1
|
Lou S, Lv H, Zhang L. Identification of Vesicle-Mediated Transport-Related Genes for Predicting Prognosis, Immunotherapy Response, and Drug Screening in Cervical Cancer. Immun Inflamm Dis 2024; 12:e70052. [PMID: 39513664 PMCID: PMC11544644 DOI: 10.1002/iid3.70052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Cervical cancer is one of the most common malignancies among women. Vesicle-mediated transport mechanisms significantly influence tumor cell behavior through intercellular material exchange. However, prognostic significance in CC patients remains underexplored. RESEARCH DESIGN AND METHODS We identified differentially expressed vesicle-mediated transport-related genes from TCGA and GeneCards datasets through differential expression analysis. We constructed a prognostic model using Cox regression and LASSO regression, categorized patients into high- and low-risk groups, and validated the model in the GEO data set. A nomogram integrating clinical features and risk scores demonstrated the model's independent prognostic capability. We analyzed tumor immune cell infiltration, immune checkpoints, and predicted immunotherapy responses in the high- and low-risk groups. Finally, we screened potential drugs for targeting CC and conducted drug-sensitivity analysis. RESULTS We successfully established a 10-gene prognostic model based on VMTRGs. The low-risk group exhibited favorable prognosis, significant immune cell infiltration, and promising immunotherapy response, whereas the high-risk group showed higher sensitivity to chemotherapeutic agents such as Docetaxel and Paclitaxel. Potential drugs identified for targeting CC patients included Megestrol acetate, Lenvatinib, Adavosertib, and Barasertib. CONCLUSIONS The VMTRG-based prognostic model demonstrates reliable clinical prognostic value and enhances understanding of vesicle-mediated transport mechanisms in CC.
Collapse
Affiliation(s)
- Shuai Lou
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
- Department of GynecologyJinhua Maternal and Child Health HospitalJinhuaZhejiangChina
| | - Hongqing Lv
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| | - Lin Zhang
- Department of Gynecology, Affiliated Jinhua HospitalZhejiang University School of MedicineJinhuaZhejiangChina
| |
Collapse
|
2
|
Pulli K, Saarimäki-Vire J, Ahonen P, Liu X, Ibrahim H, Chandra V, Santambrogio A, Wang Y, Vaaralahti K, Iivonen AP, Känsäkoski J, Tommiska J, Kemkem Y, Varjosalo M, Vuoristo S, Andoniadou CL, Otonkoski T, Raivio T. A splice site variant in MADD affects hormone expression in pancreatic β cells and pituitary gonadotropes. JCI Insight 2024; 9:e167598. [PMID: 38775154 PMCID: PMC11141940 DOI: 10.1172/jci.insight.167598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 04/12/2024] [Indexed: 06/02/2024] Open
Abstract
MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of β cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human β cell line EndoC-βH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LβT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic β cells and pituitary gonadotropes.
Collapse
Affiliation(s)
- Kristiina Pulli
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Jonna Saarimäki-Vire
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Pekka Ahonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Xiaonan Liu
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Hazem Ibrahim
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Vikash Chandra
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Alice Santambrogio
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Yafei Wang
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Kirsi Vaaralahti
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Anna-Pauliina Iivonen
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
| | - Johanna Känsäkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Johanna Tommiska
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
| | - Yasmine Kemkem
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
| | - Markku Varjosalo
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Obstetrics and Gynecology; and
- HiLIFE, University of Helsinki, Helsinki, Finland
| | - Cynthia L. Andoniadou
- Centre for Craniofacial and Regenerative Biology, King’s College London, London, United Kingdom
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Timo Otonkoski
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program (STEMM), Research Programs Unit, Faculty of Medicine, and
- Department of Physiology, Faculty of Medicine
- New Children’s Hospital, Helsinki University Hospital, Pediatric Research Center, Helsinki, Finland
| |
Collapse
|
3
|
Medlyn MJ, Maeder E, Bradley C, Phatarpekar P, Ham H, Billadeau DD. MADD regulates natural killer cell degranulation through Rab27a activation. J Cell Sci 2024; 137:jcs261582. [PMID: 38506245 PMCID: PMC11058345 DOI: 10.1242/jcs.261582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/07/2024] [Indexed: 03/21/2024] Open
Abstract
Natural killer (NK) cells have the ability to lyse other cells through the release of lytic granules (LGs). This is in part mediated by the small GTPase Rab27a, which was first identified to play a crucial role in degranulation through the study of individuals harboring mutations in the gene encoding Rab27a. However, the guanine nucleotide exchange factor (GEF) regulating the activation of Rab27a in cytotoxic lymphocytes was unknown. Here, we show that knockout of MADD significantly decreased the levels of GTP-bound Rab27a in both resting and stimulated NK cells, and MADD-deficient NK cells and CD8+ T cells displayed severely reduced degranulation and cytolytic ability, similar to that seen with Rab27a deficiency. Although MADD colocalized with Rab27a on LGs and was enriched at the cytolytic synapse, the loss of MADD did not impact Rab27a association with LGs nor their recruitment to the cytolytic synapse. Together, our results demonstrate an important role for MADD in cytotoxic lymphocyte killing.
Collapse
Affiliation(s)
- Michael J. Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Easton Maeder
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Claire Bradley
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel D. Billadeau
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Oncology Research, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Del-Río-Robles JE, Tomás-Morales JA, Zavala-Barrera C, Castillo-Kauil A, García-Jiménez I, Vázquez-Prado J, Reyes-Cruz G. CaSR links endocytic and secretory pathways via MADD, a Rab11A effector that activates Rab27B. Cell Signal 2023; 111:110857. [PMID: 37604243 DOI: 10.1016/j.cellsig.2023.110857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
Calcium sensing receptor (CaSR), a class C GPCR, regulates essential secretory pathways, involving communication between endocytic and secretory Rab GTPases, via still to be fully defined molecular mechanisms. To address how communication between endocytic and secretory vesicles occurs, we hypothesized that CaSR activates endocytic Rab11A-dependent effector pathways acting upstream of Rab27B-regulated secretion. We found that Rab11A is critical to promote Rab27B-dependent secretion of chemotactic and inflammatory factors, including IL-8, CCL2/MCP-1, and IL1-β, in response to CaSR stimulation. It also attenuates secretion of IL-6. The process is mediated by endosomal PI3-kinases, Vps34 and PI3KC2α, which promote Rab27B activation. Rab11A interacts with and activates MADD, a guanine exchange factor for Rab3, and Rab27A/B. Mechanistically, CaSR drives Rab11A-dependent coupling of recycling endosomes to secretory-vesicles via endosomal PI3K-mediated activation of a MADD/Rab27B pathway.
Collapse
Affiliation(s)
- Jorge Eduardo Del-Río-Robles
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Janik Adriana Tomás-Morales
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Cesar Zavala-Barrera
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Alejandro Castillo-Kauil
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Irving García-Jiménez
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - José Vázquez-Prado
- Department of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Department of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico.
| |
Collapse
|
5
|
Zhong W, Lu Y, Han X, Yang J, Qin Z, Zhang W, Yu Z, Wu B, Liu S, Xu W, Zheng C, Schuchter LM, Karakousis GC, Mitchell TC, Amaravadi R, Flowers AJ, Gimotty PA, Xiao M, Mills G, Herlyn M, Dong H, Mitchell MJ, Kim J, Xu X, Guo W. Upregulation of exosome secretion from tumor-associated macrophages plays a key role in the suppression of anti-tumor immunity. Cell Rep 2023; 42:113224. [PMID: 37805922 PMCID: PMC10697782 DOI: 10.1016/j.celrep.2023.113224] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/15/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
Macrophages play a pivotal role in tumor immunity. We report that reprogramming of macrophages to tumor-associated macrophages (TAMs) promotes the secretion of exosomes. Mechanistically, increased exosome secretion is driven by MADD, which is phosphorylated by Akt upon TAM induction and activates Rab27a. TAM exosomes carry high levels of programmed death-ligand 1 (PD-L1) and potently suppress the proliferation and function of CD8+ T cells. Analysis of patient melanoma tissues indicates that TAM exosomes contribute significantly to CD8+ T cell suppression. Single-cell RNA sequencing analysis showed that exosome-related genes are highly expressed in macrophages in melanoma; TAM-specific RAB27A expression inversely correlates with CD8+ T cell infiltration. In a murine melanoma model, lipid nanoparticle delivery of small interfering RNAs (siRNAs) targeting macrophage RAB27A led to better T cell activation and sensitized tumors to anti-programmed cell death protein 1 (PD-1) treatment. Our study demonstrates tumors use TAM exosomes to combat CD8 T cells and suggests targeting TAM exosomes as a potential strategy to improve immunotherapies.
Collapse
Affiliation(s)
- Wenqun Zhong
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youtao Lu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jingbo Yang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhiyuan Qin
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Zhang
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ziyan Yu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bin Wu
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shujing Liu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Cathy Zheng
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lynn M Schuchter
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giorgos C Karakousis
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tara C Mitchell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ravi Amaravadi
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ahron J Flowers
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Phyllis A Gimotty
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Xiao
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Gordon Mills
- Division of Oncological Science, School of Medicine, and Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
| | - Meenhard Herlyn
- Molecular and Cellular Oncogenesis Program and Melanoma Research Center, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Haidong Dong
- Departments of Urology and Immunology, Mayo College of Medicine and Science, Rochester, MN 55905, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Junhyong Kim
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Lau NCH, Yam JWP. From Exosome Biogenesis to Absorption: Key Takeaways for Cancer Research. Cancers (Basel) 2023; 15:cancers15071992. [PMID: 37046653 PMCID: PMC10093369 DOI: 10.3390/cancers15071992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/23/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are mediators of intercellular communication in normal physiology and diseases. While many studies have emerged on the function of exosomal cargoes, questions remain regarding the origin of these exosomes. The packaging and secretion of exosomes in different contexts modify exosomal composition, which may in turn impact delivery, uptake and cargo function in recipient cells. A mechanistic understanding of exosome biology is therefore crucial to investigating exosomal function in complex biological systems and to the development of novel therapeutic approaches. Here, we outline the steps in exosome biogenesis, including endosome formation, MVB formation, cargo sorting and extracellular release, as well as exosome absorption, including targeting, interaction with recipient cells and the fate of internalized exosomes. In addition to providing a framework of exosome dynamics, we summarize current evidence on major pathways and regulatory mechanisms. We also highlight the various mechanisms observed in cancer and point out directions to improve study design in exosome biology. Further research is needed to illuminate the relationship between exosome biogenesis and function, which will aid the development of translational applications.
Collapse
Affiliation(s)
- Nicolas Cheuk Hang Lau
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
- Correspondence: ; Tel.: +852-22552681
| |
Collapse
|
7
|
Broadaway KA, Yin X, Williamson A, Parsons VA, Wilson EP, Moxley AH, Vadlamudi S, Varshney A, Jackson AU, Ahuja V, Bornstein SR, Corbin LJ, Delgado GE, Dwivedi OP, Fernandes Silva L, Frayling TM, Grallert H, Gustafsson S, Hakaste L, Hammar U, Herder C, Herrmann S, Højlund K, Hughes DA, Kleber ME, Lindgren CM, Liu CT, Luan J, Malmberg A, Moissl AP, Morris AP, Perakakis N, Peters A, Petrie JR, Roden M, Schwarz PEH, Sharma S, Silveira A, Strawbridge RJ, Tuomi T, Wood AR, Wu P, Zethelius B, Baldassarre D, Eriksson JG, Fall T, Florez JC, Fritsche A, Gigante B, Hamsten A, Kajantie E, Laakso M, Lahti J, Lawlor DA, Lind L, März W, Meigs JB, Sundström J, Timpson NJ, Wagner R, Walker M, Wareham NJ, Watkins H, Barroso I, O'Rahilly S, Grarup N, Parker SC, Boehnke M, Langenberg C, Wheeler E, Mohlke KL. Loci for insulin processing and secretion provide insight into type 2 diabetes risk. Am J Hum Genet 2023; 110:284-299. [PMID: 36693378 PMCID: PMC9943750 DOI: 10.1016/j.ajhg.2023.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Insulin secretion is critical for glucose homeostasis, and increased levels of the precursor proinsulin relative to insulin indicate pancreatic islet beta-cell stress and insufficient insulin secretory capacity in the setting of insulin resistance. We conducted meta-analyses of genome-wide association results for fasting proinsulin from 16 European-ancestry studies in 45,861 individuals. We found 36 independent signals at 30 loci (p value < 5 × 10-8), which validated 12 previously reported loci for proinsulin and ten additional loci previously identified for another glycemic trait. Half of the alleles associated with higher proinsulin showed higher rather than lower effects on glucose levels, corresponding to different mechanisms. Proinsulin loci included genes that affect prohormone convertases, beta-cell dysfunction, vesicle trafficking, beta-cell transcriptional regulation, and lysosomes/autophagy processes. We colocalized 11 proinsulin signals with islet expression quantitative trait locus (eQTL) data, suggesting candidate genes, including ARSG, WIPI1, SLC7A14, and SIX3. The NKX6-3/ANK1 proinsulin signal colocalized with a T2D signal and an adipose ANK1 eQTL signal but not the islet NKX6-3 eQTL. Signals were enriched for islet enhancers, and we showed a plausible islet regulatory mechanism for the lead signal in the MADD locus. These results show how detailed genetic studies of an intermediate phenotype can elucidate mechanisms that may predispose one to disease.
Collapse
Affiliation(s)
- K Alaine Broadaway
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Xianyong Yin
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Alice Williamson
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Department of Clinical Biochemistry, University of Cambridge, Cambridge, UK
| | - Victoria A Parsons
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Emma P Wilson
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Anne H Moxley
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | | | - Arushi Varshney
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Anne U Jackson
- Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Vasudha Ahuja
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Stefan R Bornstein
- Department of Internal Medicine, Metabolic and Vascular Medicine, MedicCal Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Laura J Corbin
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Om P Dwivedi
- University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland
| | | | | | - Harald Grallert
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Stefan Gustafsson
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Liisa Hakaste
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland
| | - Ulf Hammar
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Christian Herder
- German Center for Diabetes Research, Neuherberg, Germany; Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sandra Herrmann
- Department of Internal Medicine, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany
| | | | - David A Hughes
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Marcus E Kleber
- Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany; SYNLAB MVZ Humangenetik Mannheim, Mannheim, BW, Germany
| | - Cecilia M Lindgren
- Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK; Nuffield Department of Population Health, University of Oxford, Oxford, UK; Wellcome Trust Centre Human Genetics, University of Oxford, Oxford, UK; Broad Institute, Cambridge, MA, USA
| | - Ching-Ti Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jian'an Luan
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Anni Malmberg
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Angela P Moissl
- Institute of Nutritional Sciences, Friedrich-Schiller-University, Jena, Germany; Competence Cluster for Nutrition and Cardiovascular Health, Halle-Jena-Leipzig, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Nikolaos Perakakis
- Department of Internal Medicine, Metabolic and Vascular Medicine, MedicCal Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - John R Petrie
- School of Health and Wellbeing, University of Glasgow, Glasgow, UK
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Peter E H Schwarz
- Department of Internal Medicine, Prevention and Care of Diabetes, Medical Faculty Carl Gustav Carus, Dresden, Germany; Helmholtz Zentrum München, Paul Langerhans Institute Dresden, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Sapna Sharma
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Chair of Food Chemistry and Molecular Sensory Science, Technische Universität München, Freising, Germany
| | - Angela Silveira
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden; Oxford Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, Mental Health and Wellbeing, University of Glasgow, Glasgow, UK; Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tiinamaija Tuomi
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland; Folkhälsan Research Center, Helsinki, Finland; Abdominal Center, Endocrinology, Helsinki University Hospital, Helsinki, Finland
| | - Andrew R Wood
- Genetics of Complex Traits, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Peitao Wu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Björn Zethelius
- Department of Geriatrics, Uppsala University, Uppsala, Sweden
| | - Damiano Baldassarre
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; Cardiovascular Prevention Area, Centro Cardiologico Monzino I.R.C.C.S., Milan, Italy
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Folkhälsan Research Centre, Helsinki, Finland; Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Tove Fall
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jose C Florez
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute, Cambridge, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Andreas Fritsche
- Department of Internal Medicine, Diabetology, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Bruna Gigante
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anders Hamsten
- Department of Medicine Solna, Division of Cardiovascular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eero Kajantie
- Population Health Unit, Finnish Institute for Health and Welfare, Helsinki, Finland; PEDEGO Research Unit, MRC Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Children's Hospital, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku Laakso
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Deborah A Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Lars Lind
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Winfried März
- Synlab Academy, SYNLAB Holding Deutschland GmbH, Mannheim, BW, Germany; Medical Faculty Mannheim, Heidelberg University, Mannheim, BW, Germany
| | - James B Meigs
- Department of Medicine, Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA, USA; Department of Medicine, Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - Johan Sundström
- Department of Medical Sciences, Clinical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Nicholas J Timpson
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Robert Wagner
- Department of Internal Medicine, Diabetology, Tübingen, Germany; Institute for Diabetes Research and Metabolic Diseases, Helmholtz Center Munich, University of Tübingen, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; Health Data Research UK, Gibbs Building, London, UK
| | - Hugh Watkins
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Inês Barroso
- Exeter Centre of Excellence for Diabetes Research, Genetics of Complex Traits, University of Exeter Medical School, University of Exeter, Exeter, UK
| | - Stephen O'Rahilly
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Cj Parker
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Boehnke
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA; Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK; Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany; Precision Healthcare University Research Institute, Queen Mary University of London, London, UK
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK.
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
8
|
Han QF, Li WJ, Hu KS, Gao J, Zhai WL, Yang JH, Zhang SJ. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer. Mol Cancer 2022; 21:207. [PMID: 36320056 PMCID: PMC9623991 DOI: 10.1186/s12943-022-01671-0] [Citation(s) in RCA: 216] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/13/2022] [Indexed: 12/14/2022] Open
Abstract
Exosomes are well-known key mediators of intercellular communication and contribute to various physiological and pathological processes. Their biogenesis involves four key steps, including cargo sorting, MVB formation and maturation, transport of MVBs, and MVB fusion with the plasma membrane. Each process is modulated through the competition or coordination of multiple mechanisms, whereby diverse repertoires of molecular cargos are sorted into distinct subpopulations of exosomes, resulting in the high heterogeneity of exosomes. Intriguingly, cancer cells exploit various strategies, such as aberrant gene expression, posttranslational modifications, and altered signaling pathways, to regulate the biogenesis, composition, and eventually functions of exosomes to promote cancer progression. Therefore, exosome biogenesis-targeted therapy is being actively explored. In this review, we systematically summarize recent progress in understanding the machinery of exosome biogenesis and how it is regulated in the context of cancer. In particular, we highlight pharmacological targeting of exosome biogenesis as a promising cancer therapeutic strategy.
Collapse
Affiliation(s)
- Qing-Fang Han
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Wen-Jia Li
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Kai-Shun Hu
- grid.412536.70000 0004 1791 7851Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen Memorial Hospital Sun Yat-Sen University, Guangzhou, 510120 China
| | - Jie Gao
- grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China
| | - Wen-Long Zhai
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Jing-Hua Yang
- grid.412633.10000 0004 1799 0733Clinical Systems Biology Key Laboratories of Henan, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China
| | - Shui-Jun Zhang
- grid.412633.10000 0004 1799 0733Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,grid.412633.10000 0004 1799 0733Henan Research Centre for Organ Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 Henan China ,Henan Diagnosis & Treatment League for Hepatopathy, Zhengzhou, 450052 Henan China ,Henan Engineering & Research Center for Diagnosis and Treatment of Hepatobiliary and Pancreatic Surgical Diseases, Zhengzhou, 450052 Henan China
| |
Collapse
|
9
|
Sekine Y, Kannan R, Wang X, Strittmatter SM. Rabphilin3A reduces integrin-dependent growth cone signaling to restrict axon regeneration after trauma. Exp Neurol 2022; 353:114070. [PMID: 35398339 PMCID: PMC9555232 DOI: 10.1016/j.expneurol.2022.114070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/09/2022] [Accepted: 04/04/2022] [Indexed: 01/03/2023]
Abstract
Neural repair after traumatic spinal cord injury depends upon the restoration of neural networks via axonal sprouting and regeneration. Our previous genome wide loss-of-function screen identified Rab GTPases as playing a prominent role in preventing successful axon sprouting and regeneration. Here, we searched for Rab27b interactors and identified Rabphilin3A as an effector within regenerating axons. Growth cone Rabphilin3a colocalized and physically associated with integrins at puncta in the proximal body of the axonal growth cone. In regenerating axons, loss of Rabphilin3a increased integrin enrichment in the growth cone periphery, enhanced focal adhesion kinase activation, increased F-actin-rich filopodial density and stimulated axon extension. Compared to wild type, mice lacking Rabphilin3a exhibited greater regeneration of retinal ganglion cell axons after optic nerve crush as well as greater corticospinal axon regeneration after complete thoracic spinal cord crush injury. After moderate spinal cord contusion injury, there was greater corticospinal regrowth in the absence of Rph3a. Thus, an endogenous Rab27b - Raphilin3a pathway limits integrin action in the growth cone, and deletion of this monomeric GTPase pathway permits reparative axon growth in the injured adult mammalian central nervous system.
Collapse
Affiliation(s)
- Yuichi Sekine
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Ramakrishnan Kannan
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Xingxing Wang
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Stephen M Strittmatter
- Cellular Neuroscience, Neurodegeneration, Repair, Departments of Neurology and of Neuroscience, Yale University School of Medicine, New Haven, CT 06536, USA.
| |
Collapse
|
10
|
Ham H, Medlyn M, Billadeau DD. Locked and Loaded: Mechanisms Regulating Natural Killer Cell Lytic Granule Biogenesis and Release. Front Immunol 2022; 13:871106. [PMID: 35558071 PMCID: PMC9088006 DOI: 10.3389/fimmu.2022.871106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/22/2022] Open
Abstract
NK cell-mediated cytotoxicity is a critical element of our immune system required for protection from microbial infections and cancer. NK cells bind to and eliminate infected or cancerous cells via direct secretion of cytotoxic molecules toward the bound target cells. In this review, we summarize the current understanding of the molecular regulations of NK cell cytotoxicity, focusing on lytic granule development and degranulation processes. NK cells synthesize apoptosis-inducing proteins and package them into specialized organelles known as lytic granules (LGs). Upon activation of NK cells, LGs converge with the microtubule organizing center through dynein-dependent movement along microtubules, ultimately polarizing to the cytotoxic synapse where they subsequently fuse with the NK plasma membrane. From LGs biogenesis to degranulation, NK cells utilize several strategies to protect themselves from their own cytotoxic molecules. Additionally, molecular pathways that enable NK cells to perform serial killing are beginning to be elucidated. These advances in the understanding of the molecular pathways behind NK cell cytotoxicity will be important to not only improve current NK cell-based anti-cancer therapies but also to support the discovery of additional therapeutic opportunities.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States
| | - Michael Medlyn
- Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Billadeau
- Division of Oncology Research, Mayo Clinic, Rochester, MN, United States.,Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Ma WJ, Chen Y, Peng JH, Tang C, Zhang L, Liu M, Hu S, Xu H, Tan H, Gu Y, Pan ZZ, Chen G, Zhou ZG, Zhang RX. Stage IV colon cancer patients without DENND2D expression benefit more from neoadjuvant chemotherapy. Cell Death Dis 2022; 13:439. [PMID: 35523764 PMCID: PMC9076603 DOI: 10.1038/s41419-022-04885-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
According to the EPOC study, chemotherapy could improve 5-year disease-free survival of stage IV colon cancer patients by 8.1%. However, more molecular biomarkers are required to identify patients who need neoadjuvant chemotherapy. DENND2D expression was evaluated by immunohistochemistry in 181 stage IV colon cancer patients. The prognosis was better for patients with DENND2D expression than patients without DENND2D expression (5-year overall survival [OS]: 42% vs. 12%, p = 0.038; 5-year disease-free survival: 20% vs. 10%, p = 0.001). Subgroup analysis of the DENND2D-negative group showed that patients treated with neoadjuvant chemotherapy achieved longer OS than patients without neoadjuvant chemotherapy (RR = 0.179; 95% CI = 0.054-0.598; p = 0.003). DENND2D suppressed CRC proliferation in vitro and in vivo. Downregulation of DENND2D also promoted metastasis to distant organs in vivo. Mechanistically, DENND2D suppressed the MAPK pathway in CRC. Colon cancer patients who were DENND2D negative always showed a worse prognosis and were more likely to benefit from neoadjuvant chemotherapy. DENND2D may be a new prognostic factor and a predictor of the need for neoadjuvant chemotherapy in stage IV colon cancer.
Collapse
Affiliation(s)
- Wen-juan Ma
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Intensive Care Unit Department, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Yukun Chen
- grid.12981.330000 0001 2360 039XZhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan Rd. 2, Guangzhou, 510080 Guangdong Province People’s Republic of China
| | - Jian-hong Peng
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Chaoming Tang
- grid.410737.60000 0000 8653 1072The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, QingYuan, Guangdong Province People’s Republic of China
| | - Ling Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Min Liu
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Ultrasound, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Shanshan Hu
- grid.430387.b0000 0004 1936 8796Department of Statistics, Rutgers University, New Brunswick, NJ 08854 USA
| | - Haineng Xu
- grid.25879.310000 0004 1936 8972Ovarian Cancer Research Center, Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Hua Tan
- grid.267308.80000 0000 9206 2401School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030 USA
| | - Yangkui Gu
- grid.488530.20000 0004 1803 6191Intervention Department, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Zhi-zhong Pan
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Gong Chen
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| | - Zhong-guo Zhou
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong Province People’s Republic of China
| | - Rong-xin Zhang
- grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060 Guangdong Province People’s Republic of China ,grid.488530.20000 0004 1803 6191Department of Colorectal Surgery, Sun Yat-Sen University Cancer Centre, Guangzhou, 510060 Guangdong Province People’s Republic of China
| |
Collapse
|
12
|
Mosallaei M, Ehtesham N, Beheshtian M, Khoshbakht S, Davarnia B, Kahrizi K, Najmabadi H. Phenotype and genotype spectrum of variants in guanine nucleotide exchange factor genes in a broad cohort of Iranian patients. Mol Genet Genomic Med 2022; 10:e1894. [PMID: 35174982 PMCID: PMC9000939 DOI: 10.1002/mgg3.1894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 11/21/2022] Open
Abstract
Background Guanine nucleotide exchange factors (GEFs) play pivotal roles in neuronal cell functions by exchanging GDP to GTP nucleotide and activation of GTPases. We aimed to determine the genotype and phenotype spectrum of GEF mutations by collecting data from a large Iranian cohort with intellectual disability (ID) and/or developmental delay (DD). Methods We collected data from nine families with 20 patients extracted from Iranian cohort of 640 families with ID and/or DD. Next‐generation sequencing (NGS) was used to identify the causing variants in recruited families. We also compared our clinical and molecular findings with previously reported patients carrying mutations in these GEF genes in the literature published until mid‐2021. Results We identified disease‐causing variants in eight GEF genes including ALS2, IQSEC2, MADD, RAB3GAP1, RAB3GAP2, TRIO, ITSN1, and DENND2A. The major clinical manifestations in 203 previously reported cases along with our 20 patients with disease causing variants in eight GEF genes were as follow; speech disorder (85.2%), ID (81.6%), DD (81.1%), inability to walk (71.3%), facial dysmorphisms features (52.4%), abnormalities in skull morphology (55.6%), hypotonia and muscle weakness (47%), and brain MRI abnormalities (43.4%). Conclusion Our study provides new insights into the genotype and phenotype spectrum of mutations in GEF genes.
Collapse
Affiliation(s)
- Meysam Mosallaei
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Naeim Ehtesham
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Shahrouz Khoshbakht
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behzad Davarnia
- Department of Genetic and Pathology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad - Najmabadi Pathology & Genetics Centre, Tehran, Iran
| |
Collapse
|
13
|
GDP/GTP exchange factor MADD drives activation and recruitment of secretory Rab GTPases to Weibel-Palade bodies. Blood Adv 2021; 5:5116-5127. [PMID: 34551092 PMCID: PMC9153003 DOI: 10.1182/bloodadvances.2021004827] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 02/02/2023] Open
Abstract
von Willebrand factor (VWF) is an essential hemostatic protein that is synthesized and secreted by endothelial cells and stored in Weibel-Palade bodies (WPBs). The secretory Rab GTPases Rab27A, Rab3B, and Rab3D have been linked with WPB trafficking and secretion. How these Rabs are activated and recruited to WPBs remains elusive. In this study, we identified MAP kinase-activating death domain (MADD) as the guanine nucleotide exchange factor for Rab27A and both Rab3 isoforms in primary human endothelial cells. Rab activity assays revealed a reduction in Rab27A, Rab3B, and Rab3D activation upon MADD silencing. Rab activation, but not binding, was dependent on the differentially expressed in normal and neoplastic cells (DENN) domain of MADD, indicating the potential existence of 2 Rab interaction modules. Furthermore, immunofluorescent analysis showed that Rab27A, Rab3B, and Rab3D recruitment to WPBs was dramatically decreased upon MADD knockdown, revealing that MADD drives Rab membrane targeting. Artificial mistargeting of MADD using a TOMM70 tag abolished Rab27A localization to WPB membranes in a DENN domain-dependent manner, indicating that normal MADD localization in the cytosol is crucial. Activation of Rab3B and Rab3D was reduced upon Rab27A silencing, suggesting that activation of these Rabs is enhanced through previous activation of Rab27A by MADD. MADD silencing did not affect WPB morphology, but it did reduce VWF intracellular content. Furthermore, MADD-depleted cells exhibited decreased histamine-evoked VWF release, similar to Rab27A-depleted cells. In conclusion, MADD acts as a master regulator of VWF secretion by coordinating the activation and membrane targeting of secretory Rabs to WPBs.
Collapse
|
14
|
Zavala-Barrera C, Del-Río-Robles JE, García-Jiménez I, Egusquiza-Alvarez CA, Hernández-Maldonado JP, Vázquez-Prado J, Reyes-Cruz G. The calcium sensing receptor (CaSR) promotes Rab27B expression and activity to control secretion in breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119026. [PMID: 33845096 DOI: 10.1016/j.bbamcr.2021.119026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Chemotactic and angiogenic factors secreted within the tumor microenvironment eventually facilitate the metastatic dissemination of cancer cells. Calcium-sensing receptor (CaSR) activates secretory pathways in breast cancer cells via a mechanism driven by vesicular trafficking of this receptor. However, it remains to be elucidated how endosomal proteins in secretory vesicles are controlled by CaSR. In the present study, we demonstrate that CaSR promotes expression of Rab27B and activates this secretory small GTPase via PI3K, PKA, mTOR and MADD, a guanine nucleotide exchange factor, also known as DENN/Rab3GEP. Active Rab27B leads secretion of various cytokines and chemokines, including IL-6, IL-1β, IL-8, IP-10 and RANTES. Expression of Rab27B is stimulated by CaSR in MDA-MB-231 and MCF-7 breast epithelial cancer cells, but not in non-cancerous MCF-10A cells. This regulatory mechanism also occurs in HeLa and PC3 cells. Our findings provide insightful information regarding how CaSR activates a Rab27B-dependent mechanism to control secretion of factors known to intervene in paracrine communication circuits within the tumor microenvironment.
Collapse
Affiliation(s)
- Cesar Zavala-Barrera
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Jorge Eduardo Del-Río-Robles
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Irving García-Jiménez
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | | | | | - José Vázquez-Prado
- Departments of Pharmacology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico
| | - Guadalupe Reyes-Cruz
- Departments of Cell Biology, Centro de Investigación y Estudios Avanzados del IPN (Cinvestav-IPN), Mexico City, Mexico.
| |
Collapse
|
15
|
Schneeberger PE, Kortüm F, Korenke GC, Alawi M, Santer R, Woidy M, Buhas D, Fox S, Juusola J, Alfadhel M, Webb BD, Coci EG, Abou Jamra R, Siekmeyer M, Biskup S, Heller C, Maier EM, Javaher-Haghighi P, Bedeschi MF, Ajmone PF, Iascone M, Peeters H, Ballon K, Jaeken J, Rodríguez Alonso A, Palomares-Bralo M, Santos-Simarro F, Meuwissen MEC, Beysen D, Kooy RF, Houlden H, Murphy D, Doosti M, Karimiani EG, Mojarrad M, Maroofian R, Noskova L, Kmoch S, Honzik T, Cope H, Sanchez-Valle A, Gelb BD, Kurth I, Hempel M, Kutsche K. Biallelic MADD variants cause a phenotypic spectrum ranging from developmental delay to a multisystem disorder. Brain 2020; 143:2437-2453. [PMID: 32761064 PMCID: PMC7447524 DOI: 10.1093/brain/awaa204] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
In pleiotropic diseases, multiple organ systems are affected causing a variety of clinical manifestations. Here, we report a pleiotropic disorder with a unique constellation of neurological, endocrine, exocrine, and haematological findings that is caused by biallelic MADD variants. MADD, the mitogen-activated protein kinase (MAPK) activating death domain protein, regulates various cellular functions, such as vesicle trafficking, activity of the Rab3 and Rab27 small GTPases, tumour necrosis factor-α (TNF-α)-induced signalling and prevention of cell death. Through national collaboration and GeneMatcher, we collected 23 patients with 21 different pathogenic MADD variants identified by next-generation sequencing. We clinically evaluated the series of patients and categorized the phenotypes in two groups. Group 1 consists of 14 patients with severe developmental delay, endo- and exocrine dysfunction, impairment of the sensory and autonomic nervous system, and haematological anomalies. The clinical course during the first years of life can be potentially fatal. The nine patients in Group 2 have a predominant neurological phenotype comprising mild-to-severe developmental delay, hypotonia, speech impairment, and seizures. Analysis of mRNA revealed multiple aberrant MADD transcripts in two patient-derived fibroblast cell lines. Relative quantification of MADD mRNA and protein in fibroblasts of five affected individuals showed a drastic reduction or loss of MADD. We conducted functional tests to determine the impact of the variants on different pathways. Treatment of patient-derived fibroblasts with TNF-α resulted in reduced phosphorylation of the extracellular signal-regulated kinases 1 and 2, enhanced activation of the pro-apoptotic enzymes caspase-3 and -7 and increased apoptosis compared to control cells. We analysed internalization of epidermal growth factor in patient cells and identified a defect in endocytosis of epidermal growth factor. We conclude that MADD deficiency underlies multiple cellular defects that can be attributed to alterations of TNF-α-dependent signalling pathways and defects in vesicular trafficking. Our data highlight the multifaceted role of MADD as a signalling molecule in different organs and reveal its physiological role in regulating the function of the sensory and autonomic nervous system and endo- and exocrine glands.
Collapse
Affiliation(s)
- Pauline E Schneeberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Kortüm
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg Christoph Korenke
- Klinik für Neuropädiatrie und angeborene Stoffwechselerkrankungen, Klinikum Oldenburg, Oldenburg, Germany
| | - Malik Alawi
- Bioinformatics Core Unit, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mathias Woidy
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniela Buhas
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | - Stephanie Fox
- Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, Canada
- Human Genetics Department, McGill University, Montreal, Canada
| | | | - Majid Alfadhel
- Division of Genetics, Department of Pediatrics, King Abdullah specialized Children's Hospital, King Abdulaziz Medical City, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard-Health Affairs (MNGHA), Riyadh, Saudi Arabia
| | - Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Emanuele G Coci
- Department for Neuropediatrics, University Children's Hospital, Ruhr University Bochum, Bochum, Germany
- Department of Pediatrics, Prignitz Hospital, Brandenburg Medical School, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, Leipzig, Germany
| | - Manuela Siekmeyer
- Universitätsklinikum Leipzig - AöR, University of Leipzig, Hospital for Children and Adolescents, Leipzig, Germany
| | - Saskia Biskup
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Corina Heller
- CeGaT GmbH and Praxis für Humangenetik Tübingen, Tübingen, Germany
| | - Esther M Maier
- Dr. von Hauner Children's Hospital, University of Munich, Munich, Germany
| | | | - Maria F Bedeschi
- Medical Genetic Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paola F Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Iascone
- Laboratorio di Genetica Medica, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Hilde Peeters
- Center for Human Genetics, KU Leuven, Leuven, Belgium
| | - Katleen Ballon
- Centre for Developmental Disabilities, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Jaak Jaeken
- Center for Metabolic Diseases, KU Leuven, Leuven, Belgium
| | - Aroa Rodríguez Alonso
- Unidad de Patología Compleja, Servicio de Pediatría, Hospital Universitario La Paz, Madrid, Spain
| | - María Palomares-Bralo
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | - Fernando Santos-Simarro
- Instituto de Genética Médica y Molecular (INGEMM), Hospital Universitario La Paz, IdiPAZ, CIBERER, ISCIII, Madrid, Spain
| | | | - Diane Beysen
- Department of Pediatric Neurology, University Hospital Antwerp, Antwerp, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - David Murphy
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | | | - Ehsan G Karimiani
- Next Generation Genetic Polyclinic, Mashhad, Iran
- Genetics Research Centre, Molecular and Clinical Sciences Institute, St. George's, University, London, UK
| | - Majid Mojarrad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Genetic Center of Khorasan Razavi, Mashhad, Iran
| | - Reza Maroofian
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Lenka Noskova
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Tomas Honzik
- Department of Pediatrics and Adolescent Medicine, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Heidi Cope
- Division of Medical Genetics, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, USA
| | - Amarilis Sanchez-Valle
- Division of Genetics and Metabolism, College of Medicine, University of South Florida, Tampa, Florida, USA
| | - Bruce D Gelb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, USA
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ingo Kurth
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Maja Hempel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Kutsche
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Sanzà P, Evans RD, Briggs DA, Cantero M, Montoliu L, Patel S, Sviderskaya EV, Itzen A, Figueiredo AC, Seabra MC, Hume AN. Nucleotide exchange factor Rab3GEP requires DENN and non-DENN elements for activation and targeting of Rab27a. J Cell Sci 2019; 132:jcs.212035. [PMID: 30898842 PMCID: PMC6526710 DOI: 10.1242/jcs.212035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 03/11/2019] [Indexed: 02/04/2023] Open
Abstract
Rab GTPases are compartment-specific molecular switches that regulate intracellular vesicular transport in eukaryotes. GDP/GTP exchange factors (GEFs) control Rab activation, and current models propose that localised and regulated GEF activity is important in targeting Rabs to specific membranes. Here, we investigated the mechanism of GEF function using the Rab27a GEF, Rab3GEP (also known as MADD), in melanocytes as a model. We show that Rab3GEP-deficient melanocytes (melan-R3GKO) manifest partial disruption of melanosome dispersion, a read-out of Rab27a activation and targeting. Using rescue of melanosome dispersion in melan-R3GKO cells and effector pull-down approaches we show that the DENN domain of Rab3GEP (conserved among RabGEFs) is necessary, but insufficient, for its cellular function and GEF activity. Finally, using a mitochondrial re-targeting strategy, we show that Rab3GEP can target Rab27a to specific membranes in a GEF-dependent manner. We conclude that Rab3GEP facilitates the activation and targeting of Rab27a to specific membranes, but that it differs from other DENN-containing RabGEFs in requiring DENN and non-DENN elements for both of these activities and by lacking compartment-specific localisation.
Collapse
Affiliation(s)
- Paolo Sanzà
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Richard D Evans
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Deborah A Briggs
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marta Cantero
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid 28049, Spain.,CIBERER-ISCIII, Madrid 28029, Spain
| | - Lluis Montoliu
- Centro Nacional de Biotecnologia (CNB-CSIC), Madrid 28049, Spain.,CIBERER-ISCIII, Madrid 28029, Spain
| | - Shyamal Patel
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Elena V Sviderskaya
- Cell Biology and Genetics Research Centre, Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK
| | - Aymelt Itzen
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Technische Universität München, Garching 85748, Germany
| | - Ana C Figueiredo
- Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal.,i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
| | - Miguel C Seabra
- CEDOC Faculdade de Ciencias Medicas, Universidade Nova de Lisboa, Lisbon 1169-056, Portugal
| | - Alistair N Hume
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
17
|
Quevedo MF, Bustos MA, Masone D, Roggero CM, Bustos DM, Tomes CN. Grab recruitment by Rab27A-Rabphilin3a triggers Rab3A activation in human sperm exocytosis. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2019; 1866:612-622. [PMID: 30599141 DOI: 10.1016/j.bbamcr.2018.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 11/30/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
Sperm must undergo the regulated exocytosis of its dense core granule (the acrosome reaction, AR) to fertilize the egg. We have previously described that Rabs3 and 27 are organized in a RabGEF cascade within the signaling pathway elicited by exocytosis stimuli in human sperm. Here, we report the identity and the role of two molecules that link these secretory Rabs in the RabGEF cascade: Rabphilin3a and GRAB. Like Rab3 and Rab27, GRAB and Rabphilin3a are present, localize to the acrosomal region and are required for calcium-triggered exocytosis in human sperm. Sequestration of either protein with specific antibodies introduced into streptolysin O-permeabilized sperm impairs the activation of Rab3 in the acrosomal region elicited by calcium, but not that of Rab27. Biochemical and functional assays indicate that Rabphilin3a behaves as a Rab27 effector during the AR and that GRAB exhibits GEF activity toward Rab3A. Recombinant, active Rab27A pulls down Rabphilin3a and GRAB from human sperm extracts. Conversely, immobilized Rabphilin3a recruits Rab27 and GRAB; the latter promotes Rab3A activation. The enzymatic activity of GRAB toward Rab3A was also suggested by in silico and in vitro assays with purified proteins. In summary, we describe here a signaling module where Rab27A-GTP interacts with Rabphilin3a, which in turn recruits a guanine nucleotide-exchange activity toward Rab3A. This is the first description of the interaction of Rabphilin3a with a GEF. Because the machinery that drives exocytosis is highly conserved, it is tempting to hypothesize that the RabGEF cascade unveiled here might be part of the molecular mechanisms that drive exocytosis in other secretory systems.
Collapse
Affiliation(s)
- María Florencia Quevedo
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Matías Alberto Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina
| | - Diego Masone
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ingeniería, Universidad Nacional de Cuyo, Argentina
| | | | - Diego Martín Bustos
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina
| | - Claudia Nora Tomes
- Instituto de Histologia y Embriologia de Mendoza (IHEM) Dr. Mario H. Burgos-CONICET, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina; Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
18
|
Suzuki A, Iwata J. Molecular Regulatory Mechanism of Exocytosis in the Salivary Glands. Int J Mol Sci 2018; 19:E3208. [PMID: 30336591 PMCID: PMC6214078 DOI: 10.3390/ijms19103208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/12/2022] Open
Abstract
Every day, salivary glands produce about 0.5 to 1.5 L of saliva, which contains salivary proteins that are essential for oral health. The contents of saliva, 0.3% proteins (1.5 to 4.5 g) in fluid, help prevent oral infections, provide lubrication, aid digestion, and maintain oral health. Acinar cells in the lobular salivary glands secrete prepackaged secretory granules that contain salivary components such as amylase, mucins, and immunoglobulins. Despite the important physiological functions of salivary proteins, we know very little about the regulatory mechanisms of their secretion via exocytosis, which is a process essential for the secretion of functional proteins, not only in salivary glands, but also in other secretory organs, including lacrimal and mammary glands, the pancreas, and prostate. In this review, we discuss recent findings that elucidate exocytosis by exocrine glands, especially focusing on the salivary glands, in physiological and pathological conditions.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Program of Biochemistry and Cell Biology, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Ohshima H. Oral biosciences: The annual review 2017. J Oral Biosci 2018. [DOI: 10.1016/j.job.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Poirier K, Viot G, Lombardi L, Jauny C, Billuart P, Bienvenu T. Loss of Function of KCNC1 is associated with intellectual disability without seizures. Eur J Hum Genet 2017; 25:560-564. [PMID: 28145425 DOI: 10.1038/ejhg.2017.3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 12/09/2016] [Accepted: 12/24/2016] [Indexed: 11/10/2022] Open
Abstract
p.(Arg320His) mutation in the KCNC1 gene in human 11p15.1 has recently been identified in patients with progressive myoclonus epilepsies, a group of rare inherited disorders manifesting with action myoclonus, myoclonic epilepsy, and ataxia. This KCNC1 variant causes a dominant-negative effect. Here we describe three patients from the same family with intellectual disability and dysmorphic features. The three affected individuals carry a c.1015C>T (p.(Arg339*)) nonsense variant in KCNC1 gene. As previously observed in the mutant mouse carrying a disrupted KCNC1 gene, these findings reveal that individuals with a KCNC1 loss-of-function variant can present intellectual disability without seizure and epilepsy.
Collapse
Affiliation(s)
- Karine Poirier
- Inserm, U1016, Institut Cochin, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Géraldine Viot
- Unité de Génétique Clinique, Maternité Port-Royal, HUPC, Hôpital Cochin, Paris, France
| | - Laura Lombardi
- Inserm, U1016, Institut Cochin, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Clémence Jauny
- Unité de Génétique Clinique, Maternité Port-Royal, HUPC, Hôpital Cochin, Paris, France
| | - Pierre Billuart
- Inserm, U1016, Institut Cochin, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Thierry Bienvenu
- Inserm, U1016, Institut Cochin, Paris, France.,Cnrs, UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Assistance Publique-Hôpitaux de Paris, Groupe Universitaire Paris Centre, Site Cochin, Laboratoire de Biochimie et Génétique Moléculaire, Paris, France
| |
Collapse
|
21
|
The small GTPase, Rab27, and its effectors and regulators participate in granule exocytosis by parotid acinar cells. J Oral Biosci 2017. [DOI: 10.1016/j.job.2016.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Ishida M, E Oguchi M, Fukuda M. Multiple Types of Guanine Nucleotide Exchange Factors (GEFs) for Rab Small GTPases. Cell Struct Funct 2016; 41:61-79. [PMID: 27246931 DOI: 10.1247/csf.16008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab small GTPases are highly conserved master regulators of membrane traffic in all eukaryotes. The same as the activation and inactivation of other small GTPases, the activation and inactivation of Rabs are tightly controlled by specific GEFs (guanine nucleotide exchange factors) and GAPs (GTPase-activating proteins), respectively. Although almost all Rab-GAPs reported thus far have a TBC (Tre-2/Bub2/Cdc16)/Rab-GAP domain in common, recent accumulating evidence has indicated the existence of a number of structurally unrelated types of Rab-GEFs, including DENN proteins, VPS9 proteins, Sec2 proteins, TRAPP complexes, heterodimer GEFs (Mon1-Ccz1, HPS1-HPS4 (BLOC-3 complex), Ric1-Rgp1 and Rab3GAP1/2), and other GEFs (e.g., REI-1 and RPGR). In this review article we provide an up-to-date overview of the structures and functions of all putative Rab-GEFs in mammals, with a special focus on their substrate Rabs, interacting proteins, associations with genetic diseases, and intracellular localizations.
Collapse
Affiliation(s)
- Morié Ishida
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University
| | | | | |
Collapse
|
23
|
Imai A, Tsujimura M, Yoshie S, Fukuda M. The small GTPase Rab33A participates in regulation of amylase release from parotid acinar cells. Biochem Biophys Res Commun 2015; 461:469-74. [PMID: 25871792 DOI: 10.1016/j.bbrc.2015.04.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 04/03/2015] [Indexed: 01/20/2023]
Abstract
Amylase is released from exocrine parotid acinar cells via typical exocytosis. Exocytosis of amylase-containing granules occurs through several steps, including formation, maturation, and transport of granules. These steps are thought to be regulated by members of the small GTPase Rab family. We previously demonstrated that Rab27 and its effectors mediate amylase release from parotid acinar cells, but the functional involvement of other Rab proteins in exocrine granule exocytosis remains largely unknown. Here, we studied isoproterenol (IPR)-induced amylase release from parotid acinar cells to investigate the possible involvement of Rab33A, which was recently suggested to regulate exocytosis in hippocampal neurons and PC12 cells. Rab33A was endogenously expressed in parotid acinar cells and present in secretory granules and the Golgi body. Functional ablation of Rab33A with anti-Rab33A antibody or a dominant-negative Rab33A-T50N mutant significantly reduced IPR-induced amylase release. Our results indicated that Rab33A is a novel component of IPR-stimulated amylase secretion from parotid acinar cells.
Collapse
Affiliation(s)
- Akane Imai
- Department of Dental Hygiene, College at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan; Department of Biochemistry, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan.
| | - Maiko Tsujimura
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan; Advanced Research Center, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| | - Sumio Yoshie
- Department of Histology, School of Life Dentistry at Niigata, The Nippon Dental University, 1-8 Hamaura-cho, Chuo-ku, Niigata 951-8580, Japan
| | - Mitsunori Fukuda
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
24
|
Kanda M, Shimizu D, Nomoto S, Takami H, Hibino S, Oya H, Hashimoto R, Suenaga M, Inokawa Y, Kobayashi D, Tanaka C, Yamada S, Fujii T, Nakayama G, Sugimoto H, Koike M, Fujiwara M, Kodera Y. Prognostic impact of expression and methylation status of DENN/MADD domain-containing protein 2D in gastric cancer. Gastric Cancer 2015; 18:288-96. [PMID: 24695972 DOI: 10.1007/s10120-014-0372-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/12/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND Patients with advanced gastric cancer (GC) have an adverse prognosis even after curative resection. Development of novel diagnostic and therapeutic approaches for GC is urgently required. METHODS The expression and methylation status of DENN/MADD domain-containing protein 2D (DENND2D), a member of the membrane trafficking proteins, were evaluated in 12 GC cell lines and 112 pairs of surgical specimens. Subgroup analysis based on tumor differentiation, location, and morphology was also performed. Expression and distribution of DENND2D protein were determined by immunohistochemistry. RESULTS The majority of GC cell lines (75%) and tissues (79%) showed reduced expression of DENND2D mRNA compared with noncancerous gastric tissues. GC tissues showed a significantly lower mean expression level of mRNA and a higher frequency of promoter hypermethylation of DENND2D than corresponding noncancerous tissues. No significant differences in DENND2D mRNA expression and methylation status were found between GC subtypes categorized by tumor differentiation, location, and morphology. The expression patterns of DENND2D protein were confirmed to be consistent with those of DENND2D mRNA. Downregulation of DENND2D mRNA in GC tissues was significantly associated with factors related to more advanced GC and subsequent adverse prognosis. Among 72 patients who underwent R0 resection, downregulation of DENND2D mRNA in GC tissues was an independent prognostic factor and associated with early recurrence. CONCLUSIONS Our results suggested that DENND2D is a putative tumor suppressor gene regulated by promoter hypermethylation in GC. Downregulation of DENND2D can serve as a novel tumor biomarker to predict progression and early recurrence of all types of GC.
Collapse
Affiliation(s)
- Mitsuro Kanda
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|