1
|
Yang J, Chen R, Xiang X, Liu W, Fan C. Genome-Wide Identification and Expression Analysis of the Class III Peroxidase Gene Family under Abiotic Stresses in Litchi ( Litchi chinensis Sonn.). Int J Mol Sci 2024; 25:5804. [PMID: 38891992 PMCID: PMC11172018 DOI: 10.3390/ijms25115804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Class III peroxidases (CIII PRXs) are plant-specific enzymes with high activity that play key roles in the catalysis of oxidation-reduction reactions. In plants, CIII PRXs can reduce hydrogen peroxide to catalyze oxidation-reduction reactions, thereby affecting plant growth, development, and stress responses. To date, no systematic analysis of the CIII PRX gene family in litchi (Litchi chinensis Sonn.) has been documented, although the genome has been reported. In this study, a total of 77 CIII PRX (designated LcPRX) gene family members were predicted in the litchi genome to provide a reference for candidate genes in the responses to abiotic stresses during litchi growth and development. All of these LcPRX genes had different numbers of highly conserved PRX domains and were unevenly distributed across fifteen chromosomes. They were further clustered into eight clades using a phylogenetic tree, and almost every clade had its own unique gene structure and motif distribution. Collinearity analysis confirmed that there were eleven pairs of duplicate genes among the LcPRX members, and segmental duplication (SD) was the main driving force behind the LcPRX gene expansion. Tissue-specific expression profiles indicated that the expression levels of all the LcPRX family members in different tissues of the litchi tree were significantly divergent. After different abiotic stress treatments, quantitative real-time PCR (qRT-PCR) analysis revealed that the LcPRX genes responded to various stresses and displayed differential expression patterns. Physicochemical properties, transmembrane domains, subcellular localization, secondary structures, and cis-acting elements were also analyzed. These findings provide insights into the characteristics of the LcPRX gene family and give valuable information for further elucidating its molecular function and then enhancing abiotic stress tolerance in litchi through molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | - Chao Fan
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.); (R.C.); (X.X.); (W.L.)
| |
Collapse
|
2
|
Rehman A, Alwutayd KM, Alshehri D, Alsudays IM, Azeem F, Rahman S, Abid M, Shah AA. Regulatory role of AGC genes in heat stress adaptation in maize ( Zea mays). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23282. [PMID: 38758970 DOI: 10.1071/fp23282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024]
Abstract
Heat stress represents a significant environmental challenge that restricts maize (Zea mays ) growth and yield on a global scale. Within the plant kingdom, the AGC gene family, encoding a group of protein kinases, has emerged as crucial players in various stress responses. Nevertheless, a comprehensive understanding of AGC genes in Z. mays under heat-stress conditions remains elusive. A genome-wide analysis was done using bioinformatics techniques to identify 39 AGC genes in Z. mays , categorising them into three subfamilies based on their conserved domains. We investigated their phylogenetic relationships, gene structures (including intron-exon configurations), and expression patterns. These genes are likely involved in diverse signalling pathways, fulfilling distinct roles when exposed to heat stress conditions. Notably, most ZmAGC1.5, ZmAGC1.9, ZmNDR3, ZmNDR5 and ZmIRE3 exhibited significant changes in expression levels under heat stress, featuring a high G-box ratio. Furthermore, we pinpointed a subset of AGC genes displaying highly coordinated expression, implying their potential involvement in the heat stress response pathway. Our study offers valuable insights into the contribution of AGC genes to Z. mays 's heat stress response, thus facilitating the development of heat-tolerant Z. mays varieties.
Collapse
Affiliation(s)
- Abdul Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Dikhnah Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shahroz Rahman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Abid
- Department of Plant Pathology, Bahauddin Zakariya University, Multan, Pakistan
| | - Asad Ali Shah
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Shah OU, Khan LU, Basharat S, Zhou L, Ikram M, Peng J, Khan WU, Liu P, Waseem M. Genome-Wide Investigation of Class III Peroxidase Genes in Brassica napus Reveals Their Responsiveness to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:942. [PMID: 38611473 PMCID: PMC11013820 DOI: 10.3390/plants13070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/26/2023] [Accepted: 01/05/2024] [Indexed: 04/14/2024]
Abstract
Brassica napus (B. napus) is susceptible to multiple abiotic stresses that can affect plant growth and development, ultimately reducing crop yields. In the past, many genes that provide tolerance to abiotic stresses have been identified and characterized. Peroxidase (POD) proteins, members of the oxidoreductase enzyme family, play a critical role in protecting plants against abiotic stresses. This study demonstrated a comprehensive investigation of the POD gene family in B. napus. As a result, a total of 109 POD genes were identified across the 19 chromosomes and classified into five distinct subgroups. Further, 44 duplicate events were identified; of these, two gene pairs were tandem and 42 were segmental. Synteny analysis revealed that segmental duplication was more prominent than tandem duplication among POD genes. Expression pattern analysis based on the RNA-seq data of B. napus indicated that BnPOD genes were expressed differently in various tissues; most of them were expressed in roots rather than in other tissues. To validate these findings, we performed RT-qPCR analysis on ten genes; these genes showed various expression levels under abiotic stresses. Our findings not only furnish valuable insights into the evolutionary dynamics of the BnPOD gene family but also serve as a foundation for subsequent investigations into the functional roles of POD genes in B. napus.
Collapse
Affiliation(s)
- Obaid Ullah Shah
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Latif Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Sana Basharat
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan;
| | - Lingling Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Muhammad Ikram
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Jiantao Peng
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Wasi Ullah Khan
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Pingwu Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| | - Muhammad Waseem
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), College of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China; (O.U.S.); (L.U.K.); (L.Z.); (M.I.); (J.P.); (W.U.K.)
| |
Collapse
|
4
|
Zhao YW, Li WK, Wang CK, Sun Q, Wang WY, Huang XY, Xiang Y, Hu DG. MdPRX34L, a class III peroxidase gene, activates the immune response in apple to the fungal pathogen Botryosphaeria dothidea. PLANTA 2024; 259:86. [PMID: 38453695 DOI: 10.1007/s00425-024-04355-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/27/2024] [Indexed: 03/09/2024]
Abstract
MAIN CONCLUSION MdPRX34L enhanced resistance to Botryosphaeria dothidea by increasing salicylic acid (SA) and abscisic acid (ABA) content as well as the expression of related defense genes. The class III peroxidase (PRX) multigene family is involved in complex biological processes. However, the molecular mechanism of PRXs in the pathogen defense of plants against Botryosphaeria dothidea (B. dothidea) remains unclear. Here, we cloned the PRX gene MdPRX34L, which was identified as a positive regulator of the defense response to B. dothidea, from the apple cultivar 'Royal Gala.' Overexpression of MdPRX34L in apple calli decreased sensitivity to salicylic acid (SA) and abscisic acid(ABA). Subsequently, overexpression of MdPRX34L in apple calli increased resistance to B. dothidea infection. In addition, SA contents and the expression levels of genes related to SA synthesis and signaling in apple calli overexpressing MdPRX34L were higher than those in the control after inoculation, suggesting that MdPRX34L enhances resistance to B. dothidea via the SA pathway. Interestingly, infections in apple calli by B. dothidea caused an increase in endogenous levels of ABA followed by induction of ABA-related genes expression. These findings suggest a potential mechanism by which MdPRX34L enhances plant-pathogen defense against B. dothidea by regulating the SA and ABA pathways.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wan-Kun Li
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ying Xiang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
5
|
Berthelier TH, Cabanac SC, Callot C, Bellec A, Mathé C, Jamet E, Dunand C. Evolutionary Analysis of Six Gene Families Part of the Reactive Oxygen Species (ROS) Gene Network in Three Brassicaceae Species. Int J Mol Sci 2024; 25:1938. [PMID: 38339216 PMCID: PMC10856686 DOI: 10.3390/ijms25031938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change is expected to intensify the occurrence of abiotic stress in plants, such as hypoxia and salt stresses, leading to the production of reactive oxygen species (ROS), which need to be effectively managed by various oxido-reductases encoded by the so-called ROS gene network. Here, we studied six oxido-reductases families in three Brassicaceae species, Arabidopsis thaliana as well as Nasturtium officinale and Eutrema salsugineum, which are adapted to hypoxia and salt stress, respectively. Using available and new genomic data, we performed a phylogenomic analysis and compared RNA-seq data to study genomic and transcriptomic adaptations. This comprehensive approach allowed for the gaining of insights into the impact of the adaptation to saline or hypoxia conditions on genome organization (gene gains and losses) and transcriptional regulation. Notably, the comparison of the N. officinale and E. salsugineum genomes to that of A. thaliana highlighted changes in the distribution of ohnologs and homologs, particularly affecting class III peroxidase genes (CIII Prxs). These changes were specific to each gene, to gene families subjected to duplication events and to each species, suggesting distinct evolutionary responses. The analysis of transcriptomic data has allowed for the identification of genes related to stress responses in A. thaliana, and, conversely, to adaptation in N. officinale and E. salsugineum.
Collapse
Affiliation(s)
- Thomas Horst Berthelier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Sébastien Christophe Cabanac
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRAE, 31320 Auzeville-Tolosane, France; (C.C.); (A.B.)
| | - Arnaud Bellec
- Centre National de Ressources Génomiques Végétales, INRAE, 31320 Auzeville-Tolosane, France; (C.C.); (A.B.)
| | - Catherine Mathé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (T.H.B.); (S.C.C.); (C.M.)
| |
Collapse
|
6
|
Yan J, Song Y, Li M, Hu T, Hsu YF, Zheng M. IRR1 contributes to de novo root regeneration from Arabidopsis thaliana leaf explants. PHYSIOLOGIA PLANTARUM 2023; 175:e14047. [PMID: 37882290 DOI: 10.1111/ppl.14047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Plants are capable of regenerating adventitious roots (ARs), which is important for plant response to stress and survival. Although great advances in understanding AR formation of leaf explants have been made, the regulatory mechanisms of AR formation still need to be investigated. In this study, irr1-1 (impaired root regeneration) was isolated with the inhibition of adventitious rooting from Arabidopsis leaf explants. The β-glucuronidase (GUS) signals of IRR1pro::GUS in detached leaves could be detected at 2-6 days after culture. IRR1 is annotated to encode a Class III peroxidase localized in the cell wall. The total peroxidase (POD) activity of irr1 mutants was significantly lower than that of the wild type. Detached leaves of irr1 mutants showed enhanced reactive oxygen species (ROS) accumulation 4 days after leaves were excised from seedlings. Moreover, thiourea, a ROS scavenger, was able to rescue the adventitious rooting rate in leaf explants of irr1 mutants. Addition of 0.1 μM indole-3-acetic acid (IAA) improved the adventitious rooting from leaf explants of irr1 mutants. Taken together, these results indicated that IRR1 was involved in AR formation of leaf explants, which was associated with ROS homeostasis to some extent.
Collapse
Affiliation(s)
- Jiawen Yan
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yu Song
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Meng Li
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Ting Hu
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Yi-Feng Hsu
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| | - Min Zheng
- School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing, China
| |
Collapse
|
7
|
González-Gordo S, Muñoz-Vargas MA, Palma JM, Corpas FJ. Class III Peroxidases (POD) in Pepper ( Capsicum annuum L.): Genome-Wide Identification and Regulation during Nitric Oxide (NO)-Influenced Fruit Ripening. Antioxidants (Basel) 2023; 12:antiox12051013. [PMID: 37237879 DOI: 10.3390/antiox12051013] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The class III peroxidases (PODs) catalyze the oxidation of several substrates coupled to the reduction of H2O2 to water, and play important roles in diverse plant processes. The POD family members have been well-studied in several plant species, but little information is available on sweet pepper fruit physiology. Based on the existing pepper genome, a total of 75 CaPOD genes have been identified, but only 10 genes were found in the fruit transcriptome (RNA-Seq). The time-course expression analysis of these genes showed that two were upregulated during fruit ripening, seven were downregulated, and one gene was unaffected. Furthermore, nitric oxide (NO) treatment triggered the upregulation of two CaPOD genes whereas the others were unaffected. Non-denaturing PAGE and in-gel activity staining allowed identifying four CaPOD isozymes (CaPOD I-CaPOD IV) which were differentially modulated during ripening and by NO. In vitro analyses of green fruit samples with peroxynitrite, NO donors, and reducing agents triggered about 100% inhibition of CaPOD IV. These data support the modulation of POD at gene and activity levels, which is in agreement with the nitro-oxidative metabolism of pepper fruit during ripening, and suggest that POD IV is a target for nitration and reducing events that lead to its inhibition.
Collapse
Affiliation(s)
- Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Stress, Development and Signaling in Plants, Estación Experimental del Zaidín, Spanish National Research Council (CSIC), C/Profesor Albareda 1, 18008 Granada, Spain
| |
Collapse
|
8
|
Hou X, Lu Z, Hong K, Song K, Gu H, Hu W, Yao Q. The class III peroxidase gene family is involved in ascorbic acid induced delay of internal browning in pineapple. FRONTIERS IN PLANT SCIENCE 2022; 13:953623. [PMID: 35991401 PMCID: PMC9382127 DOI: 10.3389/fpls.2022.953623] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/06/2022] [Indexed: 06/02/2023]
Abstract
Excessive production of reactive oxygen species (ROS) leads to potential toxicity in an organism. Class III peroxidases (PRXs) play an important role in maintaining ROS homeostasis in plants. Internal browning (IB) limits industrial development of pineapple, which is the third most important fruit trade in the world. IB is mainly caused by ROS, and the mechanism underlying IB is still unknown from the perspective of ROS. Here, we soaked pineapples in ascorbic acid after harvest and before storage to decrease excessive ROS and polyphenol oxidase (PPO) activity, ultimately restraining the spread and deterioration of IB. Using phylogenetic analysis; we identified 78 pineapple PRX genes (AcPRXs) and divided them into five subgroups. Gene structure analysis indicated that the exon numbers ranged from 2 to 14, and conserved motif analysis verified that all of the AcPRXs identified here have standard peroxidase domains. Analysis of duplication events suggested that tandem and segmental duplication events may have played equal and important roles in expanding the AcPRX family. Comprehensive transcriptomic analysis uncovered that AcPRXs may play an important role in negatively regulating the occurrence of IB. In summary, we found that ROS scavenging delayed IB occurrence. The results of characterized AcPRX family revealed that AcPRXs family responded to growth and development, and negatively regulated to IB occurrence in storage stage. This research provides potential target genes for future in-depth analysis of the molecular mechanisms underlying IB and contributes to develop IB-resistant pineapple varieties.
Collapse
Affiliation(s)
- Xiaowan Hou
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Zhiwei Lu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Keqian Hong
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Kanghua Song
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Hui Gu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Quansheng Yao
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
9
|
Cheng L, Ma L, Meng L, Shang H, Cao P, Jin J. Genome-Wide Identification and Analysis of the Class III Peroxidase Gene Family in Tobacco (Nicotiana tabacum). Front Genet 2022; 13:916867. [PMID: 35769995 PMCID: PMC9234461 DOI: 10.3389/fgene.2022.916867] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Class III peroxidases (PODs) are plant-specific enzymes that play significant roles in plant physiological processes and stress responses. However, a comprehensive analysis of the POD gene family in tobacco has not yet been conducted. In this study, 210 non-redundant POD gene members (NtPODs) were identified in tobacco (Nicotiana tabacum) and distributed unevenly throughout 24 tobacco chromosomes. Phylogenetic analysis clustered these genes into six subgroups (I-VI). Gene structure and motif analyses showed the structural and functional diversity among the subgroups. Segmental duplication and purifying selection were the main factors affecting NtPOD gene evolution. Our analyses also suggested that NtPODs might be regulated by miRNAs and cis-acting regulatory elements of transcription factors that are involved in various biological processes. In addition, the expression patterns in different tissues and under various stress treatments were investigated. The results showed that the majority of NtPODs had tissue-specific expression patterns and may be involved in many biotic and abiotic responses. qRT-PCR analyses of different tissues and stress treatments were performed to verify transcriptome patterns. Expression of a green fluorescent protein-NtPOD fusion confirmed the plasma membrane localization of NtPOD121 and NtPOD4. Furthermore, 3D structures provided evidences of membrane-bound peroxidase. These findings provide useful information to better understand the evolution of the NtPOD gene family and lay the foundation for further studies on POD gene function in tobacco.
Collapse
Affiliation(s)
- Lingtong Cheng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Lanxin Ma
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Lijun Meng
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Haihong Shang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
- *Correspondence: Jingjing Jin, ; Peijian Cao,
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
- *Correspondence: Jingjing Jin, ; Peijian Cao,
| |
Collapse
|
10
|
Gaibor-Vaca DG, García-Bazurto GL, Garcés-Fiallos FR. Mecanismos de defensa en plantas de Capsicum contra Phytophthora capsici. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Phytophthora capsici es un oomiceto causante de la pudrición de raíz, tallo, frutos y tizón foliar en varias especies vegetales de importancia agrícola, principalmente en Solanáceas del género Capsicum como ají y pimiento. Este fitopatógeno cosmopolita posee mecanismos de ataque que favorecen la rápida infección, colonización y reproducción en huéspedes susceptibles. Contrariamente, estos procesos son retrasados o evitados fuertemente por genotipos resistentes, debido principalmente a sus mecanismos de defensa. En esas interacciones incompatibles, las plantas resistentes de Capsicum reconocen el oomiceto y rápidamente expresan múltiples genes que posteriormente señalizan moléculas, que permiten la acumulación de compuestos fenólicos, fitoalexinas y especies reactivas de oxígeno, la actividad de diferentes enzimas, que pueden permitir incluso la formación de barreras físicas. Esta revisión aborda, expone y discute los avances y el progreso de las investigaciones a lo largo de los ultimos veinte años, referente a los mecanismos de defensa estructurales, bioquimicos y moleculares que utilizan las plantas resistentes de Capsicum para defenderse de P. capsici.
Palabras claves. ají, pimiento, pudrición de raíz y corona, tizón foliar, resistencia vegetal
Collapse
Affiliation(s)
- Darlyn G. Gaibor-Vaca
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| | - Génesis L García-Bazurto
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| | - Felipe R. Garcés-Fiallos
- Facultad de Ingeniería Agronómica, Universidad Técnica de Manabí, Campus Experimental La Teodomira, Km 13, Lodana, Santa Ana, Manabí
| |
Collapse
|
11
|
Zhao YW, Wang CK, Huang XY, Hu DG. Anthocyanin stability and degradation in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1987767. [PMID: 34686106 PMCID: PMC9208790 DOI: 10.1080/15592324.2021.1987767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Anthocyanins, a flavonoid group of polyphenolic compounds, have evolved in plants since the land was colonized by plants. These bioactive compounds play critical roles in diverse physiological processes. They are synthesized in the cytosol and transported into the vacuole for storage or to other destinations, where they function as bioactive molecules. The mechanisms of anthocyanin synthesis and transport have been well studied. However, the precise regulation of the mechanisms of anthocyanin degradation remains to be elucidated. In this review, we highlight recent progress in the understanding of the characteristics and functions of anthocyanins and class III peroxidases, as well as of the existing evidence of the effects of class III peroxidases on the degradation of anthocyanins and the possible regulatory mechanisms involved.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Xiao-Yu Huang
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, Shandong, China
- Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai’an, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
12
|
Modification of Growth and Physiological Response of Coastal Dune Species Anthyllis maritima to Sand Burial by Rhizobial Symbiosis and Salinity. PLANTS 2021; 10:plants10122584. [PMID: 34961054 PMCID: PMC8704325 DOI: 10.3390/plants10122584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022]
Abstract
The aim of the present study was to establish an experimental system in controlled conditions to study the physiological effect of abiotic/biotic interaction using a rare wild leguminous plant species from coastal sand dunes, Anthyllis maritima. The particular hypothesis tested was that there is an interaction between sand burial, rhizobial symbiosis and salt treatment at the level of physiological responses. Experiment in controlled conditions included 18 treatment combinations of experimental factors, with two intensities of sand burial, rhizobial inoculation and two types of NaCl treatment (soil irrigation and foliar spray). Shoot biomass was significantly affected both by burial and by inoculation, and by interaction between burial and NaCl in the case of shoot dry mass. For plants sprayed with NaCl, burial had a strong significant positive effect on shoot growth irrespective of inoculation. General effect of inoculation with rhizobia on shoot growth of plants without NaCl treatment was negative except for the plants buried 2 cm with sand, where significant stimulation of shoot dry mass by inoculant was found. The positive effect of burial on shoot growth was mainly associated with an increase in leaf petiole height and number of leaves. Performance index significantly increased in buried plants in all treatment combinations, and leaf chlorophyll concentration increased in buried plants independently on burial depth, and only in plants not treated with NaCl. Inoculation led to significant increase of leaf peroxidase activity in all treatment combinations except NaCl-irrigated plants buried for 2 cm by sand. Sand burial stimulated peroxidase activity, mostly in non-inoculated plants, as inoculation itself led to increased enzyme activity. In conclusion, strong interaction between sand burial and NaCl treatment was evident, as the latter significantly affected the effect of burial on growth and physiological indices. Moreover, rhizobial symbiosis had a significant effect on physiological processes through interaction with both sand burial and NaCl treatment, but the effect was rather controversial; it was positive for photosynthesis-related parameters but negative for growth and tissue integrity indices.
Collapse
|
13
|
Molina L, Segura A. Biochemical and Metabolic Plant Responses toward Polycyclic Aromatic Hydrocarbons and Heavy Metals Present in Atmospheric Pollution. PLANTS (BASEL, SWITZERLAND) 2021; 10:2305. [PMID: 34834668 PMCID: PMC8622723 DOI: 10.3390/plants10112305] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 05/17/2023]
Abstract
Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) are toxic components of atmospheric particles. These pollutants induce a wide variety of responses in plants, leading to tolerance or toxicity. Their effects on plants depend on many different environmental conditions, not only the type and concentration of contaminant, temperature or soil pH, but also on the physiological or genetic status of the plant. The main detoxification process in plants is the accumulation of the contaminant in vacuoles or cell walls. PAHs are normally transformed by enzymatic plant machinery prior to conjugation and immobilization; heavy metals are frequently chelated by some molecules, with glutathione, phytochelatins and metallothioneins being the main players in heavy metal detoxification. Besides these detoxification mechanisms, the presence of contaminants leads to the production of the reactive oxygen species (ROS) and the dynamic of ROS production and detoxification renders different outcomes in different scenarios, from cellular death to the induction of stress resistances. ROS responses have been extensively studied; the complexity of the ROS response and the subsequent cascade of effects on phytohormones and metabolic changes, which depend on local concentrations in different organelles and on the lifetime of each ROS species, allow the plant to modulate its responses to different environmental clues. Basic knowledge of plant responses toward pollutants is key to improving phytoremediation technologies.
Collapse
Affiliation(s)
- Lázaro Molina
- Department of Environmental Protection, Estación Experimental del Zaidín, C.S.I.C., Calle Profesor Albareda 1, 18008 Granada, Spain;
| | | |
Collapse
|
14
|
Dūmiņš K, Andersone-Ozola U, Samsone I, Elferts D, Ievinsh G. Growth and Physiological Performance of a Coastal Species Trifolium fragiferum as Affected by a Coexistence with Trifolium repens, NaCl Treatment and Inoculation with Rhizobia. PLANTS 2021; 10:plants10102196. [PMID: 34686005 PMCID: PMC8539394 DOI: 10.3390/plants10102196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to analyze the growth and physiological performance of two coexisting species, Trifolium fragiferum, and Trifolium repens, under the effect of NaCl and rhizobial symbiosis. Seeds of T. fragiferum and T. repens were collected from populations in the wild, and plants were cultivated in an automated greenhouse, two plants per container. Three basic types of planting were performed: (1) both plants were T. fragiferum (single species), (2) one T. fragiferum and one T. repens (species coexistence), (3) both plants were T. repens (single species). For every basic type, three subtypes were made: (1) non-inoculated, (2) inoculated with rhizobia taken from T. fargiferum, (3) inoculated with rhizobia taken from T. repens. For every subtype, half of the containers were used as control, and half were treated with NaCl. Shoot fresh mass of plants was significantly (p < 0.001) affected by species coexistence, inoculant, and NaCl. Three significant two-way interactions on plant shoot growth were found: between species coexistence and NaCl (p < 0.001), inoculant and species (p < 0.05), and NaCl and species (p < 0.001). A significant three-way interaction between inoculant, NaCl, and species (p < 0.001) indicated different responses of shoot growth of the two species to inoculant type and NaCl. NaCl treatment was an important factor for T. fragiferum, resulting in better growth in conditions of species coexistence, but the positive effect of bacterial inoculant was significantly more pronounced. A decrease in peroxidase activity in leaves was a good indicator of relative NaCl tolerance, while the absence/presence of rhizobial inoculation was reflected by changes in leaf chlorophyll concentration and photochemical activity of photosystem II. It can be concluded that interaction between biotic and abiotic factors affected the outcome of the coexistence of the two Trifolium species. Distribution of T. fragiferum in sea-affected habitats seems to be related to a higher competitive ability with allied species at increased substrate salinity, based on better physiological salinity tolerance.
Collapse
Affiliation(s)
- Kārlis Dūmiņš
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia; (K.D.); (U.A.-O.); (I.S.)
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia; (K.D.); (U.A.-O.); (I.S.)
| | - Ineta Samsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia; (K.D.); (U.A.-O.); (I.S.)
| | - Didzis Elferts
- Department of Botany and Ecology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia;
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia; (K.D.); (U.A.-O.); (I.S.)
- Correspondence:
| |
Collapse
|
15
|
Meng G, Fan W, Rasmussen SK. Characterisation of the class III peroxidase gene family in carrot taproots and its role in anthocyanin and lignin accumulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:245-256. [PMID: 34385003 DOI: 10.1016/j.plaphy.2021.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Plant class III peroxidases (CIII Prxs) are involved in numerous essential plant life processes, such as plant development and differentiation, lignification and seed germination, and defence against pathogens. However, there is limited information about the structure-function relationships of Prxs in carrots. This study identified 75 carrot peroxidases (DcPrxs) and classified them into seven subgroups based on phylogenetic analysis. Gene structure analysis revealed that these DcPrxs had between one and eight introns, while conserved motif analysis showed a typical motif composition and arrangement for CIII Prx. In addition, eighteen tandem duplication events, but only eight segmental duplications, were identified among these DcPrxs, indicating that tandem duplication was the main contributor to the expansion of this gene family. Histochemical analyses showed that lignin was mainly localised in the cell walls of xylem, and Prx activity was determined in the epidermal region of taproots. The xylem always showed higher lignin concentration and lower Prx activity compared to the phloem in the taproots of both carrot cultivars. Combining these observations with RNA sequencing, some Prx genes were identified as candidate genes related to lignification and pigmentation. Three peroxidases (DcPrx30, DcPrx32, DcPrx62) were upregulated in the phloem of both genotypes. Carrot taproots are an attractive resource for natural food colourants and this study elucidated genome-wide insights of Prx for the first time, developing hypotheses concerning their involvement with lignin and anthocyanin in purple carrots. The findings provide an essential foundation for further studies of Prx genes in carrot, especially on pigmentation and lignification mechanisms.
Collapse
Affiliation(s)
- Geng Meng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China; Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Weiyao Fan
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark
| | - Søren K Rasmussen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, Denmark.
| |
Collapse
|
16
|
Mechanism of action, sources, and application of peroxidases. Food Res Int 2021; 143:110266. [PMID: 33992367 DOI: 10.1016/j.foodres.2021.110266] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/28/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Peroxidase is an enzyme in the group of oxidoreductases that is widely distributed in nature. It can catalyze the oxidation of various organic and inorganic substrates by reacting with hydrogen peroxide and similar molecules. Due to its wide catalytic activity, peroxidases can act in the removal of both phenolic compounds and peroxides, in chemical synthesis and, according to recent studies, in mycotoxin degradation. Therefore, this study aimed at introducing an overview of the mechanism of peroxidase action, extraction sources, mycotoxin degradation capacity and other potential applications in the food industry.
Collapse
|
17
|
A Versatile Peroxidase from the Fungus Bjerkandera adusta Confers Abiotic Stress Tolerance in Transgenic Tobacco Plants. PLANTS 2021; 10:plants10050859. [PMID: 33922867 PMCID: PMC8146367 DOI: 10.3390/plants10050859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
White-rot fungi are efficient lignin degraders due to the secretion of lignin peroxidase, manganese peroxidase, laccase, and versatile peroxidase (VP) on decayed wood. The VP is a high-redox-potential enzyme and could be used to detoxify reactive oxygen species (ROS), which accumulate in plants during biotic and abiotic stresses. We cloned the VP gene and expressed it via the Agrobacterium transformation procedure in transgenic tobacco plants to assay their tolerance to different abiotic stress conditions. Thirty independent T2 transgenic VP lines overexpressing the fungal Bjerkandera adustaVP gene were selected on kanamycin. The VP22, VP24, and VP27 lines showed significant manganese peroxidase (MnP) activity. The highest was VP22, which showed 10.87-fold more manganese peroxidase activity than the wild-type plants and led to a 34% increase in plant height and 28% more biomass. The VP22, VP24, and VP27 lines showed enhanced tolerance to drought, 200 mM NaCl, and 400 mM sorbitol. Also, these transgenics displayed significant tolerance to methyl viologen, an active oxygen-generating compound. The present data indicate that overproducing the VP gene in plants increases significantly their biomass and the abiotic stress tolerance. The VP enzyme is an effective biotechnological tool to protect organisms against ROS. In transgenic tobacco plants, it improves drought, salt, and oxidative stress tolerance. Thus, the VP gene represents a great potential for obtaining stress-tolerant crops.
Collapse
|
18
|
El-Khonezy MI, Abd-Elaziz AM, Dondeti MF, Fahmy AS, Mohamed SA. Purification and characterization of cationic peroxidase from ginger (Zingiber officinale). BULLETIN OF THE NATIONAL RESEARCH CENTRE 2020; 44:11. [DOI: 10.1186/s42269-019-0264-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 12/29/2019] [Indexed: 09/02/2023]
Abstract
Abstract
Background
Due to versatility in reaction catalyzed by peroxidases, they have potential applications in different areas in the health sciences, food industry, and diagnostic purposes. Therefore, the aim of this study is to investigate the properties of peroxidase from ginger to be meeting the perquisites of several applications.
Results
The cationic peroxidase (GPII) was purified to homogeneity by anion exchange chromatography using DEAE–Sepharose column followed by cation exchange chromatography using CM–Sepharose column and finally Sephacryl S-200 column. The molecular mass of GPII was 42 kDa. GPII shows oxidizing activity with several phenolic compounds by using H2O2 as the second substrate. The natural plant phenolic compounds as pyrogallol, catechol, and guaiacol were found to be excellent electron donors for the enzyme compared to other phenolic compounds. GPII exhibited Km values of 3.1 and 7.1 mM and Vmax values of 0.6 and 0.31 units/assay using H2O2 and guaiacol as substrates, respectively. The enzyme exhibited maximal peroxidase activity at broad pH’s 6.0–7.5 and 50 °C. GPII was thermal stable up to 50 °C and retained 66% of its activity at 70 °C after 1 h incubation. The GPII activated by most divalent cations tested and inhibited by Hg2+ and Cu2+ cations.
Conclusion
PGII could be used in several applications due to its catalytic properties, thermal stability, broad pH, and acting on several phenolic compounds.
Collapse
|
19
|
Shariatzadeh Bami S, Khavari-Nejad RA, Ahadi AM, Rezayatmand Z. TiO2 nanoparticles effects on morphology and physiology of Artemisia absinthium L. under salinity stress. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY, TRANSACTIONS A: SCIENCE 2020. [DOI: 10.1007/s40995-020-00999-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Sulis DB, Wang JP. Regulation of Lignin Biosynthesis by Post-translational Protein Modifications. FRONTIERS IN PLANT SCIENCE 2020; 11:914. [PMID: 32714349 PMCID: PMC7343852 DOI: 10.3389/fpls.2020.00914] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/04/2020] [Indexed: 05/24/2023]
Abstract
Post-translational modification of proteins exerts essential roles in many biological processes in plants. The function of these chemical modifications has been extensively characterized in many physiological processes, but how these modifications regulate lignin biosynthesis for wood formation remained largely unknown. Over the past decade, post-translational modification of several proteins has been associated with lignification. Phosphorylation, ubiquitination, glycosylation, and S-nitrosylation of transcription factors, monolignol enzymes, and peroxidases were shown to have primordial roles in the regulation of lignin biosynthesis. The main discoveries of post-translational modifications in lignin biosynthesis are discussed in this review.
Collapse
|
21
|
Xiao H, Wang C, Khan N, Chen M, Fu W, Guan L, Leng X. Genome-wide identification of the class III POD gene family and their expression profiling in grapevine (Vitis vinifera L). BMC Genomics 2020; 21:444. [PMID: 32600251 PMCID: PMC7325284 DOI: 10.1186/s12864-020-06828-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The class III peroxidases (PODs) are involved in a broad range of physiological activities, such as the formation of lignin, cell wall components, defense against pathogenicity or herbivore, and abiotic stress tolerance. The POD family members have been well-studied and characterized by bioinformatics analysis in several plant species, but no previous genome-wide analysis has been carried out of this gene family in grapevine to date. RESULTS We comprehensively identified 47 PODs in the grapevine genome and are further classified into 7 subgroups based on their phylogenetic analysis. Results of motif composition and gene structure organization analysis revealed that PODs in the same subgroup shared similar conjunction while the protein sequences were highly conserved. Intriguingly, the integrated analysis of chromosomal mapping and gene collinearity analysis proposed that both dispersed and tandem duplication events contributed to the expansion of PODs in grapevine. Also, the gene duplication analysis suggested that most of the genes (20) were dispersed followed by (15) tandem, (9) segmental or whole-genome duplication, and (3) proximal, respectively. The evolutionary analysis of PODs, such as Ka/Ks ratio of the 15 duplicated gene pairs were less than 1.00, indicated that most of the gene pairs exhibiting purifying selection and 7 pairs underwent positive selection with value greater than 1.00. The Gene Ontology Enrichment (GO), Kyoto Encyclopedia of Genes Genomics (KEGG) analysis, and cis-elements prediction also revealed the positive functions of PODs in plant growth and developmental activities, and response to stress stimuli. Further, based on the publically available RNA-sequence data, the expression patterns of PODs in tissue-specific response during several developmental stages revealed diverged expression patterns. Subsequently, 30 genes were selected for RT-PCR validation in response to (NaCl, drought, and ABA), which showed their critical role in grapevine. CONCLUSIONS In conclusion, we predict that these results will lead to novel insights regarding genetic improvement of grapevine.
Collapse
Affiliation(s)
- Huilin Xiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.,Yantai Academy of Agricultural Sciences, Yantai, 264000, P. R. China
| | - Chaoping Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Nadeem Khan
- Ottawa Research and Development Center, Agriculture and Agri-Food Canada, Ottawa, Ontario, K1A 0C6, Canada.,Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Mengxia Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Weihong Fu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| | - Xiangpeng Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, P. R. China.
| |
Collapse
|
22
|
Mbadinga Mbadinga DL, Li Q, Ranocha P, Martinez Y, Dunand C. Global analysis of non-animal peroxidases provides insights into the evolution of this gene family in the green lineage. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3350-3360. [PMID: 32185389 DOI: 10.1093/jxb/eraa141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/13/2020] [Indexed: 05/13/2023]
Abstract
The non-animal peroxidases belong to a superfamily of oxidoreductases that reduce hydrogen peroxide and oxidize numerous substrates. Since their initial characterization in 1992, a number of studies have provided an understanding of the origin and evolution of this protein family. Here, we report a comprehensive evolutionary analysis of non-animal peroxidases using integrated in silico and biochemical approaches. Thanks to the availability of numerous genomic sequences from more than 2500 species belonging to 14 kingdoms together with expert and comprehensive annotation of peroxidase sequences that have been centralized in a dedicated database, we have been able to use phylogenetic reconstructions to increase our understanding of the evolutionary processes underlying the diversification of non-animal peroxidases. We analysed the distribution of all non-animal peroxidases in more than 200 eukaryotic organisms in silico. First, we show that the presence or absence of non-animal peroxidases correlates with the presence or absence of certain organelles or with specific biological processes. Examination of almost 2000 organisms determined that ascorbate peroxidases (APxs) and cytochrome c peroxidases (CcPs) are present in those containing chloroplasts and mitochondria, respectively. Plants, which contain both organelles, are an exception and contain only APxs without CcP. Class II peroxidases (CII Prxs) are only found in fungi with wood-decay and plant-degradation abilities. Class III peroxidases (CIII Prxs) are only found in streptophyte algae and land plants, and have been subjected to large family expansion. Biochemical activities of APx, CcP, and CIII Prx assessed using protein extracts from 30 different eukaryotic organisms support the distribution of the sequences resulting from our in silico analysis. The biochemical results confirmed both the presence and classification of the non-animal peroxidase encoding sequences.
Collapse
Affiliation(s)
| | - Qiang Li
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Beibei, Chongqing, PR China
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Yves Martinez
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
23
|
Fijalkowski KL, Kwarciak-Kozlowska A. Phytotoxicity assay to assess sewage sludge phytoremediation rate using guaiacol peroxidase activity (GPX): A comparison of four growth substrates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 263:110413. [PMID: 32174541 DOI: 10.1016/j.jenvman.2020.110413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/28/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Waste disposal such as sewage sludge (biosolids) in phytoremediation is a sustainable remediation alternative for fertilizers, therefore there is a need to develop a test that will allow to determine phytoremediation dose of biosolids from the best-for-plant-growth point of view. In order to determine the doses of biosolids to degraded soils, tests based on germination of seeds and root elongation are commonly used, but also, they are subjected to large errors caused by low repeatability of results and differentiation. That is why there is a need to introduce new testing solutions that will be of use based on more reliable indicators such as biochemical activity of selected plant enzymes. The aim of the study was to demonstrate high efficiency of the guaiacol peroxidase activity (GPX) in plant-based toxicity tests used as an optimal dose amendments indicator in heavy metal degraded soil phytoremediation process. GPX were measured in underground and above ground parts of Sinapis alba L. and Brassica rapa L. in relation to germination index (GI) and biomass cultivated on four different substrates (raw degraded soil, sterilized degraded soil, water extract from degraded soil solidified with agar, water extract from degraded soil solidified with Murashige-Skoog medium). Each testing soil substrate was enriched with sewage sludge (food industry origin) in the percentage share (w/w) of 5, 10, 15, 20 and 25. The process was carried out under controlled conditions of the phytotronic chamber for a period of 14 days. The obtained values were compared for each plant separately and for all substrates and amendments rates of sewage sludge. GPX activity was expressed as a percentage increase or decrease in relation to the GPX in soil substrates without addition of sewage sludge which allowed to determine their positive or negative impact on substrate toxicity. Results of GPX activity showed that the water-based soil extracts solidified with agar give more accurate results in relation to the tests on raw soil. It has been demonstrated that the optimal phytoremediation dose of sewage sludge was in the range of 15-20%, with values of 5% and 25% respectively favoring or inhibiting plant development expressed in GPX activity. The most differentiating GPX values were obtained for the roots.Measurement of GPX activity in the roots of Sinapis alba L. cultivated on soil agar-based tests is a good, new and easy additional or alternative to the old tests based on germination and increase biomass measuring as an indicator in the assessment of optimal phytoremediation sewage sludge.
Collapse
Affiliation(s)
- Krzysztof L Fijalkowski
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland.
| | - Anna Kwarciak-Kozlowska
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland
| |
Collapse
|
24
|
de Oliveira Garcia S, Sibaja KVM, Nogueira WV, Feltrin ACP, Pinheiro DFA, Cerqueira MBR, Badiale Furlong E, Garda-Buffon J. Peroxidase as a simultaneous degradation agent of ochratoxin A and zearalenone applied to model solution and beer. Food Res Int 2020; 131:109039. [PMID: 32247492 DOI: 10.1016/j.foodres.2020.109039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/12/2020] [Accepted: 01/26/2020] [Indexed: 12/16/2022]
Abstract
The aim of this study was to evaluate the action of the commercial peroxidase (POD) enzyme (Armoracia rusticana) on the simultaneous degradation of ochratoxin A (OTA) and zearalenone (ZEA) in model solution and beer. For this purpose, the reaction parameters for POD action were optimized, POD application in the degradation of mycotoxins in model solution and beer was evaluated and the kinetic parameters of POD were defined (Michaelis-Menten constant - KM and maximal velocity - Vmax). In the reaction conditions (pH 7, ionic strength of 25 mM, incubation at 30 °C, addition of 26 mM H2O2 and 1 mM potassium ion), POD (0.6 U mL-1) presented the maximum activity for simultaneous degradation of OTA and ZEA of 27.0 and 64.9%, respectively, in model solution after 360 min. The application of POD in beer resulted in the simultaneous degradation of OTA and ZEA of 4.8 and 10.9%, respectively. The kinetic parameters KM and Vmax for degradation of OTA and ZEA were 50 and 10,710 nM and 0.168 and 72 nM min-1, respectively. Therefore, POD can be a promising alternative to mitigate the contamination of OTA and ZEA in model solution and beer, minimizing their effects in humans.
Collapse
Affiliation(s)
- Sabrina de Oliveira Garcia
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Karen Vanessa Marimón Sibaja
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Wesclen Vilar Nogueira
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Ana Carla Penteado Feltrin
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Diean Fabiano Alvares Pinheiro
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Maristela Barnes Rodrigues Cerqueira
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil
| | - Eliana Badiale Furlong
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil.
| | - Jaqueline Garda-Buffon
- Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins, Federal University of Rio Grande (FURG), Av. Itália, km 8, Carreiros, Rio Grande, RS CEP 96203-900, Brazil.
| |
Collapse
|
25
|
Li Q, Dou W, Qi J, Qin X, Chen S, He Y. Genomewide analysis of the CIII peroxidase family in sweet orange (Citrus sinensis) and expression profiles induced by Xanthomonas citri subsp. citri and hormones. J Genet 2020. [DOI: 10.1007/s12041-019-1163-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Oliveira RADC, de Andrade AS, Imparato DO, de Lima JGS, de Almeida RVM, Lima JPMS, Pasquali MADB, Dalmolin RJS. Analysis of Arabidopsis thaliana Redox Gene Network Indicates Evolutionary Expansion of Class III Peroxidase in Plants. Sci Rep 2019; 9:15741. [PMID: 31673065 PMCID: PMC6823369 DOI: 10.1038/s41598-019-52299-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/16/2019] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) are byproducts of aerobic metabolism and may cause oxidative damage to biomolecules. Plants have a complex redox system, involving enzymatic and non-enzymatic compounds. The evolutionary origin of enzymatic antioxidant defense in plants is yet unclear. Here, we describe the redox gene network for A. thaliana and investigate the evolutionary origin of this network. We gathered from public repositories 246 A. thaliana genes directly involved with ROS metabolism and proposed an A. thaliana redox gene network. Using orthology information of 238 Eukaryotes from STRINGdb, we inferred the evolutionary root of each gene to reconstruct the evolutionary history of A. thaliana antioxidant gene network. We found two interconnected clusters: one formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase; and the other formed entirely by class III peroxidases. Each cluster emerged in different periods of evolution: the cluster formed by SOD-related, Thiol-redox, peroxidases, and other oxido-reductase emerged before opisthokonta-plant divergence; the cluster composed by class III peroxidases emerged after opisthokonta-plant divergence and therefore contained the most recent network components. According to our results, class III peroxidases are in expansion throughout plant evolution, with new orthologs emerging in each evaluated plant clade divergence.
Collapse
Affiliation(s)
- Raffael Azevedo de Carvalho Oliveira
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Abraão Silveira de Andrade
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Danilo Oliveira Imparato
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | | | - João Paulo Matos Santos Lima
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matheus Augusto de Bittencourt Pasquali
- Institute of Tropical Medicine, Federal University of Rio Grande do Norte, Natal, Brazil.,Food Engineering Unit, UAEALI, UFCG, Campina Grande, Brazil.,Graduate Program in Natural Resources, PPGRN, UFCG, Campina Grande, Brazil
| | - Rodrigo Juliani Siqueira Dalmolin
- Bioinformatics Multidisciplinary Environment - IMD, Federal University of Rio Grande do Norte, Natal, Brazil. .,Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil.
| |
Collapse
|
27
|
Yan J, Su P, Li W, Xiao G, Zhao Y, Ma X, Wang H, Nevo E, Kong L. Genome-wide and evolutionary analysis of the class III peroxidase gene family in wheat and Aegilops tauschii reveals that some members are involved in stress responses. BMC Genomics 2019; 20:666. [PMID: 31438842 PMCID: PMC6704529 DOI: 10.1186/s12864-019-6006-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/30/2019] [Indexed: 11/16/2022] Open
Abstract
Background The class III peroxidase (PRX) gene family is a plant-specific member of the PRX superfamily that is closely related to various physiological processes, such as cell wall loosening, lignification, and abiotic and biotic stress responses. However, its classification, evolutionary history and gene expression patterns are unclear in wheat and Aegilops tauschii. Results Here, we identified 374, 159 and 169 PRXs in Triticum aestivum, Triticum urartu and Ae. tauschii, respectively. Together with PRXs detected from eight other plants, they were classified into 18 subfamilies. Among subfamilies V to XVIII, a conserved exon-intron structure within the “001” exon phases was detected in the PRX domain. Based on the analysis, we proposed a phylogenetic model to infer the evolutionary history of the exon-intron structures of PRX subfamilies. A comparative genomics analysis showed that subfamily VII could be the ancient subfamily that originated from green algae (Chlamydomonas reinhardtii). Further integrated analysis of chromosome locations and collinearity events of PRX genes suggested that both whole genome duplication (WGD) and tandem duplication (TD) events contributed to the expansion of T. aestivum PRXs (TaePRXs) during wheat evolution. To validate functions of these genes in the regulation of various physiological processes, the expression patterns of PRXs in different tissues and under various stresses were studied using public microarray datasets. The results suggested that there were distinct expression patterns among different tissues and PRXs could be involved in biotic and abiotic responses in wheat. qRT-PCR was performed on samples exposed to drought, phytohormone treatments and Fusarium graminearum infection to validate the microarray predictions. The predicted subcellular localizations of some TaePRXs were consistent with the confocal microscopy results. We predicted that some TaePRXs had hormone-responsive cis-elements in their promoter regions and validated these predicted cis-acting elements by sequencing promoters. Conclusion In this study, identification, classification, evolution, and expression patterns of PRXs in wheat and relative plants were performed. Our results will provide information for further studies on the evolution and molecular mechanisms of wheat PRXs. Electronic supplementary material The online version of this article (10.1186/s12864-019-6006-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Yan
- College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.,State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Wen Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Guilian Xiao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Yan Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Eviatar Nevo
- Institute of Evolution, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, 3498838, Haifa, Israel.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
28
|
Nair P, Mall M, Sharma P, Khan F, Nagegowda DA, Rout PK, Gupta MM, Pandey A, Shasany AK, Gupta AK, Shukla AK. Characterization of a class III peroxidase from Artemisia annua: relevance to artemisinin metabolism and beyond. PLANT MOLECULAR BIOLOGY 2019; 100:527-541. [PMID: 31093899 DOI: 10.1007/s11103-019-00879-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/04/2019] [Indexed: 05/25/2023]
Abstract
A class III peroxidase from Artemisia annua has been shown to indicate the possibility of cellular localization-based role diversity, which may have implications in artemisinin catabolism as well as lignification. Artemisia annua derives its importance from the antimalarial artemisinin. The -O-O- linkage in artemisinin makes peroxidases relevant to its metabolism. Earlier, we identified three peroxidase-coding genes from A. annua, whereby Aa547 showed higher expression in the low-artemisinin plant stage whereas Aa528 and Aa540 showed higher expression in the artemisinin-rich plant stage. Here we carried out tertiary structure homology modelling of the peroxidases for docking studies. Maximum binding affinity for artemisinin was shown by Aa547. Further, Aa547 showed greater binding affinity for post-artemisinin metabolite, deoxyartemisinin, as compared to pre-artemisinin metabolites (dihydroartemisinic hydroperoxide, artemisinic acid, dihydroartemisinic acid). It also showed significant binding affinity for the monolignol, coniferyl alcohol. Moreover, Aa547 expression was related inversely to artemisinin content and directly to total lignin content as indicated by its transient silencing and overexpression in A. annua. Artemisinin reduction assay also indicated inverse relationship between Aa547 expression and artemisinin content. Subcellular localization using GFP fusion suggested that Aa547 is peroxisomal. Nevertheless, dual localization (intracellular/extracellular) of Aa547 could not be ruled out due to its effect on both, artemisinin and lignin. Taken together, this indicates possibility of localization-based role diversity for Aa547, which may have implications in artemisinin catabolism as well as lignification in A. annua.
Collapse
Affiliation(s)
- Priya Nair
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Maneesha Mall
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Pooja Sharma
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Feroz Khan
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Dinesh A Nagegowda
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre, Bengaluru, Karnataka, 560065, India
| | - Prasant K Rout
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Madan M Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Alok Pandey
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Ajit K Shasany
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Anil K Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India
| | - Ashutosh K Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, U.P., 226015, India.
| |
Collapse
|
29
|
Wu C, Ding X, Ding Z, Tie W, Yan Y, Wang Y, Yang H, Hu W. The Class III Peroxidase (POD) Gene Family in Cassava: Identification, Phylogeny, Duplication, and Expression. Int J Mol Sci 2019; 20:ijms20112730. [PMID: 31163686 PMCID: PMC6600411 DOI: 10.3390/ijms20112730] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 01/27/2023] Open
Abstract
The class III peroxidase (POD) enzymes participate in plant development, hormone signaling, and stress responses. However, little is known about the POD family in cassava. Here, we identified 91 cassava POD genes (MePODs) and classified them into six subgroups using phylogenetic analysis. Conserved motif analysis demonstrated that all MePOD proteins have typical peroxidase domains, and gene structure analysis showed that MePOD genes have between one and nine exons. Duplication pattern analysis suggests that tandem duplication has played a role in MePOD gene expansion. Comprehensive transcriptomic analysis revealed that MePOD genes in cassava are involved in the drought response and postharvest physiological deterioration. Several MePODs underwent transcriptional changes after various stresses and related signaling treatments were applied. In sum, we characterized the POD family in cassava and uncovered the transcriptional control of POD genes in response to various stresses and postharvest physiological deterioration conditions. These results can be used to identify potential target genes for improving the stress tolerance of cassava crops.
Collapse
Affiliation(s)
- Chunlai Wu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Xupo Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Weiwei Tie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yan Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Yu Wang
- Beijing Commerce and Trade School, Beijing 100162, China.
| | - Hai Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Wei Hu
- Key Laboratory of Biology and Genetic Resources of Tropical Crops of Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
30
|
Zhu T, Xin F, Wei S, Liu Y, Han Y, Xie J, Ding Q, Ma L. Genome-wide identification, phylogeny and expression profiling of class III peroxidases gene family in Brachypodium distachyon. Gene 2019; 700:149-162. [DOI: 10.1016/j.gene.2019.02.103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/04/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
|
31
|
On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants (Basel) 2019; 8:antiox8040105. [PMID: 30999668 PMCID: PMC6523537 DOI: 10.3390/antiox8040105] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/31/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) have been recognized as important signaling compounds of major importance in a number of developmental and physiological processes in plants. The existence of cellular compartments enables efficient redox compartmentalization and ensures proper functioning of ROS-dependent signaling pathways. Similar to other organisms, the production of individual ROS in plant cells is highly localized and regulated by compartment-specific enzyme pathways on transcriptional and post-translational level. ROS metabolism and signaling in specific compartments are greatly affected by their chemical interactions with other reactive radical species, ROS scavengers and antioxidant enzymes. A dysregulation of the redox status, as a consequence of induced ROS generation or decreased capacity of their removal, occurs in plants exposed to diverse stress conditions. During stress condition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead to oxidative or nitrosative stress conditions, associated with potential damaging modifications of cell biomolecules. Here, we present an overview of compartment-specific pathways of ROS production and degradation and mechanisms of ROS homeostasis control within plant cell compartments.
Collapse
|
32
|
Pectin Demethylesterification Generates Platforms that Anchor Peroxidases to Remodel Plant Cell Wall Domains. Dev Cell 2019; 48:261-276.e8. [DOI: 10.1016/j.devcel.2018.11.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 01/24/2023]
|
33
|
Garcia SO, Feltrin ACP, Garda-Buffon J. Zearalenone reduction by commercial peroxidase enzyme and peroxidases from soybean bran and rice bran. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1819-1831. [PMID: 29889651 DOI: 10.1080/19440049.2018.1486044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/30/2018] [Indexed: 10/14/2022]
Abstract
The peroxidase (POD) enzyme, obtained from different sources, has been described in the literature regarding its good results of reduction in concentration or degradation levels of mycotoxins, such as aflatoxin B1, deoxynivalenol and zearalenone (ZEA). This study aimed at evaluating the action of commercial POD and POD from soybean bran (SB) and rice bran (RB) in ZEA reduction in a model solution and the characterisation of the mechanism of enzyme action. POD was extracted from SB and RB in phosphate buffer by orbital agitation. Evaluation of the action of commercial POD and POD from SB and RB in ZEA reduction was carried out in phosphate buffer and aqueous solution, respectively. Parameters of (Michaelis-Menten constant) (KM) and maximal rate (Vmax) were determined in the concentration range from 0.16 to 6 µg mL-1. ZEA reduction was determined and the mechanism of enzyme action was characterised by FTIR and high-pressure liquid chromatography-electrospray tandem mass spectrometry. Commercial POD and POD from RB and SB reduced ZEA concentration by 69.9%, 47.4% and 30.6% in 24 h, respectively. KM values were 39.61 and 8.90 µM, whereas Vmax values were 0.170 and 0.011 µM min-1 for commercial POD and POD from RB, respectively. The characterisation of the mechanism of enzyme action showed the oxidoreductive action of commercial POD in the mycotoxin. The use of commercial POD and POD from agro-industrial by-products, such as SB and RB, could be a promising alternative for ZEA biodegradation.
Collapse
Affiliation(s)
- Sabrina O Garcia
- a Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins , Federal University of Rio Grande (FURG) , Rio Grande , RS , Brazil
| | - Ana Carla P Feltrin
- a Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins , Federal University of Rio Grande (FURG) , Rio Grande , RS , Brazil
| | - Jaqueline Garda-Buffon
- a Post Graduate Program in Engineering and Science of Food, School of Chemistry and Food, Laboratory of Food Science and Mycotoxins , Federal University of Rio Grande (FURG) , Rio Grande , RS , Brazil
| |
Collapse
|
34
|
Hael-Conrad V, Perato SM, Arias ME, Martínez-Zamora MG, Di Peto PDLÁ, Martos GG, Castagnaro AP, Díaz-Ricci JC, Chalfoun NR. The Elicitor Protein AsES Induces a Systemic Acquired Resistance Response Accompanied by Systemic Microbursts and Micro-Hypersensitive Responses in Fragaria ananassa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:46-60. [PMID: 28635519 DOI: 10.1094/mpmi-05-17-0121-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The elicitor AsES (Acremonium strictum elicitor subtilisin) is a 34-kDa subtilisin-like protein secreted by the opportunistic fungus Acremonium strictum. AsES activates innate immunity and confers resistance against anthracnose and gray mold diseases in strawberry plants (Fragaria × ananassa Duch.) and the last disease also in Arabidopsis. In the present work, we show that, upon AsES recognition, a cascade of defense responses is activated, including: calcium influx, biphasic oxidative burst (O2⋅- and H2O2), hypersensitive cell-death response (HR), accumulation of autofluorescent compounds, cell-wall reinforcement with callose and lignin deposition, salicylic acid accumulation, and expression of defense-related genes, such as FaPR1, FaPG1, FaMYB30, FaRBOH-D, FaRBOH-F, FaCHI23, and FaFLS. All these responses occurred following a spatial and temporal program, first induced in infiltrated leaflets (local acquired resistance), spreading out to untreated lateral leaflets, and later, to distal leaves (systemic acquired resistance). After AsES treatment, macro-HR and macro-oxidative bursts were localized in infiltrated leaflets, while micro-HRs and microbursts occurred later in untreated leaves, being confined to a single cell or a cluster of a few epidermal cells that differentiated from the surrounding ones. The differentiated cells initiated a time-dependent series of physiological and anatomical changes, evolving to idioblasts accumulating H2O2 and autofluorescent compounds that blast, delivering its content into surrounding cells. This kind of systemic cell-death process in plants is described for the first time in response to a single elicitor. All data presented in this study suggest that AsES has the potential to activate a wide spectrum of biochemical and molecular defense responses in F. ananassa that may explain the induced protection toward pathogens of opposite lifestyle, like hemibiotrophic and necrotrophic fungi.
Collapse
Affiliation(s)
- Verónica Hael-Conrad
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Silvia Marisa Perato
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Marta Eugenia Arias
- 2 Cátedra de Anatomía Vegetal, Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, 4000, Tucumán, Argentina, and Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Catamarca. Av. Belgrano 300, 4700, San Fernando del Valle de Catamarca, Catamarca, Argentina; and
| | - Martín Gustavo Martínez-Zamora
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Pía de Los Ángeles Di Peto
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Gustavo Gabriel Martos
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Atilio Pedro Castagnaro
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| | - Juan Carlos Díaz-Ricci
- 1 Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina
| | - Nadia Regina Chalfoun
- 3 Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA, CONICET-Estación Experimental Agroindustrial Obispo Colombres). Av. William Cross 3150, T4101XAC, Las Talitas, Tucumán, Argentina
| |
Collapse
|
35
|
Kupriyanova EV, Mamoshina PO, Ezhova TA. Evolutionary Divergence of Arabidopsis thaliana Classical Peroxidases. BIOCHEMISTRY (MOSCOW) 2016; 80:1362-72. [PMID: 26567581 DOI: 10.1134/s0006297915100181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Polymorphisms of 62 peroxidase genes derived from Arabidopsis thaliana were investigated to evaluate evolutionary dynamics and divergence of peroxidase proteins. By comparing divergence of duplicated genes AtPrx53-AtPrx54 and AtPrx36-AtPrx72 and their products, nucleotide and amino acid substitutions were identified that were apparently targets of positive selection. These substitutions were detected among paralogs of 461 ecotypes from Arabidopsis thaliana. Some of these substitutions are conservative and matched paralogous peroxidases in other Brassicaceae species. These results suggest that after duplication, peroxidase genes evolved under the pressure of positive selection, and amino acid substitutions identified during our study provided divergence of properties and physiological functions in peroxidases. Our predictions regarding functional significance for amino acid residues identified in variable sites of peroxidases may allow further experimental assessment of evolution of peroxidases after gene duplication.
Collapse
Affiliation(s)
- E V Kupriyanova
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
36
|
Cuypers A, Hendrix S, Amaral dos Reis R, De Smet S, Deckers J, Gielen H, Jozefczak M, Loix C, Vercampt H, Vangronsveld J, Keunen E. Hydrogen Peroxide, Signaling in Disguise during Metal Phytotoxicity. FRONTIERS IN PLANT SCIENCE 2016; 7:470. [PMID: 27199999 PMCID: PMC4843763 DOI: 10.3389/fpls.2016.00470] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/24/2016] [Indexed: 05/18/2023]
Abstract
Plants exposed to excess metals are challenged by an increased generation of reactive oxygen species (ROS) such as superoxide ([Formula: see text]), hydrogen peroxide (H2O2) and the hydroxyl radical ((•)OH). The mechanisms underlying this oxidative challenge are often dependent on metal-specific properties and might play a role in stress perception, signaling and acclimation. Although ROS were initially considered as toxic compounds causing damage to various cellular structures, their role as signaling molecules became a topic of intense research over the last decade. Hydrogen peroxide in particular is important in signaling because of its relatively low toxicity, long lifespan and its ability to cross cellular membranes. The delicate balance between its production and scavenging by a plethora of enzymatic and metabolic antioxidants is crucial in the onset of diverse signaling cascades that finally lead to plant acclimation to metal stress. In this review, our current knowledge on the dual role of ROS in metal-exposed plants is presented. Evidence for a relationship between H2O2 and plant metal tolerance is provided. Furthermore, emphasis is put on recent advances in understanding cellular damage and downstream signaling responses as a result of metal-induced H2O2 production. Finally, special attention is paid to the interaction between H2O2 and other signaling components such as transcription factors, mitogen-activated protein kinases, phytohormones and regulating systems (e.g. microRNAs). These responses potentially underlie metal-induced senescence in plants. Elucidating the signaling network activated during metal stress is a pivotal step to make progress in applied technologies like phytoremediation of polluted soils.
Collapse
Affiliation(s)
- Ann Cuypers
- Environmental Biology, Centre for Environmental Sciences, Hasselt UniversityDiepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Yolcu S, Ozdemir F, Güler A, Bor M. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:37-46. [PMID: 26773543 DOI: 10.1016/j.plaphy.2015.12.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/12/2015] [Accepted: 12/31/2015] [Indexed: 05/10/2023]
Abstract
Acetylation of histone proteins is a type of chromatin modification which facilitates the activation of genes. Recent studies brought up the importance of this reversible and rapid process for the regulation of gene expression especially in plant defense against a variety of environmental stresses. Deciphering the exact mechanisms of chromatin modifications under abiotic stress conditions is important for improving crop plants' performance and yield. In a previous study we compared the salt stress responses of Beta vulgaris (sugar beet) and Beta maritima (wild beet). In accordance with those results we suggested that chromatin remodeling can be an active process in the regulation of genes related to salt stress tolerance of these plants. Therefore we performed ChIP assay in control and salt stressed (250 and 500 mM NaCl) plants and compared the enrichment of acetylation in the associated chromatin sites. We found that the transcriptional activation of one peroxidase (POX) encoding gene was associated with the elevated levels of acetylation in H3K9 and H3K27 sites. The acetylation patterns were remarkably different between two species in which the highest acetylation levels were found at H3K9 and H3K27 in wild beet and sugar beet respectively.
Collapse
Affiliation(s)
- Seher Yolcu
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Filiz Ozdemir
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Aybüke Güler
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey
| | - Melike Bor
- Faculty of Science, Department of Biology, Ege University, 35100 Bornova, Izmir, Turkey.
| |
Collapse
|
38
|
Construction of a haustorium development associated SSH library in Thesium chinense and analysis of specific ESTs included by Imperata cylindrica. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2015.11.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
39
|
Guillaumot D, Issawi M, Da Silva A, Leroy-Lhez S, Sol V, Riou C. Synergistic enhancement of tolerance mechanisms in response to photoactivation of cationic tetra (N-methylpyridyl) porphyrins in tomato plantlets. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 156:69-78. [PMID: 26854612 DOI: 10.1016/j.jphotobiol.2016.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/15/2016] [Accepted: 01/25/2016] [Indexed: 11/27/2022]
Abstract
Antimicrobial photodynamic treatment (APDT) is largely used in medical domain and could be envisaged as a farming practice against crop pathogens such as bacteria and fungi that generate drops in agricultural yields. Thus, as a prerequisite for this potential application, we studied the effect of water-soluble anionic (TPPS and Zn-TPPS) and cationic (TMPyP and Zn-TMPyP) porphyrins tested on tomato (Solanum lycopersicum) plantlets grown in vitro under a 16 h photoperiod. First of all, under dark conditions, none of the four porphyrins inhibited germination and induced cytotoxic effects on tomato plantlets as etiolated development was not altered. The consequences of porphyrin long-term photoactivation (14 days) were thus studied on in vitro-grown tomato plantlets at phenotypic and molecular levels. Cationic porphyrins especially Zn-TMPyP were the most efficient photosensitizers and dramatically altered growth without killing plantlets. Indeed, tomato plantlets were rescued after cationic porphyrins treatment. To gain insight, the different molecular ways implied in the plantlet tolerance to photoactivated Zn-TMPyP, lipid peroxidation, antioxidative molecules (total thiols, proline, ascorbate), and ROS detoxification enzymes were evaluated. In parallel to an increase in lipid peroxidation and hydrogen peroxide production, antioxidative molecules and enzymes (guaiacol peroxidase, catalase, and superoxide dismutase) were up-regulated in root apparatus in response to photoactivated Zn-TMPyP. This study showed that tomato plantlets could overcome the pressure triggered by photoactivated cationic porphyrin by activating antioxidative molecule and enzyme arsenal and confining Zn-TMPyP into cell wall and/or apoplasm, suggesting that APDT directed against tomato pathogens could be envisaged in the future.
Collapse
Affiliation(s)
- Damien Guillaumot
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Faculté des Sciences et Techniques, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Mohammad Issawi
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Faculté des Sciences et Techniques, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Anne Da Silva
- Unité de Génétique Moléculaire et Animale (UMR INRA 1061), Faculté des Sciences et Techniques, Université de Limoges, 123 avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Stephanie Leroy-Lhez
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Faculté des Sciences et Techniques, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Vincent Sol
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Faculté des Sciences et Techniques, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France
| | - Catherine Riou
- Laboratoire de Chimie des Substances Naturelles (EA 1069), Faculté des Sciences et Techniques, Université de Limoges, 123 Avenue Albert Thomas, 87060 Limoges Cedex, France.
| |
Collapse
|
40
|
Chasov AV, Beckett RP, Minibayeva FV. Activity of Redox Enzymes in the Thallus of Anthoceros natalensis. BIOCHEMISTRY (MOSCOW) 2015; 80:1157-68. [PMID: 26555468 DOI: 10.1134/s0006297915090060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Anthocerotophyta (hornworts) belong to a group of ancient nonvascular plants and originate from a common ancestor with contemporary vascular plants. Hornworts represent a unique model for investigating mechanisms of formation of stress resistance in higher plants due to their high tolerance to the action of adverse environmental factors. In this work, we demonstrate that the thallus of Anthoceros natalensis exhibits high redox activity changing under stress. Dehydration of the thallus is accompanied by the decrease in activities of intracellular peroxidases, DOPA-peroxidases, and tyrosinases, while catalase activity increases. Subsequent rehydration results in the increase in peroxidase and catalase activities. Kinetic features of peroxidases and tyrosinases were characterized as well as the peroxidase isoenzyme composition of different fractions of the hornwort cell wall proteins. It was shown that the hornwort peroxidases are functionally similar to peroxidases of higher vascular plants including their ability to form superoxide anion-radical. The biochemical mechanism was elucidated, supporting the possible participation of peroxidases in the formation of reactive oxygen species (ROS) via substrate-substrate interactions in the hornwort thallus. It has been suggested that the ROS formation by peroxidases is an evolutionarily ancient process that emerged as a protective mechanism for enhancing adaptive responses of higher land plants and their adaptation to changing environmental conditions and successful colonization of various ecological niches.
Collapse
Affiliation(s)
- A V Chasov
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111, Russia.
| | | | | |
Collapse
|
41
|
Galende PP, Cuadrado NH, Kostetsky EY, Roig MG, Kennedy JF, Shnyrov VL. Mechanism-based suicide inactivation of white Spanish broom (Cytisus multiflorus) peroxidase by excess hydrogen peroxide. Int J Biol Macromol 2015; 81:975-9. [DOI: 10.1016/j.ijbiomac.2015.09.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 12/01/2022]
|
42
|
Zámocký M, Hofbauer S, Schaffner I, Gasselhuber B, Nicolussi A, Soudi M, Pirker KF, Furtmüller PG, Obinger C. Independent evolution of four heme peroxidase superfamilies. Arch Biochem Biophys 2015; 574:108-19. [PMID: 25575902 PMCID: PMC4420034 DOI: 10.1016/j.abb.2014.12.025] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 01/19/2023]
Abstract
Four heme peroxidase superfamilies (peroxidase-catalase, peroxidase-cyclooxygenase, peroxidase-chlorite dismutase and peroxidase-peroxygenase superfamily) arose independently during evolution, which differ in overall fold, active site architecture and enzymatic activities. The redox cofactor is heme b or posttranslationally modified heme that is ligated by either histidine or cysteine. Heme peroxidases are found in all kingdoms of life and typically catalyze the one- and two-electron oxidation of a myriad of organic and inorganic substrates. In addition to this peroxidatic activity distinct (sub)families show pronounced catalase, cyclooxygenase, chlorite dismutase or peroxygenase activities. Here we describe the phylogeny of these four superfamilies and present the most important sequence signatures and active site architectures. The classification of families is described as well as important turning points in evolution. We show that at least three heme peroxidase superfamilies have ancient prokaryotic roots with several alternative ways of divergent evolution. In later evolutionary steps, they almost always produced highly evolved and specialized clades of peroxidases in eukaryotic kingdoms with a significant portion of such genes involved in coding various fusion proteins with novel physiological functions.
Collapse
Affiliation(s)
- Marcel Zámocký
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, SK-84551 Bratislava, Slovakia.
| | - Stefan Hofbauer
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria; Department for Structural and Computational Biology, Max F. Perutz Laboratories, University of Vienna, A-1030 Vienna, Austria
| | - Irene Schaffner
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Bernhard Gasselhuber
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Andrea Nicolussi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Monika Soudi
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Katharina F Pirker
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Paul G Furtmüller
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | - Christian Obinger
- Department of Chemistry, Division of Biochemistry, VIBT - Vienna Institute of BioTechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
43
|
Minibayeva F, Beckett RP, Kranner I. Roles of apoplastic peroxidases in plant response to wounding. PHYTOCHEMISTRY 2015; 112:122-9. [PMID: 25027646 DOI: 10.1016/j.phytochem.2014.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 04/16/2014] [Accepted: 06/16/2014] [Indexed: 05/03/2023]
Abstract
Apoplastic class III peroxidases (EC 1.11.1.7) play key roles in the response of plants to pathogen infection and abiotic stresses, including wounding. Wounding is a common stress for plants that can be caused by insect or animal grazing or trampling, or result from agricultural practices. Typically, mechanical damage to a plant immediately induces a rapid release and activation of apoplastic peroxidases, and an oxidative burst of reactive oxygen species (ROS), followed by the upregulation of peroxidase genes. We discuss how plants control the expression of peroxidases genes upon wounding, and also the sparse information on peroxidase-mediated signal transduction pathways. Evidence reviewed here suggests that in many plants production of the ROS that comprise the initial oxidative burst results from a complex interplay of peroxidases with other apoplastic enzymes. Later responses following wounding include various forms of tissue healing, for example through peroxidase-dependent suberinization, or cell death. Limited data suggest that ROS-mediated death signalling during the wound response may involve the peroxidase network, together with other redox molecules. In conclusion, the ability of peroxidases to both generate and scavenge ROS plays a key role in the involvement of these enigmatic enzymes in plant stress tolerance.
Collapse
Affiliation(s)
- Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, P.O. Box 30, Kazan 420111, Russian Federation.
| | - Richard Peter Beckett
- School of Life Sciences, PBag X01, Scottsville 3209, University of KwaZulu-Natal, Pietermaritzburg, South Africa.
| | - Ilse Kranner
- Institute of Botany, University of Innsbruck, Sternwartestraße 15, A-6020 Innsbruck, Austria.
| |
Collapse
|
44
|
Gautério G, Fernandes S, Molon F, Figueira F, Buffon J, Kalil S. Purification of Peroxidase from Rice Bran Using Expanded-Bed Ion-Exchange Chromatography. ADSORPT SCI TECHNOL 2015. [DOI: 10.1260/0263-6174.33.2.153] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
- G.V. Gautério
- Food and Chemistry School, Campus Carreiros, Federal University of Rio Grande, Avenida Itália km 8 s/n, Rio Grande (RS), CEP 96203-900, Brazil
| | - S.S. Fernandes
- Food and Chemistry School, Campus Carreiros, Federal University of Rio Grande, Avenida Itália km 8 s/n, Rio Grande (RS), CEP 96203-900, Brazil
| | - F.O. Molon
- Food and Chemistry School, Campus Carreiros, Federal University of Rio Grande, Avenida Itália km 8 s/n, Rio Grande (RS), CEP 96203-900, Brazil
| | - F.S. Figueira
- Food and Chemistry School, Campus Carreiros, Federal University of Rio Grande, Avenida Itália km 8 s/n, Rio Grande (RS), CEP 96203-900, Brazil
| | - J.G. Buffon
- Food and Chemistry School, Campus Carreiros, Federal University of Rio Grande, Avenida Itália km 8 s/n, Rio Grande (RS), CEP 96203-900, Brazil
| | - S.J. Kalil
- Food and Chemistry School, Campus Carreiros, Federal University of Rio Grande, Avenida Itália km 8 s/n, Rio Grande (RS), CEP 96203-900, Brazil
| |
Collapse
|
45
|
Liang D, White RG, Waterhouse PM. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide. PeerJ 2014; 2:e701. [PMID: 25551023 PMCID: PMC4277490 DOI: 10.7717/peerj.701] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 11/26/2014] [Indexed: 01/02/2023] Open
Abstract
In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2)-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.
Collapse
Affiliation(s)
- Dacheng Liang
- CSIRO Plant Industry , Canberra, ACT , Australia ; School of Molecular Bioscience, University of Sydney , Sydney, NSW , Australia
| | | | - Peter M Waterhouse
- CSIRO Plant Industry , Canberra, ACT , Australia ; School of Molecular Bioscience, University of Sydney , Sydney, NSW , Australia ; Centre for Tropical Crops and Biocommodities, Queensland University of Technology , Brisbane, QLD , Australia
| |
Collapse
|
46
|
Zámocký M, Gasselhuber B, Furtmüller PG, Obinger C. Turning points in the evolution of peroxidase-catalase superfamily: molecular phylogeny of hybrid heme peroxidases. Cell Mol Life Sci 2014; 71:4681-96. [PMID: 24846396 PMCID: PMC4232752 DOI: 10.1007/s00018-014-1643-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022]
Abstract
Heme peroxidases and catalases are key enzymes of hydrogen peroxide metabolism and signaling. Here, the reconstruction of the molecular evolution of the peroxidase-catalase superfamily (annotated in pfam as PF00141) based on experimentally verified as well as numerous newly available genomic sequences is presented. The robust phylogenetic tree of this large enzyme superfamily was obtained from 490 full-length protein sequences. Besides already well-known families of heme b peroxidases arranged in three main structural classes, completely new (hybrid type) peroxidase families are described being located at the border of these classes as well as forming (so far missing) links between them. Hybrid-type A peroxidases represent a minor eukaryotic subfamily from Excavates, Stramenopiles and Rhizaria sharing enzymatic and structural features of ascorbate and cytochrome c peroxidases. Hybrid-type B peroxidases are shown to be spread exclusively among various fungi and evolved in parallel with peroxidases in land plants. In some ascomycetous hybrid-type B peroxidases, the peroxidase domain is fused to a carbohydrate binding (WSC) domain. Both here described hybrid-type peroxidase families represent important turning points in the complex evolution of the whole peroxidase-catalase superfamily. We present and discuss their phylogeny, sequence signatures and putative biological function.
Collapse
Affiliation(s)
- Marcel Zámocký
- Division of Biochemistry, Department of Chemistry, VIBT, Vienna Institute of BioTechnology, BOKU, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria,
| | | | | | | |
Collapse
|
47
|
Novo-Uzal E, Gutiérrez J, Martínez-Cortés T, Pomar F. Molecular cloning of two novel peroxidases and their response to salt stress and salicylic acid in the living fossil Ginkgo biloba. ANNALS OF BOTANY 2014; 114:923-36. [PMID: 25139427 PMCID: PMC4171070 DOI: 10.1093/aob/mcu160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 06/16/2014] [Indexed: 05/21/2023]
Abstract
BACKGROUND AND AIMS Peroxidase isoenzymes play diverse roles in plant physiology, such as lignification and defence against pathogens. The actions and regulation of many peroxidases are not known with much accuracy. A number of studies have reported direct involvement of peroxidase isoenzymes in the oxidation of monolignols, which constitutes the last step in the lignin biosynthesis pathway. However, most of the available data concern only peroxidases and lignins from angiosperms. This study describes the molecular cloning of two novel peroxidases from the 'living fossil' Ginkgo biloba and their regulation by salt stress and salicylic acid. METHODS Suspension cell cultures were used to purify peroxidases and to obtain the cDNAs. Treatments with salicylic acid and sodium chloride were performed and peroxidase activity and gene expression were monitored. KEY RESULTS A novel peroxidase was purified, which preferentially used p-hydroxycinnamyl alcohols as substrates and was able to form dehydrogenation polymers in vitro from coniferyl and sinapyl alcohols. Two peroxidase full-length cDNAs, GbPrx09 and GbPrx10, were cloned. Both peroxidases showed high similarity to other basic peroxidases with a putative role in cell wall lignification. Both GbPrx09 and GbPrx10 were expressed in leaves and stems of the plant. Sodium chloride enhanced the gene expression of GbPrx09 but repressed GbPrx10, whereas salicylic acid strongly repressed both GbPrx09 and GbPrx10. CONCLUSIONS Taken together, the data suggest the participation of GbPrx09 and GbPrx10 in the developmental lignification programme of the cell wall. Both peroxidases possess the structural characteristics necessary for sinapyl alcohol oxidation. Moreover, GbPrx09 is also involved in lignification induced by salt stress, while salicylic acid-mediated lignification is not a result of GbPrx09 and GbPrx10 enzymatic activity.
Collapse
Affiliation(s)
- Esther Novo-Uzal
- Department of Plant Biology, University of Murcia, E-30100 Murcia, Spain Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| | - Jorge Gutiérrez
- Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| | - Teresa Martínez-Cortés
- Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| | - Federico Pomar
- Department of Animal Biology, Plant Biology and Ecology, University of A Coruña, E-15071 A Coruña, Spain
| |
Collapse
|
48
|
Ring L, Yeh SY, Hücherig S, Hoffmann T, Blanco-Portales R, Fouche M, Villatoro C, Denoyes B, Monfort A, Caballero JL, Muñoz-Blanco J, Gershenson J, Schwab W. Metabolic interaction between anthocyanin and lignin biosynthesis is associated with peroxidase FaPRX27 in strawberry fruit. PLANT PHYSIOLOGY 2013; 163:43-60. [PMID: 23835409 PMCID: PMC3762661 DOI: 10.1104/pp.113.222778] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/03/2013] [Indexed: 05/18/2023]
Abstract
Plant phenolics have drawn increasing attention due to their potential nutritional benefits. Although the basic reactions of the phenolics biosynthetic pathways in plants have been intensively analyzed, the regulation of their accumulation and flux through the pathway is not that well established. The aim of this study was to use a strawberry (Fragaria × ananassa) microarray to investigate gene expression patterns associated with the accumulation of phenylpropanoids, flavonoids, and anthocyanins in strawberry fruit. An examination of the transcriptome, coupled with metabolite profiling data from different commercial varieties, was undertaken to identify genes whose expression correlated with altered phenolics composition. Seventeen comparative microarray analyses revealed 15 genes that were differentially (more than 200-fold) expressed in phenolics-rich versus phenolics-poor varieties. The results were validated by heterologous expression of the peroxidase FaPRX27 gene, which showed the highest altered expression level (more than 900-fold). The encoded protein was functionally characterized and is assumed to be involved in lignin formation during strawberry fruit ripening. Quantitative trait locus analysis indicated that the genomic region of FaPRX27 is associated with the fruit color trait. Down-regulation of the CHALCONE SYNTHASE gene and concomitant induction of FaPRX27 expression diverted the flux from anthocyanins to lignin. The results highlight the competition of the different phenolics pathways for their common precursors. The list of the 15 candidates provides new genes that are likely to impact polyphenol accumulation in strawberry fruit and could be used to develop molecular markers to select phenolics-rich germplasm.
Collapse
|
49
|
Cesarino I, Araújo P, Paes Leme AF, Creste S, Mazzafera P. Suspension cell culture as a tool for the characterization of class III peroxidases in sugarcane. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 62:1-10. [PMID: 23159486 DOI: 10.1016/j.plaphy.2012.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 10/26/2012] [Indexed: 05/01/2023]
Abstract
Secreted class III peroxidases (EC 1.11.1.7) are implicated in a broad range of physiological processes throughout the plant life cycle. However, the unambiguous determination of the precise biological role of an individual class III peroxidase isoenzyme is still a difficult task due to genetic redundancy and broad substrate specificity in vitro. In addition, many difficulties are encountered during extraction and analysis of cell wall proteins. Since class III peroxidases are also secreted into the apoplast, the use of suspension cell cultures can facilitate isolation and functional characterization of individual isoforms. Here, we report on the characterization of class III peroxidases secreted in the spent medium of sugarcane suspension cell cultures. After treatment with specific inducers of cell wall lignification, peroxidases were isolated and activities assayed with guaiacol, syringaldazine and coniferyl alcohol. Enzymatic activity was not significantly different after treatments, regardless of the substrate, with the exception of methyl-jasmonate treatment, which led to a decreased guaiacol peroxidase activity. Remarkably, peroxidases isolated from the medium were capable of oxidizing syringaldazine, an analog to sinapyl alcohol, suggesting that sugarcane cultures can produce peroxidases putatively correlated to lignification. A proteomic approach using activity staining of 2-DE gels revealed a complex isoperoxidase profile, composed predominantly of cationic isoforms. Individual spots were excised and analyzed by LC-ESI-Q-TOF and homology-based search against the Sugarcane EST Database resulted in the identification of several proteins. Spatio-temporal expression pattern of selected genes was determined for validation of identified class III peroxidases that were preferentially expressed during sugarcane stem development.
Collapse
Affiliation(s)
- Igor Cesarino
- Departamento de Biologia Vegetal, Instituto de Biologia, CP 6109, Universidade Estadual de Campinas, 13083-970 Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|
50
|
Papenbrock J. Highlights in Seagrasses’ Phylogeny, Physiology, and Metabolism: What Makes Them Special? ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/103892] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The marine seagrasses form an ecological and therefore paraphyletic group of marine hydrophilus angiosperms which evolved three to four times from land plants towards an aquatic and marine existence. Their taxonomy is not yet solved on the species level and below due to their reduced morphology. So far also molecular data did not completely solve the phylogenetic relationships. Thus, this group challenges a new definition for what a species is. Also their physiology is not well understood due to difficult experimental in situ and in vitro conditions. There remain several open questions concerning how seagrasses adapted secondarily to the marine environment. Here probably exciting adaptation solutions will be detected. Physiological adaptations seem to be more important than morphological ones. Seagrasses contain several compounds in their secondary metabolism in which they differ from terrestrial plants and also not known from other taxonomic groups. Some of these compounds might be of interest for commercial purposes. Therefore their metabolite contents constitute another treasure of the ocean. This paper gives an introduction into some of the most interesting aspects from phylogenetical, physiological, and metabolic points of view.
Collapse
Affiliation(s)
- Jutta Papenbrock
- Institute of Botany, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| |
Collapse
|