1
|
Zhong G, He Y, Wan F, Wu S, Jiang X, Tang Z, Hu L. Effects of Long-Term Exposure to Copper on the Keap1/Nrf2 Signaling Pathway and Msr-Related Redox Status in the Kidneys of Rats. Biol Trace Elem Res 2021; 199:4205-4217. [PMID: 33479888 DOI: 10.1007/s12011-020-02557-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022]
Abstract
The objective of the present study was to examine the effects of long-term exposure on oxidative damage, Keap1/Nrf2 signaling pathway, and Msr-related redox status in the kidneys of rats. Therefore, in this experimental study, a total of 32 CD-1 rats were randomized into 4 groups and treated with 30-, 60-, and 120-mg/kg Cu for 24 weeks. Different serum biomarkers suggestive of renal functions, pathological changes, and oxidative stress were analyzed in kidney tissues. Moreover, the levels of the Keap1/Nrf2 signaling pathway and redox status-related gene mRNA and proteins were also detected. The results indicated that Cu exposure dramatically increased the contents of creatinine and carbamide. Furthermore, histopathological alterations and mitochondrial damage in kidneys of rats of different Cu-treated groups were obviously observed. In addition, Cu exposure markedly changed the levels of glutathione, catalase, and total antioxidant capacity, and upregulated the contents of protein carbonyl, nitric oxide, and malondialdehyde. Moreover, higher levels of Cu treatments significantly increased the expression of Keap1/Nrf2 signaling pathway and redox status-related genes (NQO1, SOD-1, TRX, MsrA, MsrB1, MsrB2, MsrB3). Simultaneously, the mRNA expression levels of Nrf2, HO-1, and CAT were upregulated in rats exposed to 30- and 60-mg/kg Cu, but downregulated in the 120-mg/kg Cu group compared with the control group. Moreover, the Keap1/Nrf2 signaling pathway and redox status-related protein expression levels (HO-1, SOD-1, TRX, MsrA, MsrB1, MsrB2) were significantly increased in treated rats. In summary, it is suggested that the Keap1/Nrf2 signaling pathway and activation of Msr prevent Cu-induced nephrotoxicity and attenuate oxidative damage.
Collapse
Affiliation(s)
- Gaolong Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ying He
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning, 530001, China
| | - Fang Wan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shaofeng Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xuanxuan Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Ding P, Fang L, Wang G, Li X, Huang S, Gao Y, Zhu J, Xiao L, Tong J, Chen F, Xia G. Wheat methionine sulfoxide reductase A4.1 interacts with heme oxygenase 1 to enhance seedling tolerance to salinity or drought stress. PLANT MOLECULAR BIOLOGY 2019; 101:203-220. [PMID: 31297725 DOI: 10.1007/s11103-019-00901-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Here, a functional characterization of a wheat MSR has been presented: this protein makes a contribution to the plant's tolerance of abiotic stress, acting through its catalytic capacity and its modulation of ROS and ABA pathways. The molecular mechanism and function of certain members of the methionine sulfoxide reductase (MSR) gene family have been defined, however, these analyses have not included the wheat equivalents. The wheat MSR gene TaMSRA4.1 is inducible by salinity and drought stress and in this study, we demonstrate that its activity is restricted to the Met-S-SO enantiomer, and its subcellular localization is in the chloroplast. Furthermore, constitutive expression of TaMSRA4.1 enhanced the salinity and drought tolerance of wheat and Arabidopsis thaliana. In these plants constitutively expressing TaMSRA4.1, the accumulation of reactive oxygen species (ROS) was found to be influenced through the modulation of genes encoding proteins involved in ROS signaling, generation and scavenging, while the level of endogenous abscisic acid (ABA), and the sensitivity of stomatal guard cells to exogenous ABA, was increased. A yeast two-hybrid screen, bimolecular fluorescence complementation and co-immunoprecipitation assays demonstrated that heme oxygenase 1 (HO1) interacted with TaMSRA4.1, and that this interaction depended on a TaHO1 C-terminal domain. In plants subjected to salinity or drought stress, TaMSRA4.1 reversed the oxidation of TaHO1, activating ROS and ABA signaling pathways, but not in the absence of HO1. The aforementioned properties advocate TaMSRA4.1 as a candidate for plant genetic enhancement.
Collapse
Affiliation(s)
- Pengcheng Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Linlin Fang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Guangling Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Xiang Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shu Huang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Yankun Gao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jiantang Zhu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Langtao Xiao
- Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Jianhua Tong
- Hunan Provincial Key Laboratory of Phytohormones, Southern Regional Collaborative Innovation Center for Grain and Oil Crops, Hunan Agricultural University, Changsha, 410128, China
| | - Fanguo Chen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| | - Guangmin Xia
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| |
Collapse
|
3
|
Pennington SM, Klutho PR, Xie L, Broadhurst K, Koval OM, McCormick ML, Spitz DR, Grumbach IM. Defective protein repair under methionine sulfoxide A deletion drives autophagy and ARE-dependent gene transcription. Redox Biol 2018; 16:401-413. [PMID: 29649787 PMCID: PMC5953240 DOI: 10.1016/j.redox.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/21/2018] [Accepted: 04/01/2018] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Reduction of oxidized methionines is emerging as a major protein repair pathway. The lack of methionine sulfoxide reductase A (MsrA) exacerbates cardiovascular disease phenotypes driven by increased oxidative stress. However, the role of MsrA on maintaining cellular homeostasis in the absence of excessive oxidative stress is less well understood. METHODS AND RESULTS Constitutive genetic deletion of MsrA increased formation of p62-containing protein aggregates, activated autophagy, and decreased a marker of apoptosis in vascular smooth muscle cells (VSMC). The association of Keap1 with p62 was augmented in MsrA-/- VSMC. Keap1 targets the transcription factor Nrf2, which regulates antioxidant genes, for proteasomal degradation. However, in MsrA-/- VSMC, the association of Nrf2 with Keap1 was diminished. Whereas Nrf2 mRNA levels were not decreased in MsrA-/- VSMC, we detected decreased ubiquitination of Nrf2 and a corresponding increase in total Nrf2 protein in the absence of biochemical markers of oxidative stress. Moreover, nuclear-localized Nrf2 was increased under MsrA deficiency, resulting in upregulation of Nrf2-dependent transcriptional activity. Consequently, transcription, protein levels and enzymatic activity of glutamate-cysteine ligase and glutathione reductase were greatly augmented in MsrA-/- VSMC. SUMMARY Our findings demonstrate that reversal of methionine oxidation is required for maintenance of cellular homeostasis in the absence of increased oxidative stress. These data provide the first link between autophagy and activation of Nrf2 in the setting of MsrA deletion.
Collapse
Affiliation(s)
- Steven M Pennington
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Paula R Klutho
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Litao Xie
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kim Broadhurst
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Olha M Koval
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Isabella M Grumbach
- Abboud Cardiovascular Research Center, Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Veterans Affairs Healthcare System, Iowa City, IA 52246, USA.
| |
Collapse
|
4
|
Singh MP, Kim KY, Kwak GH, Baek SH, Kim HY. Methionine sulfoxide reductase A protects against lipopolysaccharide-induced septic shock via negative regulation of the proinflammatory responses. Arch Biochem Biophys 2017; 631:42-48. [PMID: 28803836 DOI: 10.1016/j.abb.2017.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/24/2017] [Accepted: 08/09/2017] [Indexed: 11/18/2022]
Abstract
Methionine sulfoxide reductase A (MsrA) is a major antioxidant enzyme that specifically catalyzes the reduction of methionine S-sulfoxide. In this study, we used MsrA gene-knockout (MsrA-/-) mice and bone marrow-derived macrophages (BMDMs) to investigate the role of MsrA in the regulation of inflammatory responses induced by lipopolysaccharide (LPS). MsrA-/- mice were more susceptible to LPS-induced lethal shock than wild-type (MsrA+/+) mice. Serum levels of the proinflammatory cytokines IL-6 and TNF-α induced by LPS were higher in MsrA-/- than in MsrA+/+ mice. MsrA deficiency in the BMDMs also increased the LPS-induced cytotoxicity as well as TNF-α level. Basal and LPS-induced reactive oxygen species (ROS) levels were higher in MsrA-/- than in MsrA+/+ BMDMs. Phosphorylation levels of p38, JNK, and ERK were higher in MsrA-/- than in MsrA+/+ BMDMs in response to LPS, suggesting that MsrA deficiency increases MAPK activation. Furthermore, MsrA deficiency increased the expression and nuclear translocation of NF-κB and the expression of inducible nitric oxide synthase, a target gene of NF-κB, in response to LPS. Taken together, our results suggest that MsrA protects against LPS-induced septic shock, and negatively regulates proinflammatory responses via inhibition of the ROS-MAPK-NF-κB signaling pathways.
Collapse
Affiliation(s)
- Mahendra Pratap Singh
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea; School of Bioengineering and Biosciences, Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Ki Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
5
|
Singh MP, Kim KY, Kim HY. Methionine sulfoxide reductase A deficiency exacerbates acute liver injury induced by acetaminophen. Biochem Biophys Res Commun 2017; 484:189-194. [PMID: 28104395 DOI: 10.1016/j.bbrc.2017.01.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 01/06/2017] [Indexed: 01/12/2023]
Abstract
Acetaminophen (APAP) overdose induces acute liver injury via enhanced oxidative stress and glutathione (GSH) depletion. Methionine sulfoxide reductase A (MsrA) acts as a reactive oxygen species scavenger by catalyzing the cyclic reduction of methionine-S-sulfoxide. Herein, we investigated the protective role of MsrA against APAP-induced liver damage using MsrA gene-deleted mice (MsrA-/-). We found that MsrA-/- mice were more susceptible to APAP-induced acute liver injury than wild-type mice (MsrA+/+). The central lobule area of the MsrA-/- liver was more impaired with necrotic lesions. Serum alanine transaminase, aspartate transaminase, and lactate dehydrogenase levels were significantly higher in MsrA-/- than in MsrA+/+ mice after APAP challenge. Deletion of MsrA enhanced APAP-induced hepatic GSH depletion and oxidative stress, leading to increased susceptibility to APAP-induced liver injury in MsrA-deficient mice. APAP challenge increased Nrf2 activation more profoundly in MsrA-/- than in MsrA+/+ livers. Expression and nuclear accumulation of Nrf2 and its target gene expression were significantly elevated in MsrA-/- than in MsrA+/+ livers after APAP challenge. Taken together, our results demonstrate that MsrA protects the liver from APAP-induced toxicity. The data provided herein constitute the first in vivo evidence of the involvement of MsrA in hepatic function under APAP challenge.
Collapse
Affiliation(s)
- Mahendra Pratap Singh
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea; School of Bioengineering and Biosciences, Department of Zoology, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Ki Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, 42415, Republic of Korea.
| |
Collapse
|
6
|
Kwak GH, Kim KY, Kim HY. Methionine sulfoxide reductase B3 deficiency stimulates heme oxygenase-1 expression via ROS-dependent and Nrf2 activation pathways. Biochem Biophys Res Commun 2016; 473:1033-1038. [PMID: 27059143 DOI: 10.1016/j.bbrc.2016.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/30/2022]
Abstract
Methionine sulfoxide reductase B3 (MsrB3), which is primarily found in the endoplasmic reticulum (ER), is an important protein repair enzyme that stereospecifically reduces methionine-R-sulfoxide residues. We previously found that MsrB3 deficiency arrests the cell cycle at the G1/S stage through up-regulation of p21 and p27. In this study, we report a critical role of MsrB3 in gene expression of heme oxygenase-1 (HO-1), which has an anti-proliferative effect associated with p21 up-regulation. Depletion of MsrB3 elevated HO-1 expression in mammalian cells, whereas MsrB3 overexpression had no effect. MsrB3 deficiency increased cellular reactive oxygen species (ROS), particularly in the mitochondria. ER stress, which is associated with up-regulation of HO-1, was also induced by depletion of MsrB3. Treatment with N-acetylcysteine as an ROS scavenger reduced augmented HO-1 levels in MsrB3-depleted cells. MsrB3 deficiency activated Nrf2 transcription factor by enhancing its expression and nuclear import. The activation of Nrf2 induced by MsrB3 depletion was confirmed by increased expression levels of its other target genes, such as γ-glutamylcysteine ligase. Taken together, these data suggest that MsrB3 attenuates HO-1 induction by inhibiting ROS production, ER stress, and Nrf2 activation.
Collapse
Affiliation(s)
- Geun-Hee Kwak
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Ki Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea
| | - Hwa-Young Kim
- Department of Biochemistry and Molecular Biology, Yeungnam University College of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
7
|
Sticozzi C, Cervellati F, Muresan XM, Cervellati C, Valacchi G. Resveratrol prevents cigarette smoke-induced keratinocytes damage. Food Funct 2015; 5:2348-56. [PMID: 25088477 DOI: 10.1039/c4fo00407h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The plant polyphenol, resveratrol (Resv, 3,4,5-trihydroxystilbene), naturally occurring in a number of fruits and other food products, has been extensively studied over the last two decades for its beneficial properties. Recently, its possible topical use in ameliorating skin conditions has also been proposed; however, its role in preventing cigarette smoke (CS)-induced keratinocyte damage has not been investigated yet. Because of its peculiar location, cutaneous tissue is constantly exposed to several environmental stressors, such as CS. Many compounds presented in CS, have been shown to induce, directly or indirectly, cellular oxidative stress (OS) and inflammation via the production of ROS and lipid peroxidation compounds, among which 4HNE has been shown to be one of the most reactive. In this study, we have shown that resveratrol (at a dose of 10 μM) can decrease CS-induced ROS and carbonyl formation in human keratinocytes. In addition, pre-treatment with resveratrol prevented the induction of TRPA1 expression (mRNA and protein levels), a known receptor involved in cellular differentiation and inflammation, which has been recently shown to be activated by 4HNE. Finally, in keratinocytes, resveratrol could increase the expression of MsrA, enzyme involved in cell defence against oxidative protein damage. The present study further confirms the idea that the topical use of resveratrol can provide a good defence against CS-induced skin damage.
Collapse
Affiliation(s)
- Claudia Sticozzi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy.
| | | | | | | | | |
Collapse
|