1
|
Villwock SS, Li L, Jannink JL. Carotenoid-carbohydrate crosstalk: evidence for genetic and physiological interactions in storage tissues across crop species. THE NEW PHYTOLOGIST 2024; 244:1709-1722. [PMID: 39400352 DOI: 10.1111/nph.20196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/28/2024] [Indexed: 10/15/2024]
Abstract
Carotenoids play essential roles in photosynthesis, photoprotection, and human health. Efforts to increase carotenoid content in several staple crops have been successful through both conventional selection and genetic engineering methods. Interestingly, in some cases, altering carotenoid content has had unexpected effects on other aspects of plant metabolism, impacting traits like sugar content, dry matter percentage, fatty acid content, stress tolerance, and phytohormone concentrations. Studies across several diverse crop species have identified negative correlations between carotenoid and starch contents, as well as positive correlations between carotenoids and soluble sugars. Collectively, these reports suggest a metabolic interaction between carotenoids and carbohydrates. We synthesize evidence pointing to four hypothesized mechanisms: (1) direct competition for precursors; (2) physical interactions in plastids; (3) influences of sugar or apocarotenoid signaling networks; and (4) nonmechanistic population or statistical sources of correlations. Though the carotenoid biosynthesis pathway is well understood, the regulation and interactions of carotenoids, especially in nonphotosynthetic tissues, remain unclear. This topic represents an underexplored interplay between primary and secondary metabolism where further research is needed.
Collapse
Affiliation(s)
- Seren S Villwock
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Li Li
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Jean-Luc Jannink
- School of Integrative Plant Science, Section of Plant Breeding and Genetics, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
- US Department of Agriculture-Agricultural Research Service, Plant, Soil and Nutrition Laboratory, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| |
Collapse
|
2
|
Gould SB, Magiera J, García García C, Raval PK. Reliability of plastid and mitochondrial localisation prediction declines rapidly with the evolutionary distance to the training set increasing. PLoS Comput Biol 2024; 20:e1012575. [PMID: 39527633 PMCID: PMC11581415 DOI: 10.1371/journal.pcbi.1012575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 11/21/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Mitochondria and plastids import thousands of proteins. Their experimental localisation remains a frequent task, but can be resource-intensive and sometimes impossible. Hence, hundreds of studies make use of algorithms that predict a localisation based on a protein's sequence. Their reliability across evolutionary diverse species is unknown. Here, we evaluate the performance of common algorithms (TargetP, Localizer and WoLFPSORT) for four photosynthetic eukaryotes (Arabidopsis thaliana, Zea mays, Physcomitrium patens, and Chlamydomonas reinhardtii) for which experimental plastid and mitochondrial proteome data is available, and 171 eukaryotes using orthology inferences. The match between predictions and experimental data ranges from 75% to as low as 2%. Results worsen as the evolutionary distance between training and query species increases, especially for plant mitochondria for which performance borders on random sampling. Specificity, sensitivity and precision analyses highlight cross-organelle errors and uncover the evolutionary divergence of organelles as the main driver of current performance issues. The results encourage to train the next generation of neural networks on an evolutionary more diverse set of organelle proteins for optimizing performance and reliability.
Collapse
Affiliation(s)
- Sven B. Gould
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Jonas Magiera
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Carolina García García
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| | - Parth K. Raval
- Institute for Molecular Evolution, Heinrich–Heine–University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
3
|
Wang J, He Y, Wang G, Li R, Niu Y, Liu K, Zhang J, Tang Z, Lyu J, Xie J, Wu Y, Yu J. Exogenous 5-aminolevulinic acid promotes carotenoid accumulation in tomato fruits by regulating ethylene biosynthesis and signaling. PHYSIOLOGIA PLANTARUM 2024; 176:e14648. [PMID: 39639852 DOI: 10.1111/ppl.14648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
5-Aminolevulinic acid (ALA) can not only improve fruit yield and quality, but also increase the lycopene content in tomato fruits. Furthermore, ALA has been shown to promote system-2 ethylene production in tomato fruits. However, the specific interactions between ALA and ethylene during fruit ripening remain unclear. In this study, we treated tomato fruits with ALA, 1-aminocyclopropane-1-carboxylic acid (ACC), aminooxyacetic acid (AOA) + AgNO3, and AOA + AgNO3 + ALA and analyzed ethylene emissions, carotenoid contents, and the relative gene expression levels related to fruit ripening, carotenoid contents, ethylene synthesis, and signal transduction. The ALA treatment significantly enhanced ethylene bursts and carotenoid accumulation, and significantly upregulated the expression of ethylene and carotenoid-related genes, such as SlACS2, SlACS4, SlACO1, SlPSY1, and SlPDS. We also observed that the gene expression levels associated with carotenoid synthesis were downregulated in fruits treated with a combination of ethylene inhibitors (AOA + AgNO3). However, there was a significant upregulation in the gene expression levels associated with carotenoid synthesis and an increase in carotenoid content when fruits were treated with AOA + AgNO3 + ALA. After silencing SlACO1 expression, the total carotenoid content and SlPSY1 expression decreased significantly, while this effect was reversed after exogenous application of ALA. These results indicated that ALA promotes carotenoid accumulation in tomato fruits by promoting ethylene biosynthesis. In conclusion, our results highlighted the role of ALA in promoting carotenoid accumulation and ripening in tomato fruits by regulating ethylene synthesis, thereby providing a novel strategy for improving fruit quality.
Collapse
Affiliation(s)
- Junwen Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yongmei He
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Guangzheng Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ruirui Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yu Niu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Kai Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhongqi Tang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jian Lyu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jianming Xie
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yue Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Zhang M, Chai ZH, Zhang C, Chen L. Unbalanced Expression of Structural Genes in Carotenoid Pathway Contributes to the Flower Color Formation of the Osmanthus Cultivar 'Yanzhi Hong'. Int J Mol Sci 2024; 25:10198. [PMID: 39337681 PMCID: PMC11432492 DOI: 10.3390/ijms251810198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Carotenoids are important natural pigments that are responsible for the fruit and flower colors of many plants. The composition and content of carotenoid can greatly influence the color phenotype of plants. However, the regulatory mechanism underling the divergent behaviors of carotenoid accumulation, especially in flower, remains unclear. In this study, a new cultivar Osmanthus fragrans 'Yanzhi Hong' was used to study the regulation of carotenoid pigmentation in flower. Liquid chromatograph-mass spectrometer (LC-MS) analysis showed that β-carotene, phytoene, lycopene, γ-carotene, and lutein were the top five pigments enriched in the petals of 'Yanzhi Hong'. Through transcriptome analysis, we found that the expression of the structural genes in carotenoid pathway was imbalanced: most of the structural genes responsible for lycopene biosynthesis were highly expressed throughout the flower developmental stages, while those for lycopene metabolism kept at a relatively lower level. The downregulation of LYCE, especially at the late developmental stages, suppressed the conversion from lycopene to α-carotene but promoted the accumulation of β-carotene, which had great effect on the carotenoid composition of 'Yanzhi Hong'. Ethylene response factor (ERF), WRKY, basic helix-loop-helix (bHLH), v-myb avian myeloblastosis viral oncogene homolog (MYB), N-Acetylcysteine (NAC), auxin response factor (ARF), and other transcription factors (TFs) have participated in the flower color regulation of 'Yanzhi Hong', which formed co-expression networks with the structural genes and functioned in multiple links of the carotenoid pathway. The results suggested that the cyclization of lycopene is a key link in determining flower color. The modification of the related TFs will break the expression balance between the upstream and downstream genes and greatly influence the carotenoid profile in flowers, which can be further used for creating colorful plant germplasms.
Collapse
Affiliation(s)
- Min Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Zi-Han Chai
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| | - Lin Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- International Cultivar Registration Center for Osmanthus, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Liu J, Fang X, Yu F, Zhang C, Fan P, Wang N, Shao Q, Gan N, Lv X, Ouyang B, Zhang M, Wu X, Liao N. Genetic mapping and molecular marker development for white flesh color in tomato. FRONTIERS IN PLANT SCIENCE 2024; 15:1459013. [PMID: 39290736 PMCID: PMC11405233 DOI: 10.3389/fpls.2024.1459013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024]
Abstract
Introduction Fruit color significantly influences the quality of horticultural crops, which affects phytochemical diversity and consumer preferences. Despite its importance, the genetic basis of the white-colored fruit in tomatoes remains poorly understood. Methods In this study, we demonstrate that white-fleshed tomato varieties accumulate fewer carotenoids than yellow-fleshed varieties. We developed various segregating populations by hybridizing red, yellow, and white fruit tomato cultivars. Results Genetic analysis revealed that the white fruit color trait is controlled by a single gene that dominates both red and yellow fruits. Bulk segregant RNA sequencing provided a preliminary map of a 3.17 Mb region on chromosome 3 associated with the white color trait. Based on kompetitive allele-specific PCR (KASP) markers, we narrowed the candidate gene region to 819 kb. Within this region, we identified a 4906-bp sequence absence variation near Phytoene Synthase 1 (SlPSY1) specific to white-colored tomatoes. Genotyping of the progeny and natural populations using a single nucleotide polymorphism adjacent to this absence of variation confirmed its key role in white fruit formation. Discussion Collectively, our findings provide insights into white fruit trait formation in tomatoes, enabling tomato breeders to precisely introduce white fruit traits for commercial exploitation.
Collapse
Affiliation(s)
- Jie Liu
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Xiaoxue Fang
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Fangjie Yu
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Chengfeng Zhang
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Pengfei Fan
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Ningdong Wang
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Qiao Shao
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Ning Gan
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Xiaolong Lv
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Bo Ouyang
- Department of Vegetable Science, College of Horticultural and Forest Sciences, Huazhong Agricultural University, Wuhan, China
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xinsheng Wu
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| | - Nanqiao Liao
- Department of Molecular Assistant Breeding, Weimeng Seed Co. Ltd., Ningbo, China
- Key Laboratory of digital seed industry of watermelon, melon & cabbage, Ministry of Agriculture and Rural Areas, Ningbo, China
| |
Collapse
|
6
|
Li X, Zheng M, Gan Q, Long J, Fan H, Wang X, Guan Z. The formation and evolution of flower coloration in Brassica crops. Front Genet 2024; 15:1396875. [PMID: 38881796 PMCID: PMC11177764 DOI: 10.3389/fgene.2024.1396875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
The flower coloration of Brassica crops possesses significant application and economic value, making it a research hotspot in the field of genetics and breeding. In recent years, great progress has been made in the research on color variation and creation of Brassica crops. However, the underlying molecular mechanisms and evolutional processes of flower colors are poorly understood. In this paper, we present a comprehensive overview of the mechanism of flower color formation in plants, emphasizing the molecular basis and regulation mechanism of flavonoids and carotenoids. By summarizing the recent advances on the genetic mechanism of flower color formation and regulation in Brassica crops, it is clearly found that carotenoids and anthocyanins are major pigments for flower color diversity of Brassica crops. Meantime, we also explore the relationship between the emergence of white flowers and the genetic evolution of Brassica chromosomes, and analyze the innovation and multiple utilization of Brassica crops with colorful flowers. This review aims to provide theoretical support for genetic improvements in flower color, enhancing the economic value and aesthetic appeal of Brassica crops.
Collapse
Affiliation(s)
- Xuewei Li
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Mingmin Zheng
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Qingqin Gan
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Jiang Long
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Haiyan Fan
- College of Life Sciences, Xinyang Normal University, Xinyang, China
| | - Xiaoqing Wang
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Jiangxi Research Center for Protection and Development of Traditional Chinese Medicine Resources, Key Laboratory of Germplasm Selection and Breeding of Chinese Medicinal Materials, Nanchang, Jiangxi, China
| | - Zhilin Guan
- Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
7
|
Ye XX, Chen YQ, Wu JS, Zhong HQ, Lin B, Huang ML, Fan RH. Biochemical and Transcriptome Analysis Reveals Pigment Biosynthesis Influenced Chlorina Leaf Formation in Anoectochilus roxburghii (Wall.) Lindl. Biochem Genet 2024; 62:1040-1054. [PMID: 37528284 DOI: 10.1007/s10528-023-10432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Anoectochilus roxburghii (Wall.) Lindl is a perennial herb of the Orchidaceae family; a yellow-green mutant and a yellow mutant were obtained from the wild type, thereby providing good material for the study of leaf color variation. Pigment content analysis revealed that chlorophyll, carotenoids, and anthocyanin were lower in the yellow-green and yellow mutants than in the wild type. Transcriptome analysis of the yellow mutant and wild type revealed that 78,712 unigenes were obtained, and 599 differentially expressed genes (120 upregulated and 479 downregulated) were identified. Using the Kyoto Encyclopedia of Genes and Genomes pathway analysis, candidate genes involved in the anthocyanin biosynthetic pathway (five unigenes) and the chlorophyll metabolic pathway (two unigenes) were identified. Meanwhile, the low expression of the chlorophyll and anthocyanin biosynthetic genes resulted in the absence of chlorophylls and anthocyanins in the yellow mutant. This study provides a basis for similar research in other closely related species.
Collapse
Affiliation(s)
- Xiu-Xian Ye
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Yi-Quan Chen
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Jian-She Wu
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Huai-Qin Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Bing Lin
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China
| | - Min-Ling Huang
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China.
| | - Rong-Hui Fan
- Institute of Crop Sciences, Fujian Academy of Agricultural Science, Fuzhou, Fujian, China.
| |
Collapse
|
8
|
Rossouw GC, Orr R, Bennett D, Bally ISE. The roles of non-structural carbohydrates in fruiting: a review focusing on mango ( Mangifera indica). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP23195. [PMID: 38588720 DOI: 10.1071/fp23195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/17/2024] [Indexed: 04/10/2024]
Abstract
Reproductive development of fruiting trees, including mango (Mangifera indica L.), is limited by non-structural carbohydrates. Competition for sugars increases with cropping, and consequently, vegetative growth and replenishment of starch reserves may reduce with high yields, resulting in interannual production variability. While the effect of crop load on photosynthesis and the distribution of starch within the mango tree has been studied, the contribution of starch and sugars to different phases of reproductive development requires attention. This review focuses on mango and examines the roles of non-structural carbohydrates in fruiting trees to clarify the repercussions of crop load on reproductive development. Starch buffers the plant's carbon availability to regulate supply with demand, while sugars provide a direct resource for carbon translocation. Sugar signalling and interactions with phytohormones play a crucial role in flowering, fruit set, growth, ripening and retention, as well as regulating starch, sugar and secondary metabolites in fruit. The balance between the leaf and fruit biomass affects the availability and contributions of starch and sugars to fruiting. Crop load impacts photosynthesis and interactions between sources and sinks. As a result, the onset and rate of reproductive processes are affected, with repercussions for fruit size, composition, and the inter-annual bearing pattern.
Collapse
Affiliation(s)
- Gerhard C Rossouw
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ryan Orr
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Dale Bennett
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| | - Ian S E Bally
- Department of Agriculture and Fisheries, Mareeba Research Facility, Mareeba 4880, Qld, Australia
| |
Collapse
|
9
|
Liu L, Mao Y, Zheng J, Hu S, Wang T, Shao Z, Li Z, Jian Y, Li Y, Meng F, Li Y, Wang Q. Water saving irrigation mediates bioactive pigments metabolism and storage capacity in tomato fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108477. [PMID: 38442626 DOI: 10.1016/j.plaphy.2024.108477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/11/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
Tomato fruit consumption is influenced by flavor and nutrient quality. In the present study, we investigate the impact of water saving irrigation (WSI) as a pre-harvest management on flavor and nutrient quality of tomato fruit. Our results demonstrate that WSI-treated tomato fruit exhibited improved sensory scores as assessed by a taste panel, accompanied by elevated levels of SlGLK2 expression, sugars, acids, and carotenoid contents compared to non-treated fruit. Notably, WSI treatment significantly enhanced the development of chloroplast and plastoglobulus in chromoplast, which served as carotenoid storage sites and upregulated the expression of carotenoid biosynthetic genes. Furthermore, integrated transcriptome and metabolome analysis revealed heightened expression of sugar and flavonoid metabolism pathways in WSI-treated tomato fruit. Remarkably, the master regulator SlMYB12 displayed a substantially increased expression due to WSI. These findings suggest that WSI is an effective and sustainable approach to enhance the pigments metabolism and storage capacity as well as the organoleptic characteristics and nutritional value of tomato fruit, offering a win-win solution for both water conservation and quality improvement in agro-food production.
Collapse
Affiliation(s)
- Lihong Liu
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Yuanyu Mao
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhiyong Shao
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Zhenyu Li
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Yue Jian
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Yuanyuan Li
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Fanliang Meng
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Yuening Li
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China
| | - Qiaomei Wang
- Department of Horticulture, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
10
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
11
|
Li R, Zeng Q, Zhang X, Jing J, Ge X, Zhao L, Yi B, Tu J, Fu T, Wen J, Shen J. Xanthophyll esterases in association with fibrillins control the stable storage of carotenoids in yellow flowers of rapeseed (Brassica juncea). THE NEW PHYTOLOGIST 2023; 240:285-301. [PMID: 37194444 DOI: 10.1111/nph.18970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Biosynthesis, stabilization, and storage of carotenoids are vital processes in plants that collectively contribute to the vibrant colors observed in flowers and fruits. Despite its importance, the carotenoid storage pathway remains poorly understood and lacks thorough characterization. We identified two homologous genes, BjA02.PC1 and BjB04.PC2, belonging to the esterase/lipase/thioesterase (ELT) family of acyltransferases. We showed that BjPCs in association with fibrillin gene BjFBN1b control the stable storage of carotenoids in yellow flowers of Brassica juncea. Through genetic, high-resolution mass spectrometry and transmission electron microscopy analyses, we demonstrated that both BjA02.PC1 and BjB04.PC2 can promote the accumulation of esterified xanthophylls, facilitating the formation of carotenoid-enriched plastoglobules (PGs) and ultimately producing yellow pigments in flowers. The elimination of BjPCs led to the redirection of metabolic flux from xanthophyll ester biosynthesis to lipid biosynthesis, resulting in white flowers for B. juncea. Moreover, we genetically verified the function of two fibrillin genes, BjA01.FBN1b and BjB05.FBN1b, in mediating PG formation and demonstrated that xanthophyll esters must be deposited in PGs for stable storage. These findings identified a previously unknown carotenoid storage pathway that is regulated by BjPCs and BjFBN1b, while offering unique opportunities for improving the stability, deposition, and bioavailability of carotenoids.
Collapse
Affiliation(s)
- Rihui Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinyu Zeng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangxiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jing Jing
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyu Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
12
|
Nie H, Luo Y, Huang S, Mo Y, Huang Z, Liao Y, Jiang L, Cai W, Song M. Identification of two terpenoids that accumulate in Chinese water chestnut in response to fresh-cut processing. Food Sci Nutr 2023; 11:5166-5173. [PMID: 37701225 PMCID: PMC10494652 DOI: 10.1002/fsn3.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 04/25/2023] [Accepted: 05/25/2023] [Indexed: 09/14/2023] Open
Abstract
As a form of vegetable in China, freshly cut corms of Chinese water chestnuts (Eleocharis dulcis) are well received by consumers. Few studies have investigated the metabolites present in fresh-cut E. dulcis, particularly during the storage stage. Two compounds, triterpenoids and apocarotenoids, were identified in fresh-cut E. dulcis during the late storage period using thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), and nuclear magnetic resonance (NMR) spectroscopy. The content of these two compounds gradually increased in the surface tissue of fresh-cut E. dulcis during storage. Moreover, the transcript levels of 10 genes involved in terpenoid backbone biosynthesis and five genes involved in carotenoid precursor biosynthesis were evaluated via quantitative real-time PCR (qRT-PCR). Expression of the rate-limiting enzyme-coding genes CwDXS and CwHMGS was significantly induced by wounding. CwMYC and CwbHLH18, which belong to bHLH transcription factors (TFs) IIIe and VIa subgroup, were isolated from E. dulcis corm. Phylogenetic analysis showed that CwMYC and CwbHLH18 grouped with other terpenoid-regulated bHLHs, and their transcript levels were strongly induced after fresh-cut processing. These results suggested that the biosynthesis of terpenoids and apocarotenoids in fresh-cut E. dulcis strongly depended on the transcriptional regulation of structural genes involved in the methylerythritol 4-phosphate (MEP) and mevalonate (MVA) pathways. However, the complex secondary metabolism of fresh-cut E. dulcis during late storage requires further investigation.
Collapse
Affiliation(s)
- Hui Nie
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Yanghe Luo
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
- School of Food Science and TechnologyDalian Polytechnic UniversityDalianChina
| | - Shuangquan Huang
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Yuwei Mo
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Zhenli Huang
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Yuemei Liao
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Lirui Jiang
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Wen Cai
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| | - Mubo Song
- Research Institute of Food Science and Engineering TechnologyHezhou UniversityHezhouChina
| |
Collapse
|
13
|
Zhou X, Sun T, Owens L, Yang Y, Fish T, Wrightstone E, Lui A, Yuan H, Chayut N, Burger J, Tadmor Y, Thannhauser T, Guo W, Cheng L, Li L. Carotenoid sequestration protein FIBRILLIN participates in CmOR-regulated β-carotene accumulation in melon. PLANT PHYSIOLOGY 2023; 193:643-660. [PMID: 37233026 DOI: 10.1093/plphys/kiad312] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023]
Abstract
Chromoplasts are plant organelles with a unique ability to sequester and store massive carotenoids. Chromoplasts have been hypothesized to enable high levels of carotenoid accumulation due to enhanced sequestration ability or sequestration substructure formation. However, the regulators that control the substructure component accumulation and substructure formation in chromoplasts remain unknown. In melon (Cucumis melo) fruit, β-carotene accumulation in chromoplasts is governed by ORANGE (OR), a key regulator for carotenoid accumulation in chromoplasts. By using comparative proteomic analysis of a high β-carotene melon variety and its isogenic line low-β mutant that is defective in CmOr with impaired chromoplast formation, we identified carotenoid sequestration protein FIBRILLIN1 (CmFBN1) as differentially expressed. CmFBN1 expresses highly in melon fruit tissue. Overexpression of CmFBN1 in transgenic Arabidopsis (Arabidopsis thaliana) containing ORHis that genetically mimics CmOr significantly enhances carotenoid accumulation, demonstrating its involvement in CmOR-induced carotenoid accumulation. Both in vitro and in vivo evidence showed that CmOR physically interacts with CmFBN1. Such an interaction occurs in plastoglobules and results in promoting CmFBN1 accumulation. CmOR greatly stabilizes CmFBN1, which stimulates plastoglobule proliferation and subsequently carotenoid accumulation in chromoplasts. Our findings show that CmOR directly regulates CmFBN1 protein levels and suggest a fundamental role of CmFBN1 in facilitating plastoglobule proliferation for carotenoid sequestration. This study also reveals an important genetic tool to further enhance OR-induced carotenoid accumulation in chromoplasts in crops.
Collapse
Affiliation(s)
- Xuesong Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Lauren Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Yong Yang
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Emalee Wrightstone
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Andy Lui
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Hui Yuan
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Noam Chayut
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Joseph Burger
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Yaakov Tadmor
- Department of Vegetable Research, ARO, Newe Ya'ar Research Center, Ramat Yishay 30095, Israel
| | - Theodore Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Lailiang Cheng
- Horticulture Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
14
|
Zhu K, Chen H, Mei X, Lu S, Xie H, Liu J, Chai L, Xu Q, Wurtzel ET, Ye J, Deng X. Transcription factor CsMADS3 coordinately regulates chlorophyll and carotenoid pools in Citrus hesperidium. PLANT PHYSIOLOGY 2023; 193:519-536. [PMID: 37224514 DOI: 10.1093/plphys/kiad300] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Citrus, 1 of the largest fruit crops with global economic and nutritional importance, contains fruit known as hesperidium with unique morphological types. Citrus fruit ripening is accompanied by chlorophyll degradation and carotenoid biosynthesis, which are indispensably linked to color formation and the external appearance of citrus fruits. However, the transcriptional coordination of these metabolites during citrus fruit ripening remains unknown. Here, we identified the MADS-box transcription factor CsMADS3 in Citrus hesperidium that coordinates chlorophyll and carotenoid pools during fruit ripening. CsMADS3 is a nucleus-localized transcriptional activator, and its expression is induced during fruit development and coloration. Overexpression of CsMADS3 in citrus calli, tomato (Solanum lycopersicum), and citrus fruits enhanced carotenoid biosynthesis and upregulated carotenogenic genes while accelerating chlorophyll degradation and upregulating chlorophyll degradation genes. Conversely, the interference of CsMADS3 expression in citrus calli and fruits inhibited carotenoid biosynthesis and chlorophyll degradation and downregulated the transcription of related genes. Further assays confirmed that CsMADS3 directly binds and activates the promoters of phytoene synthase 1 (CsPSY1) and chromoplast-specific lycopene β-cyclase (CsLCYb2), 2 key genes in the carotenoid biosynthetic pathway, and STAY-GREEN (CsSGR), a critical chlorophyll degradation gene, which explained the expression alterations of CsPSY1, CsLCYb2, and CsSGR in the above transgenic lines. These findings reveal the transcriptional coordination of chlorophyll and carotenoid pools in the unique hesperidium of Citrus and may contribute to citrus crop improvement.
Collapse
Affiliation(s)
- Kaijie Zhu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hongyan Chen
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xuehan Mei
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suwen Lu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Heping Xie
- The Experimental Station of Loose-skin Mandarins in Yichang, Agricultural Technical Service Center of Yiling District, Yichang, Hubei 443100, China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lijun Chai
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Xu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, NY 10468, USA
- The Graduate Center, The City University of New York, New York, NY 10016-16 4309, USA
| | - Junli Ye
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
15
|
Bhargava N, Ampomah-Dwamena C, Voogd C, Allan AC. Comparative transcriptomic and plastid development analysis sheds light on the differential carotenoid accumulation in kiwifruit flesh. FRONTIERS IN PLANT SCIENCE 2023; 14:1213086. [PMID: 37711308 PMCID: PMC10499360 DOI: 10.3389/fpls.2023.1213086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/13/2023] [Indexed: 09/16/2023]
Abstract
Carotenoids are colorful lipophilic isoprenoids synthesized in all photosynthetic organisms which play roles in plant growth and development and provide numerous health benefits in the human diet (precursor of Vitamin A). The commercially popular kiwifruits are golden yellow-fleshed (Actinidia chinensis) and green fleshed (A. deliciosa) cultivars which have a high carotenoid concentration. Understanding the molecular mechanisms controlling the synthesis and sequestration of carotenoids in Actinidia species is key to increasing nutritional value of this crop via breeding. In this study we analyzed fruit with varying flesh color from three Actinidia species; orange-fleshed A. valvata (OF), yellow-fleshed A. polygama (YF) and green-fleshed A. arguta (GF). Microscopic analysis revealed that carotenoids accumulated in a crystalline form in YF and OF chromoplasts, with the size of crystals being bigger in OF compared to YF, which also contained globular substructures in the chromoplast. Metabolic profiles were investigated using ultra-performance liquid chromatography (UPLC), which showed that β-carotene was the predominant carotenoid in the OF and YF species, while lutein was the dominant carotenoid in the GF species. Global changes in gene expression were studied between OF and GF (both tetraploid) species using RNA-sequencing which showed higher expression levels of upstream carotenoid biosynthesis-related genes such as DXS, PSY, GGPPS, PDS, ZISO, and ZDS in OF species compared to GF. However, low expression of downstream pathway genes was observed in both species. Pathway regulatory genes (OR and OR-L), plastid morphology related genes (FIBRILLIN), chlorophyll degradation genes (SGR, SGR-L, RCCR, and NYC1) were upregulated in OF species compared to GF. This suggests chlorophyll degradation (primarily in the initial ripening stages) is accompanied by increased carotenoid production and localization in orange flesh tissue, a contrast from green flesh tissue. These results suggest a coordinated change in the carotenoid pathway, as well as changes in plastid type, are responsible for an orange phenotype in certain kiwifruit species.
Collapse
Affiliation(s)
- Nitisha Bhargava
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| | - Charlotte Voogd
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
| | - Andrew C. Allan
- The New Zealand Institute for Plant and Food Research Limited (Plant & Food Research) Mt Albert, Auckland Mail Centre, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Guan Z, Li X, Yang J, Zhao J, Wang K, Hu J, Zhang B, Liu K. The mechanism of white flower formation in Brassica rapa is distinct from that in other Brassica species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:133. [PMID: 37204504 DOI: 10.1007/s00122-023-04344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/10/2023] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE A single nucleotide (G) deletion in the third exon of BraA02.PES2-2 (Bra032957) leads to the conversion of flower color from yellow to white in B. rapa, and knockout mutants of its orthologous genes in B. napus showed white or pale yellow flowers. Brassica rapa (2n = 20, AA) is grown worldwide as an important crop for edible oil and vegetables. The bright yellow flower color and long-lasting flowering period give it aesthetic qualities appealing to countryside tourists. However, the mechanism controlling the accumulation of yellow pigments in B. rapa has not yet been completely revealed. In this study, we characterized the mechanism of white flower formation using a white-flowered natural B. rapa mutant W01. Compared to the petals of yellow-flowered P3246, the petals of W01 have significantly reduced content of yellowish carotenoids. Furthermore, the chromoplasts in white petals of W01 are abnormal with irregularly structured plastoglobules. Genetic analysis indicated that the white flower was controlled by a single recessive gene. By combining BSA-seq with fine mapping, we identified the target gene BraA02.PES2-2 (Bra032957) homologous to AtPES2, which has a single nucleotide (G) deletion in the third exon. Seven homologous PES2 genes including BnaA02.PES2-2 (BnaA02g28340D) and BnaC02.PES2-2 (BnaC02g36410D) were identified in B. napus (2n = 38, AACC), an allotetraploid derived from B. rapa and B. oleracea (2n = 18, CC). Knockout mutants of either one or two of BnaA02.PES2-2 and BnaC02.PES2-2 in the yellow-flowered B. napus cv. Westar by the CRISPR/Cas9 system showed pale-yellow or white flowers. The knock-out mutants of BnaA02.PES2-2 and BnaC02.PES2-2 had fewer esterified carotenoids. These results demonstrated that BraA02.PES2-2 in B. rapa, and BnaA02.PES2-2 and BnaC02.PES2-2 in B. napus play important roles in carotenoids esterification in chromoplasts that contributes to the accumulation of carotenoids in flower petals.
Collapse
Affiliation(s)
- Zhilin Guan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuewei Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Jiangxi Provincial Institute of Traditional Chinese Medicine, Nanchang, 330046, China
| | - Jianshun Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junwei Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaiyue Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianlin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
17
|
Wang N, Peng H, Yang C, Guo W, Wang M, Li G, Liu D. Metabolic Engineering of Model Microorganisms for the Production of Xanthophyll. Microorganisms 2023; 11:1252. [PMID: 37317226 PMCID: PMC10223009 DOI: 10.3390/microorganisms11051252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/19/2023] [Accepted: 05/06/2023] [Indexed: 06/16/2023] Open
Abstract
Xanthophyll is an oxidated version of carotenoid. It presents significant value to the pharmaceutical, food, and cosmetic industries due to its specific antioxidant activity and variety of colors. Chemical processing and conventional extraction from natural organisms are still the main sources of xanthophyll. However, the current industrial production model can no longer meet the demand for human health care, reducing petrochemical energy consumption and green sustainable development. With the swift development of genetic metabolic engineering, xanthophyll synthesis by the metabolic engineering of model microorganisms shows great application potential. At present, compared to carotenes such as lycopene and β-carotene, xanthophyll has a relatively low production in engineering microorganisms due to its stronger inherent antioxidation, relatively high polarity, and longer metabolic pathway. This review comprehensively summarized the progress in xanthophyll synthesis by the metabolic engineering of model microorganisms, described strategies to improve xanthophyll production in detail, and proposed the current challenges and future efforts needed to build commercialized xanthophyll-producing microorganisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Dehu Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
18
|
Sierra J, Escobar-Tovar L, Leon P. Plastids: diving into their diversity, their functions, and their role in plant development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2508-2526. [PMID: 36738278 DOI: 10.1093/jxb/erad044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Plastids are a group of essential, heterogenous semi-autonomous organelles characteristic of plants that perform photosynthesis and a diversity of metabolic pathways that impact growth and development. Plastids are remarkably dynamic and can interconvert in response to specific developmental and environmental cues, functioning as a central metabolic hub in plant cells. By far the best studied plastid is the chloroplast, but in recent years the combination of modern techniques and genetic analyses has expanded our current understanding of plastid morphological and functional diversity in both model and non-model plants. These studies have provided evidence of an unexpected diversity of plastid subtypes with specific characteristics. In this review, we describe recent findings that provide insights into the characteristics of these specialized plastids and their functions. We concentrate on the emerging evidence that supports the model that signals derived from particular plastid types play pivotal roles in plant development, environmental, and defense responses. Furthermore, we provide examples of how new technologies are illuminating the functions of these specialized plastids and the overall complexity of their differentiation processes. Finally, we discuss future research directions such as the use of ectopic plastid differentiation as a valuable tool to characterize factors involved in plastid differentiation. Collectively, we highlight important advances in the field that can also impact future agricultural and biotechnological improvement in plants.
Collapse
Affiliation(s)
- Julio Sierra
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Lina Escobar-Tovar
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| | - Patricia Leon
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca 62210, México
| |
Collapse
|
19
|
Wang P, Lu S, Jing R, Hyden B, Li L, Zhao X, Zhang L, Han Y, Zhang X, Xu J, Chen H, Cao H. BCH1 expression pattern contributes to the fruit carotenoid diversity between peach and apricot. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107647. [PMID: 36940521 DOI: 10.1016/j.plaphy.2023.107647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/09/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Peach (Prunus persica L. Batsch) and apricot (Prunus armeniaca L.) are two species of economic importance for fruit production in the genus Prunus. Peach and apricot fruits exhibit significant differences in carotenoid levels and profiles. HPLC-PAD analysis showed that a greater content of β-carotene in mature apricot fruits is primarily responsible for orange color, while peach fruits showed a prominent accumulation of xanthophylls (violaxanthin and cryptoxanthin) with yellow color. There are two β-carotene hydroxylase genes in both peach and apricot genomes. Transcriptional analysis revealed that BCH1 expresses highly in peach but lowly in apricot fruit, showing a correlation with peach and apricot fruit carotenoid profiles. By using a carotenoid engineered bacterial system, it was demonstrated that there was no difference in the BCH1 enzymatic activity between peach and apricot. Comparative analysis about the putative cis-acting regulatory elements between peach and apricot BCH1 promoters provided important information for our understanding of the differences in promoter activity of the BCH1 genes in peach and apricot. Therefore, we investigated the promoter activity of BCH1 gene through a GUS detection system, and confirmed that the difference in the transcription level of the BCH1 gene resulted from the difference of the promoter function. This study provides important perspective to understanding the diversity of carotenoid accumulation in Prunus fruits such as peach and apricot. In particular, BCH1 gene is proposed as a main predictor for β-carotene content in peach and apricot fruits during the ripening process.
Collapse
Affiliation(s)
- Pengfei Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Siyuan Lu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Ruyu Jing
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Brennan Hyden
- Horticulture Section, School of Integrative Plant Science, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, United States Department of Agriculture-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA; Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xulei Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Lvwen Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Yan Han
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Xueying Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Jizhong Xu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Haijiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| | - Hongbo Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071000, China.
| |
Collapse
|
20
|
Liu S, Liu M, Cao Y, Xu Y, Liu H, Zhu Q, Zhang X, Luan F. Identification of chromosome region and candidate genes for canary-yellow flesh (Cyf) locus in watermelon (Citrullus lanatus). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111594. [PMID: 36642105 DOI: 10.1016/j.plantsci.2023.111594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Genetic control of fruit flesh color in watermelon is complex, and significant knowledge gaps still exist. In the present study, we investigated the genetic basis of canary-yellow flesh color in watermelon inbred line PI 635597 using a segregating population derived from a cross between PI 635597 and another inbred line, Cream of Saskatchewan (pale yellow flesh color). We showed that a single dominant gene controls the canary-yellow flesh color for the Cyf (canary-yellow flesh) trait. Bulk segregant analysis (BSA) and fine genetic mapping narrowed down the Cyf locus to a 79.62-kb region on chromosome 6, which harbors 10 predicted genes. Sequence variation analysis in the promoter and coding regions and gene expression analysis in both parental lines and selected watermelon accessions with diverse fruit flesh colors support Cla97C06G122050 (unknown protein) and Cla97C06G122120 (pentatricopeptide repeat) as predicted candidate genes for the Cyf locus. Marker-assisted selection and sequence alignment showed that the Cyf locus could differentiate canary-yellow flesh and pale-yellow flesh. Our results indicate that the Cyf locus might be responsible for canary-yellow flesh color and carotenoid accumulation levels.
Collapse
Affiliation(s)
- Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, Heilongjiang Province, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China.
| | - Mengqiu Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, Heilongjiang Province, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China.
| | - Yue Cao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, Heilongjiang Province, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China.
| | - Yan Xu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, Heilongjiang Province, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China.
| | - Hongyu Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, Heilongjiang Province, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China.
| | - Qianglong Zhu
- Agronomy College, Jiangxi Agricultural University, Nanchang, Jiangxi Province, China.
| | - Xian Zhang
- College of Horticulture, Northwest of A&F University, Yangling, Shaanxi Province, China.
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, Heilongjiang Province, China; College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
21
|
Niaz M, Zhang B, Zhang Y, Yan X, Yuan M, Cheng Y, Lv G, Fadlalla T, Zhao L, Sun C, Chen F. Genetic and molecular basis of carotenoid metabolism in cereals. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:63. [PMID: 36939900 DOI: 10.1007/s00122-023-04336-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Carotenoids are vital pigments for higher plants and play a crucial function in photosynthesis and photoprotection. Carotenoids are precursors of vitamin A synthesis and contribute to human nutrition and health. However, cereal grain endosperm contains a minor carotenoid measure and a scarce supply of provitamin A content. Therefore, improving the carotenoids in cereal grain is of major importance. Carotenoid content is governed by multiple candidate genes with their additive effects. Studies on genes related to carotenoid metabolism in cereals would increase the knowledge of potential metabolic steps of carotenoids and enhance the quality of crop plants. Recognizing the metabolism and carotenoid accumulation in various staple cereal crops over the last few decades has broadened our perspective on the interdisciplinary regulation of carotenogenesis. Meanwhile, the amelioration in metabolic engineering approaches has been exploited to step up the level of carotenoid and valuable industrial metabolites in many crops, but wheat is still considerable in this matter. In this study, we present a comprehensive overview of the consequences of biosynthetic and catabolic genes on carotenoid biosynthesis, current improvements in regulatory disciplines of carotenogenesis, and metabolic engineering of carotenoids. A panoptic and deeper understanding of the regulatory mechanisms of carotenoid metabolism and genetic manipulation (genome selection and gene editing) will be useful in improving the carotenoid content of cereals.
Collapse
Affiliation(s)
- Mohsin Niaz
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Bingyang Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yixiao Zhang
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Xiangning Yan
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Minjie Yuan
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - YongZhen Cheng
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Guoguo Lv
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Tarig Fadlalla
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Faculty of Agriculture, Nile valley University, Atbara, 346, Sudan
| | - Lei Zhao
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Congwei Sun
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Feng Chen
- National Key Laboratory of Wheat and Maize Crop Science / CIMMYT-China Wheat and Maize Joint Research Center /Agronomy College, Henan Agricultural University, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
22
|
Zhang Y, Jin J, Zhu S, Sun Q, Zhang Y, Xie Z, Ye J, Deng X. Citrus β-carotene hydroxylase 2 (BCH2) participates in xanthophyll synthesis by catalyzing the hydroxylation of β-carotene and compensates for BCH1 in citrus carotenoid metabolism. HORTICULTURE RESEARCH 2023; 10:uhac290. [PMID: 36938563 PMCID: PMC10018782 DOI: 10.1093/hr/uhac290] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
As an essential horticultural crop, Citrus has carotenoid diversity, which affects its aesthetic and nutritional values. β,β-Xanthophylls are the primary carotenoids accumulated in citrus fruits, and non-heme di-iron carotene hydroxylase (BCH) enzymes are mainly responsible for β,β-xanthophyll synthesis. Previous studies have focused on the hydroxylation of BCH1, but the role of its paralogous gene in citrus, BCH2, remains largely unknown. In this study, we revealed the β-hydroxylation activity of citrus BCH2 (CsBCH2) for the first time through the functional complementation assay using Escherichia coli, although CsBCH2 exhibited a lower activity in hydroxylating β-carotene into β-cryptoxanthin than citrus BCH1 (CsBCH1). Our results showed that overexpression of CsBCH2 in citrus callus increased xanthophyll proportion and plastoglobule size with feedback regulation of carotenogenic gene expression. This study revealed the distinct expression patterns and functional characteristics of two paralogous genes, CsBCH1 and CsBCH2, and illustrated the backup compensatory role of CsBCH2 for CsBCH1 in citrus xanthophyll biosynthesis. The independent function of CsBCH2 and its cooperative function with CsBCH1 in β-cryptoxanthin biosynthesis suggested the potential of CsBCH2 to be employed for expanding the synthetic biology toolkit in carotenoid engineering.
Collapse
Affiliation(s)
- Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiajing Jin
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shenchao Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Sun
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zongzhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China
| | | |
Collapse
|
23
|
Xing S, Li R, Zhao H, Zhai H, He S, Zhang H, Zhou Y, Zhao N, Gao S, Liu Q. The transcription factor IbNAC29 positively regulates the carotenoid accumulation in sweet potato. HORTICULTURE RESEARCH 2023; 10:uhad010. [PMID: 36960431 PMCID: PMC10028406 DOI: 10.1093/hr/uhad010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Carotenoid is a tetraterpene pigment beneficial for human health. Although the carotenoid biosynthesis pathway has been extensively studied in plants, relatively little is known about their regulation in sweet potato. Previously, we conducted the transcriptome database of differentially expressed genes between the sweet potato (Ipomoea batatas) cultivar 'Weiduoli' and its high-carotenoid mutant 'HVB-3'. In this study, we selected one of these candidate genes, IbNAC29, for subsequent analyses. IbNAC29 belongs to the plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factor family. Relative IbNAC29 mRNA level in the HVB-3 storage roots was ~1.71-fold higher than Weiduoli. Additional experiments showed that the contents of α-carotene, lutein, β-carotene, zeaxanthin, and capsanthin are obviously increased in the storage roots of transgenic sweet potato plants overexpressing IbNAC29. Moreover, the levels of carotenoid biosynthesis genes in transgenic plants were also up-regulated. Nevertheless, yeast one-hybrid assays indicated that IbNAC29 could not directly bind to the promoters of these carotenoid biosynthesis genes. Furthermore, the level of IbSGR1 was down-regulated, whose homologous genes in tomato can negatively regulate carotene accumulation. Yeast three-hybrid analysis revealed that the IbNAC29-IbMYB1R1-IbAITR5 could form a regulatory module. Yeast one-hybrid, electrophoretic mobility shift assay, quantitative PCR analysis of chromatin immunoprecipitation and dual-luciferase reporter assay showed that IbAITR5 directly binds to and inhibits the promoter activity of IbSGR1, up-regulating carotenoid biosynthesis gene IbPSY. Taken together, IbNAC29 is a potential candidate gene for the genetic improvement of nutritive value in sweet potato.
Collapse
Affiliation(s)
- Shihan Xing
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ruijie Li
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Haoqiang Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hong Zhai
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shaozhen He
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huan Zhang
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yuanyuan Zhou
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ning Zhao
- Key Laboratory of Sweet Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | | | | |
Collapse
|
24
|
Yi L, Zhou W, Zhang Y, Chen Z, Wu N, Wang Y, Dai Z. Genetic mapping of a single nuclear locus determines the white flesh color in watermelon ( Citrullus lanatus L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1090009. [PMID: 36824206 PMCID: PMC9941332 DOI: 10.3389/fpls.2023.1090009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Flesh color is an important trait in watermelon (Citrullus lanatus L.). Several flesh color genes have been identified in watermelon; however, the inheritance of and the molecular basis underlying the white flesh trait remain largely unknown. METHODS In this study, segregation populations were constructed by crossing the canary yellow flesh line HSH-F with the white flesh line Sanbai to fine-map the white flesh gene in watermelon. RESULTS Genetic analysis indicated that the white flesh trait is controlled by a single recessive locus, termed Clwf2. Map-based cloning delimited the Clwf2 locus to a 132.3-kb region on chromosome 6. The candidate region contains 13 putative genes, and four of them-Cla97C06G121860, Cla97C06G121880, Cla97C06G121890, and Cla97C06G121900-were significantly downregulated in the white flesh compared to the canary yellow flesh watermelon fruits. The Cla97C06G121890 gene, which encodes a tetratricopeptide repeat protein, showed almost no expression in the white flesh fruit before maturity, whereas it had a very high expression in the canary yellow flesh fruit at 18 days after pollination. Transmission electron microscopy revealed rounded and regularly shaped chromoplasts in both the canary yellow and white flesh fruits. Further quantitative real-time PCR analysis showed that the expression levels of several key plastid division genes and almost the entire carotenoid biosynthesis pathway genes were downregulated in the white flesh compared to the canary yellow flesh fruits. DISCUSSION This study suggests that the proliferation inhibition of chromoplasts and downregulation of the CBP genes block the accumulation of carotenoids in watermelon and lead to white flesh. These findings advance and extend the understanding of the molecular mechanisms underlying white flesh trait formation and carotenoid biosynthesis in watermelon.
Collapse
Affiliation(s)
- Licong Yi
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Wei Zhou
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Yi Zhang
- Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, China
| | - Zibiao Chen
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Na Wu
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
| | - Yunqiang Wang
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Zhaoyi Dai
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Industrial Crops Institute, Hubei Academy of Agricultural Science, Wuhan, China
- Key Laboratory of Ecological Cultivation on Alpine Vegetables (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Wuhan, China
| |
Collapse
|
25
|
New Insight into Short Time Exogenous Formaldehyde Application Mediated Changes in Chlorophytum comosum L. (Spider Plant) Cellular Metabolism. Cells 2023; 12:cells12020232. [PMID: 36672168 PMCID: PMC9857029 DOI: 10.3390/cells12020232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/09/2023] Open
Abstract
Chlorophytum comosum L. plants are known to effectively absorb air pollutants, including formaldehyde (HCHO). Since the metabolic and defense responses of C. comosum to HCHO are poorly understood, in the present study, biochemical changes in C. comosum leaves induced by 48 h exposure to exogenous HCHO, applied as 20 mg m-3, were analyzed. The observed changes showed that HCHO treatment caused no visible harmful effects on C. comosum leaves and seemed to be effectively metabolized by this plant. HCHO application caused no changes in total chlorophyll (Chl) and Chl a content, increased Chl a/b ratio, and decreased Chl b and carotenoid content. HCHO treatment affected sugar metabolism, towards the utilization of sucrose and synthesis or accumulation of glucose, and decreased activities of aspartate and alanine aminotransferases, suggesting that these enzymes do not play any pivotal role in amino acid transformations during HCHO assimilation. The total phenolic content in leaf tissues did not change in comparison to the untreated plants. The obtained results suggest that HCHO affects nitrogen and carbohydrate metabolism, effectively influencing photosynthesis, shortly after plant exposure to this volatile compound. It may be suggested that the observed changes are related to early HCHO stress symptoms or an early step of the adaptation of cells to HCHO treatment. The presented results confirm for the first time the direct influence of short time HCHO exposure on the studied parameters in the C. comosum plant leaf tissues.
Collapse
|
26
|
Zou H, Zhou L, Han L, Lv J, Jia Y, Wang Y. Transcriptome profiling reveals the roles of pigment formation mechanisms in yellow Paeonia delavayi flowers. Mol Genet Genomics 2023; 298:375-387. [PMID: 36580169 PMCID: PMC9938063 DOI: 10.1007/s00438-022-01973-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 10/30/2022] [Indexed: 12/30/2022]
Abstract
The yellow colour of ornamental varieties of tree peony originated from Paeonia delavayi. However, but P. delavayi and Paeonia suffruticosa belong to different subgroups, so hybridization is difficult and results in a long breeding cycle. However, no comprehensive transcriptomic profiling has focused on the colour formation mechanisms of yellow tree peony petals. Analysing the colour formation mechanism of yellow petals in P. delavayi is very important for directional molecular breeding. In this study, the transcriptional map of yellow pigment development in petals was used to analyse the mechanism of petal colour formation. We analysed the genes related to the metabolism of flavonoids and carotenoids and the transcription factors (TFs) involved in P. delavayi var. lutea (pure yellow individual) yellow pigment development using transcriptome sequence profiling. Transcriptome sequence profiles revealed three and four differentially expressed transcripts (DETs) involved in flavonoid biosynthesis and carotenoid biosynthesis, respectively. An analysis of DETs in the flavonoid pathway showed that chalcone synthase (CHS) and chalcone 2´-glucosyltransferases (THC2'GT) act in synergy to synthesize isosalipurposide (ISP). CHS and flavonol synthase (FLS) synergistically synthesize quercetin and kaempferol. DEG analysis of the carotenoid pathway revealed that phytoene synthase (PSY), carotenoid isomerase (CRTISO) and β-carotene hydroxylases (CHYB) play a key role in regulating lutein formation, and carotenoid cleavage dioxygenase (CCD) plays an important role in the degradation of carotenoids. These two pathways may be regulated by TF families such as bHLH, ARF, and MYB. The results of the transient overexpression of genes showed that CHS and CHI are regulated by PdMYB2. In this study, the molecular mechanism of ISP synthesis was analysed in depth, and the complete metabolic pathway of carotenoids in Paeonia L. was reported for the first time. By studying the formation mechanism of yellow pigment in P. delavayi petals, a breeding strategy for improving flavonol and carotenoid contents and reducing anthocyanin synthesis by genetic engineering was suggested.
Collapse
Affiliation(s)
- Hongzhu Zou
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - Lin Zhou
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - Lulu Han
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - JiHang Lv
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - YingHua Jia
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China
| | - Yan Wang
- Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 10091, China.
| |
Collapse
|
27
|
He Y, Wang Y, Zhang M, Liu G, Tian C, Xu X, Pan Y, Shi X, Zhang Z, Meng L. SlBEL11 affects tomato carotenoid accumulation by regulating SlLCY-b2. Front Nutr 2022; 9:1062006. [PMID: 36618682 PMCID: PMC9814965 DOI: 10.3389/fnut.2022.1062006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Extensive data have demonstrated that carotenoid accumulation in tomato fruit is influenced by environmental cues and hormonal signals. However, there is insufficient information on the mechanism of its transcriptional regulation, as many molecular roles of carotenoid biosynthetic pathways remain unknown. In this work, we found that the silence of the BEL1-like family transcription factor (TF) BEL1-LIKE HOMEODOMAIN 11 (SlBEL11) enhanced carotenoid accumulation in virus induced gene silencing (VIGS) analysis. In its RNA interference (RNAi) transgenic lines, a significant increase in the transcription level for the lycopene beta cyclase 2 (SlLCY-b2) gene was detected, which encoded a key enzyme located at the downstream branch of the carotenoid biosynthetic pathway. In Electrophoretic mobility shift assay (EMSA), SlBEL11 protein was confirmed to bind to the promoter of SlLCY-b2 gene. In addition, the dual-luciferase reporter assay showed its intrinsic transcriptional repression activity. Collectively, our findings added a new member to the carotenoid transcriptional regulatory network and expanded the functions of the SlBEL11 transcription factor.
Collapse
Affiliation(s)
- Yan He
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yu Wang
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Mengzhuo Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Guangsen Liu
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Cong Tian
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Xiangbin Xu
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Yonggui Pan
- School of Food Science and Engineering, Hainan University, Haikou, China
| | - Xuequn Shi
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Zhengke Zhang
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China
| | - Lanhuan Meng
- School of Food Science and Engineering, Hainan University, Haikou, China,Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou, China,*Correspondence: Lanhuan Meng,
| |
Collapse
|
28
|
Hao DL, Zhou JY, Huang YN, Wang HR, Li XH, Guo HL, Liu JX. Roles of plastid-located phosphate transporters in carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1059536. [PMID: 36589064 PMCID: PMC9798012 DOI: 10.3389/fpls.2022.1059536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Enhanced carotenoid accumulation in plants is crucial for the nutritional and health demands of the human body since these beneficial substances are acquired through dietary intake. Plastids are the major organelles to accumulate carotenoids in plants and it is reported that manipulation of a single plastid phosphate transporter gene enhances carotenoid accumulation. Amongst all phosphate transport proteins including phosphate transporters (PHTs), plastidial phosphate translocators (pPTs), PHOSPHATE1 (PHO1), vacuolar phosphate efflux transporter (VPE), and Sulfate transporter [SULTR]-like phosphorus distribution transporter (SPDT) in plants, plastidic PHTs (PHT2 & PHT4) are found as the only clade that is plastid located, and manipulation of which affects carotenoid accumulation. Manipulation of a single chromoplast PHT (PHT4;2) enhances carotenoid accumulation, whereas manipulation of a single chloroplast PHT has no impact on carotenoid accumulation. The underlying mechanism is mainly attributed to their different effects on plastid orthophosphate (Pi) concentration. PHT4;2 is the only chromoplast Pi efflux transporter, and manipulating this single chromoplast PHT significantly regulates chromoplast Pi concentration. This variation subsequently modulates the carotenoid accumulation by affecting the supply of glyceraldehyde 3-phosphate, a substrate for carotenoid biosynthesis, by modulating the transcript abundances of carotenoid biosynthesis limited enzyme genes, and by regulating chromoplast biogenesis (facilitating carotenoid storage). However, at least five orthophosphate influx PHTs are identified in the chloroplast, and manipulating one of the five does not substantially modulate the chloroplast Pi concentration in a long term due to their functional redundancy. This stable chloroplast Pi concentration upon one chloroplast PHT absence, therefore, is unable to modulate Pi-involved carotenoid accumulation processes and finally does affect carotenoid accumulation in photosynthetic tissues. Despite these advances, several cases including the precise location of plastid PHTs, the phosphate transport direction mediated by these plastid PHTs, the plastid PHTs participating in carotenoid accumulation signal pathway, the potential roles of these plastid PHTs in leaf carotenoid accumulation, and the roles of these plastid PHTs in other secondary metabolites are waiting for further research. The clarification of the above-mentioned cases is beneficial for breeding high-carotenoid accumulation plants (either in photosynthetic or non-photosynthetic edible parts of plants) through the gene engineering of these transporters.
Collapse
Affiliation(s)
- Dong-Li Hao
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jin-Yan Zhou
- Department of Agronomy and Horticulture, Jiangsu Vocational College of Agriculture and Forest, Jurong, China
| | - Ya-Nan Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Hao-Ran Wang
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Xiao-Hui Li
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Hai-Lin Guo
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Jian-Xiu Liu
- The National Forestry and Grassland Administration Engineering Research Center for Germplasm Innovation and Utilization of Warm-Season Turfgrasses, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| |
Collapse
|
29
|
Transcriptomic and Physiological Analyses Reveal Potential Genes Involved in Photoperiod-Regulated β-Carotene Accumulation Mechanisms in the Endocarp of Cucumber ( Cucumis sativus L.) Fruit. Int J Mol Sci 2022; 23:ijms232012650. [PMID: 36293506 PMCID: PMC9604348 DOI: 10.3390/ijms232012650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 01/24/2023] Open
Abstract
The accumulation of carotenoids in plants is a key nutritional quality in many horticultural crops. Although the structural genes encoding the biosynthetic enzymes are well-characterized, little is known regarding photoperiod-mediated carotenoid accumulation in the fruits of some horticultural crops. Herein, we performed physiological and transcriptomic analyses using two cucumber genotypes, SWCC8 (XIS-orange-fleshed and photoperiod-sensitive) and CC3 (white-fleshed and photoperiod-non-sensitive), established under two photoperiod conditions (8L/16D vs. 12L/12D) at four fruit developmental stages. Day-neutral treatments significantly increased fruit β-carotene content by 42.1% compared to short day (SD) treatments in SWCC8 at 40 DAP with no significant changes in CC3. Day-neutral condition elevated sugar levels of fruits compared to short-day treatments. According to GO and KEGG analyses, the predominantly expressed genes were related to photosynthesis, carotenoid biosynthesis, plant hormone signaling, circadian rhythms, and carbohydrates. Consistent with β-carotene accumulation in SWCC8, the day-neutral condition elevated the expression of key carotenoid biosynthesis genes such as PSY1, PDS, ZDS1, LYCB, and CHYB1 during later stages between 30 to 40 days of fruit development. Compared to SWCC8, CC3 showed an expression of DEGs related to carotenoid cleavage and oxidative stresses, signifying reduced β-carotene levels in CC3 cucumber. Further, a WGCNA analysis revealed co-expression between carbohydrate-related genes (pentose-phosphatase synthase, β-glucosidase, and trehalose-6-phosphatase), photoperiod-signaling genes (LHY, APRR7/5, FKF1, PIF3, COP1, GIGANTEA, and CK2) and carotenoid-biosynthetic genes, thus suggesting that a cross-talk mechanism between carbohydrates and light-related genes induces β-carotene accumulation. The results highlighted herein provide a framework for future gene functional analyses and molecular breeding towards enhanced carotenoid accumulation in edible plant organs.
Collapse
|
30
|
Mapping and Validation of BrGOLDEN: A Dominant Gene Regulating Carotenoid Accumulation in Brassica rapa. Int J Mol Sci 2022; 23:ijms232012442. [PMID: 36293299 PMCID: PMC9603932 DOI: 10.3390/ijms232012442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/19/2022] Open
Abstract
In plants, the accumulation of carotenoids can maintain the balance of the photosystem and improve crop nutritional quality. Therefore, the molecular mechanisms underlying carotenoid synthesis and accumulation should be further explored. In this study, carotenoid accumulation differed significantly among parental Brassica rapa. Genetic analysis was carried out using the golden inner leaf ‘1900264′ line and the light−yellow inner leaf ‘1900262′ line, showing that the golden inner leaf phenotype was controlled by a single dominant gene. Using bulked−segregant analysis sequencing, BraA09g007080.3C encoding the ORANGE protein was selected as a candidate gene. Sequence alignment revealed that a 4.67 kb long terminal repeat insertion in the third exon of the BrGOLDEN resulted in three alternatively spliced transcripts. The spatiotemporal expression results indicated that BrGOLDEN might regulate the expression levels of carotenoid−synthesis−related genes. After transforming BrGOLDEN into Arabidopsis thaliana, the seed−derived callus showed that BrGOLDENIns and BrGOLDENDel lines presented a yellow color and the BrGOLDENLdel line presented a transparent phenotype. In addition, using the yeast two−hybrid assay, BrGOLDENIns, BrGOLDENLdel, and Brgoldenwt exhibited strong interactions with BrPSY1, but BrGOLDENDel did not interact with BrPSY1 in the split−ubiquitin membrane system. In the secondary and 3D structure analysis, BrGOLDENDel was shown to have lost the PNFPSFIPFLPPL sequences at the 125 amino acid position, which resulted in the α−helices of BrGOLDENDel being disrupted, restricting the formation of the 3D structure and affecting the functions of the protein. These findings may provide new insights into the regulation of carotenoid synthesis in B. rapa.
Collapse
|
31
|
He MX, Wang JL, Lin YY, Huang JC, Liu AZ, Chen F. Engineering an oilseed crop for hyper-accumulation of carotenoids in the seeds without using a traditional marker gene. PLANT CELL REPORTS 2022; 41:1751-1761. [PMID: 35748890 DOI: 10.1007/s00299-022-02889-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Ketocarotenoids were synthesized successfully in Camelina sativa seeds by genetic modification without using a traditional selection marker genes. This method provided an interesting tool for metabolic engineering of seed crops. Camelina sativa (L.) Crantz is an important oil crop with many excellent agronomic traits. This model oil plant has been exploited to accumulate value-added bioproducts using genetic manipulation that depends on antibiotic- or herbicide-based selection marker genes (SMG), one of the major concerns for genetically modified foods. Here we reported metabolic engineering of C. sativa to synthesize red ketocarotenoids that could serve as a reporter to visualize transgenic events without using a traditional SMG. Overexpression of a non-native β-carotene ketolase gene coupled with three other carotenogenous genes (phytoene synthase, β-carotene hydroxylase, and Orange) in C. sativa resulted in production of red seeds that were visibly distinguishable from the normal yellow ones. Constitutive expression of the transgenes led to delayed plant development and seed germination. In contrast, seed-specific transformants demonstrated normal growth and seed germination despite the accumulation of up to 70-fold the level of carotenoids in the seeds compared to the controls, including significant amounts of astaxanthin and keto-lutein. As a result, the transgenic seed oils exhibited much higher antioxidant activity. No significant changes were found in the profiles of fatty acids between transgenic and control seeds. This study provided an interesting tool for metabolic engineering of seed crops without using a disputed SMG.
Collapse
Affiliation(s)
- Ming-Xia He
- Southwest Forestry University, Kunming, 650224, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jie-Lin Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yuan-Yuan Lin
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jun-Chao Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China.
| | - Ai-Zhong Liu
- Southwest Forestry University, Kunming, 650224, Yunnan, China.
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
32
|
Lv Y, Amanullah S, Liu S, Zhang C, Liu H, Zhu Z, Zhang X, Gao P, Luan F. Comparative Transcriptome Analysis Identified Key Pathways and Genes Regulating Differentiated Stigma Color in Melon ( Cucumis melo L.). Int J Mol Sci 2022; 23:ijms23126721. [PMID: 35743161 PMCID: PMC9224399 DOI: 10.3390/ijms23126721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/08/2022] [Accepted: 06/14/2022] [Indexed: 11/27/2022] Open
Abstract
Stigma color is an important morphological trait in many flowering plants. Visual observations in different field experiments have shown that a green stigma in melons is more attractive to natural pollinators than a yellow one. In the current study, we evaluated the characterization of two contrasted melon lines (MR-1 with a green stigma and M4-7 with a yellow stigma). Endogenous quantification showed that the chlorophyll and carotenoid content in the MR-1 stigmas was higher compared to the M4-7 stigmas. The primary differences in the chloroplast ultrastructure at different developmental stages depicted that the stigmas of both melon lines were mainly enriched with granum, plastoglobulus, and starch grains. Further, comparative transcriptomic analysis was performed to identify the candidate pathways and genes regulating melon stigma color during key developmental stages (S1–S3). The obtained results indicated similar biological processes involved in the three stages, but major differences were observed in light reactions and chloroplast pathways. The weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) uncovered a “black” network module (655 out of 5302 genes), mainly corresponding to light reactions, light harvesting, the chlorophyll metabolic process, and the chlorophyll biosynthetic process, and exhibited a significant contribution to stigma color. Overall, the expression of five key genes of the chlorophyll synthesis pathway—CAO (MELO03C010624), CHLH (MELO03C007233), CRD (MELO03C026802), HEMA (MELO03C011113), POR (MELO03C016714)—were checked at different stages of stigma development in both melon lines using quantitative real time polymerase chain reaction (qRT-PCR). The results exhibited that the expression of these genes gradually increased during the stigma development of the MR-1 line but decreased in the M4-7 line at S2. In addition, the expression trends in different stages were the same as RNA-seq, indicating data accuracy. To sum up, our research reveals an in-depth molecular mechanism of stigma coloration and suggests that chlorophyll and related biological activity play an important role in differentiating melon stigma color.
Collapse
Affiliation(s)
- Yuanzuo Lv
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Sikandar Amanullah
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Chen Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Hongyu Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Zicheng Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
| | - Xian Zhang
- Horticulture College of Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (P.G.); (F.L.)
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin 150030, China; (Y.L.); (S.A.); (S.L.); (C.Z.); (H.L.); (Z.Z.)
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China
- Correspondence: (P.G.); (F.L.)
| |
Collapse
|
33
|
Zhang J, Sun H, Guo S, Ren Y, Li M, Wang J, Yu Y, Zhang H, Gong G, He H, Zhang C, Xu Y. ClZISO mutation leads to photosensitive flesh in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1565-1578. [PMID: 35187585 DOI: 10.1007/s00122-022-04054-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The mutation of ClZISO identified in EMS-induced watermelon leads to photosensitive flesh in watermelon. Watermelon (Citrullus lanatus) has a colorful flesh that attracts consumers and benefits human health. We developed an ethyl-methanesulfonate mutation library in red-fleshed line '302' to create new flesh color lines and found a yellow-fleshed mutant which accumulated ζ-carotene. The initial yellow color of this mutant can be photobleached within 10 min under intense sunlight. A long-term light-emitting diode (LED) light treatment turned flesh color from yellow to pink. We identified this unique variation as photosensitive flesh mutant ('psf'). Using bulked segregant analysis, we fine-mapped an EMS-induced G-A transversion in 'psf' which leads to a premature stop codon in 15-cis-ζ-carotene isomerase (ClZISO) gene. We detected that wild-type ClZISO is expressed in chromoplasts to catalyze the conversion of 9,15,9'-tri-cis-ζ-carotene to 9,9'-di-cis-ζ-carotene. The truncated ClZISOmu protein in psf lost this catalytic function. Light treatment can partially compensate ClZISOmu isomerase activity via photoisomerization in vitro and in vivo. Transcriptome analysis showed that most carotenoid biosynthesis genes in psf were downregulated. The dramatic increase of ABA content in flesh with fruit development was blocked in psf. This study explores the molecular mechanism of carotenoid biosynthesis in watermelon and provides a theoretical and technical basis for breeding different flesh color lines in watermelon.
Collapse
Affiliation(s)
- Jie Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Honghe Sun
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shaogui Guo
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Maoying Li
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Jinfang Wang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yongtao Yu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Haiying Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Guoyi Gong
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Hongju He
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Chao Zhang
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
34
|
Koschmieder J, Alseekh S, Shabani M, Baltenweck R, Maurino VG, Palme K, Fernie AR, Hugueney P, Welsch R. Color recycling: metabolization of apocarotenoid degradation products suggests carbon regeneration via primary metabolic pathways. PLANT CELL REPORTS 2022; 41:961-977. [PMID: 35064799 PMCID: PMC9035014 DOI: 10.1007/s00299-022-02831-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Analysis of carotenoid-accumulating roots revealed that oxidative carotenoid degradation yields glyoxal and methylglyoxal. Our data suggest that these compounds are detoxified via the glyoxalase system and re-enter primary metabolic pathways. Carotenoid levels in plant tissues depend on the relative rates of synthesis and degradation. We recently identified redox enzymes previously known to be involved in the detoxification of fatty acid-derived reactive carbonyl species which were able to convert apocarotenoids into corresponding alcohols and carboxylic acids. However, their subsequent metabolization pathways remain unresolved. Interestingly, we found that carotenoid-accumulating roots have increased levels of glutathione, suggesting apocarotenoid glutathionylation to occur. In vitro and in planta investigations did not, however, support the occurrence of non-enzymatic or enzymatic glutathionylation of β-apocarotenoids. An alternative breakdown pathway is the continued oxidative degradation of primary apocarotenoids or their derivatives into the shortest possible oxidation products, namely glyoxal and methylglyoxal, which also accumulated in carotenoid-accumulating roots. In fact, combined transcriptome and metabolome analysis suggest that the high levels of glutathione are most probably required for detoxifying apocarotenoid-derived glyoxal and methylglyoxal via the glyoxalase pathway, yielding glycolate and D-lactate, respectively. Further transcriptome analysis suggested subsequent reactions involving activities associated with photorespiration and the peroxisome-specific glycolate/glyoxylate transporter. Finally, detoxified primary apocarotenoid degradation products might be converted into pyruvate which is possibly re-used for the synthesis of carotenoid biosynthesis precursors. Our findings allow to envision carbon recycling during carotenoid biosynthesis, degradation and re-synthesis which consumes energy, but partially maintains initially fixed carbon via re-introducing reactive carotenoid degradation products into primary metabolic pathways.
Collapse
Affiliation(s)
| | - Saleh Alseekh
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Marzieh Shabani
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | | | - Veronica G Maurino
- Department of Molecular Plant Physiology, Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Kirschallee 1, 53115, Bonn, Germany
| | - Klaus Palme
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center for Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Philippe Hugueney
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000, Colmar, France
| | - Ralf Welsch
- Faculty of Biology II, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
35
|
Pradeepkumara N, Sharma PK, Munshi AD, Behera TK, Bhatia R, Kumari K, Singh J, Jaiswal S, Iquebal MA, Arora A, Rai A, Kumar D, Bhattacharya RC, Dey SS. Fruit transcriptional profiling of the contrasting genotypes for shelf life reveals the key candidate genes and molecular pathways regulating post-harvest biology in cucumber. Genomics 2022; 114:110273. [PMID: 35092817 DOI: 10.1016/j.ygeno.2022.110273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
Abstract
Cucumber fruits are perishable in nature and become unfit for market within 2-3 days of harvesting. A natural variant, DC-48 with exceptionally high shelf life was developed and used to dissect the genetic architecture and molecular mechanism for extended shelf life through RNA-seq for first time. A total of 1364 DEGs were identified and cell wall degradation, chlorophyll and ethylene metabolism related genes played key role. Polygalacturunase (PG), Expansin (EXP) and xyloglucan were down regulated determining fruit firmness and retention of fresh green colour was mainly attributed to the low expression level of the chlorophyll catalytic enzymes (CCEs). Gene regulatory networks revealed the hub genes and cross-talk associated with wide variety of the biological processes. Large number of SSRs (21524), SNPs (545173) and InDels (126252) identified will be instrumental in cucumber improvement. A web genomic resource, CsExSLDb developed will provide a platform for future investigation on cucumber post-harvest biology.
Collapse
Affiliation(s)
- N Pradeepkumara
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Parva Kumar Sharma
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - A D Munshi
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - T K Behera
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Reeta Bhatia
- Division of Floriculture and Landscaping, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Khushboo Kumari
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jogendra Singh
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ajay Arora
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Rai
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dinesh Kumar
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - R C Bhattacharya
- ICAR-National Institute of Plant Biotechnology, New Delhi, India
| | - S S Dey
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
36
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
37
|
Kapoor L, Simkin AJ, George Priya Doss C, Siva R. Fruit ripening: dynamics and integrated analysis of carotenoids and anthocyanins. BMC PLANT BIOLOGY 2022; 22:27. [PMID: 35016620 PMCID: PMC8750800 DOI: 10.1186/s12870-021-03411-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 12/21/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Fruits are vital food resources as they are loaded with bioactive compounds varying with different stages of ripening. As the fruit ripens, a dynamic color change is observed from green to yellow to red due to the biosynthesis of pigments like chlorophyll, carotenoids, and anthocyanins. Apart from making the fruit attractive and being a visual indicator of the ripening status, pigments add value to a ripened fruit by making them a source of nutraceuticals and industrial products. As the fruit matures, it undergoes biochemical changes which alter the pigment composition of fruits. RESULTS The synthesis, degradation and retention pathways of fruit pigments are mediated by hormonal, genetic, and environmental factors. Manipulation of the underlying regulatory mechanisms during fruit ripening suggests ways to enhance the desired pigments in fruits by biotechnological interventions. Here we report, in-depth insight into the dynamics of a pigment change in ripening and the regulatory mechanisms in action. CONCLUSIONS This review emphasizes the role of pigments as an asset to a ripened fruit as they augment the nutritive value, antioxidant levels and the net carbon gain of fruits; pigments are a source for fruit biofortification have tremendous industrial value along with being a tool to predict the harvest. This report will be of great utility to the harvesters, traders, consumers, and natural product divisions to extract the leading nutraceutical and industrial potential of preferred pigments biosynthesized at different fruit ripening stages.
Collapse
Affiliation(s)
- Leepica Kapoor
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Andrew J Simkin
- School of Biosciences, University of Kent, United Kingdom, Canterbury, CT2 7NJ, UK
| | - C George Priya Doss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Ramamoorthy Siva
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
38
|
Li P, Lv S, Zhang D, Su T, Xin X, Wang W, Zhao X, Yu Y, Zhang Y, Yu S, Zhang F. The Carotenoid Esterification Gene BrPYP Controls Pale-Yellow Petal Color in Flowering Chinese Cabbage ( Brassica rapa L. subsp. parachinensis). FRONTIERS IN PLANT SCIENCE 2022; 13:844140. [PMID: 35592555 PMCID: PMC9111173 DOI: 10.3389/fpls.2022.844140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 05/13/2023]
Abstract
Carotenoid esterification plays indispensable roles in preventing degradation and maintaining the stability of carotenoids. Although the carotenoid biosynthetic pathway has been well characterized, the molecular mechanisms underlying carotenoid esterification, especially in floral organs, remain poorly understood. In this study, we identified a natural mutant flowering Chinese cabbage (Caixin, Brassica rapa L. subsp. chinensis var. parachinensis) with visually distinguishable pale-yellow petals controlled by a single recessive gene. Transmission electron microscopy (TEM) demonstrated that the chromoplasts in the yellow petals were surrounded by more fully developed plastoglobules compared to the pale-yellow mutant. Carotenoid analyses further revealed that, compared to the pale-yellow petals, the yellow petals contained high levels of esterified carotenoids, including lutein caprate, violaxanthin dilaurate, violaxanthin-myristate-laurate, 5,6epoxy-luttein dilaurate, lutein dilaurate, and lutein laurate. Based on bulked segregation analysis and fine mapping, we subsequently identified the critical role of a phytyl ester synthase 2 protein (PALE YELLOW PETAL, BrPYP) in regulating carotenoid pigmentation in flowering Chinese cabbage petals. Compared to the yellow wild-type, a 1,148 bp deletion was identified in the promoter region of BrPYP in the pale-yellow mutant, resulting in down-regulated expression. Transgenic Arabidopsis plants harboring beta-glucuronidase (GUS) driven by yellow (BrPYP Y ::GUS) and pale-yellow type (BrPYP PY ::GUS) promoters were subsequently constructed, revealing stronger expression of BrPYP Y ::GUS both in the leaves and petals. Furthermore, virus-induced gene silencing of BrPYP significantly altered petal color from yellow to pale yellow. These findings demonstrate the molecular mechanism of carotenoid esterification, suggesting a role of phytyl ester synthase in carotenoid biosynthesis of flowering Chinese cabbage.
Collapse
Affiliation(s)
- Peirong Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Sirui Lv
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Tongbing Su
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Weihong Wang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yangjun Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
| | - Yaowei Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture, Harbin, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
| | - Shuancang Yu
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- *Correspondence: Shuancang Yu,
| | - Fenglan Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, China
- Fenglan Zhang,
| |
Collapse
|
39
|
Welsch R, Li L. Golden Rice—Lessons learned for inspiring future metabolic engineering strategies and synthetic biology solutions. Methods Enzymol 2022; 671:1-29. [DOI: 10.1016/bs.mie.2022.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
40
|
Anwar S, Nayak JJ, Alagoz Y, Wojtalewicz D, Cazzonelli CI. Purification and use of carotenoid standards to quantify cis-trans geometrical carotenoid isomers in plant tissues. Methods Enzymol 2022; 670:57-85. [DOI: 10.1016/bs.mie.2022.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Kishor DS, Lee HY, Alavilli H, You CR, Kim JG, Lee SY, Kang BC, Song K. Identification of an Allelic Variant of the CsOr Gene Controlling Fruit Endocarp Color in Cucumber ( Cucumis sativus L.) Using Genotyping-By-Sequencing (GBS) and Whole-Genome Sequencing. FRONTIERS IN PLANT SCIENCE 2021; 12:802864. [PMID: 35003192 PMCID: PMC8729256 DOI: 10.3389/fpls.2021.802864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 06/03/2023]
Abstract
The cucumber is a major vegetable crop around the world. Fruit flesh color is an important quality trait in cucumber and flesh color mainly depends on the relative content of β-carotene in the fruits. The β-carotene serves as a precursor of vitamin A, which has dietary benefits for human health. Cucumbers with orange flesh contain a higher amount of β-carotene than white fruit flesh. Therefore, development of orange-fleshed cucumber varieties is gaining attention for improved nutritional benefits. In this study, we performed genotyping-by-sequencing (GBS) based on genetic mapping and whole-genome sequencing to identify the orange endocarp color gene in the cucumber breeding line, CS-B. Genetic mapping, genetic sequencing, and genetic segregation analyses showed that a single recessive gene (CsaV3_6G040750) encodes a chaperone DnaJ protein (DnaJ) protein at the Cucumis sativus(CsOr) locus was responsible for the orange endocarp phenotype in the CS-B line. The Or gene harbored point mutations T13G and T17C in the first exon of the coding region, resulting in serine to alanine at position 13 and isoleucine to threonine at position 17, respectively. CS-B line displayed increased β-carotene content in the endocarp tissue, corresponding to elevated expression of CsOr gene at fruit developmental stages. Identifying novel missense mutations in the CsOr gene could provide new insights into the role of Or mechanism of action for orange fruit flesh in cucumber and serve as a valuable resource for developing β-carotene-rich cucumbers varieties with increased nutritional benefits.
Collapse
Affiliation(s)
- D. S. Kishor
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Hea-Young Lee
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Chae-Rin You
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| | - Jeong-Gu Kim
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, South Korea
| | - Se-Young Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, Seoul, South Korea
| | - Kihwan Song
- Department of Bioresources Engineering, Sejong University, Seoul, South Korea
| |
Collapse
|
42
|
Zhu C, Wu S, Sun T, Zhou Z, Hu Z, Yu J. Rosmarinic Acid Delays Tomato Fruit Ripening by Regulating Ripening-Associated Traits. Antioxidants (Basel) 2021; 10:1821. [PMID: 34829692 PMCID: PMC8614985 DOI: 10.3390/antiox10111821] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/05/2022] Open
Abstract
Fruits are excellent sources of essential vitamins and health-boosting minerals. Recently, regulation of fruit ripening by both internal and external cues for the improvement of fruit quality and shelf life has received considerable attention. Rosmarinic acid (RA) is a kind of natural plant-derived polyphenol, widely used in the drug therapy and food industry due to its distinct physiological functions. However, the role of RA in plant growth and development, especially at the postharvest period of fruits, remains largely unknown. Here, we demonstrated that postharvest RA treatment delayed the ripening in tomato fruits. Exogenous application of RA decreased ripening-associated ethylene production and inhibited the fruit color change from green to red based on the decline in lycopene accumulation. We also found that the degradation of sucrose and malic acid during ripening was significantly suppressed in RA-treated tomato fruits. The results of metabolite profiling showed that RA application promoted the accumulation of multiple amino acids in tomato fruits, such as aspartic acid, serine, tyrosine, and proline. Meanwhile, RA application also strengthened the antioxidant system by increasing both the activity of antioxidant enzymes and the contents of reduced forms of antioxidants. These findings not only unveiled a novel function of RA in fruit ripening, but also indicated an attractive strategy to manage and improve shelf life, flavor, and sensory evolution of tomato fruits.
Collapse
Affiliation(s)
- Changan Zhu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Shaofang Wu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Ting Sun
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Zhiwen Zhou
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou 310058, China; (C.Z.); (S.W.); (T.S.); (Z.Z.); (J.Y.)
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 276000, China
| |
Collapse
|
43
|
Gebretsadik K, Qiu X, Dong S, Miao H, Bo K. Molecular research progress and improvement approach of fruit quality traits in cucumber. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3535-3552. [PMID: 34181057 DOI: 10.1007/s00122-021-03895-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/21/2021] [Indexed: 05/10/2023]
Abstract
Recent molecular studies revealed new opportunities to improve cucumber fruit quality. However, the fruit color and spine traits molecular basis remain vague despite the vast sources of genetic diversity. Cucumber is agriculturally, economically and nutritionally important vegetable crop. China produces three-fourths of the world's total cucumber production. Cucumber fruit quality depends on a number of traits such as the fruit color (peel and flesh color), spine (density, size and color), fruit shape, fruit size, defects, texture, firmness, taste, maturity stage and nutritional composition. Fruit color and spine traits determine critical quality attributes and have been the interest of researchers at the molecular level. Evaluating the molecular mechanisms of fruit quality traits is important to improve production and quality of cucumber varieties. Genes and qualitative trait locus (QTL) that are responsible for cucumber fruit color and fruit spine have been identified. The purpose of this paper is to reveal the molecular research progress of fruit color and spines as key quality traits of cucumber. The markers and genes identified so far could help for marker-assisted selection of the fruit color and spine trait in cucumber breeding and its associated nutritional improvement. Based on the previous studies, peel color and spine density as examples, we proposed a comprehensive approach for cucumber fruit quality traits improvement. Moreover, the markers and genes can be useful to facilitate cloning-mediated genetic breeding in cucumber. However, in the era of climate change, increased human population and high-quality demand of consumers, studies on molecular mechanisms of cucumber fruit quality traits are limited.
Collapse
Affiliation(s)
- Kiros Gebretsadik
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Science, Aksum University, Shire Campus, Shire, Ethiopia
| | - Xiyan Qiu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shaoyun Dong
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Han Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kailiang Bo
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
44
|
Li T, Deng YJ, Liu JX, Duan AQ, Liu H, Xiong AS. DcCCD4 catalyzes the degradation of α-carotene and β-carotene to affect carotenoid accumulation and taproot color in carrot. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1116-1130. [PMID: 34547154 DOI: 10.1111/tpj.15498] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Carotenoids are important natural pigments that give bright colors to plants. The difference in the accumulation of carotenoids is one of the key factors in the formation of various colors in carrot taproots. Carotenoid cleavage dioxygenases (CCDs), including CCD and 9-cis epoxycarotenoid dioxygenase, are the main enzymes involved in the cleavage of carotenoids in plants. Seven CCD genes have been annotated from the carrot genome. In this study, through expression analysis, we found that the expression level of DcCCD4 was significantly higher in the taproot of white carrot (low carotenoid content) than orange carrot (high carotenoid content). The overexpression of DcCCD4 in orange carrots caused the taproot color to be pale yellow, and the contents of α- and β-carotene decreased sharply. Mutant carrot with loss of DcCCD4 function exhibited yellow color (the taproot of the control carrot was white). The accumulation of β-carotene was also detected in taproot. Functional analysis of the DcCCD4 enzyme in vitro showed that it was able to cleave α- and β-carotene at the 9, 10 (9', 10') double bonds. In addition, the number of colored chromoplasts in the taproot cells of transgenic carrots overexpressing DcCCD4 was significantly reduced compared with that in normal orange carrots. Results showed that DcCCD4 affects the accumulation of carotenoids through cleavage of α- and β-carotene in carrot taproot.
Collapse
Affiliation(s)
- Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Yuan-Jie Deng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, 1 Weigang, Nanjing, 210095, China
| |
Collapse
|
45
|
Gong J, Zeng Y, Meng Q, Guan Y, Li C, Yang H, Zhang Y, Ampomah-Dwamena C, Liu P, Chen C, Deng X, Cheng Y, Wang P. Red light-induced kumquat fruit coloration is attributable to increased carotenoid metabolism regulated by FcrNAC22. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6274-6290. [PMID: 34125891 DOI: 10.1093/jxb/erab283] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 06/11/2021] [Indexed: 05/29/2023]
Abstract
Carotenoids play vital roles in the coloration of plant tissues and organs, particularly fruits; however, the regulation of carotenoid metabolism in fruits during ripening is largely unknown. Here, we show that red light promotes fruit coloration by inducing accelerated degreening and carotenoid accumulation in kumquat fruits. Transcriptome profiling revealed that a NAC (NAM/ATAF/CUC2) family transcription factor, FcrNAC22, is specifically induced in red light-irradiated fruits. FcrNAC22 localizes to the nucleus, and its gene expression is up-regulated as fruits change color. Results from dual luciferase, yeast one-hybrid assays and electrophoretic mobility shift assays indicate that FcrNAC22 directly binds to, and activates the promoters of three genes encoding key enzymes in the carotenoid metabolic pathway. Moreover, FcrNAC22 overexpression in citrus and tomato fruits as well as in citrus callus enhances expression of most carotenoid biosynthetic genes, accelerates plastid conversion into chromoplasts, and promotes color change. Knock down of FcrNAC22 expression in transiently transformed citrus fruits attenuates fruit coloration induced by red light. Taken together, our results demonstrate that FcrNAC22 is an important transcription factor that mediates red light-induced fruit coloration via up-regulation of carotenoid metabolism.
Collapse
Affiliation(s)
- Jinli Gong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunliu Zeng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiunan Meng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yajie Guan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengyang Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongbin Yang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yingzi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag 92169, Auckland, New Zealand
| | - Ping Liu
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops, Guilin, Guangxi, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| | - Pengwei Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
- National R&D Centre for Citrus Preservation, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
46
|
Torres-Montilla S, Rodriguez-Concepcion M. Making extra room for carotenoids in plant cells: New opportunities for biofortification. Prog Lipid Res 2021; 84:101128. [PMID: 34530006 DOI: 10.1016/j.plipres.2021.101128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/22/2022]
Abstract
Plant carotenoids are essential for photosynthesis and photoprotection and provide colors in the yellow to red range to non-photosynthetic organs such as petals and ripe fruits. They are also the precursors of biologically active molecules not only in plants (including hormones and retrograde signals) but also in animals (including retinoids such as vitamin A). A carotenoid-rich diet has been associated with improved health and cognitive capacity in humans, whereas the use of carotenoids as natural pigments is widespread in the agrofood and cosmetic industries. The nutritional and economic relevance of carotenoids has spurred a large number of biotechnological strategies to enrich plant tissues with carotenoids. Most of such approaches to alter carotenoid contents in plants have been focused on manipulating their biosynthesis or degradation, whereas improving carotenoid sink capacity in plant tissues has received much less attention. Our knowledge on the molecular mechanisms influencing carotenoid storage in plants has substantially grown in the last years, opening new opportunities for carotenoid biofortification. Here we will review these advances with a particular focus on those creating extra room for carotenoids in plant cells either by promoting the differentiation of carotenoid-sequestering structures within plastids or by transferring carotenoid production to the cytosol.
Collapse
Affiliation(s)
- Salvador Torres-Montilla
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain
| | - Manuel Rodriguez-Concepcion
- Institute for Plant Molecular and Cell Biology (IBMCP), Agencia Estatal Consejo Superior de Investigaciones Cientificas - Universitat Politècnica de València, 46022 Valencia, Spain.
| |
Collapse
|
47
|
Yu Y, Yu J, Wang Q, Wang J, Zhao G, Wu H, Zhu Y, Chu C, Fang J. Overexpression of the rice ORANGE gene OsOR negatively regulates carotenoid accumulation, leads to higher tiller numbers and decreases stress tolerance in Nipponbare rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110962. [PMID: 34315587 DOI: 10.1016/j.plantsci.2021.110962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/22/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The ORANGE (OR) gene has been reported to regulate chromoplast differentiation and enhance carotenoid biosynthesis in many dicotyledonous plants. However, the function of the OR gene in monocotyledons, especially rice, is poorly known. Here, the OR gene from rice, OsOR, was isolated and characterized by generating overexpressing and genome editing mutant lines. The OsOR-overexpressing plants exhibited pleiotropic phenotypes, such as alternating transverse green and white sectors on leaves at the early tillering stage, that were due to changes in thylakoid development and reduced carotenoid content. In addition, the number of tillers significantly increased in OsOR-overexpressing plants but decreased in osor mutant lines, a result similar to that previously reported for the carotenoid isomerase mutant mit3. The expression of the DWARF3 and DWARF53 genes that are involved in the strigolactone signalling pathway were similarly downregulated in OsOR-overexpressing plants but upregulated in osor mutants. Moreover, the OsOR-overexpressing plants exhibited greater sensitivity to salt and cold stress, and had lower total chlorophyll and higher MDA contents. All results suggest that the OsOR gene plays an important role not only in carotenoid accumulation but also in tiller number regulation and in responses to environmental stress in rice.
Collapse
Affiliation(s)
- Yang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Life Science and Engineering, Shenyang University, Shenyang, China
| | - Jiyang Yu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Qinglong Wang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jing Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; Quality and Safety Institute of Agriculture Products, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guangxin Zhao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongkai Wu
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou, China
| | - Yanming Zhu
- Key Laboratory of Agricultural Biological Functional Genes, Northeast Agricultural University, Harbin, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| | - Jun Fang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China; College of Advanced Agricultural Science, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
48
|
Sun T, Zhu Q, Wei Z, Owens LA, Fish T, Kim H, Thannhauser TW, Cahoon EB, Li L. Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds. ABIOTECH 2021; 2:191-214. [PMID: 36303886 PMCID: PMC9590580 DOI: 10.1007/s42994-021-00046-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023]
Abstract
Staple grains with low levels of provitamin A carotenoids contribute to the global prevalence of vitamin A deficiency and therefore are the main targets for provitamin A biofortification. However, carotenoid stability during both seed maturation and postharvest storage is a serious concern for the full benefits of carotenoid biofortified grains. In this study, we utilized Arabidopsis as a model to establish carotenoid biofortification strategies in seeds. We discovered that manipulation of carotenoid biosynthetic activity by seed-specific expression of Phytoene synthase (PSY) increases both provitamin A and total carotenoid levels but the increased carotenoids are prone to degradation during seed maturation and storage, consistent with previous studies of provitamin A biofortified grains. In contrast, stacking with Orange (OR His ), a gene that initiates chromoplast biogenesis, dramatically enhances provitamin A and total carotenoid content and stability. Up to 65- and 10-fold increases of β-carotene and total carotenoids, respectively, with provitamin A carotenoids composing over 63% were observed in the seeds containing OR His and PSY. Co-expression of Homogentisate geranylgeranyl transferase (HGGT) with OR His and PSY further increases carotenoid accumulation and stability during seed maturation and storage. Moreover, knocking-out of β-carotene hydroxylase 2 (BCH2) by CRISPR/Cas9 not only potentially facilitates β-carotene accumulation but also minimizes the negative effect of carotenoid over production on seed germination. Our findings provide new insights into various processes on carotenoid accumulation and stability in seeds and establish a multiplexed strategy to simultaneously target carotenoid biosynthesis, turnover, and stable storage for carotenoid biofortification in crop seeds. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-021-00046-1.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| | - Qinlong Zhu
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642 China
| | - Ziqing Wei
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Lauren A Owens
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Tara Fish
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Hyojin Kim
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Theodore W Thannhauser
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA
| | - Edgar B Cahoon
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY 14853 USA.,Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853 USA
| |
Collapse
|
49
|
Lee SY, Jang SJ, Jeong HB, Lee SY, Venkatesh J, Lee JH, Kwon JK, Kang BC. A mutation in Zeaxanthin epoxidase contributes to orange coloration and alters carotenoid contents in pepper fruit (Capsicum annuum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1692-1707. [PMID: 33825226 DOI: 10.1111/tpj.15264] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/16/2021] [Accepted: 03/31/2021] [Indexed: 05/28/2023]
Abstract
Phytoene synthase (PSY1), capsanthin-capsorubin synthase (CCS), and pseudo-response regulator 2 (PRR2) are three major genes controlling fruit color in pepper (Capsicum spp.). However, the diversity of fruit color in pepper cannot be completely explained by these three genes. Here, we used an F2 population derived from Capsicum annuum 'SNU-mini Orange' (SO) and C. annuum 'SNU-mini Yellow' (SY), both harboring functional PSY1 and mutated CCS, and observed that yellow color was dominant over orange color. We performed genotyping-by-sequencing and mapped the genetic locus to a 6.8-Mb region on chromosome 2, which we named CaOr. We discovered a splicing mutation in the zeaxanthin epoxidase (ZEP) gene within this region leading to a premature stop codon. HPLC analysis showed that SO contained higher amounts of zeaxanthin and total carotenoids in mature fruits than SY. A color complementation assay using Escherichia coli harboring carotenoid biosynthetic genes showed that the mutant ZEP protein had reduced enzymatic activity. Transmission electron microscopy of plastids revealed that the ZEP mutation affected plastid development with more rod-shaped inner membrane structures in chromoplasts of mature SO fruits. To validate the role of ZEP in fruit color formation, we performed virus-induced gene silencing of ZEP in the yellow-fruit cultivar C. annuum 'Micropep Yellow' (MY). The silencing of ZEP caused significant changes in the ratios of zeaxanthin to its downstream products and increased total carotenoid contents. Thus, we conclude that the ZEP genotype can determine orange or yellow mature fruit color in pepper.
Collapse
Affiliation(s)
- Seo-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - So-Jeong Jang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hyo-Bong Jeong
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Se-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jelli Venkatesh
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Joung-Ho Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Jin-Kyung Kwon
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
50
|
Loayza FE, Brecht JK, Simonne AH, Plotto A, Baldwin EA, Bai J, Lon-Kan E. Color biogenesis data of tomatoes treated with hot-water and high temperature ethylene treatments. Data Brief 2021; 36:107123. [PMID: 34041320 PMCID: PMC8142041 DOI: 10.1016/j.dib.2021.107123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/20/2021] [Accepted: 04/28/2021] [Indexed: 11/07/2022] Open
Abstract
Controlled postharvest stresses were used to induce the synthesis of carotenoids in tomato fruit. The accumulation of carotenoids was observed by the change of color of the tomato fruit from green to red. This change of color was monitored by the a* value and hue of the CIELAB* color coordinates in which the a* value increased following a sigmoidal curve and hue decreased in a similar trend. This sigmoidal curve marked the transition from chloroplasts to chromoplasts; in other words, the change of color tracked the disorganization or degreening, which was simultaneously accompanied by chromoplast biogenesis or red color development when tomatoes were at the Turning stage of development. The color data and photographic images provides information on how heat stress affected the synchronicity of chloroplast disorganization and chromoplast biogenesis in the early developmental stages of tomato ripening.
Collapse
Affiliation(s)
- Francisco E Loayza
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690, United States
| | - Jeffrey K Brecht
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690, United States
| | - Amarat H Simonne
- Family, Youth and Community Sciences Department, University of Florida, Gainesville, FL 32611-0310, United States
| | - Anne Plotto
- U.S. Horticultural Research Laboratory, USDA ARS, Fort Pierce, FL 34945, United States
| | - Elizabeth A Baldwin
- U.S. Horticultural Research Laboratory, USDA ARS, Fort Pierce, FL 34945, United States
| | - Jinhe Bai
- U.S. Horticultural Research Laboratory, USDA ARS, Fort Pierce, FL 34945, United States
| | - Elena Lon-Kan
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611-0690, United States
| |
Collapse
|