed: 12/23/2022]
Abstract
Accumulation of protoporphyrin IX (PpIX) in cancer cells is a basis of 5-aminolevulinic acid (ALA)-induced photodymanic therapy. We studied factors that affect PpIX accumulation in human urothelial carcinoma cell line T24, with particular emphasis on ATP-binding cassette transporter G2 (ABCG2) and serum in the medium. When the medium had no fetal bovine serum (FBS), ALA induced PpIX accumulation in a time- and ALA concentration-dependent manner. Inhibition of heme-synthesizing enzyme, ferrochelatase, by nitric oxide donor (Noc18) or deferoxamine resulted in a substantial increase in the cellular PpIX accumulation, whereas ABCG2 inhibition by fumitremorgin C or verapamil induced a slight PpIX increase. When the medium was added with FBS, cellular accumulation of PpIX stopped at a lower level with an increase of PpIX in the medium, which suggested PpIX efflux. ABCG2 inhibitors restored the cellular PpIX level to that of FBS(-) samples, whereas ferrochelatase inhibitors had little effects. Bovine serum albumin showed similar effects to FBS. Fluorescence microscopic observation revealed that inhibitors of ABC transporter affected the intracellular distribution of PpIX. These results indicated that ABCG2-mediated PpIX efflux was a major factor that prevented PpIX accumulation in cancer cells in the presence of serum. Inhibition of ABCG2 transporter system could be a new target for the improvement of photodynamic therapy.
Collapse
Affiliation(s)
- Tetsuya Ogino
- Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Okayama 700-8558, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Preparation and Characterization of Stealth Archaeosomes Based on a Synthetic PEGylated Archaeal Tetraether Lipid. JOURNAL OF DRUG DELIVERY 2011; 2011:396068. [PMID: 21603209 PMCID: PMC3095417 DOI: 10.1155/2011/396068] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 01/04/2011] [Accepted: 01/20/2011] [Indexed: 12/20/2022]
Abstract
The present studies were focused on the formation and characterization of sterically stabilized archaeosomes made from a synthetic PEGylated archaeal lipid. In a first step, a synthetic archaeal tetraether bipolar lipid was functionalized with a poly(ethylene glycol), PEG, and (PEG(45)-Tetraether) with the aim of coating the archaeosome surface with a sterically stabilizing hydrophilic polymer. In a second step, Egg-PC/PEG(45)-Tetraether (90/10 wt%) archaeosomes were prepared, and their physicochemical characteristics were determined by dynamic light scattering (size, polydispersity), cryo-TEM (morphology), and by high-performance thin layer chromatography (lipid composition), in comparison with standard Egg-PC/PEG(45)-DSPE formulations. Further, a fluorescent dye, the carboxyfluorescein, was encapsulated into the prepared archaeosomes in order to evaluate the potential of such nanostructures as drug carriers. Release studies have shown that the stability of Egg-PC/PEG(45)-Tetraether-based archaeosomes is significantly higher at 37°C than the one of Egg-PC/PEG(45)-DSPE-based liposomes, as evidenced by the slower release of the dye encapsulated into PEGylated archaeosomes. This enhanced stability could be related to the membrane spanning properties of the archaeal bipolar lipid as already described with natural or synthetic tetraether lipids.
Collapse
|
34
|
Kim J, Rodriguez ME, Oleinick NL, Anderson VE. Photo-oxidation of cardiolipin and cytochrome c with bilayer-embedded Pc 4. Free Radic Biol Med 2010; 49:718-25. [PMID: 20510355 PMCID: PMC2921921 DOI: 10.1016/j.freeradbiomed.2010.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 04/30/2010] [Accepted: 05/15/2010] [Indexed: 12/20/2022]
Abstract
Singlet oxygen, (1)O(2), is produced by absorption of red light by the phthalocyanine dye Pc 4, followed by energy transfer to dissolved triplet molecular oxygen, (3)O(2). In tissues, Pc 4 concentrates in lipid bilayers, and particularly in mitochondrial membranes, because of its positive charge. Illumination of cells and tissues with red light after uptake of Pc 4 results in cell death. The potential initial chemical steps that result in cellular dysfunction have been characterized in this study. Both unsaturated acyl chains of phospholipids and proteins are identified as targets of oxidation. Tetra-linoleoyl cardiolipin was oxidized in both liposomes and mitochondria after Pc 4-mediated (1)O(2) generation. Evidence for the formation of both mono- and bis-hydroperoxide adducts of single linoleoyl side chains is provided by ESI-MS and ESI-MS/MS. Similarly, illumination of Pc 4 in liposomes and mitochondria resulted in cytochrome c oxidation as detected by oxidation of His 26 in the peptide H(26)*KTGPNLHGLFGK, further supporting the potential use of this peptide as a biomarker for the presence of mitochondrial oxidative stress characteristic of (1)O(2) in vivo (J. Kim et al., Free Radic. Biol. Med. 44:1700-1711; 2008). These observations provide evidence that formation of lipid hydroperoxides and/or protein oxidation can be the initial chemical steps in Pc 4-mediated induction of apoptosis in photodynamic therapy.
Collapse
Affiliation(s)
- Junhwan Kim
- Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Myriam E. Rodriguez
- Department of Radiation Oncology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Department of Dermatology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Nancy L. Oleinick
- Department of Radiation Oncology, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| | - Vernon E. Anderson
- Department of Biochemistry, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
- Correspondence to: Division of Pharmacology, Physiology and Biological Chemistry NIGMS Building 45, Room 2As.43J Bethesda, MD 20892 301-594-3827 (phone) 301-480-2802 (fax)
| |
Collapse
|
35
|
Rodriguez ME, Kim J, Delos Santos GB, Azizuddin K, Berlin J, Anderson VE, Kenney ME, Oleinick NL. Binding to and photo-oxidation of cardiolipin by the phthalocyanine photosensitizer Pc 4. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:051604. [PMID: 21054078 PMCID: PMC2945736 DOI: 10.1117/1.3484256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 05/20/2010] [Accepted: 05/26/2010] [Indexed: 05/30/2023]
Abstract
Cardiolipin is a unique phospholipid of the mitochondrial inner membrane. Its peroxidation correlates with release of cytochrome c and induction of apoptosis. The phthalocyanine photosensitizer Pc 4 binds preferentially to the mitochondria and endoplasmic reticulum. Earlier Förster resonance energy transfer studies showed colocalization of Pc 4 and cardiolipin, which suggests cardiolipin as a target of photodynamic therapy (PDT) with Pc 4. Using liposomes as membrane models, we find that Pc 4 binds to cardiolipin-containing liposomes similarly to those that do not contain cardiolipin. Pc 4 binding is also studied in MCF-7c3 cells and those whose cardiolipin content was reduced by treatment with palmitate. Decreased levels of cardiolipin are quantified by thin-layer chromatography. The similar level of binding of Pc 4 to cells, irrespective of palmitate treatment, supports the lack of specificity of Pc 4 binding. Thus, factors other than cardiolipin are likely responsible for the preferential localization of Pc 4 in mitochondria. Nonetheless, cardiolipin within liposomes is readily oxidized by Pc 4 and light, yielding apparently mono- and dihydroperoxidized cardiolipin. If similar products result from exposure of cells to Pc 4-PDT, they could be part of the early events leading to apoptosis following Pc 4-PDT.
Collapse
Affiliation(s)
- Myriam E Rodriguez
- Case Western Reserve University, Department of Radiation Oncology, Cleveland, Ohio 44106-4942, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Machado AHA, Moraes KCM, Soares CP, Junior MB, da Silva NS. Cellular Changes After Photodynamic Therapy on HEp-2 Cells Using the New ZnPcBr8 Phthalocyanine. Photomed Laser Surg 2010; 28 Suppl 1:S143-9. [DOI: 10.1089/pho.2009.2561] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Karen C. M. Moraes
- Universidade Federal de Ouro Preto (UFOP), NUPEB, DECBI, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
37
|
Biasutto L, Dong LF, Zoratti M, Neuzil J. Mitochondrially targeted anti-cancer agents. Mitochondrion 2010; 10:670-81. [PMID: 20601192 DOI: 10.1016/j.mito.2010.06.004] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2010] [Revised: 06/20/2010] [Accepted: 06/23/2010] [Indexed: 01/12/2023]
Abstract
Cancer is an ever-increasing problem that is yet to be harnessed. Frequent mutations make this pathology very variable and, consequently, a considerable challenge. Intriguingly, mitochondria have recently emerged as novel targets for cancer therapy. A group of agents with anti-cancer activity that induce apoptosis by way of mitochondrial destabilisation, termed mitocans, have been a recent focus of research. Of these compounds, many are hydrophobic agents that associate with various sub-cellular organelles. Clearly, modification of such structures with mitochondria-targeting moieties, for example tagging them with lipophilic cations, would be expected to enhance their activity. This may be accomplished by the addition of triphenylphosphonium groups that direct such compounds to mitochondria, enhancing their activity. In this paper, we will review agents that possess anti-cancer activity by way of destabilizing mitochondria and their possible targets. We propose that mitochondrial targeting, in particular where the agent associates directly with the target, results in more specific and efficient anti-cancer drugs of potential high clinical relevance.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Institute of Neuroscience and Dept. of Experimental Biomedical Sciences, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
38
|
Montero J, Mari M, Colell A, Morales A, Basañez G, Garcia-Ruiz C, Fernández-Checa JC. Cholesterol and peroxidized cardiolipin in mitochondrial membrane properties, permeabilization and cell death. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1797:1217-24. [PMID: 20153716 PMCID: PMC2889134 DOI: 10.1016/j.bbabio.2010.02.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/04/2010] [Accepted: 02/08/2010] [Indexed: 02/06/2023]
Abstract
Mitochondria are known to actively regulate cell death with the final phenotype of demise being determined by the metabolic and energetic status of the cell. Mitochondrial membrane permeabilization (MMP) is a critical event in cell death, as it regulates the degree of mitochondrial dysfunction and the release of intermembrane proteins that function in the activation and assembly of caspases. In addition to the crucial role of proapoptotic members of the Bcl-2 family, the lipid composition of the mitochondrial membranes is increasingly recognized to modulate MMP and hence cell death. The unphysiological accumulation of cholesterol in mitochondrial membranes regulates their physical properties, facilitating or impairing MMP during Bax and death ligand-induced cell death depending on the level of mitochondrial GSH (mGSH), which in turn regulates the oxidation status of cardiolipin. Cholesterol-mediated mGSH depletion stimulates TNF-induced reactive oxygen species and subsequent cardiolipin peroxidation, which destabilizes the lipid bilayer and potentiates Bax-induced membrane permeabilization. These data suggest that the balance of mitochondrial cholesterol to peroxidized cardiolipin regulates mitochondrial membrane properties and permeabilization, emerging as a rheostat in cell death.
Collapse
Affiliation(s)
- Joan Montero
- Liver Unit and Centro de Investigaciones Biomédicas Esther Koplowitz, IMDiM, Hospital Clínic i Provincial and CIBEREHD, IDIBAPS, and Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas de Barcelona, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
39
|
Marí M, Colell A, Morales A, von Montfort C, Garcia-Ruiz C, Fernández-Checa JC. Redox control of liver function in health and disease. Antioxid Redox Signal 2010; 12:1295-331. [PMID: 19803748 PMCID: PMC2864660 DOI: 10.1089/ars.2009.2634] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS), a heterogeneous population of biologically active intermediates, are generated as by-products of the aerobic metabolism and exhibit a dual role in biology. When produced in controlled conditions and in limited quantities, ROS may function as signaling intermediates, contributing to critical cellular functions such as proliferation, differentiation, and cell survival. However, ROS overgeneration and, particularly, the formation of specific reactive species, inflicts cell death and tissue damage by targeting vital cellular components such as DNA, lipids, and proteins, thus arising as key players in disease pathogenesis. Given the predominant role of hepatocytes in biotransformation and metabolism of xenobiotics, ROS production constitutes an important burden in liver physiology and pathophysiology and hence in the progression of liver diseases. Despite the recognized role of ROS in disease pathogenesis, the efficacy of antioxidants as therapeutics has been limited. A better understanding of the mechanisms, nature, and location of ROS generation, as well as the optimization of cellular defense strategies, may pave the way for a brighter future for antioxidants and ROS scavengers in the therapy of liver diseases.
Collapse
Affiliation(s)
- Montserrat Marí
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, and Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Bhowmick R, Girotti AW. Cytoprotective induction of nitric oxide synthase in a cellular model of 5-aminolevulinic acid-based photodynamic therapy. Free Radic Biol Med 2010; 48:1296-301. [PMID: 20138143 PMCID: PMC2856718 DOI: 10.1016/j.freeradbiomed.2010.01.040] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 01/18/2010] [Accepted: 01/28/2010] [Indexed: 12/30/2022]
Abstract
Photodynamic therapy (PDT) employs a photosensitizing agent, molecular oxygen, and visible light to generate reactive species that kill tumor and tumor vasculature cells. Nitric oxide produced by these cells could be procarcinogenic by inhibiting apoptosis or promoting angiogenesis and tumor growth. The purpose of this study was to determine whether tumor cells upregulate NO as a cytoprotective measure during PDT. Breast tumor COH-BR1 cells sensitized in their mitochondria with 5-aminolevulinic acid (ALA)-derived protoporphyrin IX died apoptotically after irradiation, ALA- and light-only controls showing no effect. Western analysis revealed that inducible nitric oxide synthase (iNOS) was upregulated >3-fold within 4 h after ALA/light treatment, whereas other NOS isoforms were unaffected. Exposing cells to a NOS inhibitor (L-NAME or 1400W) during photochallenge enhanced caspase-3/7 activation and apoptotic killing up to 2- to 3-fold while substantially reducing chemiluminescence-assessed NO production, suggesting that this NO was cytoprotective. Consistently, the NO scavenger cPTIO enhanced ALA/light-induced caspase-3/7 activation and apoptotic kill by >2.5-fold. Of added significance, cells could be rescued from 1400W-exacerbated apoptosis by an exogenous NO donor, spermine-NONOate. This is the first reported evidence for increased tumor cell resistance due to iNOS upregulation in a PDT model. Our findings indicate that stress-elicited NO in PDT-treated tumors could compromise therapeutic efficacy and suggest NOS-based pharmacologic interventions for preventing this.
Collapse
Affiliation(s)
| | - Albert W. Girotti
- To whom correspondence should be addressed: Albert W. Girotti, Ph.D., Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, 53226, Tel: 414-955-8432, Fax: 414-955-6510,
| |
Collapse
|
41
|
Amo T, Kawanishi N, Uchida M, Fujita H, Oyanagi E, Utsumi T, Ogino T, Inoue K, Shuin T, Utsumi K, Sasaki J. Mechanism of cell death by 5-aminolevulinic acid-based photodynamic action and its enhancement by ferrochelatase inhibitors in human histiocytic lymphoma cell line U937. Cell Biochem Funct 2010; 27:503-15. [PMID: 19735078 DOI: 10.1002/cbf.1603] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Photodynamic therapy (PDT) for tumors is based on the tumor-selective accumulation of a photosensitizer, protoporphyrin IX (PpIX), followed by irradiation with visible light. However, the molecular mechanism of cell death caused by PDT has not been fully elucidated. The 5-aminolevulinic acid (ALA)-based photodynamic action (PDA) was dependent on the accumulation of PpIX, the level of which decreased rapidly by eliminating ALA from the incubation medium in human histiocytic lymphoma U937 cells. PDA induced apoptosis characterized by lipid peroxidation, increase in Bak and Bax/Bcl-xL, decrease in Bid, membrane depolarization, cytochrome c release, caspase-3 activation, phosphatidylserine (PS) externalization. PDT-induced cell death seemed to occur predominantly via apoptosis through distribution of PpIX in mitochondria. These cell death events were enhanced by ferrochelatase inhibitors. These results indicated that ALA-based-PDA induced apoptotic cell death through a mitochondrial pathway and that ferrochelatase inhibitors might enhanced the effect of PDT for tumors even at low concentrations of ALA.
Collapse
Affiliation(s)
- Takashi Amo
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Photodynamic properties of ZnTPPS4, ClAlPcS2 and ALA in human melanoma G361 cells. Toxicol In Vitro 2010; 24:286-91. [DOI: 10.1016/j.tiv.2009.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Revised: 08/13/2009] [Accepted: 08/25/2009] [Indexed: 12/15/2022]
|
43
|
Oxidative lipidomics of apoptosis: quantitative assessment of phospholipid hydroperoxides in cells and tissues. Methods Mol Biol 2010; 610:353-74. [PMID: 20013189 DOI: 10.1007/978-1-60327-029-8_21] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oxidized phospholipids play essential roles in execution of mitochondrial stage of apoptosis and clearance of apoptotic cells. The identification and quantification of oxidized phospholipids generated during apoptosis can be successfully achieved by oxidative lipidomics. With this approach, diverse molecular species of phospholipids and their hydroperoxides are identified and characterized by soft-ionization mass-spectrometry techniques such as electrospray ionization (ESI). Quantitative assessment of lipid hydroperoxides is performed by fluorescence HPLC-based protocol. The protocol is based on separation of phospholipids using two-dimensional-high-performance thin-layer chromatography (2-D-HPTLC). Phospholipids are hydrolyzed using phospholipase A(2). The fatty acid hydroperoxides (FA-OOH) released is quantified by a fluorometric assay using Amplex red reagent and microperoxidase-11 (MP-11). Detection limit of this protocol is 1-2 pmol of lipid hydroperoxides. Lipid arrays vs. oxidized lipid arrays can be performed by comparing the abundance of phospholipids with the abundance of oxidized phospholipids. Using oxidative lipidomics approach we show that the pattern of phospholipid oxidation during apoptosis is nonrandom and does not follow their abundance in several types of cells undergoing apoptosis and a variety of disease states. This has important implications for evaluation of apoptosis in vivo. The anionic phospholipids, cardiolipin (CL) and phosphatidylserine (PS), are the preferred peroxidation substrates.
Collapse
|
44
|
Bhowmick R, Girotti AW. Signaling events in apoptotic photokilling of 5-aminolevulinic acid-treated tumor cells: inhibitory effects of nitric oxide. Free Radic Biol Med 2009; 47:731-40. [PMID: 19524035 PMCID: PMC2761093 DOI: 10.1016/j.freeradbiomed.2009.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 06/04/2009] [Accepted: 06/08/2009] [Indexed: 12/19/2022]
Abstract
Antitumor photodynamic therapy (PDT) employs a photosensitizing agent, molecular oxygen, and visible light to produce reactive oxygen species that can destroy tumor and tumor vasculature cells. NO produced by these cells could be procarcinogenic by inhibiting apoptosis and promoting angiogenesis and tumor growth. We recently showed that NO from a chemical donor or activated macrophages makes COH-BR1 breast tumor cells more resistant to photokilling sensitized by 5-aminolevulinic acid (ALA)-generated protoporphyrin IX (PpIX). Signaling events associated with this hyperresistance have now been examined. ALA-treated COH-BR1 cells containing mitochondria-localized PpIX died mainly by apoptosis after being irradiated. Underlying redox signaling associated with MAP kinase (ERK1/2, p38, JUN) phosphorylation-activation, and heme oxygenase-1 (HO-1) upregulation was studied using immunoprecipitation and Western blot methodology. ALA/light treatment resulted in activation of proapoptotic JNK and p38 alpha, and deactivation of prosurvival p38 beta and ERK1/2. Involvement of both JNK and p38 in apoptosis was established by using a specific inhibitor for each. Spermine NONOate-derived NO, introduced immediately before irradiation, provided substantial protection against apoptosis. This was accompanied by greater HO-1 induction and a strong inhibition of each MAP kinase effect seen in the absence of NO. Downstream of JNK and p38 alpha activation, a marked upregulation/activation of proapoptotic Bax and Bid was observed along with down-regulation of antiapoptotic Bcl-xL, each response being reversed by NO. These findings provide new insights into signaling activity associated with the intrinsic apoptotic pathway in ALA-PDT and how this activity can be modulated by NO.
Collapse
Affiliation(s)
- Reshma Bhowmick
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | |
Collapse
|
45
|
Liang H, Ran Q, Jang YC, Holstein D, Lechleiter J, McDonald-Marsh T, Musatov A, Song W, Remmen HV, Richardson A. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic Biol Med 2009; 47:312-20. [PMID: 19447173 PMCID: PMC2773016 DOI: 10.1016/j.freeradbiomed.2009.05.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 04/07/2009] [Accepted: 05/08/2009] [Indexed: 01/18/2023]
Abstract
Glutathione peroxidase 4 (Gpx4) is a unique antioxidant enzyme that repairs oxidative damage to biomembranes. In this study, we examined the effects of Gpx4 on the release of various apoptogenic proteins from mitochondria using transgenic mice overexpressing Gpx4 [Tg(GPX4(+/0))] and mice deficient in Gpx4 (Gpx4+/- mice). Diquat exposure triggered apoptosis that occurred through an intrinsic pathway and resulted in the mitochondrial release of cytochrome c (Cyt c), Smac/DIABLO, and Omi/HtrA2 in the liver of wild-type (Wt) mice. Liver apoptosis and Cyt c release were suppressed in Tg(GPX4(+/0)) mice but exacerbated in Gpx4+/- mice; however, neither the Tg(GPX4(+/0)) nor the Gpx4+/- mice showed any alterations in the levels of Smac/DIABLO or Omi/HtrA2 released from mitochondria. Submitochondrial fractionation data showed that Smac/DIABLO and Omi/HtrA2 existed primarily in the intermembrane space and matrix, whereas Cyt c and Gpx4 were both associated with the inner membrane. In addition, diquat exposure induced cardiolipin peroxidation in the liver of Wt mice; the levels of cardiolipin peroxidation were reduced in Tg(GPX4(+/0)) mice but elevated in Gpx4+/- mice. These data suggest that Gpx4 differentially regulates apoptogenic protein release owing to its inner membrane location in mitochondria and its ability to repair cardiolipin peroxidation.
Collapse
Affiliation(s)
- Hanyu Liang
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Qitao Ran
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- Department of The Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| | - Youngmok Charles Jang
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Deborah Holstein
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - James Lechleiter
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- Department of The Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Tiffany McDonald-Marsh
- Department of Biochemistry, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Andrej Musatov
- Department of Biochemistry, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Wook Song
- The Department of Physical Education at Seoul National University, Seoul 151-742, Korea
| | - Holly Van Remmen
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- Department of The Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| | - Arlan Richardson
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- Department of The Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| |
Collapse
|
46
|
Schug ZT, Gottlieb E. Cardiolipin acts as a mitochondrial signalling platform to launch apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:2022-31. [PMID: 19450542 DOI: 10.1016/j.bbamem.2009.05.004] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2008] [Revised: 05/06/2009] [Accepted: 05/08/2009] [Indexed: 11/16/2022]
Abstract
Cardiolipin (CL) is a unique anionic phospholipid specific to the mitochondria. CL influences the activity of electron transport chain enzyme complexes as well as members of the Bcl-2 family. Interactions between Bcl-2 family members and other pro-apoptotic enzymes have been shown to be crucial for the transduction of the apoptotic signalling cascades during programmed cell death. Targeting of tBid to the mitochondria, which is necessary for Bax/Bak oligomerization and cristae remodelling, is dependent on the exposure of CL at contact sites between the inner and outer mitochondrial membranes. Also, the mobilization of cytochrome c, another key apoptotic event, is tightly regulated by the oxidative state of cardiolipin. Moreover, CL has been shown to be essential for translocation and autoprocessing of caspase-8 on the mitochondria after death receptor stimulation. Deficiencies in CL inhibit the formation of tBid and prevent apoptosis by removing an essential activation platform for the autoprocessing of caspase-8. It is now apparent that CL acts as a crucial signalling platform from which it orchestrates apoptosis by integrating signals from a variety of death inducing proteins.
Collapse
Affiliation(s)
- Zachary T Schug
- Cancer Research UK, The Beatson Institute for Cancer Research, Glasgow, G61 1BD, UK
| | | |
Collapse
|
47
|
Kriska T, Levchenko VV, Chu FF, Esworthy RS, Girotti AW. Novel enrichment of tumor cell transfectants expressing high levels of type 4 glutathione peroxidase using 7alpha-hydroperoxycholesterol as a selection agent. Free Radic Biol Med 2008; 45:700-7. [PMID: 18554519 PMCID: PMC2603420 DOI: 10.1016/j.freeradbiomed.2008.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Revised: 05/07/2008] [Accepted: 05/23/2008] [Indexed: 01/18/2023]
Abstract
A novel approach for selecting high expressing cells out of a general population that had been transfected with a construct encoding cytosolic type 4 glutathione peroxidase (GPx4) is reported. The approach is described for GPx4-null COH-BR1 breast tumor cells and is based on use of a highly specific GPx4 substrate, 7alpha-hydroperoxycholesterol (7alpha-OOH), as a selection agent. Cells recovering from a highly toxic dose of liposomal 7alpha-OOH were found to be substantially more resistant to a second 7alpha-OOH challenge than cells recovering from a less toxic dose, but were much less resistant to t-butyl hydroperoxide (t-BuOOH) or H2O2. Several clones isolated from the general transfectant population exhibited variable, relatively low GPx4 activities. However, clones from the 7alpha-OOH-selected population exhibited uniformly high GPx4 activities (each approximately 3-fold higher than that of the starting transfectant population) and elevated steady-state mRNA levels. t-BuOOH could also be used for selecting high GPx4-expressing cells, but consistent recovery from toxic doses was more difficult than with 7alpha-OOH. Compared with conventional "hit or miss" cloning procedures, the 7alpha-OOH approach we describe affords a uniform population of high GPx4-activity cells in a relatively rapid manner. This approach should prove valuable for investigators interested in the peroxide regulatory properties of GPx4, in the context of both cytoprotection and redox signaling.
Collapse
Affiliation(s)
- Tamas Kriska
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Fong-Fong Chu
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - R. Steven Esworthy
- Department of Radiation Biology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Albert W. Girotti
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- To whom correspondence should be addressed: Prof. Albert W. Girotti, Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, 53226, Phone: 414-456-8432, Fax: 414-456-6510, E-mail:
| |
Collapse
|
48
|
Marí M, Colell A, Morales A, Caballero F, Moles A, Fernández A, Terrones O, Basañez G, Antonsson B, García-Ruiz C, Fernández-Checa JC. Mechanism of mitochondrial glutathione-dependent hepatocellular susceptibility to TNF despite NF-kappaB activation. Gastroenterology 2008; 134:1507-20. [PMID: 18343380 DOI: 10.1053/j.gastro.2008.01.073] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Accepted: 01/18/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Nuclear factor kappaB (NF-kappaB) is the master regulator of tumor necrosis factor (TNF) susceptibility. Although mitochondrial glutathione (mGSH) depletion was shown to sensitize hepatocytes to TNF despite NF-kappaB activation, the mechanisms involved, particularly the role of Bax oligomerization and mitochondrial outer membrane (MOM) permeabilization, 2 critical steps in cell death, remained unexplored. METHODS TNF signaling at the premitochondrial and mitochondrial levels was analyzed in primary mouse hepatocytes with or without mGSH depletion. RESULTS Unexpectedly, we observed that TNF activates caspase-8 independently of NF-kappaB inactivation, causing Bid cleavage and mitochondrial Bax oligomerization. However, their predicted consequences on MOM permeabilization, cytochrome c release, caspase-3 activation, and hepatocellular death occurred only on mGSH depletion. These events were preceded by stimulated mitochondrial reactive oxygen species that predominantly oxidized cardiolipin, changes not observed in acidic sphingomyelinase (ASMase)(-/-) hepatocytes. Oxidized cardiolipin potentiated oligomerized Bax-induced MOM-like liposome permeabilization by restructuring the lipid bilayer, without effect on membrane Bax insertion or oligomerization. ASMase(-/-) mice with mGSH depletion by cholesterol loading were resistant to TNF-induced liver injury in vivo. CONCLUSIONS Thus, MOM-localized oligomeric Bax is not sufficient for TNF-induced MOM permeabilization and cell death requiring mGSH-controlled ASMase-mediated mitochondrial membrane remodeling by oxidized cardiolipin generation.
Collapse
Affiliation(s)
- Montserrat Marí
- Liver Unit and Centro de Investigaciones Biomédicas Esther Koplowitz, IMDiM, Hospital Clínic i Provincial, and CIBEREHD, IDIBAPS, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Rodriguez ME, Azizuddin K, Zhang P, Chiu SM, Lam M, Kenney ME, Burda C, Oleinick NL. Targeting of mitochondria by 10-N-alkyl acridine orange analogues: role of alkyl chain length in determining cellular uptake and localization. Mitochondrion 2008; 8:237-46. [PMID: 18514589 DOI: 10.1016/j.mito.2008.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 04/08/2008] [Accepted: 04/11/2008] [Indexed: 10/22/2022]
Abstract
10-N-Nonyl acridine orange (NAO) is used as a mitochondrial probe because of its high affinity for cardiolipin (CL). Targeting of NAO may also depend on mitochondrial membrane potential. As the nonyl group has been considered essential for targeting, a systematic study of alkyl chain length was undertaken; three analogues (10-methyl-, 10-hexyl-, and 10-hexadecyl-acridine orange) were synthesized and their properties studied in phospholipid monolayers and breast cancer cells. The shortest and longest alkyl chains reduced targeting, whereas the hexyl group was superior to the nonyl group, allowing very clear and specific targeting to mitochondria at concentrations of 20-100 nM, where no evidence of toxicity was apparent. Additional studies in wild-type and cardiolipin-deficient yeast cells suggested that cellular binding was not absolutely dependent upon cardiolipin.
Collapse
Affiliation(s)
- Myriam E Rodriguez
- Department of Radiation Oncology, School of Medicine (BRB-324), Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4942, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ran Q, Liang H, Ikeno Y, Qi W, Prolla TA, Roberts LJ, Wolf N, Van Remmen H, VanRemmen H, Richardson A. Reduction in glutathione peroxidase 4 increases life span through increased sensitivity to apoptosis. J Gerontol A Biol Sci Med Sci 2007; 62:932-42. [PMID: 17895430 DOI: 10.1093/gerona/62.9.932] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Glutathione peroxidase 4 (Gpx4) is an antioxidant defense enzyme that plays an important role in detoxification of oxidative damage to membrane lipids. Because oxidative stress is proposed to play a causal role in aging, we compared the life spans of Gpx4 heterozygous knockout mice (Gpx4(+/-) mice) and wild-type mice (WT mice). To our surprise, the median life span of Gpx4(+/-) mice (1029 days) was significantly longer than that of WT mice (963 days) even though the expression of Gpx4 was reduced approximately 50% in all tissues of Gpx4(+/-) mice. Pathological analysis revealed that Gpx4(+/-) mice showed a delayed occurrence of fatal tumor lymphoma and a reduced severity of glomerulonephritis. Compared to WT mice, Gpx4(+/-) mice showed significantly increased sensitivity to oxidative stress-induced apoptosis. Our data indicate that lifelong reduction in Gpx4 increased life span and reduced/retarded age-related pathology most likely through alterations in sensitivity of tissues to apoptosis.
Collapse
Affiliation(s)
- Qitao Ran
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|