1
|
Bautista-Olivier CD, Elizondo G. PXR as the tipping point between innate immune response, microbial infections, and drug metabolism. Biochem Pharmacol 2022; 202:115147. [PMID: 35714683 DOI: 10.1016/j.bcp.2022.115147] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Pregnane X receptor (PXR) is a xenosensor that acts as a transcription factor in the cell nucleus to protect cells from toxic insults. In response to exposure to several chemical agents, PXR induces the expression of enzymes and drug transporters that biotransform xenobiotic and endobiotic and eliminate metabolites. Recently, PXR has been shown to have immunomodulatory effects that involve cross-communication with molecular pathways in innate immunity cells. Conversely, several inflammatory factors regulate PXR signaling. This review examines the crosstalk between PXR and nuclear factor kappa B (NFkB), Toll-like receptors (TLRs), and inflammasome components. Discussions of the consequences of these interactions on immune responses to infections caused by viruses, bacteria, fungi, and parasites are included together with a review of the effects of microorganisms on PXR-associated drug metabolism. This paper aims to encourage researchers to pursue studies that will better elucidate the relationship between PXR and the immune system and thus inform treatment development.
Collapse
Affiliation(s)
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Av. IPN 2508, C.P. 07360, Ciudad de México, Mexico.
| |
Collapse
|
2
|
Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications. Drug Dev Res 2021; 82:628-667. [PMID: 33533102 DOI: 10.1002/ddr.21778] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.
Collapse
Affiliation(s)
- Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
3
|
Effects of inflammation on irinotecan pharmacokinetics and development of a best-fit PK model. Chem Biol Interact 2020; 316:108933. [DOI: 10.1016/j.cbi.2019.108933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/29/2019] [Accepted: 12/19/2019] [Indexed: 01/11/2023]
|
4
|
Coller JK, Ramachandran J, John L, Tuke J, Wigg A, Doogue M. The impact of liver transplant recipient and donor genetic variability on tacrolimus exposure and transplant outcome. Br J Clin Pharmacol 2019; 85:2170-2175. [PMID: 31219197 DOI: 10.1111/bcp.14034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/15/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
This study investigated the effect of recipient and donor genetic variability on dose-adjusted steady-state tacrolimus concentrations (Css ) and clinical outcomes 3 and 6 months after liver transplant. Twenty-nine recipients and matched donor blood samples were genotyped for 27 single nucleotide polymorphisms including CYP3A5*3 (rs776746), ABCB1 haplotype and immune genes. Associations between genetic variability and clinical parameters and Css and the occurrence of rejection and nephrotoxicity were analysed by multivariate and multinomial logistic regression modelling and Jonckheere-Terpstra tests examined the impact of combined donor/recipient CYP3A5 expression on Css . At 3 months post-transplant modelling revealed an association between tacrolimus Css and recipient CASP1 rs580523 genotype (P = 0.005), accounting for 52% Css variance. Jonckheere-Terpstra tests revealed that as combined donor/recipient CYP3A5 expression increased, Css decreased (P = 0.010 [3 months], 0.018 [6 months]). As this is the first report of CASP1 genetic variability influencing tacrolimus Css , further validation in larger cohorts is required.
Collapse
Affiliation(s)
- Janet K Coller
- Discipline of Pharmacology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Jeyamani Ramachandran
- Hepatology and Liver Transplantation Medicine Unit, Flinders Medical Centre, Bedford Park, Australia.,South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Libby John
- South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Jonathan Tuke
- School of Mathematical Sciences, University of Adelaide, Adelaide, Australia.,ARC Centre of Excellence for Mathematical & Statistical Frontiers, School of Mathematical Sciences, University of Adelaide, Adelaide, Australia
| | - Alan Wigg
- Hepatology and Liver Transplantation Medicine Unit, Flinders Medical Centre, Bedford Park, Australia.,South Australian Liver Transplant Unit, Flinders Medical Centre, Bedford Park, Australia
| | - Matthew Doogue
- Department of Medicine, University of Otago, Christchurch, New Zealand
| |
Collapse
|
5
|
Taneja G, Maity S, Jiang W, Moorthy B, Coarfa C, Ghose R. Transcriptomic profiling identifies novel mechanisms of transcriptional regulation of the cytochrome P450 (Cyp)3a11 gene. Sci Rep 2019; 9:6663. [PMID: 31040347 PMCID: PMC6491424 DOI: 10.1038/s41598-019-43248-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/04/2019] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 (CYP)3A is the most abundant CYP enzyme in the human liver, and a functional impairment of this enzyme leads to unanticipated adverse reactions and therapeutic failures; these reactions result in the early termination of drug development or the withdrawal of drugs from the market. The transcriptional regulation mechanism of the Cyp3a gene is not fully understood and requires a thorough investigation. We mapped the transcriptome of the Cyp3a gene in a mouse model. The Cyp3a gene was induced using the mPXR activator pregnenolone-16alpha-carbonitrile (PCN) and was subsequently downregulated using lipopolysaccharide (LPS). Our objective was to identify the transcription factors (TFs), epigenetic modulators and molecular pathways that are enriched or repressed by PCN and LPS based on a gene set enrichment analysis. Our analysis shows that 113 genes were significantly upregulated (by at least 1.5-fold) with PCN treatment, and that 834 genes were significantly downregulated (by at least 1.5-fold) with LPS treatment. Additionally, the targets of the 536 transcription factors were enriched by a combined treatment of PCN and LPS, and among these, 285 were found to have binding sites on Cyp3a11. Moreover, the repressed targets of the epigenetic markers HDAC1, HDAC3 and EZH2 were further suppressed by LPS treatment and were enhanced by PCN treatment. By identifying and contrasting the transcriptional regulators that are altered by PCN and LPS, our study provides novel insights into the transcriptional regulation of CYP3A in the liver.
Collapse
Affiliation(s)
- Guncha Taneja
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd., Houston, TX, 77204, USA
- DILIsym Services, A Simulations Plus Company, Research Triangle Park, North Carolina, 27709, USA
| | - Suman Maity
- Advanced Technology Cores, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Weiwu Jiang
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, Suite 530, Houston, TX, 77030, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Section of Neonatology, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Avenue, Suite 530, Houston, TX, 77030, USA.
| | - Cristian Coarfa
- Dan L Duncan Comprehensive Cancer Center, Center for Precision Environmental Health, Molecular and Cellular Biology Department, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd., Houston, TX, 77204, USA.
| |
Collapse
|
6
|
Bourque LA, Raverty S, Co C, Lillie BN, Daoust PY, Clark ME, Caswell JL. Benzo(a)pyrene suppresses tracheal antimicrobial peptide gene expression in bovine tracheal epithelial cells. Vet Immunol Immunopathol 2018; 203:40-46. [PMID: 30243371 DOI: 10.1016/j.vetimm.2018.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/22/2022]
Abstract
Respiratory disease is an important cause of morbidity and mortality in cetaceans, which are also threatened by environmental degradation caused by crude oil spills. Following oil spills, cetaceans at the water surface may inhale droplets of oil containing toxic polycyclic aromatic hydrocarbons (PAHs), which could potentially alter respiratory immunity via activation of the aryl hydrocarbon receptor (AHR) and its subsequent interaction with nuclear factor kappa B (NF-κB). β-defensins are antimicrobial peptides secreted by airway epithelial cells and their expression is known to be dependent on NF-κB. We hypothesized that PAHs may suppress the expression of β-defensins, and thereby contribute to the pathogenesis of pneumonia. This hypothesis was modeled by measuring the in vitro effects of benzo(a)pyrene (BAP), phenanthrene, and naphthalene on tracheal antimicrobial peptide (TAP) gene expression in bovine tracheal epithelial cells. Stimulation with lipopolysaccharide (LPS) induced 20 ± 17-fold (mean ± SD) increased TAP gene expression. Exposure of tracheal epithelial cells to 5 μM BAP for 4 or 8 h, followed by incubation with a combination of LPS and 5 μM BAP for another 16 h, significantly (P = 0.002) suppressed LPS-induced TAP gene expression by 40.6 ± 21.8% (mean ± SD) in tracheal epithelial cells from 9 calves tested. BAP-induced suppression of TAP gene expression coincided with induction of cytochrome P450 1A1 gene expression. In contrast, phenanthrene and naphthalene had no consistent effect, and exposure to PAHs did not significantly affect constitutive TAP gene expression (i.e. without LPS). These findings characterize the suppressive effects of BAP-a toxic pollutant found in crude oil-on this respiratory innate immune response.
Collapse
Affiliation(s)
- Laura A Bourque
- Department of Pathobiology, University of Guelph, N1G 2W1 Guelph, ON, Canada; Canadian Wildlife Health Cooperative, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, C1A 4P3 Charlottetown, PE, Canada.
| | - Stephen Raverty
- Animal Health Center, 1767 Angus Campbell Road, V3G 2M3 Abbotsford, BC, Canada.
| | - Carmon Co
- Department of Pathobiology, University of Guelph, N1G 2W1 Guelph, ON, Canada.
| | - Brandon N Lillie
- Department of Pathobiology, University of Guelph, N1G 2W1 Guelph, ON, Canada.
| | - Pierre-Yves Daoust
- Canadian Wildlife Health Cooperative, Department of Pathology & Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Avenue, C1A 4P3 Charlottetown, PE, Canada.
| | - Mary Ellen Clark
- Department of Pathobiology, University of Guelph, N1G 2W1 Guelph, ON, Canada
| | - Jeff L Caswell
- Department of Pathobiology, University of Guelph, N1G 2W1 Guelph, ON, Canada.
| |
Collapse
|
7
|
Mallick P, Basu S, Moorthy B, Ghose R. Role of Toll-like receptor 4 in drug-drug interaction between paclitaxel and irinotecan in vitro. Toxicol In Vitro 2017; 41:75-82. [PMID: 28242239 PMCID: PMC5479719 DOI: 10.1016/j.tiv.2017.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 12/22/2022]
Abstract
The bacterial receptor, Toll-like receptor (TLR) 4 mediates inflammatory responses and has been linked to a broad array of diseases. TLR4 agonists are being explored as potential treatments for cancer and other diseases. We have previously shown that activation of TLR4 by lipopolysaccharide (LPS) leads to down-regulation of drug metabolizing enzymes/transporters (DMETs), and altered pharmacokinetics/pharmacodynamics (PK/PD) of drugs. These changes can increase the risk of drug-drug interactions (DDIs) in patients on multiple medications. Clinically, DDI was observed for combination chemotherapy of paclitaxel (TLR4 ligand) and irinotecan. To determine the role of TLR4 in DDI between paclitaxel and irinotecan in vitro, primary hepatocytes from TLR4-wild-type (WT) and mutant mice were pre-treated with paclitaxel, followed by irinotecan. Gene expression of DMETs was determined. Paclitaxel treatment increased the levels of irinotecan metabolites, SN-38 and SN-38 glucuronide (SN-38G) in TLR4-dependent manner. Paclitaxel-mediated induction of genes involved in irinotecan metabolism such as Cyp3a11 and Ugt1a1 was TLR4-dependent, while induction of the transporter Mrp2 was TLR4-independent. These novel findings demonstrate that paclitaxel can affect irinotecan metabolism by a TLR4-dependent mechanism. This provides a new perspective towards evaluation of marketed drugs according to their potential to exert DDIs in TLR4-dependent manner.
Collapse
Affiliation(s)
- Pankajini Mallick
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA
| | - Sumit Basu
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, University of Florida, Orlando, FL, USA
| | - Bhagavtula Moorthy
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX, USA.
| |
Collapse
|
8
|
Mallick P, Taneja G, Moorthy B, Ghose R. Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions. Expert Opin Drug Metab Toxicol 2017; 13:605-616. [PMID: 28537216 DOI: 10.1080/17425255.2017.1292251] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Drug-metabolizing enzymes (DMEs) are primarily down-regulated during infectious and inflammatory diseases, leading to disruption in the metabolism of small molecule drugs (smds), which are increasingly being prescribed therapeutically in combination with biologics for a number of chronic diseases. The biologics may exert pro- or anti-inflammatory effect, which may in turn affect the expression/activity of DMEs. Thus, patients with infectious/inflammatory diseases undergoing biologic/smd treatment can have complex changes in DMEs due to combined effects of the disease and treatment. Areas covered: We will discuss clinical biologics-SMD interaction and regulation of DMEs during infection and inflammatory diseases. Mechanistic studies will be discussed and consequences on biologic-small molecule combination therapy on disease outcome due to changes in drug metabolism will be highlighted. Expert opinion: The involvement of immunomodulatory mediators in biologic-SMDs is well known. Regulatory guidelines recommend appropriate in vitro or in vivo assessments for possible interactions. The role of cytokines in biologic-SMDs has been documented. However, the mechanisms of drug-drug interactions is much more complex, and is probably multi-factorial. Studies aimed at understanding the mechanism by which biologics effect the DMEs during inflammation/infection are clinically important.
Collapse
Affiliation(s)
- Pankajini Mallick
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Guncha Taneja
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| | - Bhagavatula Moorthy
- b Department of Pediatrics , Baylor College of Medicine , Houston , TX , USA
| | - Romi Ghose
- a Department of Pharmacological and Pharmaceutical Sciences , University of Houston , Houston , TX , USA
| |
Collapse
|
9
|
Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms Microbiomes 2016; 2:16014. [PMID: 28721249 PMCID: PMC5515264 DOI: 10.1038/npjbiofilms.2016.14] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 01/11/2023] Open
Abstract
The ligand-induced transcription factor, aryl hydrocarbon receptor (AhR) is known for its capacity to tune adaptive immunity and xenobiotic metabolism—biological properties subject to regulation by the indigenous microbiome. The objective of this study was to probe the postulated microbiome-AhR crosstalk and whether such an axis could influence metabolic homeostasis of the host. Utilising a systems-biology approach combining in-depth 1H-NMR-based metabonomics (plasma, liver and skeletal muscle) with microbiome profiling (small intestine, colon and faeces) of AhR knockout (AhR−/−) and wild-type (AhR+/+) mice, we assessed AhR function in host metabolism. Microbiome metabolites such as short-chain fatty acids were found to regulate AhR and its target genes in liver and intestine. The AhR signalling pathway, in turn, was able to influence microbiome composition in the small intestine as evident from microbiota profiling of the AhR+/+ and AhR−/− mice fed with diet enriched with a specific AhR ligand or diet depleted of any known AhR ligands. The AhR−/− mice also displayed increased levels of corticosterol and alanine in serum. In addition, activation of gluconeogenic genes in the AhR−/− mice was indicative of on-going metabolic stress. Reduced levels of ketone bodies and reduced expression of genes involved in fatty acid metabolism in the liver further underscored this observation. Interestingly, exposing AhR−/− mice to a high-fat diet showed resilience to glucose intolerance. Our data suggest the existence of a bidirectional AhR-microbiome axis, which influences host metabolic pathways.
Collapse
|
10
|
Shah P, Omoluabi O, Moorthy B, Ghose R. Role of Adaptor Protein Toll-Like Interleukin Domain Containing Adaptor Inducing Interferon β in Toll-Like Receptor 3- and 4-Mediated Regulation of Hepatic Drug Metabolizing Enzyme and Transporter Genes. ACTA ACUST UNITED AC 2015; 44:61-7. [PMID: 26470915 DOI: 10.1124/dmd.115.066761] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 10/14/2015] [Indexed: 02/03/2023]
Abstract
The expressions and activities of hepatic drug-metabolizing enzymes and transporters (DMETs) are altered during infection and inflammation. Inflammatory responses in the liver are mediated primarily by Toll-like receptor (TLR)-signaling, which involves recruitment of Toll/interleukin (IL)-1 receptor (TIR) domain containing adaptor protein (TIRAP) and TIR domain containing adaptor inducing interferon (IFN)-β (TRIF) that eventually leads to induction of proinflammatory cytokines and mitogen-activated protein kinases (MAPKs). Lipopolysaccharide (LPS) activates the Gram-negative bacterial receptor TLR4 and polyinosinic:polycytidylic acid (polyI:C) activates the viral receptor TLR3. TLR4 signaling involves TIRAP and TRIF, whereas TRIF is the only adaptor protein involved in the TLR3 pathway. We have shown previously that LPS-mediated downregulation of DMETs is independent of TIRAP. To determine the role of TRIF, we treated TRIF(+/+) and TRIF(-/-) mice with LPS or polyI:C. LPS downregulated (∼40%-60%) Cyp3a11, Cyp2a4, Ugt1a1, Mrp2 mRNA levels, whereas polyI:C downregulated (∼30%-60%) Cyp3a11, Cyp2a4, Cyp1a2, Cyp2b10, Ugt1a1, Mrp2, and Mrp3 mRNA levels in TRIF(+/+) mice. This downregulation was not attenuated in TRIF(-/-) mice. Induction of cytokines by LPS was observed in both TRIF(+/+) and TRIF(-/-) mice. Cytokine induction was delayed in polyI:C-treated TRIF(-/-) mice, indicating that multiple mechanisms mediating polyI:C signaling exist. To assess the role of MAPKs, primary hepatocytes were pretreated with specific inhibitors before treatment with LPS/polyI:C. We found that only the c-jun-N-terminal kinase (JNK) inhibitor attenuated the down-regulation of DMETs. These results show that TRIF-independent pathways can be involved in the downregulation of DMETs through TLR4 and 3. JNK-dependent mechanisms likely mediate this downregulation.
Collapse
Affiliation(s)
- Pranav Shah
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (P.S, O.O., R.G.), and Department of Pediatrics, Baylor College of Medicine (B.M.), Houston, Texas
| | - Ozozoma Omoluabi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (P.S, O.O., R.G.), and Department of Pediatrics, Baylor College of Medicine (B.M.), Houston, Texas
| | - Bhagavatula Moorthy
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (P.S, O.O., R.G.), and Department of Pediatrics, Baylor College of Medicine (B.M.), Houston, Texas
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston (P.S, O.O., R.G.), and Department of Pediatrics, Baylor College of Medicine (B.M.), Houston, Texas
| |
Collapse
|
11
|
Konstandi M, Johnson EO, Lang MA. Consequences of psychophysiological stress on cytochrome P450-catalyzed drug metabolism. Neurosci Biobehav Rev 2014; 45:149-67. [DOI: 10.1016/j.neubiorev.2014.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/17/2014] [Accepted: 05/18/2014] [Indexed: 12/11/2022]
|
12
|
Guo M, Sun Y, Zhang Y, Bughio S, Dai X, Ren W, Wang L. E. coli infection modulates the pharmacokinetics of oral enrofloxacin by targeting P-glycoprotein in small intestine and CYP450 3A in liver and kidney of broilers. PLoS One 2014; 9:e87781. [PMID: 24498193 PMCID: PMC3909222 DOI: 10.1371/journal.pone.0087781] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/01/2014] [Indexed: 11/18/2022] Open
Abstract
P-glycoprotein (P-gp) expression determines the absorption, distribution, metabolism and excretion of many drugs in the body. Also, up-regulation of P-gp acts as a defense mechanism against acute inflammation. This study examined expression levels of abcb1 mRNA and localization of P-gp protein in the liver, kidney, duodenum, jejunum and ileum in healthy and E. coli infected broilers by real time RT-PCR and immunohistochemistry. Meanwhile, pharmacokinetics of orally administered enrofloxacin was also investigated in healthy and infected broilers by HPLC. The results indicated that E. coli infection up-regulated expression of abcb1 mRNA levels significantly in the kidney, jejunum and ileum (P<0.05), but not significantly in the liver and duodenum (P>0.05). However, the expression level of CYP 3A37 mRNA were observed significantly decreased only in liver and kidney of E. coli infected broilers (P<0.05) compared with healthy birds. Furthermore, the infection reduced absorption of orally administered enrofloxacin, significantly decreased Cmax (0.34 vs 0.98 µg mL(-1), P = 0.000) and AUC0-12h (4.37 vs 8.88 µg mL(-1) h, P = 0.042) of enrofloxacin, but increased Tmax (8.32 vs 3.28 h, P = 0.040), T1/2a(2.66 vs 1.64 h(-1), P = 0.050) and V/F (26.7 vs 5.2 L, P = 0.040). Treatment with verapamil, an inhibitor of P-gp, significantly improved the absorption of enrofloxacin in both healthy and infected broilers. The results suggest that the E. coli infection induces intestine P-gp expression, altering the absorption of orally administered enrofloxacin in broilers.
Collapse
Affiliation(s)
- Mengjie Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Yong Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Yu Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Shamsuddin Bughio
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Xiaohua Dai
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
- College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, China
| | - Weilong Ren
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province, PR China
- * E-mail:
| |
Collapse
|
13
|
Shah P, Guo T, Moore DD, Ghose R. Role of constitutive androstane receptor in Toll-like receptor-mediated regulation of gene expression of hepatic drug-metabolizing enzymes and transporters. Drug Metab Dispos 2013; 42:172-81. [PMID: 24194512 DOI: 10.1124/dmd.113.053850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Impairment of drug disposition in the liver during inflammation has been attributed to downregulation of gene expression of drug-metabolizing enzymes (DMEs) and drug transporters. Inflammatory responses in the liver are primarily mediated by Toll-like receptors (TLRs). We have recently shown that activation of TLR2 or TLR4 by lipoteichoic acid (LTA) and lipopolysaccharide (LPS), respectively, leads to the downregulation of gene expression of DMEs/transporters. However, the molecular mechanism underlying this downregulation is not fully understood. The xenobiotic nuclear receptors, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), regulate the expression of DMEs/transporter genes. Downregulation of DMEs/transporters by LTA or LPS was associated with reduced expression of PXR and CAR genes. To determine the role of CAR, we injected CAR(+/+) and CAR(-/-) mice with LTA or LPS, which significantly downregulated (~40%-60%) RNA levels of the DMEs, cytochrome P450 (Cyp)3a11, Cyp2a4, Cyp2b10, uridine diphosphate glucuronosyltransferase 1a1, amine N-sulfotransferase, and the transporter, multidrug resistance-associated protein 2, in CAR(+/+) mice. Suppression of most of these genes was attenuated in LTA-treated CAR(-/-) mice. In contrast, LPS-mediated downregulation of these genes was not attenuated in CAR(-/-) mice. Induction of these genes by mouse CAR activator 1,4-bis-[2-(3,5-dichloropyridyloxy)]benzene was sustained in LTA- but not in LPS-treated mice. Similar observations were obtained in humanized CAR mice. We have replicated these results in primary hepatocytes as well. Thus, LPS can downregulate DME/transporter genes in the absence of CAR, whereas the effect of LTA on these genes is attenuated in the absence of CAR, indicating the potential involvement of CAR in LTA-mediated downregulation of DME/transporter genes.
Collapse
Affiliation(s)
- Pranav Shah
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas (P.S., T.G., R.G.); and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas (D.D.M.)
| | | | | | | |
Collapse
|
14
|
Gandhi A, Moorthy B, Ghose R. Drug disposition in pathophysiological conditions. Curr Drug Metab 2013; 13:1327-44. [PMID: 22746301 DOI: 10.2174/138920012803341302] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 04/04/2012] [Accepted: 04/19/2012] [Indexed: 12/19/2022]
Abstract
Expression and activity of several key drug metabolizing enzymes (DMEs) and transporters are altered in various pathophysiological conditions, leading to altered drug metabolism and disposition. This can have profound impact on the pharmacotherapy of widely used clinically relevant medications in terms of safety and efficacy by causing inter-individual variabilities in drug responses. This review article highlights altered drug disposition in inflammation and infectious diseases, and commonly encountered disorders such as cancer, obesity/diabetes, fatty liver diseases, cardiovascular diseases and rheumatoid arthritis. Many of the clinically relevant drugs have a narrow therapeutic index. Thus any changes in the disposition of these drugs may lead to reduced efficacy and increased toxicity. The implications of changes in DMEs and transporters on the pharmacokinetics/pharmacodynamics of clinically-relevant medications are also discussed. Inflammation-mediated release of pro-inflammatory cytokines and activation of toll-like receptors (TLRs) are known to play a major role in down-regulation of DMEs and transporters. Although the mechanism by which this occurs is unclear, several studies have shown that inflammation-associated cell-signaling pathway and its interaction with basal transcription factors and nuclear receptors in regulation of DMEs and transporters play a significant role in altered drug metabolism. Altered regulation of DMEs and transporters in a multitude of disease states will contribute towards future development of powerful in vitro and in vivo tools in predicting the drug response and opt for better drug design and development. The goal is to facilitate a better understanding of the mechanistic details underlying the regulation of DMEs and transporters in pathophysiological conditions.
Collapse
Affiliation(s)
- Adarsh Gandhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77030, USA
| | | | | |
Collapse
|
15
|
Zhou X, Xie Y, Qi Q, Cheng X, Liu F, Liao K, Wang G, Hao H. Disturbance of Hepatic and Intestinal UDP-glucuronosyltransferase in Rats with Trinitrobenzene Sulfonic Acid-induced Colitis. Drug Metab Pharmacokinet 2013; 28:305-13. [DOI: 10.2133/dmpk.dmpk-12-rg-097] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Gandhi A, Guo T, Shah P, Moorthy B, Ghose R. Chlorpromazine-induced hepatotoxicity during inflammation is mediated by TIRAP-dependent signaling pathway in mice. Toxicol Appl Pharmacol 2012; 266:430-8. [PMID: 23238562 DOI: 10.1016/j.taap.2012.11.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 12/11/2022]
Abstract
Inflammation is a major component of idiosyncratic adverse drug reactions (IADRs). To understand the molecular mechanism of inflammation-mediated IADRs, we determined the role of the Toll-like receptor (TLR) signaling pathway in idiosyncratic hepatotoxicity of the anti-psychotic drug, chlorpromazine (CPZ). Activation of TLRs recruits the first adaptor protein, Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) to the TIR domain of TLRs leading to the activation of the downstream kinase, c-Jun-N-terminal kinase (JNK). Prolonged activation of JNK leads to cell-death. We hypothesized that activation of TLR2 by lipoteichoic acid (LTA) or TLR4 by lipopolysaccharide (LPS) will augment the hepatotoxicity of CPZ by TIRAP-dependent mechanism involving prolonged activation of JNK. Adult male C57BL/6, TIRAP(+/+) and TIRAP(-/-) mice were pretreated with saline, LPS (2 mg/kg) or LTA (6 mg/kg) for 30 min or 16 h followed by CPZ (5 mg/kg) or saline (vehicle) up to 24h. We found that treatment of mice with CPZ in presence of LPS or LTA leads to ~3-4 fold increase in serum ALT levels, a marked reduction in hepatic glycogen content, significant induction of serum tumor necrosis factor (TNF) α and prolonged JNK activation, compared to LPS or LTA alone. Similar results were observed in TIRAP(+/+) mice, whereas the effects of LPS or LTA on CPZ-induced hepatotoxicity were attenuated in TIRAP(-/-) mice. For the first time, we show that inflammation-mediated hepatotoxicity of CPZ is dependent on TIRAP, and involves prolonged JNK activation in vivo. Thus, TIRAP-dependent pathways may be targeted to predict and prevent inflammation-mediated IADRs.
Collapse
Affiliation(s)
- Adarsh Gandhi
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, 1441 Moursund Street, Room 517, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
17
|
Gandhi AS, Guo T, Shah P, Moorthy B, Chow DSL, Hu M, Ghose R. CYP3A-dependent drug metabolism is reduced in bacterial inflammation in mice. Br J Pharmacol 2012; 166:2176-87. [PMID: 22394353 DOI: 10.1111/j.1476-5381.2012.01933.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Gene expression of Cyp3a11 is reduced by activation of Toll-like receptors (TLRs) by Gram-negative or Gram-positive bacterial components, LPS or lipoteichoic acid (LTA) respectively. The primary adaptor protein in the TLR signalling pathway, TIRAP, plays differential roles in LPS- and LTA-mediated down-regulations of Cyp3a11 mRNA. Here, we have determined the functional relevance of these findings by pharmacokinetic/pharmacodynamic (PK/PD) analysis of the Cyp3a substrate midazolam in mice. Midazolam is also metabolized by Cyp2c in mice. EXPERIMENTAL APPROACH Adult male C57BL/6, TIRAP+/+ and TIRAP-/- mice were pretreated with saline, LPS (2 mg·kg⁻¹) or LTA (6 mg·kg⁻¹). Cyp3a11 protein expression, activity and PK/PD studies using midazolam were performed. KEY RESULTS Cyp3a11 protein expression in LPS- or LTA-treated mice was reduced by 95% and 60% compared with saline-treated mice. Cyp3a11 activity was reduced by 70% in LPS- or LTA-treated mice. Plasma AUC of midazolam was increased two- to threefold in LPS- and LTA-treated mice. Plasma levels of 1'-OHMDZ decreased significantly only in LTA-treated mice. Both LPS and LTA decreased AUC of 1'-OHMDZ-glucuronide. In the PD study, sleep time was increased by ∼2-fold in LPS- and LTA-treated mice. LTA-mediated decrease in Cyp3a11 protein expression and activity was dependent on TIRAP. In PK/PD correlation, AUC of midazolam was increased only in LPS-treated mice compared with saline-treated mice. CONCLUSIONS AND IMPLICATIONS LPS or LTA altered PK/PD of midazolam. This is the first study to demonstrate mechanistic differences in regulation of metabolite formation of a clinically relevant drug by Gram-negative or Gram-positive bacterial endotoxins.
Collapse
Affiliation(s)
- A S Gandhi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Zídek Z, Kmoníčková E, Kostecká P, Jansa P. Microfiltration method of removal of bacterial contaminants and their monitoring by nitric oxide and Limulus assays. Nitric Oxide 2012; 28:1-7. [PMID: 22981390 DOI: 10.1016/j.niox.2012.08.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/09/2012] [Accepted: 08/28/2012] [Indexed: 12/19/2022]
Abstract
Similar to lipopolysaccharide (LPS), a product of Gram-negative bacteria, the signal macromolecules of Gram-positive bacteria lipoteichoic acid (LTA) and peptidoglycan (PGN) possess multiple biological activities. They may be a source of misinterpretation of experimental findings. We have found that not only LPS but also LTA and PGN can be detected by the Limulus amebocyte lysate (LAL) assay. All of them stimulate the high output in vitro nitric oxide (NO) production of in rat peritoneal cells. The onset of the NO enhancement was observed with 25-100pg/ml of LPS and 25-100ng/ml of PGN and LTA. Polymyxin B (PMX), if applied at concentration 10,000-fold higher than that of LPS, can completely inhibit the NO and LAL binding responses of LPS. The NO-stimulatory and LAL-binding properties of LTA and PGN are not eliminated by PMX. Handling of LPS contamination with PMX may be associated with serious problems because it possesses intrinsic biological activity and becomes cytotoxic at concentration >25μg/ml. The present findings suggest a convenient alternative avoiding these issues. As monitored by the NO and LAL assays, even high amounts of LPS as well as PGN and LTA can be removed by molecular mass cutoff microfiltration. All types of the filters (3kDa to 100kDa) are equally effective. It is suggested that the microfiltration procedure may be considered as a preferable, general and easy method of sample decontamination.
Collapse
Affiliation(s)
- Zdeněk Zídek
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic.
| | | | | | | |
Collapse
|
19
|
Fahy BN, Guo T, Ghose R. Impact of hepatic malignancy on CYP3A4 gene expression. J Surg Res 2012; 178:768-72. [PMID: 22763214 DOI: 10.1016/j.jss.2012.06.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/13/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND The aim of this study was to examine differences in a major enzyme system for hepatic metabolism of drugs, CYP3A4, by measuring RNA levels in the liver tissue of subjects with and without hepatic malignancy and with primary versus metastatic liver tumors. MATERIALS AND METHODS We identified liver specimens from a hospital-wide tissue repository of patients having liver resection for a clinical indication. Total RNA isolation, complementary DNA synthesis, and real-time quantitative polymerase chain reaction were performed according to the standards. Demographic, clinical, and laboratory data were obtained from medical records. Standard statistical analyses were performed with significance set to α=0.05. RESULTS Liver tissue from 27 subjects was available for analysis: 13 were without malignancy and 14 had either primary liver malignancies (n=7) or metastatic disease (n=7). Median age was 57 y, and half of the subjects were men. More than 80% of subjects were overweight or obese without differentiation between benign or malignant tumors. Fewer than 20% of subjects had diabetes or hypercholesterolemia. No preresection laboratory differences were noted between the groups (benign versus malignant or primary versus metastatic disease). Subjects with malignant liver tumors had significantly lower relative-fold CYP3A4 RNA content than those with benign liver tumors (P=0.009), but no difference in the CYP3A4 RNA content between primary and metastatic disease was seen. CONCLUSIONS This study demonstrates differences in the expression of CYP3A4 in benign and malignant human liver tumors and contributes to understanding the possible impact of malignancy on hepatic metabolism.
Collapse
Affiliation(s)
- Bridget N Fahy
- Department of Surgery, Weill Cornell Medical College, The Methodist Hospital, Houston, Texas 77030, USA.
| | | | | |
Collapse
|
20
|
Cheng J, Shah YM, Gonzalez FJ. Pregnane X receptor as a target for treatment of inflammatory bowel disorders. Trends Pharmacol Sci 2012; 33:323-30. [PMID: 22609277 PMCID: PMC3368991 DOI: 10.1016/j.tips.2012.03.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 02/27/2012] [Accepted: 03/06/2012] [Indexed: 02/07/2023]
Abstract
Pregnane X receptor (PXR; NR1I2), a member of the nuclear receptor superfamily, has a major role in the induction of genes involved in drug transport and metabolism. Recent studies in mice have provided insight into a novel function for PXR in inflammatory bowel disease (IBD). The mechanism of the protective effect of PXR activation on IBD is not fully established, but is due in part to the attenuation of nuclear factor (NF)-κB signaling that results in lower expression of proinflammatory cytokines. Recent clinical trials with the antibiotic rifaximin, a PXR agonist in the gastrointestinal system, have revealed its potential therapeutic value in the treatment of intestinal inflammation in humans. Thus, PXR may be a novel target for IBD therapy.
Collapse
Affiliation(s)
- Jie Cheng
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
21
|
Genetic variation in UGT1A1 typical of Gilbert syndrome is associated with unconjugated hyperbilirubinemia in patients receiving tocilizumab. Pharmacogenet Genomics 2011; 21:365-74. [DOI: 10.1097/fpc.0b013e32834592fe] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Kim TH, Lee SH, Lee SM. Role of Kupffer cells in pathogenesis of sepsis-induced drug metabolizing dysfunction. FEBS J 2011; 278:2307-17. [PMID: 21535472 DOI: 10.1111/j.1742-4658.2011.08148.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study aimed to determine the role of Kupffer cells (KCs) in cytochrome P450 (CYP) isozyme activity and the expression of its gene during polymicrobial sepsis. For ablation of KCs, rats were pretreated with gadolinium chloride (GdCl(3)) at 48 and 24 h before cecal ligation and puncture (CLP). The depletion of KCs was confirmed by measuring the mRNA level of the KC marker gene CD163. Serum aminotransferase levels and lipid peroxidation showed an increase and hepatic glutathione content showed a decrease at 24 h after CLP. These changes were prevented by GdCl(3) pretreatment. Catalytic activities of CYP1A1, 1A2 and 2E1 showed a significant reduction at 24 h after CLP but were prevented by GdCl(3). A reduction in the levels of CYP2E1 protein and CYP2B1 and CYP2E1 mRNA expression was prevented by GdCl(3). Phosphorylation of CYP1A1/1A2 markedly increased 24 h after CLP, which was prevented by GdCl(3). The increased serum level of high mobility group box 1, hepatic level of Toll-like receptors 2 and 4, and inducible nitric oxide synthase protein expression were prevented by GdCl(3). In addition, elevated serum concentrations of tumor necrosis factor-α and interleukin-6, and increased hepatic mRNA levels of tumor necrosis factor-α and interleukin-6 were decreased by depletion of KCs. Our findings suggest that ablation of KCs protects against hepatic drug-metabolizing dysfunction by modulation of the inflammatory response.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | | | | |
Collapse
|
23
|
Ghose R, Guo T, Vallejo JG, Gandhi A. Differential role of Toll-interleukin 1 receptor domain-containing adaptor protein in Toll-like receptor 2-mediated regulation of gene expression of hepatic cytokines and drug-metabolizing enzymes. Drug Metab Dispos 2011; 39:874-81. [PMID: 21303924 DOI: 10.1124/dmd.110.037382] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Pharmacological activities of drugs are impaired during inflammation because of reduced expression of hepatic drug-metabolizing enzyme genes (DMEs) and their regulatory nuclear receptors (NRs): pregnane X receptor (PXR), constitutive androstane receptor (CAR), and retinoid X receptor (RXRα). We have shown that a component of Gram-positive bacteria, lipoteichoic acid (LTA) induces proinflammatory cytokines and reduces gene expression of hepatic DMEs and NRs. LTA is a Toll-like receptor 2 (TLR2) ligand, which initiates signaling by recruitment of Toll-interleukin 1 receptor domain-containing adaptor protein (TIRAP) to the cytoplasmic TIR domain of TLR2. To determine the role of TIRAP in TLR2-mediated regulation of DME genes, TLR2(+/+), TLR2(-/-), TIRAP(+/+), and TIRAP(-/-) mice were given LTA injections. RNA levels of the DMEs (Cyp3a11, Cyp2b10, and sulfoaminotransferase), xenobiotic NRs (PXR and CAR), and nuclear protein levels of the central NR RXRα were reduced ∼ 50 to 60% in LTA-treated TLR2(+/+) but not in TLR2(-/-) mice. Induction of hepatic cytokines (interleukin-1β, tumor necrosis factor-α, and interleukin-6), c-Jun NH(2)-terminal kinase, and nuclear factor-κΒ was blocked in TLR2(-/-) mice. As expected, expression of hepatic DMEs and NRs was reduced by LTA in TIRAP(+/+) but not in TIRAP(-/-) mice. Of interest, cytokine RNA levels were induced in the livers of both the TIRAP(+/+) and TIRAP(-/-) mice, whereas LTA-mediated induction of serum cytokines was attenuated in TIRAP(-/-) mice. LTA-mediated down-regulation of DME genes was attenuated in hepatocytes from TLR2(-/-) or TIRAP(-/-) mice and in small interfering RNA-treated hepatocytes. Thus, the effect of TLR2 on DME genes in hepatocytes was mediated by TIRAP, whereas TIRAP was not involved in mediating the effects of TLR2 on cytokine expression in the liver.
Collapse
Affiliation(s)
- Romi Ghose
- College of Pharmacy, Department of Pharmacological and Pharmaceutical Sciences, University of Houston, 1441 Moursund St., Houston, TX 77030, USA.
| | | | | | | |
Collapse
|
24
|
Liu YH, Mo SL, Bi HC, Hu BF, Li CG, Wang YT, Huang L, Huang M, Duan W, Liu JP, Wei MQ, Zhou SF. Regulation of human pregnane X receptor and its target gene cytochrome P450 3A4 by Chinese herbal compounds and a molecular docking study. Xenobiotica 2010; 41:259-80. [PMID: 21117944 DOI: 10.3109/00498254.2010.537395] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The pregnane X receptor (PXR) plays a critical role in the regulation of human cytochrome P450 3A4 (CYP3A4) gene. In this study, we investigated the effect of an array of compounds isolated from Chinese herbal medicines on the activity of PXR using a luciferase reporter gene assay in transiently transfected HepG2 and Huh7 cells and on the expression of PXR and CYP3A4 in LS174T cells. Furthermore, molecular docking was performed to investigate the binding modes of herbal compounds with PXR. Praeruptorin A and C, salvianolic acid B, sodium danshensu, protocatechuic aldehyde, cryptotanshinone, emodin, morin, and tanshinone IIA significantly transactivated the CYP3A4 reporter gene construct in either HepG2 or Huh7 cells. The PXR mRNA expression in LS174T cells was significantly induced by physcion, protocatechuic aldehyde, salvianolic acid B, and sodium danshensu. However, epifriedelanol, morin, praeruptorin D, mulberroside A, tanshinone I, and tanshinone IIA significantly down-regulated the expression of PXR mRNA in LS174T cells. All the herbal compounds tested can be readily docked into the ligand-binding cavity of PXR mainly through hydrogen bond and aromatic interactions with Ser247, Gln285, His407, and Arg401. These findings suggest that herbal medicines can significantly regulate PXR and CYP3A4 and this has important implication in herb-drug interactions.
Collapse
Affiliation(s)
- Ya-He Liu
- School of Health Sciences & Health Innovations Research Institute, RMIT University, Bundoora, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gu X, Manautou JE. Regulation of hepatic ABCC transporters by xenobiotics and in disease states. Drug Metab Rev 2010; 42:482-538. [PMID: 20233023 DOI: 10.3109/03602531003654915] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subfamily of ABCC transporters consists of 13 members in mammals, including the multidrug resistance-associated proteins (MRPs), sulfonylurea receptors (SURs), and the cystic fibrosis transmembrane conductance regulator (CFTR). These proteins play roles in chemical detoxification, disposition, and normal cell physiology. ABCC transporters are expressed differentially in the liver and are regulated at the transcription and translation level. Their expression and function are also controlled by post-translational modification and membrane-trafficking events. These processes are tightly regulated. Information about alterations in the expression of hepatobiliary ABCC transporters could provide important insights into the pathogenesis of diseases and disposition of xenobiotics. In this review, we describe the regulation of hepatic ABCC transporters in humans and rodents by a variety of xenobiotics, under disease states and in genetically modified animal models deficient in transcription factors, transporters, and cell-signaling molecules.
Collapse
Affiliation(s)
- Xinsheng Gu
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, 06269, USA
| | | |
Collapse
|
26
|
Gandhi A, Guo T, Ghose R. Role of c-Jun N-terminal kinase (JNK) in regulating tumor necrosis factor-alpha (TNF-.ALPHA.) mediated increase of acetaminophen (APAP) and chlorpromazine (CPZ) toxicity in murine hepatocytes. J Toxicol Sci 2010; 35:163-73. [DOI: 10.2131/jts.35.163] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Adarsh Gandhi
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| | - Tao Guo
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| | - Romi Ghose
- University of Houston, Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy
| |
Collapse
|
27
|
Croyle MA. Long-term virus-induced alterations of CYP3A-mediated drug metabolism: a look at the virology, immunology and molecular biology of a multi-faceted problem. Expert Opin Drug Metab Toxicol 2009; 5:1189-211. [PMID: 19732028 DOI: 10.1517/17425250903136748] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Virus infections are on the rise. Although the first description of CYP expression during virus infection was recorded 50 years ago, mechanistic studies of this phenomenon only began to appear in the last decade due to breakthroughs in molecular biology, genomic and transgenic technology. This review describes the relationship(s) among CYP-mediated drug metabolism, virus infection and the immune response and evaluates in vitro and in vivo models for mechanistic studies. The first studies that assessed CYP expression during infection focused on inflammatory mediators and the innate immune response at early time points. Recent studies assessing virus infection and its effect on hepatic CYP expression noted more long-term effects. An obvious approach toward understanding how viruses affect hepatic CYP3A expression and function would be to assess key regulators of CYP during infection. Improvements in techniques to identify post-translational modifications of CYP and systems that focus on virus-receptor interactions which allow subtraction and addition of immunological and regulatory elements that drive CYP will demonstrate that long-term changes in drug metabolism start from the time the virus enters the circulation, are reinforced by virus binding to cellular targets and further solidified by changes in cellular processes long after the virus is cleared.
Collapse
Affiliation(s)
- Maria A Croyle
- The University of Texas at Austin, College of Pharmacy, Division of Pharmaceutics and Institute of Cellular and Molecular Biology, PHR 4.214D, 2409 W University Avenue, Austin, TX 78712-1074, USA.
| |
Collapse
|