1
|
Erol ÖD, Şenocak Ş, Aerts-Kaya F. The Role of Rab GTPases in the development of genetic and malignant diseases. Mol Cell Biochem 2024; 479:255-281. [PMID: 37060515 DOI: 10.1007/s11010-023-04727-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/16/2023]
Abstract
Small GTPases have been shown to play an important role in several cellular functions, including cytoskeletal remodeling, cell polarity, intracellular trafficking, cell-cycle, progression and lipid transformation. The Ras-associated binding (Rab) family of GTPases constitutes the largest family of GTPases and consists of almost 70 known members of small GTPases in humans, which are known to play an important role in the regulation of intracellular membrane trafficking, membrane identity, vesicle budding, uncoating, motility and fusion of membranes. Mutations in Rab genes can cause a wide range of inherited genetic diseases, ranging from neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD) to immune dysregulation/deficiency syndromes, like Griscelli Syndrome Type II (GS-II) and hemophagocytic lymphohistiocytosis (HLH), as well as a variety of cancers. Here, we provide an extended overview of human Rabs, discussing their function and diseases related to Rabs and Rab effectors, as well as focusing on effects of (aberrant) Rab expression. We aim to underline their importance in health and the development of genetic and malignant diseases by assessing their role in cellular structure, regulation, function and biology and discuss the possible use of stem cell gene therapy, as well as targeting of Rabs in order to treat malignancies, but also to monitor recurrence of cancer and metastasis through the use of Rabs as biomarkers. Future research should shed further light on the roles of Rabs in the development of multifactorial diseases, such as diabetes and assess Rabs as a possible treatment target.
Collapse
Affiliation(s)
- Özgür Doğuş Erol
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Şimal Şenocak
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, 06100, Ankara, Turkey.
- Hacettepe University Center for Stem Cell Research and Development, 06100, Ankara, Turkey.
| |
Collapse
|
2
|
Kodera S, Kimura T, Nishioka T, Kaneko YK, Yamaguchi M, Kaibuchi K, Ishikawa T. GDP-bound Rab27a regulates clathrin disassembly through HSPA8 after insulin secretion. Arch Biochem Biophys 2023; 749:109789. [PMID: 37852426 DOI: 10.1016/j.abb.2023.109789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/12/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Clathrin-dependent endocytosis is a key process for secretory cells, in which molecules on the plasma membrane are both degraded and recycled in a stimulus-dependent manner. There are many reports showing that disruption of endocytosis is involved in the onset of various diseases. Recently, it has been reported that such disruption in pancreatic β-cells causes impaired insulin secretion and might be associated with the pathology of diabetes mellitus. Compared with exocytosis, there are few reports on the molecular mechanism of endocytosis in pancreatic β-cells. We previously reported that GDP-bound Rab27a regulates endocytosis through its GDP-dependent effectors after insulin secretion. In this study, we identified heat shock protein family A member 8 (HSPA8) as a novel interacting protein for GDP-bound Rab27a. HSPA8 directly bound GDP-bound Rab27a via the β2 region of its substrate binding domain (SBD). The β2 fragment was capable of inhibiting the interaction between HSPA8 and GDP-bound Rab27a, and suppressed glucose-induced clathrin-dependent endocytosis in pancreatic β-cells. The region also affected clathrin dynamics on purified clathrin-coated vesicles (CCVs). These results suggest that the interaction between GDP-bound Rab27a and HSPA8 regulates clathrin disassembly from CCVs and subsequent vesicle transport. The regulatory stages in endocytosis by HSPA8 differ from those for other GDP-bound Rab27a effectors. This study shows that GDP-bound Rab27a dominantly regulates each stage in glucose-induced endocytosis through its specific effectors in pancreatic β-cells.
Collapse
Affiliation(s)
- Soshiro Kodera
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan.
| | - Tomoki Nishioka
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi, 470-1192, Japan
| | - Yukiko K Kaneko
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| | - Kozo Kaibuchi
- Division of Cell Biology, International Center for Brain Science, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake City, Aichi, 470-1192, Japan
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka, 422-8526, Japan
| |
Collapse
|
3
|
Deletion in chromosome 6 spanning alpha-synuclein and multimerin1 loci in the Rab27a/b double knockout mouse. Sci Rep 2022; 12:9837. [PMID: 35701443 PMCID: PMC9197848 DOI: 10.1038/s41598-022-13557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/25/2022] [Indexed: 11/08/2022] Open
Abstract
We report an incidental 358.5 kb deletion spanning the region encoding for alpha-synuclein (αsyn) and multimerin1 (Mmrn1) in the Rab27a/Rab27b double knockout (DKO) mouse line previously developed by Tolmachova and colleagues in 2007. Western blot and RT-PCR studies revealed lack of αsyn expression at either the mRNA or protein level in Rab27a/b DKO mice. PCR of genomic DNA from Rab27a/b DKO mice demonstrated at least partial deletion of the Snca locus using primers targeted to exon 4 and exon 6. Most genes located in proximity to the Snca locus, including Atoh1, Atoh2, Gm5570, Gm4410, Gm43894, and Grid2, were shown not to be deleted by PCR except for Mmrn1. Using whole genomic sequencing, the complete deletion was mapped to chromosome 6 (60,678,870–61,037,354), a slightly smaller deletion region than that previously reported in the C57BL/6J substrain maintained by Envigo. Electron microscopy of cortex from these mice demonstrates abnormally enlarged synaptic terminals with reduced synaptic vesicle density, suggesting potential interplay between Rab27 isoforms and αsyn, which are all highly expressed at the synaptic terminal. Given this deletion involving several genes, the Rab27a/b DKO mouse line should be used with caution or with appropriate back-crossing to other C57BL/6J mouse substrain lines without this deletion.
Collapse
|
4
|
Gendaszewska-Darmach E, Garstka MA, Błażewska KM. Targeting Small GTPases and Their Prenylation in Diabetes Mellitus. J Med Chem 2021; 64:9677-9710. [PMID: 34236862 PMCID: PMC8389838 DOI: 10.1021/acs.jmedchem.1c00410] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
A fundamental role
of pancreatic β-cells to maintain proper
blood glucose level is controlled by the Ras superfamily of small
GTPases that undergo post-translational modifications, including prenylation.
This covalent attachment with either a farnesyl or a geranylgeranyl
group controls their localization, activity, and protein–protein
interactions. Small GTPases are critical in maintaining glucose homeostasis
acting in the pancreas and metabolically active tissues such as skeletal
muscles, liver, or adipocytes. Hyperglycemia-induced upregulation
of small GTPases suggests that inhibition of these pathways deserves
to be considered as a potential therapeutic approach in treating T2D.
This Perspective presents how inhibition of various points in the
mevalonate pathway might affect protein prenylation and functioning
of diabetes-affected tissues and contribute to chronic inflammation
involved in diabetes mellitus (T2D) development. We also demonstrate
the currently available molecular tools to decipher the mechanisms
linking the mevalonate pathway’s enzymes and GTPases with diabetes.
Collapse
Affiliation(s)
- Edyta Gendaszewska-Darmach
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego Street 4/10, 90-924 Łódź, Poland
| | - Malgorzata A Garstka
- Core Research Laboratory, Department of Endocrinology, Department of Tumor and Immunology, Precision Medical Institute, Western China Science and Technology Innovation Port, School of Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, DaMingGong, Jian Qiang Road, Wei Yang district, Xi'an 710016, China
| | - Katarzyna M Błażewska
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego Street 116, 90-924 Łódź, Poland
| |
Collapse
|
5
|
Al-Saad RZ, Kerr I, Hume AN. In Vitro Fluorescence Resonance Energy Transfer-Based Assay Used to Determine the Rab27-Effector-Binding Affinity. Assay Drug Dev Technol 2020; 18:180-194. [PMID: 32384245 DOI: 10.1089/adt.2019.960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Rab27 subfamily consists of Rab27a/b isoforms that have similar but not identical functions. Those functions include the regulation of trafficking, docking, and fusion of various lysosome-related organelles and secretory granules; such as melanosomes in melanocytes and lytic granules in cytotoxic T lymphocytes. Rab27a/b exert their specific and versatile functions by interacting with 11 effector proteins, preferentially in their GTP-bound state. In recent years, a number of studies have identified roles for Rab27 proteins and their effectors in cancer cell invasion and metastasis, immune response, inflammation, and allergic responses. These findings suggest that Rab27-effector protein interaction inhibitors could contribute to the development of effective strategies to treat these diseases. To facilitate inhibitor identification, in this study we developed a fluorescence resonance energy transfer-based protein-protein interaction assay that reports Rab27-effector interactions. Green fluorescent protein (GFP)-mouse (m) synaptotagmin-like protein (Slp)1 and GFP-mSlp2 (N-terminus Rab27-binding domains) recombinant proteins were used as donor fluorophores, whereas mCherry-human (h) Rab27a/b recombinant proteins were used as acceptor fluorophores. The in vitro binding affinity of mSlp2 to Rab27 was found to be higher compared with mSlp1 and was evidenced by the effective concentration 50 value differences (mSlp2-hRab27b = 0.15 μM < mSlp2-hRab27a = 0.2 μM < mSlp1-hRab27a = 0.32 μM < mSlp1-hRab27b = 0.33 μM). The specificity of the assay was assessed using unlabeled rat (r) Rab27a and hRab27b recombinant proteins as typical competitive inhibitors for Rab27-effector interactions and was evidenced by the inhibitory concentration 50 value differences. Accordingly, this in vitro assay can be employed in identification of candidate inhibitors of Rab27-effector interactions.
Collapse
Affiliation(s)
- Raghdan Z Al-Saad
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Ian Kerr
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alistair N Hume
- Division of Physiology, Pharmacology, and Neuroscience, Queen's Medical Centre, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Kimura T, Yamaoka M, Terabayashi T, Kaibuchi K, Ishikawa T, Ishizaki T. GDP-Bound Rab27a Dissociates from the Endocytic Machinery in a Phosphorylation-Dependent Manner after Insulin Secretion. Biol Pharm Bull 2020; 42:1532-1537. [PMID: 31474712 DOI: 10.1248/bpb.b19-00242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucose-stimulated insulin secretion is controlled by both exocytosis and endocytosis in pancreatic β-cells. Although endocytosis is a fundamental step to maintain cellular responses to the secretagogue, the molecular mechanism of endocytosis remains poorly defined. We have previously shown that in response to high concentrations of glucose, guanosine 5'-diphosphate (GDP)-bound Rab27a is recruited to the plasma membrane where IQ motif-containing guanosine 5'-triphosphatase (GTPase)-activating protein 1 (IQGAP1) is expressed, and that complex formation promotes endocytosis of secretory membranes after insulin secretion. In the present study, the regulatory mechanisms of dissociation of the complex were investigated. Phosphorylation of IQGAP1 on serine (Ser)-1443, a site recognized by protein kinase Cε (PKCε), inhibited the interaction of GDP-bound Rab27a with IQGAP1 in a Cdc42-independent manner. Glucose stimulation caused a translocation of PKCε from the cytosol to the plasma membrane. In addition, glucose-induced endocytosis was inhibited by the knockdown of IQGAP1 with small interfering RNA (siRNA). However, the expression of the non-phosphorylatable or phosphomimetic form of IQGAP1 could not rescue the inhibition, suggesting that a phosphorylation-dephosphorylation cycle of IQGAP1 is required for endocytosis. These results suggest that IQGAP1 phosphorylated by PKCε promotes the dissociation of the IQGAP1-GDP-bound Rab27a complex in pancreatic β-cells, thereby regulating endocytosis of secretory membranes following insulin secretion.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka.,Department of Pharmacology, Oita University Faculty of Medicine
| | - Mami Yamaoka
- Department of Pharmacology, Oita University Faculty of Medicine
| | | | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University.,Institute for Comprehensive Medical Science, Fujita Health University
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | | |
Collapse
|
7
|
Riley DRJ, Khalil JS, Naseem KM, Rivero F. Biochemical and immunocytochemical characterization of coronins in platelets. Platelets 2019; 31:913-924. [PMID: 31801396 PMCID: PMC7497283 DOI: 10.1080/09537104.2019.1696457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Rapid reorganization of the actin cytoskeleton in response to receptor-mediated signaling cascades allows platelets to transition from a discoid shape to a flat spread shape upon adhesion to damaged vessel walls. Coronins are conserved regulators of the actin cytoskeleton turnover but they also participate in signaling events. To gain a better picture of their functions in platelets we have undertaken a biochemical and immunocytochemical investigation with a focus on Coro1. We found that class I coronins Coro1, 2 and 3 are abundant in human and mouse platelets whereas little Coro7 can be detected. Coro1 is mainly cytosolic, but a significant amount associates with membranes in an actin-independent manner and does not translocate from or to the membrane fraction upon exposure to thrombin, collagen or prostacyclin. Coro1 rapidly translocates to the Triton insoluble cytoskeleton upon platelet stimulation with thrombin or collagen. Coro1, 2 and 3 show a diffuse cytoplasmic localization with discontinuous accumulation at the cell cortex and actin nodules of human platelets, where all three coronins colocalize. Our data are consistent with a role of coronins as integrators of extracellular signals with actin remodeling and suggests a high extent of functional overlap among class I coronins in platelets.
Collapse
Affiliation(s)
- David R J Riley
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK
| | - Jawad S Khalil
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK.,School of Physiology, Pharmacology and Neuroscience, Faculty of Life Sciences, University of Bristol , Bristol, UK
| | - Khalid M Naseem
- Leeds Institute for Cardiovascular and Metabolic Medicine, University of Leeds , Leeds, UK
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull , Hull, UK
| |
Collapse
|
8
|
Solga R, Behrens J, Ziemann A, Riou A, Berwanger C, Becker L, Garrett L, de Angelis MH, Fischer L, Coras R, Barkovits K, Marcus K, Mahabir E, Eichinger L, Schröder R, Noegel AA, Clemen CS. CRN2 binds to TIMP4 and MMP14 and promotes perivascular invasion of glioblastoma cells. Eur J Cell Biol 2019; 98:151046. [PMID: 31677819 DOI: 10.1016/j.ejcb.2019.151046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
CRN2 is an actin filament binding protein involved in the regulation of various cellular processes including cell migration and invasion. CRN2 has been implicated in the malignant progression of different types of human cancer. We used CRN2 knock-out mice for analyses as well as for crossbreeding with a Tp53/Pten knock-out glioblastoma mouse model. CRN2 knock-out mice were subjected to a phenotyping screen at the German Mouse Clinic. Murine glioblastoma tissue specimens as well as cultured murine brain slices and glioblastoma cell lines were investigated by immunohistochemistry, immunofluorescence, and cell biological experiments. Protein interactions were studied by immunoprecipitation, pull-down, and enzyme activity assays. CRN2 knock-out mice displayed neurological and behavioural alterations, e.g. reduced hearing sensitivity, reduced acoustic startle response, hypoactivity, and less frequent urination. While glioblastoma mice with or without the additional CRN2 knock-out allele exhibited no significant difference in their survival rates, the increased levels of CRN2 in transplanted glioblastoma cells caused a higher tumour cell encasement of murine brain slice capillaries. We identified two important factors of the tumour microenvironment, the tissue inhibitor of matrix metalloproteinase 4 (TIMP4) and the matrix metalloproteinase 14 (MMP14, synonym: MT1-MMP), as novel binding partners of CRN2. All three proteins mutually interacted and co-localised at the front of lamellipodia, and CRN2 was newly detected in exosomes. On the functional level, we demonstrate that CRN2 increased the secretion of TIMP4 as well as the catalytic activity of MMP14. Our results imply that CRN2 represents a pro-invasive effector within the tumour cell microenvironment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Roxana Solga
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Juliane Behrens
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Anja Ziemann
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Adrien Riou
- In-vivo NMR, Max Planck Institute for Metabolism Research, 50931, Cologne, Germany
| | - Carolin Berwanger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany; Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85354, Freising, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Lisa Fischer
- Comparative Medicine, Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Roland Coras
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Katalin Barkovits
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Angelika A Noegel
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
| | - Christoph S Clemen
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany; Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany; Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|
9
|
Yamaoka M, Terabayashi T, Nishioka T, Kaibuchi K, Ishikawa T, Ishizaki T, Kimura T. IRR is involved in glucose-induced endocytosis after insulin secretion. J Pharmacol Sci 2019; 140:300-304. [DOI: 10.1016/j.jphs.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/26/2019] [Accepted: 07/02/2019] [Indexed: 11/29/2022] Open
|
10
|
Duan J, Qian XL, Li J, Xiao XH, Lu XT, Lv LC, Huang QY, Ding W, Zhang HY, Xiong LX. miR-29a Negatively Affects Glucose-Stimulated Insulin Secretion and MIN6 Cell Proliferation via Cdc42/ β-Catenin Signaling. Int J Endocrinol 2019; 2019:5219782. [PMID: 31662747 PMCID: PMC6735210 DOI: 10.1155/2019/5219782] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Diabetes is a progressive metabolic disease characterized by hyperglycemia. Functional impairment of islet β cells can occur to varying degrees. This impairment can initially be compensated for by proliferation and metabolic changes of β cells. Cell division control protein 42 (Cdc42) and the microRNA (miRNA) miR-29 have important roles in β-cell proliferation and glucose-stimulated insulin secretion (GSIS), which we further explored using the mouse insulinoma cell line MIN6. METHODS Upregulation and downregulation of miR-29a and Cdc42 were accomplished using transient transfection. miR-29a and Cdc42 expression was detected by real-time PCR and western blotting. MIN6 proliferation was detected using a cell counting kit assay. GSIS under high-glucose (20.0 mM) or basal-glucose (5.0 mM) stimulation was detected by enzyme-linked immunosorbent assay. The miR-29a binding site in the Cdc42 mRNA 3'-untranslated region (UTR) was determined using bioinformatics and luciferase reporter assays. RESULTS miR-29a overexpression inhibited proliferation (P < 0.01) and GSIS under high-glucose stimulation (P < 0.01). Cdc42 overexpression promoted proliferation (P < 0.05) and GSIS under high-glucose stimulation (P < 0.05). miR-29a overexpression decreased Cdc42 expression (P < 0.01), whereas miR-29a downregulation increased Cdc42 expression (P < 0.01). The results showed that the Cdc42 mRNA 3'-UTR is a direct target of miR-29a in vitro. Additionally, Cdc42 reversed miR-29a-mediated inhibition of proliferation and GSIS (P < 0.01). Furthermore, miR-29a inhibited β-catenin expression (P < 0.01), whereas Cdc42 promoted β-catenin expression (P < 0.01). CONCLUSION By negatively regulating Cdc42 and the downstream molecule β-catenin, miR-29a inhibits MIN6 proliferation and insulin secretion.
Collapse
Affiliation(s)
- Jing Duan
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Xian-Ling Qian
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Jun Li
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Xing-Hua Xiao
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Xiang-Tong Lu
- Department of Pathology, Second Affiliated Hospital, Nanchang University, No. 1 Mingde Road, Nanchang 330006, China
| | - Lin-Chen Lv
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Qing-Yun Huang
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Wen Ding
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| | - Hong-Yan Zhang
- Department of Burn, The First Affiliated Hospital, Nanchang University, 17 Yongwaizheng Road, Nanschang 330066, China
| | - Li-Xia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, 461 Bayi Road, Nanchang 330006, China
| |
Collapse
|
11
|
Kjos I, Vestre K, Guadagno NA, Borg Distefano M, Progida C. Rab and Arf proteins at the crossroad between membrane transport and cytoskeleton dynamics. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2018; 1865:1397-1409. [PMID: 30021127 DOI: 10.1016/j.bbamcr.2018.07.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 01/04/2023]
Abstract
The intracellular movement and positioning of organelles and vesicles is mediated by the cytoskeleton and molecular motors. Small GTPases like Rab and Arf proteins are main regulators of intracellular transport by connecting membranes to cytoskeleton motors or adaptors. However, it is becoming clear that interactions between these small GTPases and the cytoskeleton are important not only for the regulation of membrane transport. In this review, we will cover our current understanding of the mechanisms underlying the connection between Rab and Arf GTPases and the cytoskeleton, with special emphasis on the double role of these interactions, not only in membrane trafficking but also in membrane and cytoskeleton remodeling. Furthermore, we will highlight the most recent findings about the fine control mechanisms of crosstalk between different members of Rab, Arf, and Rho families of small GTPases in the regulation of cytoskeleton organization.
Collapse
Affiliation(s)
- Ingrid Kjos
- Department of Biosciences, University of Oslo, Norway
| | | | | | | | | |
Collapse
|
12
|
Jimenez-Ruiz E, Morlon-Guyot J, Daher W, Meissner M. Vacuolar protein sorting mechanisms in apicomplexan parasites. Mol Biochem Parasitol 2016; 209:18-25. [PMID: 26844642 PMCID: PMC5154328 DOI: 10.1016/j.molbiopara.2016.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 01/14/2016] [Accepted: 01/28/2016] [Indexed: 12/26/2022]
Abstract
The phylum Apicomplexa comprises more than 5000 species including pathogens of clinical and economical importance. These obligate intracellular parasites possess a highly complex endomembrane system to build amongst others three morphologically distinct secretory organelles: rhoptries, micronemes and dense granules. Proteins released by these organelles are essential for invasion and hijacking of the host cell. Due to the complexity of the internal organization of these parasites, a wide panoply of trafficking factors was expected to be required for the correct sorting of proteins towards the various organelles. However, Toxoplasma gondii and other apicomplexan parasites contain only a core set of these factors and several of the vacuolar protein sorting (VPS) homologues found in most eukaryotes have been lost in this phylum. In this review, we will summarise our current knowledge about the role of trafficking complexes in T. gondii, highlighting recent studies focused on complexes formed by VPS proteins. We also present a novel, hypothetical model, suggesting the recycling of parasite membrane and micronemal proteins.
Collapse
|
13
|
Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, Tyska MJ, Weaver AM. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol 2016; 214:197-213. [PMID: 27402952 PMCID: PMC4949450 DOI: 10.1083/jcb.201601025] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 06/28/2016] [Indexed: 12/11/2022] Open
Abstract
Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites.
Collapse
Affiliation(s)
- Seema Sinha
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | | | - Nan Hyung Hong
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Kellye C Kirkbride
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Nathan E Grega-Larson
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Motoharu Seiki
- Division of Cancer Cell Research, Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232
| | - Alissa M Weaver
- Department of Cancer Biology, Vanderbilt University Medical School, Nashville, TN 37232 Department of Cell and Developmental Biology, Vanderbilt University Medical School, Nashville, TN 37232 Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
14
|
Yamaoka M, Ishizaki T, Kimura T. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells. Biol Pharm Bull 2016; 38:663-8. [PMID: 25947911 DOI: 10.1248/bpb.b14-00886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.
Collapse
Affiliation(s)
- Mami Yamaoka
- Department of Pharmacology, Oita University Faculty of Medicine
| | | | | |
Collapse
|
15
|
Behrens J, Solga R, Ziemann A, Rastetter RH, Berwanger C, Herrmann H, Noegel AA, Clemen CS. Coronin 1C-free primary mouse fibroblasts exhibit robust rearrangements in the orientation of actin filaments, microtubules and intermediate filaments. Eur J Cell Biol 2016; 95:239-51. [PMID: 27178841 DOI: 10.1016/j.ejcb.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 01/01/2023] Open
Abstract
Coronin 1C is an established modulator of actin cytoskeleton dynamics. It has been shown to be involved in protrusion formation, cell migration and invasion. Here, we report the generation of primary fibroblasts from coronin 1C knock-out mice in order to investigate the impact of the loss of coronin 1C on cellular structural organisation. We demonstrate that the lack of coronin 1C not only affects the actin system, but also the microtubule and the vimentin intermediate filament networks. In particular, we show that the knock-out cells exhibit a reduced proliferation rate, impaired cell migration and protrusion formation as well as an aberrant subcellular localisation and function of mitochondria. Moreover, we demonstrate that coronin 1C specifically interacts with the non-α-helical amino-terminal domain ("head") of vimentin. Our data suggest that coronin 1C acts as a cytoskeletal integrator of actin filaments, microtubules and intermediate filaments.
Collapse
Affiliation(s)
- Juliane Behrens
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Roxana Solga
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Anja Ziemann
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Raphael H Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931Cologne, Germany
| | - Carolin Berwanger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Harald Herrmann
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Angelika A Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931Cologne, Germany
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany.
| |
Collapse
|
16
|
Yamaoka M, Ando T, Terabayashi T, Okamoto M, Takei M, Nishioka T, Kaibuchi K, Matsunaga K, Ishizaki R, Izumi T, Niki I, Ishizaki T, Kimura T. PI3K regulates endocytosis after insulin secretion by mediating signaling crosstalk between Arf6 and Rab27a. J Cell Sci 2015; 129:637-49. [PMID: 26683831 DOI: 10.1242/jcs.180141] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/03/2015] [Indexed: 01/12/2023] Open
Abstract
In secretory cells, endocytosis is coupled to exocytosis to enable proper secretion. Although endocytosis is crucial to maintain cellular homeostasis before and after secretion, knowledge about secretagogue-induced endocytosis in secretory cells is still limited. Here, we searched for proteins that interacted with the Rab27a GTPase-activating protein (GAP) EPI64 (also known as TBC1D10A) and identified the Arf6 guanine-nucleotide-exchange factor (GEF) ARNO (also known as CYTH2) in pancreatic β-cells. We found that the insulin secretagogue glucose promotes phosphatidylinositol (3,4,5)-trisphosphate (PIP3) generation through phosphoinositide 3-kinase (PI3K), thereby recruiting ARNO to the intracellular side of the plasma membrane. Peripheral ARNO promotes clathrin assembly through its GEF activity for Arf6 and regulates the early stage of endocytosis. We also found that peripheral ARNO recruits EPI64 to the same area and that the interaction requires glucose-induced endocytosis in pancreatic β-cells. Given that GTP- and GDP-bound Rab27a regulate exocytosis and the late stage of endocytosis, our results indicate that the glucose-induced activation of PI3K plays a pivotal role in exocytosis-endocytosis coupling, and that ARNO and EPI64 regulate endocytosis at distinct stages.
Collapse
Affiliation(s)
- Mami Yamaoka
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Tomomi Ando
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Takeshi Terabayashi
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Mitsuhiro Okamoto
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Masahiro Takei
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Tomoki Nishioka
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan
| | - Kozo Kaibuchi
- Department of Cell Pharmacology, Graduate School of Medicine, Nagoya University, 65 Tsurumai, Showa, Nagoya, Aichi 466-8550, Japan JST, CREST, 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| | - Kohichi Matsunaga
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ray Ishizaki
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Tetsuro Izumi
- Laboratory of Molecular Endocrinology and Metabolism, Department of Molecular Medicine, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | - Ichiro Niki
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Toshimasa Ishizaki
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | - Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| |
Collapse
|
17
|
Rastetter RH, Blömacher M, Drebber U, Marko M, Behrens J, Solga R, Hojeili S, Bhattacharya K, Wunderlich CM, Wunderlich FT, Odenthal M, Ziemann A, Eichinger L, Clemen CS. Coronin 2A (CRN5) expression is associated with colorectal adenoma-adenocarcinoma sequence and oncogenic signalling. BMC Cancer 2015; 15:638. [PMID: 26373535 PMCID: PMC4612562 DOI: 10.1186/s12885-015-1645-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 09/04/2015] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Coronin proteins are known as regulators of actin-based cellular processes, and some of them are associated with the malignant progression of human cancer. Here, we show that expression of coronin 2A is up-regulated in human colon carcinoma. METHODS This study included 26 human colon tumour specimens and 9 normal controls. Expression and localisation of coronin 2A was studied by immunohistochemistry, immunofluorescence imaging, cell fractionation, and immunoblotting. Functional roles of coronin 2A were analysed by over-expression and knock-down of the protein. Protein interactions were studied by co-immunoprecipitation and pull-down experiments, mass spectrometry analyses, and in vitro kinase and methylation assays. RESULTS Histopathological investigation revealed that the expression of coronin 2A in colon tumour cells is up-regulated during the adenoma-adenocarcinoma progression. At the subcellular level, coronin 2A localised to multiple compartments, i.e. F-actin stress fibres, the front of lamellipodia, focal adhesions, and the nuclei. Over-expression of coronin 2A led to a reduction of F-actin stress fibres and elevated cell migration velocity. We identified two novel direct coronin 2A interaction partners. The interaction of coronin 2A with MAPK14 (mitogen activated protein kinase 14 or MAP kinase p38α) led to phosphorylation of coronin 2A and also to activation of the MAPK14 pathway. Moreover, coronin 2A interacted with PRMT5 (protein arginine N-methyltransferase 5), which modulates the sensitivity of tumour cells to TRAIL-induced cell death. CONCLUSIONS We show that increased expression of coronin 2A is associated with the malignant phenotype of human colon carcinoma. Moreover, we linked coronin 2A to MAPK14 and PRMT5 signalling pathways involved in tumour progression.
Collapse
Affiliation(s)
- Raphael H Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
- Present address: Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Margit Blömacher
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Uta Drebber
- Institute of Pathology, University Hospital of Cologne, 50931, Cologne, Germany
| | - Marija Marko
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Juliane Behrens
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Roxana Solga
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Sarah Hojeili
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Kurchi Bhattacharya
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | | | | | - Margarete Odenthal
- Institute of Pathology, University Hospital of Cologne, 50931, Cologne, Germany
| | - Anja Ziemann
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Joseph-Stelzmann-Street 52, 50931, Cologne, Germany.
| |
Collapse
|
18
|
Reichhart N, Markowski M, Ishiyama S, Wagner A, Crespo-Garcia S, Schorb T, Ramalho JS, Milenkovic VM, Föckler R, Seabra MC, Strauß O. Rab27a GTPase modulates L-type Ca2+ channel function via interaction with the II-III linker of CaV1.3 subunit. Cell Signal 2015; 27:2231-40. [PMID: 26235199 DOI: 10.1016/j.cellsig.2015.07.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 07/28/2015] [Indexed: 12/31/2022]
Abstract
In a variety of cells, secretory processes require the activation of both Rab27a and L-type channels of the Ca(V)1.3 subtype. In the retinal pigment epithelium (RPE), Rab27a and Ca(V)1.3 channels regulate growth-factor secretion towards its basolateral side. Analysis of murine retina sections revealed a co-localization of both Rab27a and Ca(V)1.3 at the basolateral membrane of the RPE. Heterologously expressed Ca(V)1.3/β3/α2δ1 channels showed negatively shifted voltage-dependence and decreased current density of about 70% when co-expressed with Rab27a. However, co-localization analysis using α(5)β(1) integrin as a membrane marker revealed that Rab27a co-expression reduced the surface expression of Ca(V)1.3 only about 10%. Physical binding of heterologously expressed Rab27a with Ca(V)1.3 channels was shown by co-localization in immunocytochemistry as well as co-immunoprecipitation which was abolished after deletion of a MyRIP-homologous amino acid sequence at the II-III linker of the Ca(V)1.3 subunit. Rab27a over-expression in ARPE-19 cells positively shifted the voltage dependence, decreased current density of endogenous Ca(V)1.3 channels and reduced VEGF-A secretion. We show the first evidence of a direct functional modulation of an ion channel by Rab27a suggesting a new mechanism of Rab and ion channel interaction in the control of VEGF-A secretion in the RPE.
Collapse
Affiliation(s)
- Nadine Reichhart
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Magdalena Markowski
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Shimpei Ishiyama
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Andrea Wagner
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Sergio Crespo-Garcia
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - Talitha Schorb
- Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany
| | - José S Ramalho
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Vladimir M Milenkovic
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Department of Psychiatry and Psychotherapy, Molecular Neuroscience, University of Regensburg, Germany
| | - Renate Föckler
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany
| | - Miguel C Seabra
- CEDOC, Faculdade de Ciências Médicas (FCM), Universidade Nova de Lisboa, Lisbon, Portugal
| | - Olaf Strauß
- Experimental Ophthalmology, Eye Hospital, University Medical Center Regensburg, Regensburg, Germany; Experimental Ophthalmology, Eye Hospital, Charité University Medicine, Campus Virchow-Clinic, Berlin, Germany.
| |
Collapse
|
19
|
Yamaoka M, Ishizaki T, Kimura T. Interplay between Rab27a effectors in pancreatic β-cells. World J Diabetes 2015; 6:508-516. [PMID: 25897360 PMCID: PMC4398906 DOI: 10.4239/wjd.v6.i3.508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 12/24/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
The small GTPase Rab27a is a member of the Rab family that is involved in membrane trafficking in various kinds of cells. Rab27a has GTP- and GDP-bound forms, and their interconversion regulates intracellular signaling pathways. Typically, only a GTP-bound GTPase binds its specific effectors with the resulting downstream signals controlling specific cellular functions. We previously identified novel Rab27a-interacting proteins. Surprisingly, some of these proteins interacted with GDP-bound Rab27a. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in the secretory process. In pancreatic β-cells, GTP-bound Rab27a regulates insulin secretion at the pre-exocytotic stages via its GTP-specific effectors such as Exophilin8/Slac2-c/MyRIP and Slp4/Granuphilin. Glucose stimulation causes insulin exocytosis. Glucose stimulation also converts Rab27a from its GTP- to its GDP-bound form. GDP-bound Rab27a interacts with GDP-specific effectors and controls endocytosis of the secretory membrane. Thus, Rab27a cycling between GTP- and GDP-bound forms synchronizes with the recycling of secretory membrane to re-use the membrane and keep the β-cell volume constant.
Collapse
|
20
|
Salamun J, Kallio JP, Daher W, Soldati-Favre D, Kursula I. Structure of Toxoplasma gondii coronin, an actin-binding protein that relocalizes to the posterior pole of invasive parasites and contributes to invasion and egress. FASEB J 2014; 28:4729-47. [PMID: 25114175 DOI: 10.1096/fj.14-252569] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Coronins are involved in the regulation of actin dynamics in a multifaceted way, participating in cell migration and vesicular trafficking. Apicomplexan parasites, which exhibit an actin-dependent gliding motility that is essential for traversal through tissues, as well as invasion of and egress from host cells, express only a single coronin, whereas higher eukaryotes possess several isoforms. We set out to characterize the 3-D structure, biochemical function, subcellular localization, and genetic ablation of Toxoplasma gondii coronin (TgCOR), to shed light on its biological role. A combination of X-ray crystallography, small-angle scattering of X-rays, and light scattering revealed the atomic structure of the conserved WD40 domain and the dimeric arrangement of the full-length protein. TgCOR binds to F-actin and increases the rate and extent of actin polymerization. In vivo, TgCOR relocalizes transiently to the posterior pole of motile and invading parasites, independent of actin dynamics, but concomitant to microneme secretory organelle discharge. TgCOR contributes to, but is not essential for, invasion and egress. Taken together, our data point toward a role for TgCOR in stabilizing newly formed, short filaments and F-actin cross-linking, as well as functions linked to endocytosis and recycling of membranes.
Collapse
Affiliation(s)
- Julien Salamun
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Juha P Kallio
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and
| | - Wassim Daher
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland;
| | - Inari Kursula
- Centre for Structural Systems Biology, Helmholtz Centre for Infection Research and German Electron Synchrotron (DESY), Hamburg, Germany; and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
21
|
Cazares VA, Subramani A, Saldate JJ, Hoerauf W, Stuenkel EL. Distinct actions of Rab3 and Rab27 GTPases on late stages of exocytosis of insulin. Traffic 2014; 15:997-1015. [PMID: 24909540 DOI: 10.1111/tra.12182] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
Abstract
Rab GTPases associated with insulin-containing secretory granules (SGs) are key in targeting, docking and assembly of molecular complexes governing pancreatic β-cell exocytosis. Four Rab3 isoforms along with Rab27A are associated with insulin granules, yet elucidation of the distinct roles of these Rab families on exocytosis remains unclear. To define specific actions of these Rab families we employ Rab3GAP and/or EPI64A GTPase-activating protein overexpression in β-cells from wild-type or Ashen mice to selectively transit the entire Rab3 family or Rab27A to a GDP-bound state. Ashen mice carry a spontaneous mutation that eliminates Rab27A expression. Using membrane capacitance measurements we find that GTP/GDP nucleotide cycling of Rab27A is essential for generation of the functionally defined immediately releasable pool (IRP) and central to regulating the size of the readily releasable pool (RRP). By comparison, nucleotide cycling of Rab3 GTPases, but not of Rab27A, is essential for a kinetically rapid filling of the RRP with SGs. Aside from these distinct functions, Rab3 and Rab27A GTPases demonstrate considerable functional overlap in building the readily releasable granule pool. Hence, while Rab3 and Rab27A cooperate to generate release-ready SGs in β-cells, they also direct unique kinetic and functional properties of the exocytotic pathway.
Collapse
Affiliation(s)
- Victor A Cazares
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI, 48109, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
Recruitment of specific molecules to a specific membrane site is essential for communication between specialized membranous organelles. In the present study, we identified IQGAP1 as a novel GDP-bound-Rab27a-interacting protein. We found that IQGAP1 interacts with GDP-bound Rab27a when it forms a complex with GTP-bound Cdc42. We also found that IQGAP1 regulates the endocytosis of insulin secretory membranes. Silencing of IQGAP1 inhibits both endocytosis and the glucose-induced redistribution of endocytic machinery, including Rab27a and its binding protein coronin 3. These processes can also be inhibited by disruption of the trimeric complex with dominant negative IQGAP1 and Cdc42. These results indicate that activation of Cdc42 in response to the insulin secretagogue glucose recruits endocytic machinery to IQGAP1 at the cell periphery and regulates endocytosis at this membrane site.
Collapse
|
23
|
Ziemann A, Hess S, Bhuwania R, Linder S, Kloppenburg P, Noegel AA, Clemen CS. CRN2 enhances the invasiveness of glioblastoma cells. Neuro Oncol 2013; 15:548-61. [PMID: 23410663 PMCID: PMC3635520 DOI: 10.1093/neuonc/nos388] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/17/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Movement of tumor cells involves dynamic remodeling of the actin cytoskeleton, which is regulated by actin binding proteins, such as CRN2 (synonyms: coronin 1C, coronin 3). In vitro, CRN2 participates in secretion, matrix degradation, protrusion formation, and cell migration. Furthermore, expression of CRN2 correlates with the malignant phenotype of human diffuse gliomas. CRN2's effects on actin polymerization and F-actin bundling are abolished by protein kinase 2 (CK2) dependent phosphorylation at serine 463. METHODS We generated human U373 glioblastoma cell lines with knock-down of CRN2 or over-expression of CRN2 variants and studied their behavior in vitro and ex vivo in organotypic brain slice cultures. RESULTS CRN2 over-expression and expression of the S463A phospho-resistant CRN2 variant increase proliferation, matrix degradation, and invasion but decrease adhesion and formation of invadopodia-like extensions in vitro. Knock-down of CRN2 and expression of S463D phospho-mimetic CRN2 generally have opposite effects. Analysis of invadopodia-like cell extensions shows a diffuse relocalization of F-actin in CRN2 knockdown cells, whereas expression of S463A and S463D mutant CRN2 causes enrichments of F-actin structures at the center and rime zone, respectively. Fluorescence recovery after photobleaching studies of CRN2 and F-actin in lamellipodia show that both CRN2 variants decrease the turnover of actin filaments. Glioblastoma cells over-expressing wild-type or S463A CRN2, which were transplanted onto brain slices, characteristically developed into tumors with an invasive phenotype. CONCLUSIONS Overall, our data indicate that CRN2 participates in cancer progression via modulation of the actin cytoskeleton.
Collapse
Affiliation(s)
- Anja Ziemann
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Simon Hess
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Ridhirama Bhuwania
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Stefan Linder
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Peter Kloppenburg
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Angelika A. Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| | - Christoph S. Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty (A.Z., A.A.N., C.S.C.), Institute of Zoology (S.H., P.K.), Center for Molecular Medicine Cologne (S.H., P.K., A.A.N.), and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne (S.H., P.K., A.A.N.); and Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany (R.B., S.L.)
| |
Collapse
|
24
|
Xavier CP, Rastetter RH, Blömacher M, Stumpf M, Himmel M, Morgan RO, Fernandez MP, Wang C, Osman A, Miyata Y, Gjerset RA, Eichinger L, Hofmann A, Linder S, Noegel AA, Clemen CS. Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration. Sci Rep 2012; 2:241. [PMID: 22355754 PMCID: PMC3268813 DOI: 10.1038/srep00241] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 12/20/2011] [Indexed: 01/27/2023] Open
Abstract
CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. As a consequence, S463D mutant CRN2 changes the morphology of the F-actin network in the front of lamellipodia. Our data imply that CK2-dependent phosphorylation of CRN2 is involved in the modulation of the local morphology of complex actin structures and thereby inhibits cell migration.
Collapse
Affiliation(s)
- Charles-Peter Xavier
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Both authors contributed equally to this work
- Present address: Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4256, USA
| | - Raphael H. Rastetter
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Both authors contributed equally to this work
| | - Margit Blömacher
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Mirko Himmel
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Reginald O. Morgan
- Department of Biochemistry and Molecular Biology, University of Oviedo and University Institute of Biotechnology of Asturias, Oviedo, 33006, Spain
| | - Maria-Pilar Fernandez
- Department of Biochemistry and Molecular Biology, University of Oviedo and University Institute of Biotechnology of Asturias, Oviedo, 33006, Spain
| | - Conan Wang
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Asiah Osman
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Yoshihiko Miyata
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Ruth A. Gjerset
- Torrey Pines Institute for Molecular Studies, San Diego, California, 92121, USA
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Andreas Hofmann
- Structural Chemistry, Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Qld 4111, Australia
| | - Stefan Linder
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Angelika A. Noegel
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931, Cologne, Germany
| | - Christoph S. Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| |
Collapse
|
25
|
Kimura T, Niki I. Rab27a in pancreatic beta-cells, a busy protein in membrane trafficking. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2011; 107:219-23. [PMID: 21762718 DOI: 10.1016/j.pbiomolbio.2011.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 06/15/2011] [Accepted: 06/20/2011] [Indexed: 12/14/2022]
Abstract
The small GTPases have the 'active' GTP-bound and 'inactive' GDP-bound states, and thereby act as a molecular switch in cells. Rab27a is a member of this family and exists in T-lymphocytes, melanocytes and pancreatic beta-cells. Rab27a regulates secretion of cytolytic granules from cytotoxic T-lymphocytes and intracellular transport of melanosomes in melanocytes. In pancreatic beta-cells, Rab27a controls pre-exocytotic stages of insulin secretion. A few GTP-dependent Rab27a effectors are known to mediate these cellular functions. We recently found that Rab27a also possesses the GDP-dependent effector coronin 3. Coronin 3 regulates endocytosis in pancreatic beta-cells through its interaction with GDP-Rab27a. These results imply that GTP- and GDP-Rab27a actively regulate distinct stages in the insulin secretory pathway. In this review, we provide an overview of the roles of both GTP- and GDP-Rab27a in pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 8795593, Japan
| | | |
Collapse
|
26
|
Chan KT, Creed SJ, Bear JE. Unraveling the enigma: progress towards understanding the coronin family of actin regulators. Trends Cell Biol 2011; 21:481-8. [PMID: 21632254 DOI: 10.1016/j.tcb.2011.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/15/2011] [Accepted: 04/18/2011] [Indexed: 11/25/2022]
Abstract
Coronins are a conserved family of actin cytoskeleton regulators that promote cell motility and modulate other actin-dependent processes. Although these proteins have been known for 20 years, substantial progress has been made in the past 5 years towards their understanding. In this review, we examine this progress, place it into the context of what was already known, and pose several questions that remain to be addressed. In particular, we cover the emerging consensus about the role of Type I coronins in coordinating the function of Arp2/3 complex and ADF/cofilin proteins. This coordination plays an important role in leading-edge actin dynamics and overall cell motility. Finally, we discuss the roles played by the more exotic coronins of the Type II and III classes in cellular processes away from the leading edge.
Collapse
Affiliation(s)
- Keefe T Chan
- Lineberger Comprehensive Cancer Center and Department of Cell & Developmental Biology, Howard Hughes Medical Institute. University of North Carolina at Chapel Hill, USA
| | | | | |
Collapse
|
27
|
Abstract
The output and time-course of insulin release from pancreatic beta-cells are elegantly controlled. The secretory process comprises pre-exocytotic stages, exocytosis and post-exocytotic stages. The small GTPase Rab27a is known to regulate pre-exocytotic stages that determine the size of the readily-releasable pool of insulin granules. GTP-Rab27a and its specific effectors are responsible for this process like other GTPases. Recently, we searched for Rab27a-interacting proteins and identified coronin 3. Unexpectedly, coronin 3 only bound GDP-Rab27a and this interaction regulated post-exocytotic stages via reorganization of the actin cytoskeleton. Since glucose converts Rab27a from the GTP- to GDP-bound form, we suggested that Rab27a plays a crucial role in stimulus-endocytosis coupling in pancreatic beta-cells, and that this is the key molecule for membrane recycling of insulin granules. In this review, we provide an overview of the roles of Rab27a and its GTP- and GDP-dependent effectors in the insulin secretory pathway of pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita, Japan
| | | |
Collapse
|
28
|
Kimura T, Taniguchi S, Toya K, Niki I. Glucose-induced translocation of coronin 3 regulates the retrograde transport of the secretory membrane in the pancreatic beta-cells. Biochem Biophys Res Commun 2010; 395:318-23. [PMID: 20362548 DOI: 10.1016/j.bbrc.2010.03.173] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 03/30/2010] [Indexed: 12/16/2022]
Abstract
GTP-Rab27a is known to regulate insulin exocytosis. We have recently reported that coronin 3, which paradoxically binds GDP-Rab27a, participates in endocytosis of the insulin secretory membrane. Here, we demonstrate that glucose stimulation caused redistribution of coronin 3 in the vicinity of the plasma membrane, which was mimicked by overexpression of the GDP-Rab27a mutant or the Rab27a GAP. Glucose-induced translocation of coronin 3 was inhibited by Rab27a knock-down. The internalized phogrin, an insulin granule associated protein, located near the plasma membrane by the dominant-negative coronin 3, but the protein at the outer surface of the plasma membrane was decreased. These results indicate that glucose recruits coronin 3 near the plasma membrane, and that it regulates the retrograde transport of the secretory membrane in pancreatic beta-cells.
Collapse
Affiliation(s)
- Toshihide Kimura
- Department of Pharmacology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hasama, Yufu, Oita 879-5593, Japan
| | | | | | | |
Collapse
|