1
|
Moescheid MF, Lu Z, Soria CD, Quack T, Puckelwaldt O, Holroyd N, Holzaepfel P, Haeberlein S, Rinaldi G, Berriman M, Grevelding CG. The retinoic acid family-like nuclear receptor SmRAR identified by single-cell transcriptomics of ovarian cells controls oocyte differentiation in Schistosoma mansoni. Nucleic Acids Res 2024:gkae1228. [PMID: 39676663 DOI: 10.1093/nar/gkae1228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 10/30/2024] [Accepted: 11/28/2024] [Indexed: 12/17/2024] Open
Abstract
Studies on transcription regulation in platyhelminth development are scarce, especially for parasitic flatworms. Here, we employed single-cell transcriptomics to identify genes involved in reproductive development in the trematode model Schistosoma mansoni. This parasite causes schistosomiasis, a major neglected infectious disease affecting >240 million people worldwide. The pathology of schistosomiasis is closely associated with schistosome eggs deposited in host organs including the liver. Unlike other trematodes, schistosomes exhibit distinct sexes, with egg production reliant on the pairing-dependent maturation of female reproductive organs. Despite this significance, the molecular mechanisms underlying ovary development and oocyte differentiation remain largely unexplored. Utilizing an organ isolation approach for S. mansoni, we extracted ovaries of paired females followed by single-cell RNA sequencing (RNA-seq) with disassociated oocytes. A total of 1967 oocytes expressing 7872 genes passed quality control (QC) filtering. Unsupervised clustering revealed four distinct cell clusters: somatic, germ cells and progeny, intermediate and late germ cells. Among distinct marker genes for each cluster, we identified a hitherto uncharacterized transcription factor of the retinoic acid receptor family, SmRAR. Functional analyses of SmRAR and associated genes like Smmeiob (meiosis-specific, oligonucleotide/oligosaccharide binding motif (OB) domain-containing) demonstrated their pairing-dependent and ovary-preferential expression and their decisive roles in oocyte differentiation of S. mansoni.
Collapse
Affiliation(s)
- Max F Moescheid
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Carmen Diaz Soria
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Thomas Quack
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Nancy Holroyd
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
| | - Pauline Holzaepfel
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10, 1SA, UK
- School of Infection and Immunity, College of Medicine, Veterinary and Life Sciences, University of Glasgow, 120 University Place, Glasgow G12 8TA, UK
| | - Christoph G Grevelding
- Institute of Parasitology, Justus Liebig University, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
2
|
Sajeev A, BharathwajChetty B, Manickasamy MK, Alqahtani MS, Abbas M, Shakibaei M, Sethi G, Ma Z, Kunnumakkara AB. Nuclear receptors in ovarian cancer: changing paradigms in cancer therapeutics. Front Oncol 2024; 14:1383939. [PMID: 39077471 PMCID: PMC11284039 DOI: 10.3389/fonc.2024.1383939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/31/2024] [Indexed: 07/31/2024] Open
Abstract
Ovarian cancer (OVC) is one of the most common causes of cancer-related deaths in women worldwide. Despite advancements in detection and therapy, the prognosis of OVC remains poor due to late diagnosis and the lack of effective therapeutic options at advanced stages. Therefore, a better understanding of the biology underlying OVC is essential for the development of effective strategies for early detection and targeted therapies. Nuclear receptors (NRs) are a superfamily of 48 transcription factors that, upon binding to their specific ligand, play a vital role in regulating various cellular processes such as growth, development, metabolism, and homeostasis. Accumulating evidence from several studies has shown that their aberrant expression is associated with multiple human diseases. Numerous NRs have shown significant effects in the development of various cancers, including OVC. This review summarizes the recent findings on the role of NRs in OVC, as well as their potential as prognostic and therapeutic markers. Further, the basic structure and signaling mechanism of NRs have also been discussed briefly. Moreover, this review highlights their cellular and molecular mechanisms in chemoresistance and chemosensitization. Further, the clinical trials targeting NRs for the treatment of OVC have also been discussed.
Collapse
Affiliation(s)
- Anjana Sajeev
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Bandari BharathwajChetty
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- National University of Singapore (NUS) Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, Assam, India
| |
Collapse
|
3
|
PPAR Gamma and Viral Infections of the Brain. Int J Mol Sci 2021; 22:ijms22168876. [PMID: 34445581 PMCID: PMC8396218 DOI: 10.3390/ijms22168876] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022] Open
Abstract
Peroxisome Proliferator-Activated Receptor gamma (PPARγ) is a master regulator of metabolism, adipogenesis, inflammation and cell cycle, and it has been extensively studied in the brain in relation to inflammation or neurodegeneration. Little is known however about its role in viral infections of the brain parenchyma, although they represent the most frequent cause of encephalitis and are a major threat for the developing brain. Specific to viral infections is the ability to subvert signaling pathways of the host cell to ensure virus replication and spreading, as deleterious as the consequences may be for the host. In this respect, the pleiotropic role of PPARγ makes it a critical target of infection. This review aims to provide an update on the role of PPARγ in viral infections of the brain. Recent studies have highlighted the involvement of PPARγ in brain or neural cells infected by immunodeficiency virus 1, Zika virus, or human cytomegalovirus. They have provided a better understanding on PPARγ functions in the infected brain, and revealed that it can be a double-edged sword with respect to inflammation, viral replication, or neuronogenesis. They unraveled new roles of PPARγ in health and disease and could possibly help designing new therapeutic strategies.
Collapse
|
4
|
Kamte YS, Chandwani MN, Michaels AC, O’Donnell LA. Neural Stem Cells: What Happens When They Go Viral? Viruses 2021; 13:v13081468. [PMID: 34452333 PMCID: PMC8402908 DOI: 10.3390/v13081468] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
Viruses that infect the central nervous system (CNS) are associated with developmental abnormalities as well as neuropsychiatric and degenerative conditions. Many of these viruses such as Zika virus (ZIKV), cytomegalovirus (CMV), and herpes simplex virus (HSV) demonstrate tropism for neural stem cells (NSCs). NSCs are the multipotent progenitor cells of the brain that have the ability to form neurons, astrocytes, and oligodendrocytes. Viral infections often alter the function of NSCs, with profound impacts on the growth and repair of the brain. There are a wide spectrum of effects on NSCs, which differ by the type of virus, the model system, the cell types studied, and the age of the host. Thus, it is a challenge to predict and define the consequences of interactions between viruses and NSCs. The purpose of this review is to dissect the mechanisms by which viruses can affect survival, proliferation, and differentiation of NSCs. This review also sheds light on the contribution of key antiviral cytokines in the impairment of NSC activity during a viral infection, revealing a complex interplay between NSCs, viruses, and the immune system.
Collapse
|
5
|
Keenan C, Miller S, Hanratty J, Pigott T, Hamilton J, Coughlan C, Mackie P, Fitzpatrick S, Cowman J. Accommodation-based interventions for individuals experiencing, or at risk of experiencing, homelessness. CAMPBELL SYSTEMATIC REVIEWS 2021; 17:e1165. [PMID: 37131929 PMCID: PMC8356295 DOI: 10.1002/cl2.1165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background Globally, almost 1.6 billion individuals lack adequate housing. Many accommodation-based approaches have evolved across the globe to incorporate additional support and services beyond delivery of housing. Objectives This review examines the effectiveness of accommodation-based approaches on outcomes including housing stability, health, employment, crime, wellbeing, and cost for individuals experiencing or at risk of experiencing homelessness. Search Methods The systematic review is based on evidence already identified in two existing EGMs commissioned by the Centre for Homelessness Impact (CHI) and built by White et al. The maps were constructed using a comprehensive three stage search and mapping process. Stage one mapped included studies in an existing systematic review on homelessness, stage two was an extensive search of 17 academic databases, three EGM databases, and eight systematic review databases. Finally stage three included web searches for grey literature, scanning reference lists of included studies and consultation with experts to identify additional literature. We identified 223 unique studies across 551 articles from the effectiveness map on 12th April 2019. Selection Criteria We include research on all individuals currently experiencing, or at risk of experiencing homelessness irrespective of age or gender, in high-income countries. The Network Meta-Analysis (NMA) contains all study designs where a comparison group was used. This includes randomised controlled trials (RCTs), quasi-experimental designs, matched comparisons and other study designs that attempt to isolate the impact of the intervention on homelessness. The NMA primarily addresses how interventions can reduce homelessness and increase housing stability for those individuals experiencing, or at risk of experiencing, homelessness. Additional outcomes are examined and narratively described. These include: access to mainstream healthcare; crime and justice; employment and income; capabilities and wellbeing; and cost of intervention. These outcomes reflect the domains used in the EGM, with the addition of cost. Data Collection and Analysis Due to the diverse nature of the literature on accommodation-based approaches, the way in which the approaches are implemented in practice, and the disordered descriptions of the categories, the review team created a novel typology to allow meaningful categorisations for functional and useful comparison between the various intervention types. Once these eligible categories were identified, we undertook dual data extraction, where two authors completed data extraction and risk of bias (ROB) assessments independently for each study. NMA was conducted across outcomes related to housing stability and health.Qualitative data from process evaluations is included using a "Best Fit" Framework synthesis. The purpose of this synthesis is to complement the quantitative evidence and provide a better understanding of what factors influenced programme effectiveness. All included Qualitative data followed the initial framework provided by the five main analytical categories of factors of influence (reflected in the EGM), namely: contextual factors, policy makers/funders, programme administrators/managers/implementing agencies, staff/case workers and recipients of the programme. Main Results There was a total of 13,128 people included in the review, across 51 reports of 28 studies. Most of the included studies were carried out in the United States of America (25/28), with other locations including Canada and the UK. Sixteen studies were RCTs (57%) and 12 were nonrandomised (quasi-experimental) designs (43%). Assessment of methodological quality and potential for bias was conducted using the second version of the Cochrane Risk of Bias tool for Randomised controlled trials. Nonrandomised studies were coded using the ROBINS- I tool. Out of the 28 studies, three had sufficiently low ROB (11%), 11 (39%) had moderate ROB, and five (18%) presented serious problems with ROB, and nine (32%) demonstrated high, critical problems with their methodology. A NMA on housing stability outcomes demonstrates that interventions offering the highest levels of support alongside unconditional accommodation (High/Unconditional) were more effective in improving housing stability compared to basic support alongside unconditional housing (Basic/Unconditional) (ES=1.10, 95% confidence interval [CI] [0.39, 1.82]), and in comparison to a no-intervention control group (ES=0.62, 95% CI [0.19, 1.06]). A second NMA on health outcomes demonstrates that interventions categorised as offering Moderate/Conditional (ES= 0.36, 95% CI [0.03, 0.69]) and High/Unconditional (ES = 0.22, 95% CI [0.01, 0.43]) support were effective in improving health outcomes compared to no intervention. These effects were smaller than those observed for housing stability. The quality of the evidence was relatively low but varied across the 28 included studies. Depending on the context, finding accommodation for those who need it can be hindered by supply and affordability in the market. The social welfare approach in each jurisdiction can impact heavily on support available and can influence some of the prejudice and stigma surrounding homelessness. The evaluations emphasised the need for collaboration and a shared commitment between policymakers, funders and practitioners which creates community and buy in across sectors and agencies. However, co-ordinating this is difficult and requires sustainability to work. For those implementing programmes, it was important to invest time in developing a culture together to build trust and solid relationships. Additionally, identifying sufficient resources and appropriate referral routes allows for better implementation planning. Involving staff and case workers in creating processes helps drive enthusiasm and energy for the service. Time should be allocated for staff to develop key skills and communicate engage effectively with service users. Finally, staff need time to develop trust and relationships with service users; this goes hand in hand with providing information that is up to date and useful as well making themselves accessible in terms of location and time. Authors' Conclusions The network meta-analysis suggests that all types of accommodation which provided support are more effective than no intervention or Basic/Unconditional accommodation in terms of housing stability and health. The qualitative evidence synthesis raised a primary issue in relation to context: which was the lack of stable, affordable accommodation and the variability in the rental market, such that actually sourcing accommodation to provide for individuals who are homeless is extremely challenging. Collaboration between stakeholders and practitioners can be fruitful but difficult to coordinate across different agencies and organisations.
Collapse
Affiliation(s)
- Ciara Keenan
- Campbell UK & Ireland, Centre for Evidence and Social InnovationQueen's UniversityBelfastUK
| | - Sarah Miller
- Campbell UK & Ireland, Centre for Evidence and Social InnovationQueen's UniversityBelfastUK
| | - Jennifer Hanratty
- Campbell UK & Ireland, Centre for Evidence and Social InnovationQueen's UniversityBelfastUK
| | - Terri Pigott
- School of Public HealthGeorgia State UniversityAtlantaGeorgiaUSA
| | - Jayne Hamilton
- Campbell UK & Ireland, Centre for Evidence and Social InnovationQueen's UniversityBelfastUK
| | - Christopher Coughlan
- Campbell UK & Ireland, Centre for Evidence and Social InnovationQueen's UniversityBelfastUK
| | | | | | - John Cowman
- Department of Social WorkHealth Service ExecutiveDublinIreland
| |
Collapse
|
6
|
Jonathan MC, Adrián SH, Gonzalo A. Type II nuclear receptors with potential role in Alzheimer disease. Mol Aspects Med 2021; 78:100940. [PMID: 33397589 DOI: 10.1016/j.mam.2020.100940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors that can modulated cellular processes involved in the development, homeostasis, cell proliferation, metabolism, and reproduction through the control of the specific genetic and molecular program. In the central nervous system, they are key regulators of neural stem cell fate decisions and can modulate the physiology of different brain cells. Over the past decades, a large body of evidence has supported that nuclear receptors are potential therapeutic targets for the treatment of neurodegenerative disorders such as Alzheimer's disease, the most common dementia worldwide, and the main cause of disability in later life. This disease is characterized by the progressive accumulation of amyloid-beta peptides and hyperphosphorylated tau protein that can explain alterations in synaptic transmission and plasticity; loss of dendritic spines; increased in reactive microglia and inflammation; reduction of neuronal stem cells number; myelin and vascular alterations that finally leads to increased neuronal death. Here, we present a review of type II no steroidal nuclear receptors that form obligatory heterodimers with the Retinoid X Receptor (RXR) and its potential in the therapeutic of AD. Activation of type II nuclear receptor by synthetic agonist leads to transcriptional regulation of specific genes that acts counteracting against the detrimental effects of amyloid-beta peptides and hyperphosphorylated tau in neuronal cells recovering the functionality of the synapses. But also, activation of type II nuclear receptor leads to modifications in APP metabolism, repression of inflammatory cascade and inductors of the generation of neuronal stem cells and progenitor cells supporting its potential therapeutics role for Alzheimer's disease.
Collapse
Affiliation(s)
- Muñoz-Cabrera Jonathan
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandoval-Hernández Adrián
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Arboleda Gonzalo
- Grupo de Neurociencias y Muerte Celular, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia; Departamento de Patología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
7
|
Miller S, Keenan C, Hanratty J, Hamilton J, Coughlan C, Mackie P, Fitzpatrick S, Maddock A. PROTOCOL: Improving access to health and social services for individuals experiencing, or at risk of experiencing, homelessness. CAMPBELL SYSTEMATIC REVIEWS 2020; 16:e1118. [PMID: 37016614 PMCID: PMC8356276 DOI: 10.1002/cl2.1118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Affiliation(s)
- Sarah Miller
- Centre for Evidence and Social Innovation, Campbell UK & IrelandQueen's University BelfastBelfastUK
| | - Ciara Keenan
- School of Geography and PlanningCardiff UniversityCardiffUK
| | - Jennifer Hanratty
- Institute for Social Policy, Housing, Environment and Real Estate (I‐SPHERE)Heriot‐Watt UniversityEdinburghUK
| | - Jayne Hamilton
- Centre for Evidence and Social Innovation, Campbell UK & IrelandQueen's University BelfastBelfastUK
| | - Christopher Coughlan
- Centre for Evidence and Social Innovation, Campbell UK & IrelandQueen's University BelfastBelfastUK
| | - Peter Mackie
- School of Geography and PlanningCardiff UniversityCardiffUK
| | - Suzanne Fitzpatrick
- Institute for Social Policy, Housing, Environment and Real Estate (I‐SPHERE)Heriot‐Watt UniversityEdinburghUK
| | - Alan Maddock
- School of Social Sciences, Education and Social WorkQueen's University BelfastBelfastUK
| |
Collapse
|
8
|
Keenan C, Miller S, Hanratty J, Pigott TD, Mackie P, Cowman J, Coughlan C, Hamilton J, Fitzpatrick S. PROTOCOL: Accommodation-based interventions for individuals experiencing, or at risk of experiencing, homelessness. CAMPBELL SYSTEMATIC REVIEWS 2020; 16:e1103. [PMID: 37133280 PMCID: PMC8356315 DOI: 10.1002/cl2.1103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Affiliation(s)
- Ciara Keenan
- Campbell UK and Ireland, Centre for Evidence and Social InnovationQueen's University BelfastBelfastUK
| | - Sarah Miller
- Campbell UK and Ireland, Centre for Evidence and Social InnovationQueen's University BelfastBelfastUK
| | - Jennifer Hanratty
- Campbell UK and Ireland, Centre for Evidence and Social InnovationQueen's University BelfastBelfastUK
| | - Therese D. Pigott
- College of Education and Human DevelopmentGeorgia State UniversityUSA
| | - Peter Mackie
- School of Geography and PlanningCardiff UniversityUK
| | - John Cowman
- Department of Social WorkHealth Service ExecutiveDublinIreland
| | - Christopher Coughlan
- Campbell UK and Ireland, Centre for Evidence and Social InnovationQueen's University BelfastBelfastUK
| | - Jayne Hamilton
- Campbell UK and Ireland, Centre for Evidence and Social InnovationQueen's University BelfastBelfastUK
| | - Suzanne Fitzpatrick
- Institute for Social Policy, Housing, Environment and Real Estate (I‐SPHERE)Heriott Watt UniversityUK
| |
Collapse
|
9
|
Lü J, Shi Y, Wang Y, Kang X, Bian X, Yuan B, Zhu M, Tang K. [Research progress of structured repair of tendon-bone interface]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:1064-1070. [PMID: 31512444 PMCID: PMC8355852 DOI: 10.7507/1002-1892.201811139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/15/2019] [Indexed: 01/08/2023]
Abstract
In sports system, the tendon-bone interface has the effect of tensile and bearing load, so the effect of healing plays a crucial role in restoring joint function. The process of repair is the formation of scar tissue, so it is difficult to achieve the ideal effect for morphology and biomechanical strength. The tissue engineering method can promote the tendon-bone interface healing from the seed cells, growth factors, and scaffolds, and is a new direction in the field of development of the tendon-bone interface healing.
Collapse
Affiliation(s)
- Jingtong Lü
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, 400038, P.R.China
| | - Youxing Shi
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, 400038, P.R.China
| | - Yunjiao Wang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, 400038, P.R.China
| | - Xia Kang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, 400038, P.R.China
| | - Xuting Bian
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, 400038, P.R.China
| | - Bao Yuan
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, 400038, P.R.China
| | - Min Zhu
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, 400038, P.R.China
| | - Kanglai Tang
- Department of Orthopedics/Sports Medicine Center, State Key Laboratory of Trauma, Burn, and Combined Injury, the First Affiliated Hospital of Army Medical University (the Third Military Medical University), Chongqing, 400038,
| |
Collapse
|
10
|
Szychowski KA, Rombel-Bryzek A, Dołhańczuk-Śródka A, Gmiński J. Antiproliferative Effect of Elastin-Derived Peptide VGVAPG on SH-SY5Y Neuroblastoma Cells. Neurotox Res 2019; 36:503-514. [PMID: 31161598 PMCID: PMC6745029 DOI: 10.1007/s12640-019-00040-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Throughout the lifetime of humans, the amount of stem cells and the rate of cell proliferation continue to decrease. Reactive oxygen species (ROS) are one among the many factors that promote stem cell aging. Both a decrease in the level of stem cells and increase in ROS production can lead to the development of different neurodegenerative diseases. This study was conducted to determine how the VGVAPG peptide, liberated from elastin during the aging process and under pathological conditions, affects ROS production and activities of antioxidant enzymes in undifferentiated, proliferating SH-SY5Y cells. SH-SY5Y cells were maintained in Dulbecco's modified Eagle's medium/nutrient mixture F-12 supplemented with 10% heat-inactivated fetal bovine serum (FBS). After treating the SH-SY5Y cells with VGVAPG peptide, we measured ROS production; cell metabolism, proliferation, and expression; and activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT). We demonstrated that the VGVAPG peptide increases GPx expression and activity, whereas it decreases CAT expression in SH-SY5Y cells. Silencing of the GLB1 gene prevents changes in GPx activity. Despite the fact that the VGVAPG peptide increases GPx expression, it increases the ROS level. Moreover, the VGVAPG peptide decreases SH-SY5Y proliferation, which is prevented by the ROS scavenger N-acetyl-L-cysteine. Our data suggest that ROS production and decreased proliferation of SH-SY5Y cells are the results of excitotoxicity meditated through close unrecognized molecular pathways. More research is needed to elucidate the unknown mechanism of action of VGVAPG peptide in the nervous system.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland.
| | - Agnieszka Rombel-Bryzek
- Department of Clinical Biochemistry and Laboratory Diagnostics, Institute of Medicine, University of Opole, Oleska 48, 45-052, Opole, Poland
| | | | - Jan Gmiński
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
11
|
Aguareles J, Paraíso-Luna J, Palomares B, Bajo-Grañeras R, Navarrete C, Ruiz-Calvo A, García-Rincón D, García-Taboada E, Guzmán M, Muñoz E, Galve-Roperh I. Oral administration of the cannabigerol derivative VCE-003.2 promotes subventricular zone neurogenesis and protects against mutant huntingtin-induced neurodegeneration. Transl Neurodegener 2019; 8:9. [PMID: 30899454 PMCID: PMC6407204 DOI: 10.1186/s40035-019-0148-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/15/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The administration of certain cannabinoids provides neuroprotection in models of neurodegenerative diseases by acting through various cellular and molecular mechanisms. Many cannabinoid actions in the nervous system are mediated by CB1 receptors, which can elicit psychotropic effects, but other targets devoid of psychotropic activity, including CB2 and nuclear PPARγ receptors, can also be the target of specific cannabinoids. METHODS We investigated the pro-neurogenic potential of the synthetic cannabigerol derivative, VCE-003.2, in striatal neurodegeneration by using adeno-associated viral expression of mutant huntingtin in vivo and mouse embryonic stem cell differentiation in vitro. RESULTS Oral administration of VCE-003.2 protected striatal medium spiny neurons from mutant huntingtin-induced damage, attenuated neuroinflammation and improved motor performance. VCE-003.2 bioavailability was characterized and the potential undesired side effects were evaluated by analyzing hepatotoxicity after chronic treatment. VCE-003.2 promoted subventricular zone progenitor mobilization, increased doublecortin-positive migrating neuroblasts towards the injured area, and enhanced effective neurogenesis. Moreover, we demonstrated the proneurogenic activity of VCE-003.2 in embryonic stem cells. VCE-003.2 was able to increase neuroblast formation and striatal-like CTIP2-mediated neurogenesis. CONCLUSIONS The cannabigerol derivative VCE-003.2 improves subventricular zone-derived neurogenesis in response to mutant huntingtin-induced neurodegeneration, and is neuroprotective by oral administration.
Collapse
Affiliation(s)
- José Aguareles
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km, 9100 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Juan Paraíso-Luna
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km, 9100 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Belén Palomares
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Raquel Bajo-Grañeras
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km, 9100 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | | | - Andrea Ruiz-Calvo
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km, 9100 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Daniel García-Rincón
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km, 9100 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Elena García-Taboada
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km, 9100 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Manuel Guzmán
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km, 9100 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Córdoba, Spain
- Hospital Universitario Reina Sofía, Córdoba, Spain
| | - Ismael Galve-Roperh
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Ctra. Colmenar Viejo, km, 9100 Madrid, Spain
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Investigación Neuroquímica, Universidad Complutense, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
12
|
Kim SJ, Song DH, Kim SJ. Characteristics of tendon derived stem cells according to different factors to induce the tendinopathy. J Cell Physiol 2018; 233:6196-6206. [PMID: 29341108 DOI: 10.1002/jcp.26475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 01/05/2018] [Indexed: 12/29/2022]
Abstract
Tendon derived stem cells (TDSCs) have been used as a therapeutic agent and as a healing marker. However, there has been no study about the characteristics of TDSCs extracted from tendinopathic tendon tissues. The aim of this study was to find the different characteristics of TDSCs according to the factors to induce the tendinopathy. Five- and fifteen-week old Sprague Dawley rats were used for this study and chemically-induced and injury-induced tendinopathy models were made depending on the age of the animal for different types of tendinopathy. TDSCs from chemically-induced tendinopathy showed markedly low proliferation compared to those from age-matched normal control and injury-induced tendinopathy. In addition, TDSCs from chemically-induced tendinopathy progressed to osteogenesis under an osteogenic differentiation environment more than those from other groups. In contrast, TDSCs from injury-induced tendinopathy showed markedly high proliferation and high expression of type III collagen and α-SMA compared to other groups. Adipogenic potentials in TDSCs from injury-induced tendinopathy were also higher. These different characteristics might be helpful in the development new therapeutic agents for tendon regeneration according to different factors to induce the tendinopathy.
Collapse
Affiliation(s)
- Sun Jeog Kim
- Department of Physical and Rehabilitation Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Da-Hyun Song
- Department of Physical and Rehabilitation Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Jun Kim
- Department of Physical and Rehabilitation Medicine, Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Gkikas D, Tsampoula M, Politis PK. Nuclear receptors in neural stem/progenitor cell homeostasis. Cell Mol Life Sci 2017; 74:4097-4120. [PMID: 28638936 PMCID: PMC11107725 DOI: 10.1007/s00018-017-2571-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
Abstract
In the central nervous system, embryonic and adult neural stem/progenitor cells (NSCs) generate the enormous variety and huge numbers of neuronal and glial cells that provide structural and functional support in the brain and spinal cord. Over the last decades, nuclear receptors and their natural ligands have emerged as critical regulators of NSC homeostasis during embryonic development and adult life. Furthermore, substantial progress has been achieved towards elucidating the molecular mechanisms of nuclear receptors action in proliferative and differentiation capacities of NSCs. Aberrant expression or function of nuclear receptors in NSCs also contributes to the pathogenesis of various nervous system diseases. Here, we review recent advances in our understanding of the regulatory roles of steroid, non-steroid, and orphan nuclear receptors in NSC fate decisions. These studies establish nuclear receptors as key therapeutic targets in brain diseases.
Collapse
Affiliation(s)
- Dimitrios Gkikas
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Matina Tsampoula
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou Str, 115 27, Athens, Greece.
| |
Collapse
|
14
|
Deng B, Cheng X, Li H, Qin J, Tian M, Jin G. Microarray expression profiling in the denervated hippocampus identifies long noncoding RNAs functionally involved in neurogenesis. BMC Mol Biol 2017; 18:15. [PMID: 28587591 PMCID: PMC5461768 DOI: 10.1186/s12867-017-0091-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 05/05/2017] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The denervated hippocampus provides a proper microenvironment for the survival and neuronal differentiation of neural progenitors. While thousands of lncRNAs were identified, only a few lncRNAs that regulate neurogenesis in the hippocampus are reported. The present study aimed to perform microarray expression profiling to identify long noncoding RNAs (lncRNAs) that might participate in the hippocampal neurogenesis, and investigate the potential roles of identified lncRNAs in the hippocampal neurogenesis. RESULTS In this study, the profiling suggested that 74 activated and 29 repressed (|log fold-change|>1.5) lncRNAs were differentially expressed between the denervated and the normal hippocampi. Furthermore, differentially expressed lncRNAs associated with neurogenesis were found. According to the tissue-specific expression profiles, and a novel lncRNA (lncRNA2393) was identified as a neural regulator in the hippocampus in this study. The expression of lncRNA2393 was activated in the denervated hippocampus. FISH showed lncRNA2393 specially existed in the subgranular zone of the dentate gyrus in the hippocampus and in the cytoplasm of neural stem cells (NSCs). The knockdown of lncRNA2393 depletes the EdU-positive NSCs. Besides, the increased expression of lncRNA2393 was found to be triggered by the change in the microenvironment. CONCLUSION We concluded that expression changes of lncRNAs exists in the microenvironment of denervated hippocampus, of which promotes hippocampal neurogenesis. The identified lncRNA lncRNA2393 expressed in neural stem cells, located in the subgranular zone of the dentate gyrus, which can promote NSCs proliferation in vitro. Therefore, the question is exactly which part of the denervated hippocampus induced the expression of lncRNA2393. Further studies should aim to explore the exact molecular mechanism behind the expression of lncRNA2393 in the hippocampus, to lay the foundation for the clinical application of NSCs in treating diseases of the central nervous system.
Collapse
Affiliation(s)
- Bingying Deng
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiang Cheng
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Haoming Li
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jianbing Qin
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Meiling Tian
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guohua Jin
- Department of Anatomy and Neurobiology, The Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, People's Republic of China. .,Medical School of Nantong University, Building 3, No. 19 Qixiu Road, Congchuan District, Room 325, Nantong, 226001, China.
| |
Collapse
|
15
|
Chavanas S. Peroxisome proliferator-activated receptor γ (PPARγ) activation: A key determinant of neuropathogeny during congenital infection by cytomegalovirus. NEUROGENESIS 2016; 3:e1231654. [PMID: 27844024 DOI: 10.1080/23262133.2016.1231654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/26/2016] [Accepted: 08/29/2016] [Indexed: 12/25/2022]
Abstract
Congenital infection by human cytomegalovirus (HCMV) might result in permanent neurological sequelae, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities. We recently disclosed that Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a transcription factor of the nuclear receptor superfamily, is a key determinant of HCMV pathogenesis in developing brain. Using neural stem cells from human embryonic stem cells, we showed that HCMV infection strongly increases levels and activity of PPARγ in NSCs. Further in vitro experiments showed that PPARγ activity inhibits the neuronogenic differentiation of NSCs into neurons. Consistently, increased PPARγ expression was found in brain section of fetuses infected by HCMV, but not in uninfected controls. In this commentary, we summarize and discuss our findings and the new insights they provide on the neuropathogenesis of HCMV congenital infection.
Collapse
Affiliation(s)
- Stéphane Chavanas
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, Toulouse, France; CNRS UMR 5282 Toulouse, France; Université Paul Sabatier, Toulouse, France
| |
Collapse
|
16
|
Faunes F, Larraín J. Conservation in the involvement of heterochronic genes and hormones during developmental transitions. Dev Biol 2016; 416:3-17. [DOI: 10.1016/j.ydbio.2016.06.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 06/03/2016] [Accepted: 06/09/2016] [Indexed: 01/26/2023]
|
17
|
VCE-003.2, a novel cannabigerol derivative, enhances neuronal progenitor cell survival and alleviates symptomatology in murine models of Huntington's disease. Sci Rep 2016; 6:29789. [PMID: 27430371 PMCID: PMC4949444 DOI: 10.1038/srep29789] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023] Open
Abstract
Cannabinoids have shown to exert neuroprotective actions in animal models by acting at different targets including canonical cannabinoid receptors and PPARγ. We previously showed that VCE-003, a cannabigerol (CBG) quinone derivative, is a novel neuroprotective and anti-inflammatory cannabinoid acting through PPARγ. We have now generated a non-thiophilic VCE-003 derivative named VCE-003.2 that preserves the ability to activate PPARγ and analyzed its neuroprotective activity. This compound exerted a prosurvival action in progenitor cells during neuronal differentiation, which was prevented by a PPARγ antagonist, without affecting neural progenitor cell proliferation. In addition, VCE-003.2 attenuated quinolinic acid (QA)-induced cell death and caspase-3 activation and also reduced mutant huntingtin aggregates in striatal cells. The neuroprotective profile of VCE-003.2 was analyzed using in vivo models of striatal neurodegeneration induced by QA and 3-nitropropionic acid (3NP) administration. VCE-003.2 prevented medium spiny DARPP32+ neuronal loss in these Huntington’s-like disease mice models improving motor deficits, reactive astrogliosis and microglial activation. In the 3NP model VCE-003.2 inhibited the upregulation of proinflammatory markers and improved antioxidant defenses in the brain. These data lead us to consider VCE-003.2 to have high potential for the treatment of Huntington’s disease (HD) and other neurodegenerative diseases with neuroinflammatory traits.
Collapse
|
18
|
Ribeiro D, Klarqvist MDR, Westermark UK, Oliynyk G, Dzieran J, Kock A, Savatier Banares C, Hertwig F, Johnsen JI, Fischer M, Kogner P, Lovén J, Arsenian Henriksson M. Regulation of Nuclear Hormone Receptors by MYCN-Driven miRNAs Impacts Neural Differentiation and Survival in Neuroblastoma Patients. Cell Rep 2016; 16:979-993. [PMID: 27396325 DOI: 10.1016/j.celrep.2016.06.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/01/2016] [Accepted: 06/12/2016] [Indexed: 01/04/2023] Open
Abstract
MYCN amplification and MYC signaling are associated with high-risk neuroblastoma with poor prognosis. Treating these tumors remains challenging, although therapeutic approaches stimulating differentiation have generated considerable interest. We have previously shown that the MYCN-regulated miR-17∼92 cluster inhibits neuroblastoma differentiation by repressing estrogen receptor alpha. Here, we demonstrate that this microRNA (miRNA) cluster selectively targets several members of the nuclear hormone receptor (NHR) superfamily, and we present a unique NHR signature associated with the survival of neuroblastoma patients. We found that suppressing glucocorticoid receptor (GR) expression in MYCN-driven patient and mouse tumors was associated with an undifferentiated phenotype and decreased survival. Importantly, MYCN inhibition and subsequent reactivation of GR signaling promotes neural differentiation and reduces tumor burden. Our findings reveal a key role for the miR-17∼92-regulated NHRs in neuroblastoma biology, thereby providing a potential differentiation approach for treating neuroblastoma patients.
Collapse
Affiliation(s)
- Diogo Ribeiro
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden.
| | - Marcus D R Klarqvist
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ulrica K Westermark
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Ganna Oliynyk
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Johanna Dzieran
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Anna Kock
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Carolina Savatier Banares
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Falk Hertwig
- Department of Pediatric Oncology and Hematology, University Children's Hospital and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - John Inge Johnsen
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, University Children's Hospital and Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Jakob Lovén
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
19
|
Huang JY, Ma YZ, Yuan YH, Zuo W, Chu SF, Liu H, Du GH, Zhang DM, Chen NH. Claulansine F promoted the neuronal differentiation of neural stem and progenitor cells through Akt/GSK-3β/β-catenin pathway. Eur J Pharmacol 2016; 786:72-84. [PMID: 27179990 DOI: 10.1016/j.ejphar.2016.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/14/2022]
Abstract
The persistence of neurogenesis raises the idea that neurons produced by the resident or transplanted neural stem cells could replace the neurons lost from brain injury or neurodegenerative disease. Therefore, compounds or methods for promoting neuronal differentiation become the focus of neurodegenerative disease therapy research. Claulansine F (Clau F), a newly discovered carbazole alkaloid, has been showed to induce neuritogenesis in PC12 cells. Herein, we studied the effect of Clau F on neuronal differentiation of neural stem/progenitor cells (NS/PCs). The current study demonstrated that Clau F initiated neuronal differentiation with a significant increase of TuJ1-positive cells and TuJ1 protein levels. We also found that Clau F promoted the maturity and sustainability of neurons by increasing MAP2-positive cells and MAP2 protein levels. At the same time, Clau F significantly inhibited the proliferation of NS/PCs. The underlying mechanism of Clau F was preliminary explored. Clau F treatment resulted in a profound increase of phosphorylation of Akt and GSK-3β, which led to GSK-3β inhibition and subsequently the nuclear accumulation of β-catenin. Further, the interaction between β-catenin and p300 in the nucleus was enhanced and the transcription of p300/β-catenin responsive genes were increased significantly (c-jun, fra-1) by Clau F. Importantly, the positive effect of Clau F on neuronal differentiation was abolished by Akti-1/2, a specific inhibitor of Akt-1/2 kinase, which indicated the involvement of Akt/GSK-3β in Clau F-mediated neuronal differentiation. In conclusion, these data suggested that Clau F promoted neuronal differentiation through Akt/GSK-3β/β-catenin signaling pathway in NS/PCs.
Collapse
Affiliation(s)
- Ju-Yang Huang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yin-Zhong Ma
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Zuo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hunan University of Chinese Medicine, Changsha 410208, China
| | - Hang Liu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guan-Hua Du
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Dong-Ming Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Hunan University of Chinese Medicine, Changsha 410208, China.
| |
Collapse
|
20
|
Rolland M, Li X, Sellier Y, Martin H, Perez-Berezo T, Rauwel B, Benchoua A, Bessières B, Aziza J, Cenac N, Luo M, Casper C, Peschanski M, Gonzalez-Dunia D, Leruez-Ville M, Davrinche C, Chavanas S. PPARγ Is Activated during Congenital Cytomegalovirus Infection and Inhibits Neuronogenesis from Human Neural Stem Cells. PLoS Pathog 2016; 12:e1005547. [PMID: 27078877 PMCID: PMC4831785 DOI: 10.1371/journal.ppat.1005547] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 03/12/2016] [Indexed: 11/25/2022] Open
Abstract
Congenital infection by human cytomegalovirus (HCMV) is a leading cause of permanent sequelae of the central nervous system, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities (0.1% of all births). To gain insight on the impact of HCMV on neuronal development, we used both neural stem cells from human embryonic stem cells (NSC) and brain sections from infected fetuses and investigated the outcomes of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARγ), a transcription factor critical in the developing brain. We observed that HCMV infection dramatically impaired the rate of neuronogenesis and strongly increased PPARγ levels and activity. Consistent with these findings, levels of 9-hydroxyoctadecadienoic acid (9-HODE), a known PPARγ agonist, were significantly increased in infected NSCs. Likewise, exposure of uninfected NSCs to 9-HODE recapitulated the effect of infection on PPARγ activity. It also increased the rate of cells expressing the IE antigen in HCMV-infected NSCs. Further, we demonstrated that (1) pharmacological activation of ectopically expressed PPARγ was sufficient to induce impaired neuronogenesis of uninfected NSCs, (2) treatment of uninfected NSCs with 9-HODE impaired NSC differentiation and (3) treatment of HCMV-infected NSCs with the PPARγ inhibitor T0070907 restored a normal rate of differentiation. The role of PPARγ in the disease phenotype was strongly supported by the immunodetection of nuclear PPARγ in brain germinative zones of congenitally infected fetuses (N = 20), but not in control samples. Altogether, our findings reveal a key role for PPARγ in neurogenesis and in the pathophysiology of HCMV congenital infection. They also pave the way to the identification of PPARγ gene targets in the infected brain. Congenital infection by human cytomegalovirus (HCMV) might result in permanent neurological sequelae, including sensorineural deafness, cerebral palsies or devastating neurodevelopmental abnormalities. Infants with such sequelae represent about 0.1% of all live births (>5500 per year in the USA). Given the considerable health and societal burden, a better insight on disease pathogenesis is urgently needed to design new therapeutic or prognostic tools. Here, we studied the impact of HCMV on neuronal development, using human neural progenitors (NSC) as a disease model. In particular, we investigated the outcome of infection on Peroxisome Proliferator-Activated Receptor gamma (PPARγ, a key protein in the regulation of metabolism, inflammation and cell differentiation. We disclosed that HCMV infection strongly increases levels and activity of PPARγ in NSCs. In vitro experiments showed that PPARγ activity inhibits the differentiation of NSCs into neurons. We also found increased PPARγ expression in brains of in utero infected fetuses, but not in controls, suggesting that PPARγ is a key effector of HCMV infection also in vivo. Our study provides new insights on the pathogenesis of HCMV infection and paves the way to the discovery of PPARγ-related molecules secreted in the infected brain.
Collapse
Affiliation(s)
- Maude Rolland
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Xiaojun Li
- Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yann Sellier
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Hélène Martin
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Teresa Perez-Berezo
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Benjamin Rauwel
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | | | - Bettina Bessières
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacqueline Aziza
- Département d'Anatomie Pathologique, IUCT-Oncopole, Toulouse, France
| | - Nicolas Cenac
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Minhua Luo
- Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Charlotte Casper
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
- Neonatal Unit, Children’s Hospital, Toulouse, France
| | - Marc Peschanski
- I-STEM, INSERM U861, AFM, Evry, France
- CECS, UEVE U861, Evry, France
| | - Daniel Gonzalez-Dunia
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Marianne Leruez-Ville
- Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Christian Davrinche
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
| | - Stéphane Chavanas
- Centre de Physiopathologie Toulouse Purpan, INSERM UMR 1043, CNRS UMR 5282, Université Paul Sabatier, Toulouse, France
- * E-mail:
| |
Collapse
|
21
|
Sart S, Yan Y, Li Y, Lochner E, Zeng C, Ma T, Li Y. Crosslinking of extracellular matrix scaffolds derived from pluripotent stem cell aggregates modulates neural differentiation. Acta Biomater 2016; 30:222-232. [PMID: 26577988 DOI: 10.1016/j.actbio.2015.11.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/12/2015] [Accepted: 11/10/2015] [Indexed: 01/20/2023]
Abstract
At various developmental stages, pluripotent stem cells (PSCs) and their progeny secrete a large amount of extracellular matrices (ECMs) which could interact with regulatory growth factors to modulate stem cell lineage commitment. ECMs derived from PSC can be used as unique scaffolds that provide broad signaling capacities to mediate cellular differentiation. However, the rapid degradation of ECMs can impact their applications as the scaffolds for in vitro cell expansion and in vivo transplantation. To address this issue, this study investigated the effects of crosslinking on the ECMs derived from embryonic stem cells (ESCs) and the regulatory capacity of the crosslinked ECMs on the proliferation and differentiation of reseeded ESC-derived neural progenitor cells (NPCs). To create different biological cues, undifferentiated aggregates, spontaneous embryoid bodies, and ESC-derived NPC aggregates were decellularized. The derived ECMs were crosslinked using genipin or glutaraldehyde to enhance the scaffold stability. ESC-derived NPC aggregates were reseeded on different ECM scaffolds and differential cellular compositions of neural progenitors, neurons, and glial cells were observed. The results indicate that ESC-derived ECM scaffolds affect neural differentiation through intrinsic biological cues and biophysical properties. These scaffolds have potential for in vitro cell culture and in vivo tissue regeneration study. STATEMENT OF SIGNIFICANCE Dynamic interactions of acellular extracellular matrices and stem cells are critical for lineage-specific commitment and tissue regeneration. Understanding the synergistic effects of biochemical, biological, and biophysical properties of acellular matrices would facilitate scaffold design and the functional regulation of stem cells. The present study assessed the influence of crosslinked embryonic stem cell-derived extracellular matrix on neural differentiation and revealed the synergistic interactions of various matrix properties. While embryonic stem cell-derived matrices have been assessed as tissue engineering scaffolds, the impact of crosslinking on the embryonic stem cell-derived matrices to modulate neural differentiation has not been studied. The results from this study provide novel knowledge on the interface of embryonic stem cell-derived extracellular matrix and neural aggregates. The findings reported in this manuscript are significant for stem cell differentiation toward the applications in stem cell-based drug screening, disease modeling, and cell therapies.
Collapse
|
22
|
Calzà L, Fernández M, Giardino L. Role of the Thyroid System in Myelination and Neural Connectivity. Compr Physiol 2015; 5:1405-21. [DOI: 10.1002/cphy.c140035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
23
|
Chen C, Ma Q, Chen X, Zhong M, Deng P, Zhu G, Zhang Y, Zhang L, Yang Z, Zhang K, Guo L, Wang L, Yu Z, Zhou Z. Thyroid Hormone-Otx2 Signaling Is Required for Embryonic Ventral Midbrain Neural Stem Cells Differentiated into Dopamine Neurons. Stem Cells Dev 2015; 24:1751-65. [PMID: 25867707 DOI: 10.1089/scd.2014.0489] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Midbrain dopamine (DA) neurons are essential for maintaining multiple brain functions. These neurons have also been implicated in relation with diverse neurological disorders. However, how these neurons are developed from neuronal stem cells (NSCs) remains largely unknown. In this study, we provide both in vivo and in vitro evidence that the thyroid hormone, an important physiological factor for brain development, promotes DA neuron differentiation from embryonic ventral midbrain (VM) NSCs. We find that thyroid hormone deficiency during development reduces the midbrain DA neuron number, downregulates the expression of tyrosine hydroxylase (TH) and the dopamine transporter (DAT), and impairs the DA neuron-dependent motor behavior. In addition, thyroid hormone treatment during VM NSC differentiation in vitro increases the production of DA neurons and upregulates the expression of TH and DAT. We also found that the thyroid hormone enhances the expression of Otx2, an important determinant of DA neurogenesis, during DA neuron differentiation. Our in vitro gene silencing experiments indicate that Otx2 is required for thyroid hormone-dependent DA neuron differentiation from embryonic VM NSCs. Finally, we revealed both in vivo and in vitro that the thyroid hormone receptor alpha 1 is expressed in embryonic VM NSCs. Furthermore, it participates in the effects of thyroid hormone-induced Otx2 upregulation and DA neuron differentiation. These data demonstrate the role and molecular mechanisms of how the thyroid hormone regulates DA neuron differentiation from embryonic VM NSCs, particularly providing new mechanisms and a potential strategy for generating dopamine neurons from NSCs.
Collapse
Affiliation(s)
- Chunhai Chen
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| | - Qinglong Ma
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| | - Xiaowei Chen
- 2 Brain Research Center, Third Military Medical University , Chongqing, China
| | - Min Zhong
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| | - Ping Deng
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| | - Gang Zhu
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| | - Yanwen Zhang
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| | - Lei Zhang
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| | - Zhiqi Yang
- 2 Brain Research Center, Third Military Medical University , Chongqing, China
| | - Kuan Zhang
- 2 Brain Research Center, Third Military Medical University , Chongqing, China
| | - Lu Guo
- 3 Department of Neurology, Daping Hospital, Third Military Medical University , Chongqing, China
| | - Liting Wang
- 4 Biomedical Analysis Center, Third Military Medical University , Chongqing, China
| | - Zhengping Yu
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| | - Zhou Zhou
- 1 Department of Occupational Health, Third Military Medical University , Chongqing, China
| |
Collapse
|
24
|
Ceci C, Barbaccia ML, Pistritto G. A not cytotoxic nickel concentration alters the expression of neuronal differentiation markers in NT2 cells. Neurotoxicology 2015; 47:47-53. [DOI: 10.1016/j.neuro.2015.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/16/2014] [Accepted: 01/08/2015] [Indexed: 12/22/2022]
|
25
|
Stergiopoulos A, Elkouris M, Politis PK. Prospero-related homeobox 1 (Prox1) at the crossroads of diverse pathways during adult neural fate specification. Front Cell Neurosci 2015; 8:454. [PMID: 25674048 PMCID: PMC4306308 DOI: 10.3389/fncel.2014.00454] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 12/16/2014] [Indexed: 12/11/2022] Open
Abstract
Over the last decades, adult neurogenesis in the central nervous system (CNS) has emerged as a fundamental process underlying physiology and disease. Recent evidence indicates that the homeobox transcription factor Prox1 is a critical intrinsic regulator of neurogenesis in the embryonic CNS and adult dentate gyrus (DG) of the hippocampus, acting in multiple ways and instructed by extrinsic cues and intrinsic factors. In the embryonic CNS, Prox1 is mechanistically involved in the regulation of proliferation vs. differentiation decisions of neural stem cells (NSCs), promoting cell cycle exit and neuronal differentiation, while inhibiting astrogliogenesis. During the complex differentiation events in adult hippocampal neurogenesis, Prox1 is required for maintenance of intermediate progenitors (IPs), differentiation and maturation of glutamatergic interneurons, as well as specification of DG cell identity over CA3 pyramidal fate. The mechanism by which Prox1 exerts multiple functions involves distinct signaling pathways currently not fully highlighted. In this mini-review, we thoroughly discuss the Prox1-dependent phenotypes and molecular pathways in adult neurogenesis in relation to different upstream signaling cues and cell fate determinants. In addition, we discuss the possibility that Prox1 may act as a cross-talk point between diverse signaling cascades to achieve specific outcomes during adult neurogenesis.
Collapse
Affiliation(s)
- Athanasios Stergiopoulos
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Maximilianos Elkouris
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| |
Collapse
|
26
|
Amcheslavsky A, Nie Y, Li Q, He F, Tsuda L, Markstein M, Ip YT. Gene expression profiling identifies the zinc-finger protein Charlatan as a regulator of intestinal stem cells in Drosophila. Development 2014; 141:2621-32. [PMID: 24961799 DOI: 10.1242/dev.106237] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Intestinal stem cells (ISCs) in the adult Drosophila midgut can respond to tissue damage and support repair. We used genetic manipulation to increase the number of ISC-like cells in the adult midgut and performed gene expression profiling to identify potential ISC regulators. A detailed analysis of one of these potential regulators, the zinc-finger protein Charlatan, was carried out. MARCM clonal analysis and RNAi in precursor cells showed that loss of Chn function caused severe ISC division defects, including loss of EdU incorporation, phosphorylated histone 3 staining and expression of the mitotic protein Cdc2. Loss of Charlatan also led to a much reduced histone acetylation staining in precursor cells. Both the histone acetylation and ISC division defects could be rescued by the simultaneous decrease of the Histone Deacetylase 2. The overexpression of Charlatan blocked differentiation reversibly, but loss of Charlatan did not lead to automatic differentiation. The results together suggest that Charlatan does not simply act as an anti-differentiation factor but instead functions to maintain a chromatin structure that is compatible with stem cell properties, including proliferation.
Collapse
Affiliation(s)
- Alla Amcheslavsky
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yingchao Nie
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Qi Li
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Feng He
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Leo Tsuda
- Animal Models of Aging, National Center for Geriatrics and Gerontology, Obu, Aichi 474-8511, Japan
| | - Michele Markstein
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Y Tony Ip
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
27
|
Antoniou D, Stergiopoulos A, Politis PK. Recent advances in the involvement of long non-coding RNAs in neural stem cell biology and brain pathophysiology. Front Physiol 2014; 5:155. [PMID: 24795650 PMCID: PMC4001054 DOI: 10.3389/fphys.2014.00155] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/02/2014] [Indexed: 12/19/2022] Open
Abstract
Exploration of non-coding genome has recently uncovered a growing list of formerly unknown regulatory long non-coding RNAs (lncRNAs) with important functions in stem cell pluripotency, development and homeostasis of several tissues. Although thousands of lncRNAs are expressed in mammalian brain in a highly patterned manner, their roles in brain development have just begun to emerge. Recent data suggest key roles for these molecules in gene regulatory networks controlling neuronal and glial cell differentiation. Analysis of the genomic distribution of genes encoding for lncRNAs indicates a physical association of these regulatory RNAs with transcription factors (TFs) with well-established roles in neural differentiation, suggesting that lncRNAs and TFs may form coherent regulatory networks with important functions in neural stem cells (NSCs). Additionally, many studies show that lncRNAs are involved in the pathophysiology of brain-related diseases/disorders. Here we discuss these observations and investigate the links between lncRNAs, brain development and brain-related diseases. Understanding the functions of lncRNAs in NSCs and brain organogenesis could revolutionize the basic principles of developmental biology and neuroscience.
Collapse
Affiliation(s)
- Daphne Antoniou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Athanasios Stergiopoulos
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| | - Panagiotis K Politis
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens Athens, Greece
| |
Collapse
|
28
|
In the wake of neural progenitors. Arch Biochem Biophys 2013; 534:1-2. [PMID: 23623046 DOI: 10.1016/j.abb.2013.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|