1
|
Myszkowska J, Klotz K, Leandro P, Kruger WD, Froese DS, Baumgartner MR, Spiekerkoetter U, Hannibal L. Real-time detection of enzymatically formed hydrogen sulfide by pathogenic variants of cystathionine beta-synthase using hemoglobin I of Lucina pectinata as a biosensor. Free Radic Biol Med 2024; 223:281-295. [PMID: 39067625 DOI: 10.1016/j.freeradbiomed.2024.07.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Classical homocystinuria is a rare disease caused by mutations in cystathionine β-synthase (CBS) gene (OMIM 613381). CBS catalyzes the first step of the transsulfuration pathway that converts homocysteine (Hcy) into cystathionine (Cysta) via a number of co-substrates and mechanisms. Formation of Cysta by condensation of Hcy and cysteine (Cys) produces a molar equivalent of hydrogen sulfide (H2S). H2S plays important roles in cognitive and vascular functions. Clinically, patients with CBS deficiency present with vascular, ocular, neurological and skeletal impairments. Biochemically, CBS deficiency manifests with elevated Hcy and reduced concentration of Cysta in plasma and urine. A number of pathogenic variants of human CBS have been characterized by their residual enzymatic activity, but very few studies have examined H2S production by pathogenic CBS variants, possibly due to technical hurdles in H2S detection and quantification. We describe a method for the real-time, continuous quantification of H2S formed by wild-type and pathogenic variants of human recombinant CBS, as well as by fibroblast extracts from healthy controls and patients diagnosed with CBS deficiency. The method takes advantage of the specificity and high affinity of hemoglobin I of the clam Lucina pectinata toward H2S and is based on UV-visible spectrophotometry. Comparison with the gold-standard, end-point H2S quantification method employing monobromobimane, as well as correlations with CBS enzymatic activity determined by LC-MS/MS showed agreement and correlation, and permitted the direct, time-resolved determination of H2S production rates by purified human recombinant CBS and by CBS present in fibroblast extracts. Rates of H2S production were highest for wild-type CBS, and lower for pathogenic variants. This method enables the examination of structural determinants of CBS that are important for H2S production and its possible relevance to the clinical outcome of patients.
Collapse
Affiliation(s)
- Joanna Myszkowska
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Katharina Klotz
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Paula Leandro
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003, Lisboa, Portugal
| | - Warren D Kruger
- Fox Chase Cancer Center, 333 Cottman Ave., Philadelphia, PA, 19111, USA
| | - D Sean Froese
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Matthias R Baumgartner
- Division of Metabolism and Children's Research Center, University Children's Hospital Zurich, University of Zurich, 8032, Zurich, Switzerland
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
2
|
Zuhra K, Petrosino M, Gupta B, Panagaki T, Cecconi M, Myrianthopoulos V, Schneiter R, Mikros E, Majtan T, Szabo C. Epigallocatechin gallate is a potent inhibitor of cystathionine beta-synthase: Structure-activity relationship and mechanism of action. Nitric Oxide 2022; 128:12-24. [PMID: 35973674 DOI: 10.1016/j.niox.2022.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 10/31/2022]
Abstract
Epigallocatechin gallate (EGCG) is the main bioactive component of green tea. Through screening of a small library of natural compounds, we discovered that EGCG inhibits cystathionine β-synthase (CBS), a major H2S-generating enzyme. Here we characterize EGCG's mechanism of action in the context of CBS-derived H2S production. In the current project, biochemical, pharmacological and cell biology approaches were used to characterize the effect of EGCG on CBS in cellular models of cancer and Down syndrome (DS). The results show that EGCG binds to CBS and inhibits H2S-producing CBS activity almost 30-times more efficiently than the canonical cystathionine formation (IC50 0.12 versus 3.3 μM). Through screening structural analogs and building blocks, we identified that gallate moiety of EGCG represents the pharmacophore responsible for CBS inhibition. EGCG is a mixed-mode, CBS-specific inhibitor with no effect on the other two major enzymatic sources of H2S, CSE and 3-MST. Unlike the prototypical CBS inhibitor aminooxyacetate, EGCG does not bind the catalytic cofactor of CBS pyridoxal-5'-phosphate. Molecular modeling suggests that EGCG blocks a substrate access channel to pyridoxal-5'-phosphate. EGCG inhibits cellular H2S production in HCT-116 colon cancer cells and in DS fibroblasts. It also exerts effects that are consistent with the functional role of CBS in these cells: in HCT-116 cells it decreases, while in DS cells it improves viability and proliferation. In conclusion, EGCG is a potent inhibitor of CBS-derived H2S production. This effect may contribute to its pharmacological effects in various pathophysiological conditions.
Collapse
Affiliation(s)
- Karim Zuhra
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Maria Petrosino
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Barkha Gupta
- Department of Biology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 10, Fribourg, 1700, Switzerland
| | - Theodora Panagaki
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Marco Cecconi
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland
| | - Vassilios Myrianthopoulos
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 10, Fribourg, 1700, Switzerland
| | - Emmanuel Mikros
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Athens, Athens, 15772, Greece
| | - Tomas Majtan
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland.
| | - Csaba Szabo
- Chair of Pharmacology, University of Fribourg, Faculty of Science and Medicine, Chemin du Musee 18, Fribourg, 1700, Switzerland.
| |
Collapse
|
3
|
Kim R, Nijhout HF, Reed MC. One-carbon metabolism during the menstrual cycle and pregnancy. PLoS Comput Biol 2021; 17:e1009708. [PMID: 34914693 PMCID: PMC8741061 DOI: 10.1371/journal.pcbi.1009708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/07/2022] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Many enzymes in one-carbon metabolism (OCM) are up- or down-regulated by the sex hormones which vary diurnally and throughout the menstrual cycle. During pregnancy, estradiol and progesterone levels increase tremendously to modulate physiological changes in the reproductive system. In this work, we extend and improve an existing mathematical model of hepatic OCM to understand the dynamic metabolic changes that happen during the menstrual cycle and pregnancy due to estradiol variation. In particular, we add the polyamine drain on S-adenosyl methionine and the direct effects of estradiol on the enzymes cystathionine β-synthase (CBS), thymidylate synthase (TS), and dihydrofolate reductase (DHFR). We show that the homocysteine concentration varies inversely with estradiol concentration, discuss the fluctuations in 14 other one-carbon metabolites and velocities throughout the menstrual cycle, and draw comparisons with the literature. We then use the model to study the effects of vitamin B12, vitamin B6, and folate deficiencies and explain why homocysteine is not a good biomarker for vitamin deficiencies. Additionally, we compute homocysteine throughout pregnancy, and compare the results with experimental data. Our mathematical model explains how numerous homeostatic mechanisms in OCM function and provides new insights into how homocysteine and its deleterious effects are influenced by estradiol. The mathematical model can be used by others for further in silico experiments on changes in one-carbon metabolism during the menstrual cycle and pregnancy.
Collapse
Affiliation(s)
- Ruby Kim
- Department of Mathematics, Duke University, Durham, North Carolina, United States of America
| | - H. Frederik Nijhout
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Michael C. Reed
- Department of Mathematics, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
4
|
Multiple roles of haem in cystathionine β-synthase activity: implications for hemin and other therapies of acute hepatic porphyria. Biosci Rep 2021; 41:229241. [PMID: 34251022 PMCID: PMC8298261 DOI: 10.1042/bsr20210935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 12/27/2022] Open
Abstract
The role of haem in the activity of cystathionine β-synthase (CBS) is reviewed and a hypothesis postulating multiple effects of haem on enzyme activity under conditions of haem excess or deficiency is proposed, with implications for some therapies of acute hepatic porphyrias. CBS utilises both haem and pyridoxal 5′-phosphate (PLP) as cofactors. Although haem does not participate directly in the catalytic process, it is vital for PLP binding to the enzyme and potentially also for CBS stability. Haem deficiency can therefore undermine CBS activity by impairing PLP binding and facilitating CBS degradation. Excess haem can also impair CBS activity by inhibiting it via CO resulting from haem induction of haem oxygenase 1 (HO 1), and by induction of a functional vitamin B6 deficiency following activation of hepatic tryptophan 2,3-dioxygenase (TDO) and subsequent utilisation of PLP by enhanced kynurenine aminotransferase (KAT) and kynureninase (Kynase) activities. CBS inhibition results in accumulation of the cardiovascular risk factor homocysteine (Hcy) and evidence is emerging for plasma Hcy elevation in patients with acute hepatic porphyrias. Decreased CBS activity may also induce a proinflammatory state, inhibit expression of haem oxygenase and activate the extrahepatic kynurenine pathway (KP) thereby further contributing to the Hcy elevation. The hypothesis predicts likely changes in CBS activity and plasma Hcy levels in untreated hepatic porphyria patients and in those receiving hemin or certain gene-based therapies. In the present review, these aspects are discussed, means of testing the hypothesis in preclinical experimental settings and porphyric patients are suggested and potential nutritional and other therapies are proposed.
Collapse
|
5
|
Lv H, Xu J, Bo T, Wang W. Characterization of Cystathionine β-Synthase TtCbs1 and Cysteine Synthase TtCsa1 Involved in Cysteine Biosynthesis in Tetrahymena thermophila. J Eukaryot Microbiol 2020; 68:e12834. [PMID: 33190347 DOI: 10.1111/jeu.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/21/2020] [Accepted: 11/07/2020] [Indexed: 12/19/2022]
Abstract
Cysteine is implicated in important biological processes. It is synthesized through two different pathways. Cystathionine β-synthase and cystathionine γ-lyase participate in the reverse transsulfuration pathway, while serine acetyltransferase and cysteine synthase function in the de novo pathway. Two evolutionarily related pyridoxal 5'-phosphate-dependent enzymes, cystathionine β-synthase TtCBS1 (TTHERM_00558300) and cysteine synthase TtCSA1 (TTHERM_00239430), were identified from a freshwater protozoan Tetrahymena thermophila. TtCbs1 contained the N-terminal heme binding domain, catalytic domain, and C-terminal regulatory domain, whereas TtCsa1 consisted of two α/β domains. The catalytic core of the two enzymes is similar. TtCBS1 and TtCSA1 showed high expression levels in the vegetative growth stage and decreased during the sexual developmental stage. TtCbs1 and TtCsa1 were localized in the cytoplasm throughout different developmental stages. His-TtCbs1 and His-TtCsa1 were expressed and purified in vitro. TtCbs1 catalyzed the canonical reaction with the highest velocity and possessed serine sulfhydrylase activity. TtCsa1 showed cysteine synthase activity with high Km for O-acetylserine and low Km for sulfide and also had serine sulfhydrylase activity toward serine. Both TtCbs1 and TtCsa1 catalyzed hydrogen sulfide producing. TtCBS1 knockdown and TtCSA1 knockout mutants affected cysteine and glutathione synthesis. TtCbs1 and TtCsa1 are involved in cysteine synthesis through two different pathways in T. thermophila.
Collapse
Affiliation(s)
- Hongrui Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Jing Xu
- School of Life Science, Shanxi University, Taiyuan, 030006, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Tao Bo
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| | - Wei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
6
|
Screening of Heteroaromatic Scaffolds against Cystathionine Beta-Synthase Enables Identification of Substituted Pyrazolo[3,4-c]Pyridines as Potent and Selective Orthosteric Inhibitors. Molecules 2020; 25:molecules25163739. [PMID: 32824311 PMCID: PMC7465669 DOI: 10.3390/molecules25163739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/08/2020] [Accepted: 08/15/2020] [Indexed: 11/17/2022] Open
Abstract
Cystathionine β-synthase (CBS) is a key enzyme in the production of the signaling molecule hydrogen sulfide, deregulation of which is known to contribute to a range of serious pathological states. Involvement of hydrogen sulfide in pathways of paramount importance for cellular homeostasis renders CBS a promising drug target. An in-house focused library of heteroaromatic compounds was screened for CBS modulators by the methylene blue assay and a pyrazolopyridine derivative with a promising CBS inhibitory potential was discovered. The compound activity was readily comparable to the most potent CBS inhibitor currently known, aminoacetic acid, while a promising specificity over the related cystathionine γ-lyase was identified. To rule out any possibility that the inhibitor may bind the enzyme regulatory domain due to its high structural similarity with cofactor s-adenosylmethionine, differential scanning fluorimetry was employed. A sub-scaffold search guided follow-up screening of related compounds, providing preliminary structure-activity relationships with respect to requisites for efficient CBS inhibition by this group of heterocycles. Subsequently, a hypothesis regarding the exact binding mode of the inhibitor was devised on the basis of the available structure-activity relationships (SAR) and a deep neural networks analysis and further supported by induced-fit docking calculations.
Collapse
|
7
|
Majtan T, Krijt J, Sokolová J, Křížková M, Ralat MA, Kent J, Gregory JF, Kožich V, Kraus JP. Biogenesis of Hydrogen Sulfide and Thioethers by Cystathionine Beta-Synthase. Antioxid Redox Signal 2018; 28:311-323. [PMID: 28874062 DOI: 10.1089/ars.2017.7009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIMS The transsulfuration pathway enzymes cystathionine beta-synthase (CBS) and cystathionine gamma-lyase are thought to be the major source of hydrogen sulfide (H2S). In this study, we assessed the role of CBS in H2S biogenesis. RESULTS We show that despite discouraging enzyme kinetics of alternative H2S-producing reactions utilizing cysteine compared with the canonical condensation of serine and homocysteine, our simulations of substrate competitions at biologically relevant conditions suggest that cysteine is able to partially compete with serine on CBS, thus leading to generation of appreciable amounts of H2S. The leading H2S-producing reaction is condensation of cysteine with homocysteine, while cysteine desulfuration plays a dominant role when cysteine is more abundant than serine and homocysteine is limited. We found that the serine-to-cysteine ratio is the main determinant of CBS H2S productivity. Abundance of cysteine over serine, for example, in plasma, allowed for up to 43% of CBS activity being responsible for H2S production, while excess of serine typical for intracellular levels effectively limited such activity to less than 1.5%. CBS also produced lanthionine from serine and cysteine and a third of lanthionine coming from condensation of two cysteines contributed to the H2S pool. INNOVATION Our study characterizes the H2S-producing potential of CBS under biologically relevant conditions and highlights the serine-to-cysteine ratio as the main determinant of H2S production by CBS in vivo. CONCLUSION Our data clarify the function of CBS in H2S biogenesis and the role of thioethers as surrogate H2S markers. Antioxid. Redox Signal. 28, 311-323.
Collapse
Affiliation(s)
- Tomas Majtan
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| | - Jakub Krijt
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Jitka Sokolová
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Michaela Křížková
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Maria A Ralat
- 3 Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida , Gainesville, Florida
| | - Jana Kent
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| | - Jesse F Gregory
- 3 Department of Food Science and Human Nutrition, Institute of Food and Agricultural Sciences, University of Florida , Gainesville, Florida
| | - Viktor Kožich
- 2 Department of Pediatrics and Adolescent Medicine, Charles University-First Faculty of Medicine and General University Hospital in Prague , Prague, Czech Republic
| | - Jan P Kraus
- 1 Department of Pediatrics, University of Colorado , School of Medicine, Aurora, Colorado
| |
Collapse
|
8
|
Niu W, Wu P, Chen F, Wang J, Shang X, Xu C. Discovery of selective cystathionine β-synthase inhibitors by high-throughput screening with a fluorescent thiol probe. MEDCHEMCOMM 2016; 8:198-201. [PMID: 30108705 DOI: 10.1039/c6md00493h] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/14/2016] [Indexed: 01/27/2023]
Abstract
A high-throughput assay was developed to identify inhibitors of cystathionine β-synthase (CBS), which is one of three key enzymes involved in H2S biosynthesis. Screening of 6491 natural compounds identified several selective CBS inhibitors, which suppressed the proliferation of HT29 cancer cells, with IC50 values of less than 10 μM.
Collapse
Affiliation(s)
- Weining Niu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Ping Wu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Fei Chen
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Jun Wang
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Xiaoya Shang
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| | - Chunlan Xu
- Key Laboratory for Space Bioscience and Space Biotechnology , School of Life Sciences , Northwestern Polytechnical University , Xi'an , 710072 , China .
| |
Collapse
|
9
|
Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A. Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol 2014; 169:922-32. [PMID: 23488457 PMCID: PMC3687671 DOI: 10.1111/bph.12171] [Citation(s) in RCA: 319] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 02/01/2013] [Accepted: 02/17/2013] [Indexed: 12/01/2022] Open
Abstract
Background and Purpose Hydrogen sulfide (H2S) is a signalling molecule that belongs to the gasotransmitter family. Two major sources for endogenous enzymatic production of H2S are cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). In the present study, we examined the selectivity of commonly used pharmacological inhibitors of H2S biosynthesis towards CSE and CBS. Experimental Approach To address this question, human CSE or CBS enzymes were expressed and purified from Escherichia coli as fusion proteins with GSH-S-transferase. After purification, the activity of the recombinant enzymes was tested using the methylene blue method. Key Results β-cyanoalanine (BCA) was more potent in inhibiting CSE than propargylglycine (PAG) (IC50 14 ± 0.2 μM vs. 40 ± 8 μM respectively). Similar to PAG, L-aminoethoxyvinylglycine (AVG) only inhibited CSE, but did so at much lower concentrations. On the other hand, aminooxyacetic acid (AOAA), a frequently used CBS inhibitor, was more potent in inhibiting CSE compared with BCA and PAG (IC50 1.1 ± 0.1 μM); the IC50 for AOAA for inhibiting CBS was 8.5 ± 0.7 μM. In line with our biochemical observations, relaxation to L-cysteine was blocked by AOAA in aortic rings that lacked CBS expression. Trifluoroalanine and hydroxylamine, two compounds that have also been used to block H2S biosynthesis, blocked the activity of CBS and CSE. Trifluoroalanine had a fourfold lower IC50 for CBS versus CSE, while hydroxylamine was 60-fold more selective against CSE. Conclusions and Implications In conclusion, although PAG, AVG and BCA exhibit selectivity in inhibiting CSE versus CBS, no selective pharmacological CBS inhibitor is currently available.
Collapse
Affiliation(s)
- Antonia Asimakopoulou
- Department of Pharmacy, Laboratory of Molecular Pharmacology, University of Patras, Patras, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Majtan T, Pey AL, Fernández R, Fernández JA, Martínez-Cruz LA, Kraus JP. Domain organization, catalysis and regulation of eukaryotic cystathionine beta-synthases. PLoS One 2014; 9:e105290. [PMID: 25122507 PMCID: PMC4133348 DOI: 10.1371/journal.pone.0105290] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023] Open
Abstract
Cystathionine beta-synthase (CBS) is a key regulator of sulfur amino acid metabolism diverting homocysteine, a toxic intermediate of the methionine cycle, via the transsulfuration pathway to the biosynthesis of cysteine. Although the pathway itself is well conserved among eukaryotes, properties of eukaryotic CBS enzymes vary greatly. Here we present a side-by-side biochemical and biophysical comparison of human (hCBS), fruit fly (dCBS) and yeast (yCBS) enzymes. Preparation and characterization of the full-length and truncated enzymes, lacking the regulatory domains, suggested that eukaryotic CBS exists in one of at least two significantly different conformations impacting the enzyme’s catalytic activity, oligomeric status and regulation. Truncation of hCBS and yCBS, but not dCBS, resulted in enzyme activation and formation of dimers compared to native tetramers. The dCBS and yCBS are not regulated by the allosteric activator of hCBS, S-adenosylmethionine (AdoMet); however, they have significantly higher specific activities in the canonical as well as alternative reactions compared to hCBS. Unlike yCBS, the heme-containing dCBS and hCBS showed increased thermal stability and retention of the enzyme’s catalytic activity. The mass-spectrometry analysis and isothermal titration calorimetry showed clear presence and binding of AdoMet to yCBS and hCBS, but not dCBS. However, the role of AdoMet binding to yCBS remains unclear, unlike its role in hCBS. This study provides valuable information for understanding the complexity of the domain organization, catalytic specificity and regulation among eukaryotic CBS enzymes.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
| | - Angel L. Pey
- Department of Physical Chemistry, Faculty of Sciences, University of Granada, Granada, Spain
| | - Roberto Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - José A. Fernández
- Department of Physical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | | | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
11
|
Ren J, Zhang Y, Jin H, Yu J, Zhou Y, Wu F, Zhang W. Novel inhibitors of human DOPA decarboxylase extracted from Euonymus glabra Roxb. ACS Chem Biol 2014; 9:897-903. [PMID: 24471650 DOI: 10.1021/cb500009r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Dopamine, a biogenic amine with important biological functions, is produced from l-DOPA by DOPA decarboxylase (DDC). DDC is a potential target to modulate the production of dopamine in several pathological states. Known inhibitors of DDC have been used for treatment of Parkinson's disease but suffered low specificity and diverse side effects. In the present study, we identified and characterized a novel class of natural-product-based selective inhibitors for DDC from the extract of Euonymus glabra Roxb. by a newly developed high-throughput enzyme assay. The structures of these inhibitors are dimeric diarylpropane, a unique chemical structure containing a divalent dopamine motif. The most effective inhibitors 5 and 6 have an IC50 of 11.5 ± 1.6 and 21.6 ± 2.7 μM in an in vitro purified enzyme assay, respectively, but did not inhibit other homologous enzymes. Compound 5 but not 6 dose-dependently suppressed the activity of hDDC and dopamine levels at low micromolar concentrations in cells. Furthermore, structure-activity relationship analyses revealed that p-benzoquinone might be a crucial moiety of these inhibitors for inhibiting hDDC. The natural-product-based selective inhibitors of hDDC could serve as a chemical lead for developing improved drugs for dopamine-related disease states.
Collapse
Affiliation(s)
| | - Yuanyuan Zhang
- Key
Laboratory of Exploration and Utilization of Aquatic Genetic Resources,
Ministry of Education, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | | | | | | | | | | |
Collapse
|
12
|
Mendes MIS, Colaço HG, Smith DEC, Ramos RJJF, Pop A, van Dooren SJM, Tavares de Almeida I, Kluijtmans LAJ, Janssen MCH, Rivera I, Salomons GS, Leandro P, Blom HJ. Reduced response of Cystathionine Beta-Synthase (CBS) to S-Adenosylmethionine (SAM): Identification and functional analysis of CBS gene mutations in Homocystinuria patients. J Inherit Metab Dis 2014; 37:245-54. [PMID: 23974653 DOI: 10.1007/s10545-013-9647-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 11/29/2022]
Abstract
A reduced response of cystathionine beta-synthase (CBS) to its allosteric activator S-adenosylmethionine (SAM) has been reported to be a cause of CBS dysfunction in homocystinuria patients. In this work we performed a retrospective analysis of fibroblast data from 62 homocystinuria patients and found that 13 of them presented a disturbed SAM activation. Their genotypic background was identified and the corresponding CBS mutant proteins were produced in E. coli. Nine distinct mutations were detected in 22 independent alleles: the novel mutations p.K269del, p.P427L, p.S500L and p.L540Q; and the previously described mutations p.P49L, p.C165Rfs*2, p.I278T, p.R336H and p.D444N. Expression levels and residual enzyme activities, determined in the soluble fraction of E. coli lysates, strongly correlated with the localization of the affected amino acid residue. C-terminal mutations lead to activities in the range of the wild-type CBS and to oligomeric forms migrating faster than tetramers, suggesting an abnormal conformation that might be responsible for the lack of SAM activation. Mutations in the catalytic core were associated with low protein expression levels, decreased enzyme activities and a higher content of high molecular mass forms. Furthermore, the absence of SAM activation found in the patients' fibroblasts was confirmed for all but one of the characterized recombinant proteins (p.P49L). Our study experimentally supports a deficient regulation of CBS by SAM as a frequently found mechanism in CBS deficiency, which should be considered not only as a valuable diagnostic tool but also as a potential target for the development of new therapeutic approaches in classical homocystinuria.
Collapse
Affiliation(s)
- Marisa I S Mendes
- Metabolism and Genetics Group, Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Thorson MK, Majtan T, Kraus JP, Barrios AM. Identification of Cystathionine β-Synthase Inhibitors Using a Hydrogen Sulfide Selective Probe. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300841] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
14
|
Thorson MK, Majtan T, Kraus JP, Barrios AM. Identification of Cystathionine β-Synthase Inhibitors Using a Hydrogen Sulfide Selective Probe. Angew Chem Int Ed Engl 2013; 52:4641-4. [DOI: 10.1002/anie.201300841] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Indexed: 12/31/2022]
|
15
|
Su Y, Majtan T, Freeman KM, Linck R, Ponter S, Kraus JP, Burstyn JN. Comparative study of enzyme activity and heme reactivity in Drosophila melanogaster and Homo sapiens cystathionine β-synthases. Biochemistry 2013; 52:741-51. [PMID: 23002992 PMCID: PMC3751582 DOI: 10.1021/bi300615c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystathionine β-synthase (CBS) is the first and rate-limiting enzyme in the transsulfuration pathway, which is critical for the synthesis of cysteine from methionine in eukaryotes. CBS uses coenzyme pyridoxal 5'-phosphate (PLP) for catalysis, and S-adenosylmethionine regulates the activity of human CBS, but not yeast CBS. Human and fruit fly CBS contain heme; however, the role for heme is not clear. This paper reports biochemical and spectroscopic characterization of CBS from fruit fly Drosophila melanogaster (DmCBS) and the CO/NO gas binding reactions of DmCBS and human CBS. Like CBS enzymes from lower organisms (e.g., yeast), DmCBS is intrinsically highly active and is not regulated by AdoMet. The DmCBS heme coordination environment, the reactivity, and the accompanying effects on enzyme activity are similar to those of human CBS. The DmCBS heme bears histidine and cysteine axial ligands, and the enzyme becomes inactive when the cysteine ligand is replaced. The Fe(II) heme in DmCBS is less stable than that in human CBS, undergoing more facile reoxidation and ligand exchange. In both CBS proteins, the overall stability of the protein is correlated with the heme oxidation state. Human and DmCBS Fe(II) hemes react relatively slowly with CO and NO, and the rate of the CO binding reaction is faster at low pH than at high pH. Together, the results suggest that heme incorporation and AdoMet regulation in CBS are not correlated, possibly providing two independent means for regulating the enzyme.
Collapse
Affiliation(s)
- Yang Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
- Department of Genomics & Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Rachel Linck
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Sarah Ponter
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
16
|
Smith DEC, Mendes MIS, Kluijtmans LAJ, Janssen MCH, Smulders YM, Blom HJ. A liquid chromatography mass spectrometry method for the measurement of cystathionine β-synthase activity in cell extracts. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 911:186-91. [PMID: 23217323 DOI: 10.1016/j.jchromb.2012.10.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 10/26/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND In order to correctly assess the efficacy of therapy or diet in intervention studies on the activity of cystathionine β-synthase (CBS) a sensitive analytical method is necessary. METHODS An electrospray LC-MS/MS method preceded by a solid phase extraction step was developed for the measurement of CBS activity in cell extracts. Nonafluoropentanoic acid was used as an ionpair to provide the underivatized cystathionine the desired retention on a C18 column. RESULTS A detection limit of 50pmol cystathionine/h/mg protein was achieved. In fibroblasts, intra- and inter-assay CVs for the CBS activity were 5.2% and 14.7%, respectively. A K(m) value of 8μmol/L for homocysteine, and 2.5μmol/L for serine was calculated. In fibroblasts wildtype, heterozygous, and homozygous CBS activity ranges measured were 8.5-27.0, 4.2-13.4, 0.0-0.7nmol/h×mg protein, respectively. The method was applied to a study where rats were fed 2 diets. Increase of dietary methionine (7.7 versus 3.8mg/kg methionine) significantly increased the CBS activity in rat liver lysates from a median of 58.0 to a median of 71.5 (P=0.037)nmol/h×mg protein. In a lymphoblasts cell culture experiment, the addition of Hcy to the culture media increased the activity of CBS 3 fold. CONCLUSION This LC-MS/MS is able to diagnose CBS deficiency at the enzyme level, and can accurately measure the effect diets or therapy might have on the CBS activity in a variety of cell types.
Collapse
Affiliation(s)
- Desirée E C Smith
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
17
|
Vitvitsky V, Kabil O, Banerjee R. High turnover rates for hydrogen sulfide allow for rapid regulation of its tissue concentrations. Antioxid Redox Signal 2012; 17:22-31. [PMID: 22229551 PMCID: PMC3342560 DOI: 10.1089/ars.2011.4310] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Hydrogen sulfide (H(2)S) is a signaling molecule, which influences many physiological processes. While H(2)S is produced and degraded in many cell types, the kinetics of its turnover in different tissues has not been reported. In this study, we have assessed the rates of H(2)S production in murine liver, kidney, and brain homogenates at pH 7.4, 37°C, and at physiologically relevant cysteine concentrations. We have also studied the kinetics of H(2)S clearance by liver, kidney, and brain homogenates under aerobic and anaerobic conditions. RESULTS We find that the rate of H(2)S production by these tissue homogenates is considerably higher than background rates observed in the absence of exogenous substrates. An exponential decay of H(2)S with time is observed and, as expected, is significantly faster under aerobic conditions. The half-life for H(2)S under aerobic conditions is 2.0, 2.8, and 10.0 min with liver, kidney, and brain homogenate, respectively. Western-blot analysis of the sulfur dioxygenase, ETHE1, involved in H(2)S catabolism, demonstrates higher steady-state protein levels in liver and kidney versus brain. INNOVATION By combining experimental and simulation approaches, we demonstrate high rates of tissue H(2)S turnover and provide estimates of steady-state H(2)S levels. CONCLUSION Our study reveals that tissues maintain a high metabolic flux of sulfur through H(2)S, providing a rationale for how H(2)S levels can be rapidly regulated.
Collapse
Affiliation(s)
- Victor Vitvitsky
- Biological Chemistry Department, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0600, USA
| | | | | |
Collapse
|
18
|
Novel structural arrangement of nematode cystathionine β-synthases: characterization of Caenorhabditis elegans CBS-1. Biochem J 2012; 443:535-47. [PMID: 22240119 PMCID: PMC3316156 DOI: 10.1042/bj20111478] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
CBSs (cystathionine β-synthases) are eukaryotic PLP (pyridoxal 5 *-phosphate)-dependent proteins that maintain cellular homocysteine homoeostasis and produce cystathionine and hydrogen sulfide. In the present study, we describe a novel structural arrangement of the CBS enzyme encoded by the cbs-1 gene of the nematode Caenorhabditis elegans. The CBS-1 protein contains a unique tandem repeat of two evolutionarily conserved catalytic regions in a single polypeptide chain. These repeats include a catalytically active C-terminal module containing a PLP-binding site and a less conserved N-terminal module that is unable to bind the PLP cofactor and cannot catalyse CBS reactions, as demonstrated by analysis of truncated variants and active-site mutant proteins. In contrast with other metazoan enzymes, CBS-1 lacks the haem and regulatory Bateman domain essential for activation by AdoMet (S-adenosylmethionine) and only forms monomers. We determined the tissue and subcellular distribution of CBS-1 and showed that cbs-1 knockdown by RNA interference leads to delayed development and to an approximately 10-fold elevation of homocysteine concentrations in nematode extracts. The present study provides the first insight into the metabolism of sulfur amino acids and hydrogen sulfide in C. elegans and shows that nematode CBSs possess a structural feature that is unique among CBS proteins.
Collapse
|
19
|
Majtan T, Kraus JP. Folding and activity of mutant cystathionine β-synthase depends on the position and nature of the purification tag: characterization of the R266K CBS mutant. Protein Expr Purif 2012; 82:317-24. [PMID: 22333527 DOI: 10.1016/j.pep.2012.01.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/25/2012] [Accepted: 01/29/2012] [Indexed: 10/14/2022]
Abstract
Cystathionine β-synthase (CBS), a heme-containing pyridoxal-5-phosphate (PLP)-dependent enzyme, catalyzes the condensation of serine and homocysteine to yield cystathionine. Missense mutations in CBS, the most common cause of homocystinuria, often result in misfolded proteins. Arginine 266, where the pathogenic missense mutation R266K was identified, appears to be involved in the communication between heme and the PLP-containing catalytic center. Here, we assessed the effect of a short affinity tag (6xHis) compared to a bulky fusion partner (glutathione S-transferase - GST) on CBS wild type (WT) and R266K mutant enzyme properties. While WT CBS was successfully expressed either in conjunction with a GST or with a 6xHis tag, the mutant R266K CBS had no activity, did not form native tetramers and did not respond to chemical chaperone treatment when expressed with a GST fusion partner. Interestingly, expression of R266K CBS constructs with a 6xHis tag at either end yielded active enzymes. The purified, predominantly tetrameric, R266K CBS with a C-terminal 6xHis tag had ∼82% of the activity of a corresponding WT CBS construct. Results from thermal pre-treatment of the enzyme and the denaturation profile of R266K suggests a lower thermal stability of the mutant enzyme compared to WT, presumably due to a disturbed heme environment.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics and the Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado, School of Medicine, 12800 E 19th Ave., Aurora, CO 80045, USA
| | | |
Collapse
|
20
|
Talaei F, Bouma HR, Van der Graaf AC, Strijkstra AM, Schmidt M, Henning RH. Serotonin and dopamine protect from hypothermia/rewarming damage through the CBS/H2S pathway. PLoS One 2011; 6:e22568. [PMID: 21829469 PMCID: PMC3144905 DOI: 10.1371/journal.pone.0022568] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/29/2011] [Indexed: 11/19/2022] Open
Abstract
Biogenic amines have been demonstrated to protect cells from apoptotic cell death. Herein we show for the first time that serotonin and dopamine increase H(2)S production by the endogenous enzyme cystathionine-β-synthase (CBS) and protect cells against hypothermia/rewarming induced reactive oxygen species (ROS) formation and apoptosis. Treatment with both compounds doubled CBS expression through mammalian target of rapamycin (mTOR) and increased H(2)S production in cultured rat smooth muscle cells. In addition, serotonin and dopamine treatment significantly reduced ROS formation. The beneficial effect of both compounds was minimized by inhibition of their re-uptake and by pharmacological inhibition of CBS or its down-regulation by siRNA. Exogenous administration of H(2)S and activation of CBS by Prydoxal 5'-phosphate also protected cells from hypothermic damage. Finally, serotonin and dopamine pretreatment of rat lung, kidney, liver and heart prior to 24 h of hypothermia at 3°C followed by 30 min of rewarming at 37°C upregulated the expression of CBS, strongly reduced caspase activity and maintained the physiological pH compared to untreated tissues. Thus, dopamine and serotonin protect cells against hypothermia/rewarming induced damage by increasing H(2)S production mediated through CBS. Our data identify a novel molecular link between biogenic amines and the H(2)S pathway, which may profoundly affect our understanding of the biological effects of monoamine neurotransmitters.
Collapse
Affiliation(s)
- Fatemeh Talaei
- Department of Clinical Pharmacology (FB20), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
21
|
Smith AT, Majtan T, Freeman KM, Su Y, Kraus JP, Burstyn JN. Cobalt cystathionine β-synthase: a cobalt-substituted heme protein with a unique thiolate ligation motif. Inorg Chem 2011; 50:4417-27. [PMID: 21480614 PMCID: PMC3350334 DOI: 10.1021/ic102586b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human cystathionine β-synthase (hCBS), a key enzyme in the trans-sulfuration pathway, catalyzes the condensation of serine with homocysteine to produce cystathionine. CBS from higher organisms is the only known protein that binds pyridoxal-5'-phosphate (PLP) and heme. Intriguingly, the function of the heme in hCBS has yet to be elucidated. Herein, we describe the characterization of a cobalt-substituted variant of hCBS (Co hCBS) in which CoPPIX replaces FePPIX (heme). Co(III) hCBS is a unique Co-substituted heme protein: the Co(III) ion is 6-coordinate, low-spin, diamagnetic, and bears a cysteine(thiolate) as one of its axial ligands. The peak positions and intensities of the electronic absorption and MCD spectra of Co(III) hCBS are distinct from those of previously Co-substituted heme proteins; TD-DFT calculations reveal that the unique features arise from the 6-coordinate Co bound axially by cysteine(thiolate) and a neutral donor, presumably histidine. Reactivity of Co(III) hCBS with HgCl(2) is consistent with a loss of the cysteine(thiolate) ligand. Co(III) hCBS is slowly reduced to Co(II) hCBS, which contains a 5-coordinate, low-spin, S = 1/2 Co-porphyrin that does not retain the cysteine(thiolate) ligand; this form of Co(II) hCBS binds NO((g)) but not CO((g)). Co(II) hCBS is reoxidized in the air to form a new Co(III) form, which does not contain a cysteine(thiolate) ligand. Canonical and alternative CBS assays suggest that maintaining the native heme ligation motif of wild-type Fe hCBS (Cys/His) is essential in maintaining maximal activity in Co hCBS. Correlation between the coordination structures and enzyme activity in both native Fe and Co-substituted proteins implicates a structural role for the heme in CBS.
Collapse
Affiliation(s)
- Aaron T. Smith
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Tomas Majtan
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
- Department of Genomics & Biotechnology, Institute of Molecular Biology SAS, Dubravska cesta 21, Bratislava, 84551, Slovakia
| | - Katherine M. Freeman
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Yang Su
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado Denver, Aurora, Colorado 80045
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin, 53706 USA
| |
Collapse
|
22
|
Majtan T, Freeman KM, Smith AT, Burstyn JN, Kraus JP. Purification and characterization of cystathionine β-synthase bearing a cobalt protoporphyrin. Arch Biochem Biophys 2011; 508:25-30. [PMID: 21262193 PMCID: PMC3063419 DOI: 10.1016/j.abb.2011.01.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/14/2011] [Accepted: 01/15/2011] [Indexed: 11/24/2022]
Abstract
Human cystathionine β-synthase (CBS), a pivotal enzyme in the metabolism of homocysteine, is a pyridoxal-5'-phosphate-dependent enzyme that also contains heme, a second cofactor whose function is still unclear. One strategy for elucidation of heme function is its replacement with different metalloporphyrins or with porphyrins containing different substituent groups. This paper describes a novel expression approach and purification of cobalt CBS (CoCBS), which results in a high yield of fully active, high purity enzyme, in which heme is substituted by Co-protoporphyrin IX (CoPPIX). Metal content analysis showed that the enzyme contained 92% cobalt and 8% iron. CoCBS was indistinguishable from wild-type FeCBS in its activity, tetrameric oligomerization, PLP saturation and responsiveness to the allosteric activator, S-adenosyl-l-methionine. The observed biochemical and spectral characteristics of CoCBS provide further support for the suggestion that heme is involved in structural integrity and folding of this unusual enzyme.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics and the Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado at Denver, 12800 E 19th Ave, Aurora, CO 80045, USA
- Department of Genomics & Biotechnology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, 84551, Slovakia
| | | | - Aaron T. Smith
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Jan P. Kraus
- Department of Pediatrics and the Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado at Denver, 12800 E 19th Ave, Aurora, CO 80045, USA
| |
Collapse
|
23
|
Jensen KK, Geoghagen NS, Jin L, Holt TG, Luo Q, Malkowitz L, Ni W, Quan S, Waters MG, Zhang A, Zhou HH, Cheng K, Luo MJ. Pharmacological activation and genetic manipulation of cystathionine beta-synthase alter circulating levels of homocysteine and hydrogen sulfide in mice. Eur J Pharmacol 2011; 650:86-93. [DOI: 10.1016/j.ejphar.2010.09.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 08/28/2010] [Accepted: 09/20/2010] [Indexed: 11/24/2022]
|
24
|
Majtan T, Frerman FE, Kraus JP. Effect of cobalt on Escherichia coli metabolism and metalloporphyrin formation. Biometals 2010; 24:335-47. [PMID: 21184140 DOI: 10.1007/s10534-010-9400-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 12/14/2010] [Indexed: 02/01/2023]
Abstract
Toxicity in Escherichia coli resulting from high concentrations of cobalt has been explained by competition of cobalt with iron in various metabolic processes including Fe-S cluster assembly, sulfur assimilation, production of free radicals and reduction of free thiol pool. Here we present another aspect of increased cobalt concentrations in the culture medium resulting in the production of cobalt protoporphyrin IX (CoPPIX), which was incorporated into heme proteins including membrane-bound cytochromes and an expressed human cystathionine beta-synthase (CBS). The presence of CoPPIX in cytochromes inhibited their electron transport capacity and resulted in a substantially decreased respiration. Bacterial cells adapted to the increased cobalt concentration by inducing a modified mixed acid fermentative pathway under aerobiosis. We capitalized on the ability of E. coli to insert cobalt into PPIX to carry out an expression of CoPPIX-substituted heme proteins. The level of CoPPIX-substitution increased with the number of passages of cells in a cobalt-containing medium. This approach is an inexpensive method to prepare cobalt-substituted heme proteins compared to in vitro enzyme reconstitution or in vivo replacement using metalloporphyrin heme analogs and seems to be especially suitable for complex heme proteins with an additional coenzyme, such as human CBS.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics and the Colorado Intellectual and Developmental Disabilities Research Center (IDDRC), University of Colorado at Denver, 12800 E 19th Ave, Aurora, CO 80045, USA
| | | | | |
Collapse
|
25
|
Hnízda A, Spiwok V, Jurga V, Kožich V, Kodíček M, Kraus JP. Cross-talk between the catalytic core and the regulatory domain in cystathionine β-synthase: study by differential covalent labeling and computational modeling. Biochemistry 2010; 49:10526-34. [PMID: 21062078 PMCID: PMC3146298 DOI: 10.1021/bi101384m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/09/2010] [Indexed: 12/22/2022]
Abstract
Cystathionine β-synthase (CBS) is a modular enzyme which catalyzes condensation of serine with homocysteine. Cross-talk between the catalytic core and the C-terminal regulatory domain modulates the enzyme activity. The regulatory domain imposes an autoinhibition action that is alleviated by S-adenosyl-l-methionine (AdoMet) binding, by deletion of the C-terminal regulatory module, or by thermal activation. The atomic mechanisms of the CBS allostery have not yet been sufficiently explained. Using pulse proteolysis in urea gradient and proteolytic kinetics with thermolysin under native conditions, we demonstrated that autoinhibition is associated with changes in conformational stability and with sterical hindrance of the catalytic core. To determine the contact area between the catalytic core and the autoinhibitory module of the CBS protein, we compared side-chain reactivity of the truncated CBS lacking the regulatory domain (45CBS) and of the full-length enzyme (wtCBS) using covalent labeling by six different modification agents and subsequent mass spectrometry. Fifty modification sites were identified in 45CBS, and four of them were not labeled in wtCBS. One differentially reactive site (cluster W408/W409/W410) is a part of the linker between the domains. The other three residues (K172 and/or K177, R336, and K384) are located in the same region of the 45CBS crystal structure; computational modeling showed that these amino acid side chains potentially form a regulatory interface in CBS protein. Subtle differences at CBS surface indicate that enzyme activity is not regulated by conformational conversions but more likely by different allosteric mechanisms.
Collapse
Affiliation(s)
- Aleš Hnízda
- Institute of Inherited Metabolic Disorders, First Medical Faculty, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 00 Czech Republic
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, Institute of Chemical Technology in Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Vojtěch Jurga
- Department of Biochemistry and Microbiology, Institute of Chemical Technology in Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Viktor Kožich
- Institute of Inherited Metabolic Disorders, First Medical Faculty, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 2, Prague 2, 128 00 Czech Republic
| | - Milan Kodíček
- Department of Biochemistry and Microbiology, Institute of Chemical Technology in Prague, Technická 5, Prague 6, 166 28 Czech Republic
| | - Jan P. Kraus
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado 80045, United States
| |
Collapse
|
26
|
Majtan T, Liu L, Carpenter JF, Kraus JP. Rescue of cystathionine beta-synthase (CBS) mutants with chemical chaperones: purification and characterization of eight CBS mutant enzymes. J Biol Chem 2010; 285:15866-73. [PMID: 20308073 DOI: 10.1074/jbc.m110.107722] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Missense mutations represent the most common cause of many genetic diseases including cystathionine beta-synthase (CBS) deficiency. Many of these mutations result in misfolded proteins, which lack biological function. The presence of chemical chaperones can sometimes alleviate or even restore protein folding and activity of mutant proteins. We present the purification and characterization of eight CBS mutants expressed in the presence of chemical chaperones such as ethanol, dimethyl sulfoxide, or trimethylamine-N-oxide. Preliminary screening in Escherichia coli crude extracts showed that their presence during protein expression had a significant impact on the amount of recovered CBS protein, formation of tetramers, and catalytic activity. Subsequently, we purified eight CBS mutants to homogeneity (P49L, P78R, A114V, R125Q, E176K, P422L, I435T, and S466L). The tetrameric mutant enzymes fully saturated with heme had the same or higher specific activities than wild type CBS. Thermal stability measurements demonstrated that the purified mutants are equally or more thermostable than wild type CBS. The response to S-adenosyl-L-methionine stimulation or thermal activation varied. The lack of response of R125Q and E176K to both stimuli indicated that their specific conformations were unable to reach the activated state. Increased levels of molecular chaperones in crude extracts, particularly DnaJ, indicated a rather indirect effect of the chemical chaperones on folding of CBS mutants. In conclusion, the chemical chaperones present in the expression medium were able to fully restore the activity of eight CBS mutants by improving their protein folding. This finding could have direct implications for the development of a therapeutical approach to pyridoxine unresponsive homocystinuria.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics and the Colorado Intellectual and Developmental Disabilities Research Center, School of Medicine, University of Colorado at Denver, Aurora, Colorado 80045, USA
| | | | | | | |
Collapse
|
27
|
Holt TG, Choi BK, Geoghagen NS, Jensen KK, Luo Q, LaMarr WA, Makara GM, Malkowitz L, Ozbal CC, Xiong Y, Dufresne C, Luo MJ. Label-Free High-Throughput Screening via Mass Spectrometry: A Single Cystathionine Quantitative Method for Multiple Applications. Assay Drug Dev Technol 2009; 7:495-506. [DOI: 10.1089/adt.2009.0200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Tom G. Holt
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| | - Bernard K. Choi
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| | - Neil S. Geoghagen
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| | - Kristian K. Jensen
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| | - Qi Luo
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
- BioTrove, Inc., Woburn, Massachusetts
| | | | - Gergely M. Makara
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| | - Lorraine Malkowitz
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| | | | - Yusheng Xiong
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| | - Claude Dufresne
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| | - Ming-Juan Luo
- FAST (Facility for Automation & Screening Technologies), Merck Research Laboratories, Rahway, New Jersey
| |
Collapse
|
28
|
Abstract
Genome mining and biochemical analyses have shown that Leishmania major possesses two pathways for cysteine synthesis – the de novo biosynthesis pathway comprising SAT (serine acetyltransferase) and CS (cysteine synthase) and the RTS (reverse trans-sulfuration) pathway comprising CBS (cystathionine β-synthase) and CGL (cystathionine γ-lyase). The LmjCS (L. major CS) is similar to the type A CSs of bacteria and catalyses the synthesis of cysteine using O-acetylserine and sulfide with Kms of 17.5 and 0.13 mM respectively. LmjCS can use sulfide provided by the action of MST (mercaptopyruvate sulfurtransferase) on 3-MP (3-mercaptopyruvate). LmjCS forms a bi-enzyme complex with Leishmania SAT (and Arabidopsis SAT), with residues Lys222, His226 and Lys227 of LmjCS being involved in the complex formation. LmjCBS (L. major CBS) catalyses the synthesis of cystathionine from homocysteine, but, unlike mammalian CBS, also has high cysteine synthase activity (but with the Km for sulfide being 10.7 mM). In contrast, LmjCS does not have CBS activity. CS was up-regulated when promastigotes were grown in medium with limited availability of sulfur amino acids. Exogenous methionine stimulated growth under these conditions and also the levels of intracellular cysteine, glutathione and trypanothione, whereas cysteine had no effect on growth or the intracellular cysteine levels, correlating with the low rate of transport of cysteine into the cell. These results suggest that cysteine is generated endogenously by promastigotes of Leishmania. The absence of CS from mammals and the clear differences between CBS of mammals and Leishmania suggest that each of the parasite enzymes could be a viable drug target.
Collapse
|
29
|
Belew MS, Quazi FI, Willmore WG, Aitken SM. Kinetic characterization of recombinant human cystathionine β-synthase purified from E. coli. Protein Expr Purif 2009; 64:139-45. [DOI: 10.1016/j.pep.2008.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/19/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
|
30
|
Majtan T, Singh LR, Wang L, Kruger WD, Kraus JP. Active cystathionine beta-synthase can be expressed in heme-free systems in the presence of metal-substituted porphyrins or a chemical chaperone. J Biol Chem 2008; 283:34588-95. [PMID: 18849566 PMCID: PMC2596375 DOI: 10.1074/jbc.m805928200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 10/06/2008] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase (CBS), a key enzyme in the metabolism of homocysteine, has previously been shown to require a heme co-factor for maximal activity. However, the biochemical function of the CBS heme is not well defined. Here, we show that expression of human CBS in heme-deficient strains of Saccharomyces cerevisiae and Escherichia coli results in production of an enzyme that is misfolded and degraded. Addition of exogenous heme, porphyrins with non-iron metal, or porphyrin lacking metal entirely produced stable and active CBS enzyme. Purification of recombinant CBS enzyme expressed in the presence of various metalloporphyrins confirmed that Mn(III) and Co(III) had 30-60% of the specific activity of Fe(III)-CBS, and still responded to allosteric activation by S-adenosyl-L-methionine. Treatment of S. cerevisiae with the chemical chaperone trimethylamine-N-oxide resulted in near complete restoration of function to human CBS produced in a heme-deficient strain. Taken together, these results suggest that porphyrin moiety of the heme plays a critical role in proper CBS folding and assembly, but that the metal ion is not essential for this function or for allosteric regulation by S-adenosyl-L-methionine.
Collapse
Affiliation(s)
- Tomas Majtan
- Department of Pediatrics, University of Colorado, Denver, Aurora, Colorado 80045, USA
| | | | | | | | | |
Collapse
|