1
|
Hall SCL, Hardy DJ, Bragginton ÉC, Johnston H, Onose T, Holyfield R, Sridhar P, Knowles TJ, Clifton LA. Distance tuneable integral membrane protein containing floating bilayers via in situ directed self-assembly. NANOSCALE 2024; 16:13503-13515. [PMID: 38940744 PMCID: PMC11256219 DOI: 10.1039/d3nr04622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
Model membranes allow for structural and biophysical studies on membrane biochemistry at the molecular level, albeit on systems of reduced complexity which can limit biological accuracy. Floating supported bilayers offer a means of producing planar lipid membrane models not adhered to a surface, which allows for improved accuracy compared to other model membranes. Here we communicate the incorporation of an integral membrane protein complex, the multidomain β-barrel assembly machinery (Bam), into our recently developed in situ self-assembled floating supported bilayers. Using neutron reflectometry and quartz crystal microbalance measurements we show this sample system can be fabricated using a two-step self-assembly process. We then demonstrate the complexity of the model membrane and tuneability of the membrane-to-surface distance using changes in the salt concentration of the bulk solution. Results demonstrate an easily fabricated, biologically accurate and tuneable membrane assay system which can be utilized for studies on integral membrane proteins within their native lipid matrix.
Collapse
Affiliation(s)
- Stephen C L Hall
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, UK.
| | - David J Hardy
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Éilís C Bragginton
- Electron Bio-Imaging Centre (eBIC), Diamond Light Source Ltd, Diamond House, Harwell Science and Innovation Campus, OX11 0DE, UK
| | - Hannah Johnston
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Tudor Onose
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Rachel Holyfield
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Pooja Sridhar
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy J Knowles
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, UK.
| |
Collapse
|
2
|
Hermansen S, Linke D, Leo JC. Transmembrane β-barrel proteins of bacteria: From structure to function. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2022; 128:113-161. [PMID: 35034717 DOI: 10.1016/bs.apcsb.2021.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The outer membrane of Gram-negative bacteria is a specialized organelle conferring protection to the cell against various environmental stresses and resistance to many harmful compounds. The outer membrane has a number of unique features, including an asymmetric lipid bilayer, the presence of lipopolysaccharides and an individual proteome. The vast majority of the integral transmembrane proteins in the outer membrane belongs to the family of β-barrel proteins. These evolutionarily related proteins share a cylindrical, anti-parallel β-sheet core fold spanning the outer membrane. The loops and accessory domains attached to the β-barrel allow for a remarkable versatility in function for these proteins, ranging from diffusion pores and transporters to enzymes and adhesins. We summarize the current knowledge on β-barrel structure and folding and give an overview of their functions, evolution, and potential as drug targets.
Collapse
Affiliation(s)
- Simen Hermansen
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Dirk Linke
- Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Jack C Leo
- Antimicrobial resistance, Omics and Microbiota Group, Department of Biosciences, Nottingham Trent University, Nottingham, United Kingdom.
| |
Collapse
|
3
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
4
|
Marty MT. Illuminating Individual Membrane Protein Complexes with Mass Photometry. Chem 2021. [DOI: 10.1016/j.chempr.2020.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Birch J, Cheruvara H, Gamage N, Harrison PJ, Lithgo R, Quigley A. Changes in Membrane Protein Structural Biology. BIOLOGY 2020; 9:E401. [PMID: 33207666 PMCID: PMC7696871 DOI: 10.3390/biology9110401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Membrane proteins are essential components of many biochemical processes and are important pharmaceutical targets. Membrane protein structural biology provides the molecular rationale for these biochemical process as well as being a highly useful tool for drug discovery. Unfortunately, membrane protein structural biology is a difficult area of study due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Despite this instability, membrane protein structural biology has made great leaps over the last fifteen years. Today, the landscape is almost unrecognisable. The numbers of available atomic resolution structures have increased 10-fold though advances in crystallography and more recently by cryo-electron microscopy. These advances in structural biology were achieved through the efforts of many researchers around the world as well as initiatives such as the Membrane Protein Laboratory (MPL) at Diamond Light Source. The MPL has helped, provided access to and contributed to advances in protein production, sample preparation and data collection. Together, these advances have enabled higher resolution structures, from less material, at a greater rate, from a more diverse range of membrane protein targets. Despite this success, significant challenges remain. Here, we review the progress made and highlight current and future challenges that will be overcome.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Peter J. Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Ryan Lithgo
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, Leicestershire, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; (J.B.); (H.C.); (N.G.); (P.J.H.); (R.L.)
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| |
Collapse
|
6
|
Gerlach L, Gholami O, Schürmann N, Kleinschmidt JH. Folding of β-Barrel Membrane Proteins into Lipid Membranes by Site-Directed Fluorescence Spectroscopy. Methods Mol Biol 2020; 2003:465-492. [PMID: 31218630 DOI: 10.1007/978-1-4939-9512-7_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Protein-lipid interactions are important for folding and membrane insertion of integral membrane proteins that are composed either of α-helical or of β-barrel structure in their transmembrane domains. While α-helical transmembrane proteins fold co-translationally while they are synthesized by a ribosome, β-barrel transmembrane proteins (β-TMPs) fold and insert posttranslationally-in bacteria after translocation across the cytoplasmic membrane, in cell organelles of eukaryotes after import across the outer membrane of the organelle. β-TMPs can be unfolded in aqueous solutions of chaotropic denaturants like urea and spontaneously refold upon denaturant dilution in the presence of preformed lipid bilayers. This facilitates studies on lipid interactions during folding into lipid bilayers. For several β-TMPs, the kinetics of folding has been reported as strongly dependent on protein-lipid interactions. The kinetics of adsorption/insertion and folding of β-TMPs can be monitored by fluorescence spectroscopy. These fluorescence methods are even more powerful when combined with site-directed mutagenesis for the preparation of mutants of a β-TMP that are site-specifically labeled with a fluorophore or a fluorophore and fluorescence quencher or fluorescence resonance energy acceptor. Single tryptophan or single cysteine mutants of the β-TMP allow for the investigation of local protein-lipid interactions, at specific regions within the protein. To examine the structure formation of β-TMPs in a lipid environment, fluorescence spectroscopy has been used for double mutants of β-TMPs that contain a fluorescent tryptophan and a spin-label, covalently attached to a cysteine as a fluorescence quencher. The sites of mutation are selected so that the tryptophan is in close proximity to the quencher at the cysteine only when the β-TMP is folded. In a folding experiment, the evolution of fluorescence quenching as a function of time at specific sites within the protein can provide important information on the folding mechanism of the β-TMP. Here, we report protocols to examine membrane protein folding for two β-TMPs in a lipid environment, the outer membrane protein A from Escherichia coli, OmpA, and the voltage-dependent anion-selective channel, human isoform 1, hVDAC1, from mitochondria.
Collapse
Affiliation(s)
- Lisa Gerlach
- Department of Biophysics, Institute of Biology, FB 10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Omkolsum Gholami
- Department of Biophysics, Institute of Biology, FB 10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Nicole Schürmann
- Department of Biophysics, Institute of Biology, FB 10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany
| | - Jörg H Kleinschmidt
- Department of Biophysics, Institute of Biology, FB 10 and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), University of Kassel, Kassel, Germany.
| |
Collapse
|
7
|
Azouz M, Gonin M, Fiedler S, Faherty J, Decossas M, Cullin C, Villette S, Lafleur M, D Alves I, Lecomte S, Ciaccafava A. Microfluidic diffusional sizing probes lipid nanodiscs formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183215. [PMID: 32061645 DOI: 10.1016/j.bbamem.2020.183215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022]
Abstract
The biophysical characterisation of membrane proteins and their interactions with lipids in native membrane habitat remains a major challenge. Indeed, traditional solubilisation procedures with detergents often causes the loss of native lipids surrounding membrane proteins, which ultimately impacts structural and functional properties. Recently, copolymer-based nanodiscs have emerged as a highly promising tool, thanks to their unique ability of solubilising membrane proteins directly from native membranes, in the shape of discoidal patches of lipid bilayers. While this methodology finally set us free from the use of detergents, some limitations are however associated with the use of such copolymers. Among them, one can cite the tedious control of the nanodiscs size, their instability in basic pH and in the presence of divalent cations. In this respect, many variants of the widely used Styrene Maleic Acid (SMA) copolymer have been developed to specifically address those limitations. With the multiplication of new SMA copolymer variants and the growing interest in copolymer-based nanodiscs for the characterisation of membrane proteins, there is a need to better understand and control their formation. Among the techniques used to characterise the solubilisation of lipid bilayer by amphipathic molecules, cryo-TEM, 31P NMR, DLS, ITC and fluorescence spectroscopy are the most widely used, with a consensus made in the sense that a combination of these techniques is required. In this work, we propose to evaluate the capacity of Microfluidic Diffusional Sizing (MDS) as a new method to follow copolymer nanodiscs formation. Originally designed to determine protein size through laminar flow diffusion, we present a novel application along with a protocol development to observe nanodiscs formation by MDS. We show that MDS allows to precisely measure the size of nanodiscs, and to determine the copolymer/lipid ratio at the onset of solubilisation. Finally, we use MDS to characterise peptide/nanodisc interaction. The technique shows a promising ability to highlight the pivotal role of lipids in promoting interactions through a case study with an aggregating peptide. This confirmed the relevance of using the MDS and nanodiscs as biomimetic models for such investigations.
Collapse
Affiliation(s)
- Mehdi Azouz
- Univ Bordeaux, CNRS, CBMN UMR 5248, Bat B14 Allée Geoffroy St Hilaire, F-33600 Pessac, France
| | - Mathilde Gonin
- Univ Bordeaux, CNRS, CBMN UMR 5248, Bat B14 Allée Geoffroy St Hilaire, F-33600 Pessac, France
| | - Sebastian Fiedler
- Fluidic Analytics Ltd, Unit A, The Paddocks Business Centre, Cherry Hinton Rd, Cambridge CB1 8DH, United Kingdom
| | - Jonathan Faherty
- Fluidic Analytics Ltd, Unit A, The Paddocks Business Centre, Cherry Hinton Rd, Cambridge CB1 8DH, United Kingdom
| | - Marion Decossas
- Univ Bordeaux, CNRS, CBMN UMR 5248, Bat B14 Allée Geoffroy St Hilaire, F-33600 Pessac, France
| | - Christophe Cullin
- Univ Bordeaux, CNRS, CBMN UMR 5248, Bat B14 Allée Geoffroy St Hilaire, F-33600 Pessac, France
| | - Sandrine Villette
- Univ Bordeaux, CNRS, CBMN UMR 5248, Bat B14 Allée Geoffroy St Hilaire, F-33600 Pessac, France
| | - Michel Lafleur
- Department of chemistry, Université de Montréal, 2900, Édouard-Montpetit blvd., Montréal, Québec, Canada
| | - Isabel D Alves
- Univ Bordeaux, CNRS, CBMN UMR 5248, Bat B14 Allée Geoffroy St Hilaire, F-33600 Pessac, France
| | - Sophie Lecomte
- Univ Bordeaux, CNRS, CBMN UMR 5248, Bat B14 Allée Geoffroy St Hilaire, F-33600 Pessac, France.
| | - Alexandre Ciaccafava
- Univ Bordeaux, CNRS, CBMN UMR 5248, Bat B14 Allée Geoffroy St Hilaire, F-33600 Pessac, France.
| |
Collapse
|
8
|
Wolfe AJ, Parella KJ, Movileanu L. High-Throughput Screening of Protein-Detergent Complexes Using Fluorescence Polarization Spectroscopy. ACTA ACUST UNITED AC 2019; 97:e96. [PMID: 31517448 DOI: 10.1002/cpps.96] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This article provides detailed protocols for a high-throughput fluorescence polarization (FP) spectroscopy approach to disentangle the interactions of membrane proteins with solubilizing detergents. Existing techniques for examining the membrane protein-detergent complex (PDC) interactions are low throughput and require high amounts of proteins. Here, we describe a 96-well analytical approach, which facilitates a scalable analysis of the PDC interactions at low-nanomolar concentrations of membrane proteins in native solutions. At detergent concentrations much greater than the equilibrium dissociation constant of the PDC, Kd , the FP anisotropy reaches a saturated value, so it is independent of the detergent concentration. On the contrary, at detergent concentrations comparable with or lower than the Kd , the FP anisotropy readout undergoes a time-dependent decrease, exhibiting a sensitive and specific detergent-dissociation signature. Our approach can also be used for determining the kinetic rate constants of association and dissociation. With further development, these protocols might be used in various arenas of membrane protein research that pertain to extraction, solubilization, and stabilization. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Ichor Therapeutics, Inc., LaFayette, New York.,Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Kyle J Parella
- Ichor Therapeutics, Inc., LaFayette, New York.,Department of Chemistry, State University of New York College of Environmental Science and Forestry, Syracuse, New York
| | - Liviu Movileanu
- Department of Physics, Syracuse University, Syracuse, New York.,Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, New York
| |
Collapse
|
9
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
10
|
Perry TN, Souabni H, Rapisarda C, Fronzes R, Giusti F, Popot JL, Zoonens M, Gubellini F. BAmSA: Visualising transmembrane regions in protein complexes using biotinylated amphipols and electron microscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:466-477. [DOI: 10.1016/j.bbamem.2018.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022]
|
11
|
Flayhan A, Mertens HDT, Ural-Blimke Y, Martinez Molledo M, Svergun DI, Löw C. Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research. Structure 2018; 26:345-355.e5. [PMID: 29413323 PMCID: PMC5807053 DOI: 10.1016/j.str.2018.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/27/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022]
Abstract
Saposin-derived lipid nanoparticles (SapNPs) are a new alternative tool for membrane protein reconstitution. Here we demonstrate the potential and advantages of SapNPs. We show that SapA has the lowest lipid specificity for SapNP formation. These nanoparticles are modular and offer a tunable range of size and composition depending on the stoichiometric ratio of lipid and saposin components. They are stable and exhibit features typical of lipid-bilayer systems. Our data suggest that SapNPs are versatile and can adapt to membrane proteins of various sizes and architectures. Using SapA and various types of lipids we could reconstitute membrane proteins of different transmembrane cross-sectional areas (from 14 to 56 transmembrane α helices). SapNP-reconstituted proteins bound their respective ligands and were more heat stable compared with the detergent-solubilized form. Moreover, SapNPs encircle membrane proteins in a compact way, allowing structural investigations of small membrane proteins in a detergent-free environment using small-angle X-ray scattering. SapA shows the lowest lipid specificity for SapNP formation SapNPs are versatile and can adapt to MPs of various sizes and architectures SapNP-reconstituted MPs are more stable than in detergent SapNPs encapsulate MPs in a compact manner
Collapse
Affiliation(s)
- Ali Flayhan
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Haydyn D T Mertens
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Yonca Ural-Blimke
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Maria Martinez Molledo
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB), DESY, Notkestrasse 85, 22607 Hamburg, Germany; European Molecular Biology Laboratory Hamburg, Notkestrasse 85, 22607 Hamburg, Germany; Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Scheeles väg 2, 17177 Stockholm, Sweden.
| |
Collapse
|
12
|
Arunmanee W, Heenan RK, Lakey JH. Determining the amphipol distribution within membrane-protein fibre samples using small-angle neutron scattering. Acta Crystallogr D Struct Biol 2018; 74:1192-1199. [PMID: 30605133 PMCID: PMC6317593 DOI: 10.1107/s205979831800476x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/22/2018] [Indexed: 11/10/2022] Open
Abstract
Detergent micelles can solubilize membrane proteins, but there is always a need for a pool of free detergent at the critical micellar concentration to maintain the micelle-monomer equilibrium. Amphipol polymeric surfactants (APols) have been developed to replace conventional detergents in membrane-protein studies, but the role of free amphipol is unclear. It has previously been shown that the removal of free APol causes monodisperse outer membrane protein F (OmpF) to form long filaments. However, any remaining APol could not be resolved using electron microscopy. Here, small-angle neutron scattering with isotope contrast matching was used to separately determine the distributions of membrane protein and amphipol in a mixed sample. The data showed that after existing free amphipol had been removed from monodisperse complexes, a new equilibrium was established between protein-amphipol filaments and a pool of newly liberated free amphipol. The filaments consisted of OmpF proteins surrounded by a belt of Apol, whilst free oblate spheroid micelles of Apol were also present. No indications of long-range order were observed, suggesting a lack of defined structure in the filaments.
Collapse
Affiliation(s)
- Wanatchaporn Arunmanee
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Richard K Heenan
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Didcot OX11 0QX, England
| | - Jeremy H Lakey
- Institute for Cell and Molecular Bioscience, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, England
| |
Collapse
|
13
|
Ireland SM, Sula A, Wallace B. Thermal melt circular dichroism spectroscopic studies for identifying stabilising amphipathic molecules for the voltage-gated sodium channel NavMs. Biopolymers 2018; 109:e23067. [PMID: 28925040 PMCID: PMC6175354 DOI: 10.1002/bip.23067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/17/2017] [Accepted: 08/23/2017] [Indexed: 11/10/2022]
Abstract
Purified integral membrane proteins require amphipathic molecules to maintain their solubility in aqueous solutions. These complexes, in turn, are used in studies to characterise the protein structures by a variety of biophysical and structural techniques, including spectroscopy, crystallography, and cryo-electron microscopy. Typically the amphilphiles used have been detergent molecules, but more recently they have included amphipols, which are polymers of different sizes and compositions designed to create smaller, more well-defined solubilised forms of the membrane proteins. In this study we used circular dichroism spectroscopy to compare the secondary structures and thermal stabilities of the NavMs voltage-gated sodium channel in different amphipols and detergents as a means of identifying amphipathic environments that maximally maintain the protein structure whilst providing a stabilising environment. These types of characterisations also have potential as means of screening for sample types that may be more suitable for crystallisation and/or cryo-electron microscopy structure determinations.
Collapse
Affiliation(s)
- Sam M. Ireland
- Institute of Structural and Molecular Biology, Birkbeck College, University of LondonLondonUnited Kingdom
| | - Altin Sula
- Institute of Structural and Molecular Biology, Birkbeck College, University of LondonLondonUnited Kingdom
| | - B.A. Wallace
- Institute of Structural and Molecular Biology, Birkbeck College, University of LondonLondonUnited Kingdom
| |
Collapse
|
14
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
15
|
Birch J, Axford D, Foadi J, Meyer A, Eckhardt A, Thielmann Y, Moraes I. The fine art of integral membrane protein crystallisation. Methods 2018; 147:150-162. [PMID: 29778646 DOI: 10.1016/j.ymeth.2018.05.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/13/2018] [Accepted: 05/15/2018] [Indexed: 11/29/2022] Open
Abstract
Integral membrane proteins are among the most fascinating and important biomolecules as they play a vital role in many biological functions. Knowledge of their atomic structures is fundamental to the understanding of their biochemical function and key in many drug discovery programs. However, over the years, structure determination of integral membrane proteins has proven to be far from trivial, hence they are underrepresented in the protein data bank. Low expression levels, insolubility and instability are just a few of the many hurdles one faces when studying these proteins. X-ray crystallography has been the most used method to determine atomic structures of membrane proteins. However, the production of high quality membrane protein crystals is always very challenging, often seen more as art than a rational experiment. Here we review valuable approaches, methods and techniques to successful membrane protein crystallisation.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK; Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Danny Axford
- Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK
| | - James Foadi
- Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Arne Meyer
- XtalConcepts GmbH, Schnackenburgallee 13, 22525 Hamburg, Germany
| | - Annette Eckhardt
- XtalConcepts GmbH, Schnackenburgallee 13, 22525 Hamburg, Germany
| | - Yvonne Thielmann
- Max Planck Institute of Biophysics, Molecular Membrane Biology, Max-von-Laue-Strasse 3, 60438 Frankfurt, Germany
| | - Isabel Moraes
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK; Diamond Light Source, Harwell Science and Innovation Campus, Oxfordshire OX11 0DE, UK; National Physical Laboratory, Hampton Road, Teddington TW11 0LW, UK.
| |
Collapse
|
16
|
Le Bon C, Marconnet A, Masscheleyn S, Popot JL, Zoonens M. Folding and stabilizing membrane proteins in amphipol A8-35. Methods 2018; 147:95-105. [PMID: 29678587 DOI: 10.1016/j.ymeth.2018.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023] Open
Abstract
Membrane proteins (MPs) are important pharmacological targets because of their involvement in many essential cellular processes whose dysfunction can lead to a large variety of diseases. A detailed knowledge of the structure of MPs and the molecular mechanisms of their activity is essential to the design of new therapeutic agents. However, studying MPs in vitro is challenging, because it generally implies their overexpression under a functional form, followed by their extraction from membranes and purification. Targeting an overexpressed MP to a membrane is often toxic and expression yields tend to be limited. One alternative is the formation of inclusion bodies (IBs) in the cytosol of the cell, from which MPs need then to be folded to their native conformation before structural and functional analysis can be contemplated. Folding MPs targeted to IBs is a difficult task. Specially designed amphipathic polymers called 'amphipols' (APols), which have been initially developed with the view of improving the stability of MPs in aqueous solutions compared to detergents, can be used to fold both α-helical and β-barrel MPs. APols represent an interesting novel amphipathic medium, in which high folding yields can be achieved. In this review, the properties of APol A8-35 and of the complexes they form with MPs are summarized. An overview of the most important studies reported so far using A8-35 to fold MPs is presented. Finally, from a practical point of view, a detailed description of the folding and trapping methods is given.
Collapse
Affiliation(s)
- Christel Le Bon
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Anaïs Marconnet
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Sandrine Masscheleyn
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Jean-Luc Popot
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Manuela Zoonens
- CNRS/Université Paris-7 UMR 7099, Institut de Biologie Physico-Chimique, 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France.
| |
Collapse
|
17
|
McKay MJ, Afrose F, Koeppe RE, Greathouse DV. Helix formation and stability in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:2108-2117. [PMID: 29447916 DOI: 10.1016/j.bbamem.2018.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/05/2023]
Abstract
In this article we review current understanding of basic principles for the folding of membrane proteins, focusing on the more abundant alpha-helical class. Membrane proteins, vital to many biological functions and implicated in numerous diseases, fold into their active conformations in the complex environment of the cell bilayer membrane. While many membrane proteins rely on the translocon and chaperone proteins to fold correctly, others can achieve their functional form in the absence of any translation apparatus or other aides. Nevertheless, the spontaneous folding process is not well understood at the molecular level. Recent findings suggest that helix fraying and loop formation may be important for overall structure, dynamics and regulation of function. Several types of membrane helices with ionizable amino acids change their topology with pH. Additionally we note that some peptides, including many that are rich in arginine, and a particular analogue of gramicidin, are able passively to translocate across cell membranes. The findings indicate that a final protein structure in a lipid-bilayer membrane is sequence-based, with lipids contributing to stability and regulation. While much progress has been made toward understanding the folding process for alpha-helical membrane proteins, it remains a work in progress. This article is part of a Special Issue entitled: Emergence of Complex Behavior in Biomembranes edited by Marjorie Longo.
Collapse
Affiliation(s)
- Matthew J McKay
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Fahmida Afrose
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roger E Koeppe
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Denise V Greathouse
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
18
|
Schiffrin B, Brockwell DJ, Radford SE. Outer membrane protein folding from an energy landscape perspective. BMC Biol 2017; 15:123. [PMID: 29268734 PMCID: PMC5740924 DOI: 10.1186/s12915-017-0464-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
19
|
Wolfe AJ, Si W, Zhang Z, Blanden AR, Hsueh YC, Gugel JF, Pham B, Chen M, Loh SN, Rozovsky S, Aksimentiev A, Movileanu L. Quantification of Membrane Protein-Detergent Complex Interactions. J Phys Chem B 2017; 121:10228-10241. [PMID: 29035562 DOI: 10.1021/acs.jpcb.7b08045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although fundamentally significant in structural, chemical, and membrane biology, the interfacial protein-detergent complex (PDC) interactions have been modestly examined because of the complicated behavior of both detergents and membrane proteins in aqueous phase. Membrane proteins are prone to unproductive aggregation resulting from poor detergent solvation, but the participating forces in this phenomenon remain ambiguous. Here, we show that using rational membrane protein design, targeted chemical modification, and steady-state fluorescence polarization spectroscopy, the detergent desolvation of membrane proteins can be quantitatively evaluated. We demonstrate that depleting the detergent in the sample well produced a two-state transition of membrane proteins between a fully detergent-solvated state and a detergent-desolvated state, the nature of which depended on the interfacial PDC interactions. Using a panel of six membrane proteins of varying hydrophobic topography, structural fingerprint, and charge distribution on the solvent-accessible surface, we provide direct experimental evidence for the contributions of the electrostatic and hydrophobic interactions to the protein solvation properties. Moreover, all-atom molecular dynamics simulations report the major contribution of the hydrophobic forces exerted at the PDC interface. This semiquantitative approach might be extended in the future to include studies of the interfacial PDC interactions of other challenging membrane protein systems of unknown structure. This would have practical importance in protein extraction, solubilization, stabilization, and crystallization.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University , 111 College Place, Syracuse, New York 13244-4100, United States
| | - Wei Si
- Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments and School of Mechanical Engineering, Southeast University , Nanjing 210096, China.,Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Zhengqi Zhang
- Department of Chemistry and Biochemistry, University of Delaware , 136 Brown Laboratory, Newark, Delaware 19716, United States
| | - Adam R Blanden
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University , 4249 Weiskotten Hall, 766 Irving Av., Syracuse, New York 13210, United States
| | - Yi-Ching Hsueh
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Jack F Gugel
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States
| | - Bach Pham
- Department of Chemistry, University of Massachusetts , 820 LGRT, 710 North Pleasant Street, Amherst, Massachusetts 01003-9336, United States
| | - Min Chen
- Department of Chemistry, University of Massachusetts , 820 LGRT, 710 North Pleasant Street, Amherst, Massachusetts 01003-9336, United States
| | - Stewart N Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University , 4249 Weiskotten Hall, 766 Irving Av., Syracuse, New York 13210, United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware , 136 Brown Laboratory, Newark, Delaware 19716, United States
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign , Urbana, Illinois 61801, United States
| | - Liviu Movileanu
- Department of Physics, Syracuse University , 201 Physics Building, Syracuse, New York 13244-1130, United States.,Structural Biology, Biochemistry, and Biophysics Program, Syracuse University , 111 College Place, Syracuse, New York 13244-4100, United States.,Department of Biomedical and Chemical Engineering, Syracuse University , 329 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
20
|
Chaturvedi D, Mahalakshmi R. Transmembrane β-barrels: Evolution, folding and energetics. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:2467-2482. [PMID: 28943271 DOI: 10.1016/j.bbamem.2017.09.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/23/2022]
Abstract
The biogenesis of transmembrane β-barrels (outer membrane proteins, or OMPs) is an elaborate multistep orchestration of the nascent polypeptide with translocases, barrel assembly machinery, and helper chaperone proteins. Several theories exist that describe the mechanism of chaperone-assisted OMP assembly in vivo and unassisted (spontaneous) folding in vitro. Structurally, OMPs of bacterial origin possess even-numbered strands, while mitochondrial β-barrels are even- and odd-stranded. Several underlying similarities between prokaryotic and eukaryotic β-barrels and their folding machinery are known; yet, the link in their evolutionary origin is unclear. While OMPs exhibit diversity in sequence and function, they share similar biophysical attributes and structure. Similarly, it is important to understand the intricate OMP assembly mechanism, particularly in eukaryotic β-barrels that have evolved to perform more complex functions. Here, we deliberate known facets of β-barrel evolution, folding, and stability, and attempt to highlight outstanding questions in β-barrel biogenesis and proteostasis.
Collapse
Affiliation(s)
- Deepti Chaturvedi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India.
| |
Collapse
|
21
|
Wolfe AJ, Hsueh YC, Blanden AR, Mohammad MM, Pham B, Thakur AK, Loh SN, Chen M, Movileanu L. Interrogating Detergent Desolvation of Nanopore-Forming Proteins by Fluorescence Polarization Spectroscopy. Anal Chem 2017; 89:8013-8020. [PMID: 28650154 PMCID: PMC5558884 DOI: 10.1021/acs.analchem.7b01339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Understanding how membrane proteins interact with detergents is of fundamental and practical significance in structural and chemical biology as well as in nanobiotechnology. Current methods for inspecting protein-detergent complex (PDC) interfaces require high concentrations of protein and are of low throughput. Here, we describe a scalable, spectroscopic approach that uses nanomolar protein concentrations in native solutions. This approach, which is based on steady-state fluorescence polarization (FP) spectroscopy, kinetically resolves the dissociation of detergents from membrane proteins and protein unfolding. For satisfactorily solubilizing detergents, at concentrations much greater than the critical micelle concentration (CMC), the fluorescence anisotropy was independent of detergent concentration. In contrast, at detergent concentrations comparable with or below the CMC, the anisotropy readout underwent a time-dependent decrease, showing a specific and sensitive protein unfolding signature. Functionally reconstituted membrane proteins into a bilayer membrane confirmed predictions made by these FP-based determinations with respect to varying refolding conditions. From a practical point of view, this 96-well analytical approach will facilitate a massively parallel assessment of the PDC interfacial interactions under a fairly broad range of micellar and environmental conditions. We expect that these studies will potentially accelerate research in membrane proteins pertaining to their extraction, solubilization, stabilization, and crystallization, as well as reconstitution into bilayer membranes.
Collapse
Affiliation(s)
- Aaron J. Wolfe
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
| | - Yi-Ching Hsueh
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Adam R. Blanden
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Av., Syracuse, New York 13210, USA
| | - Mohammad M. Mohammad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003-9336, USA
| | - Avinash K. Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
| | - Stewart N. Loh
- Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, 4249 Weiskotten Hall, 766 Irving Av., Syracuse, New York 13210, USA
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, Massachusetts 01003-9336, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, USA
| |
Collapse
|
22
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
23
|
B Kumar R, Zhu L, Hebert H, Jegerschöld C. Method to Visualize and Analyze Membrane Interacting Proteins by Transmission Electron Microscopy. J Vis Exp 2017. [PMID: 28287545 DOI: 10.3791/55148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Monotopic proteins exert their function when attached to a membrane surface, and such interactions depend on the specific lipid composition and on the availability of enough area to perform the function. Nanodiscs are used to provide a membrane surface of controlled size and lipid content. In the absence of bound extrinsic proteins, sodium phosphotungstate-stained nanodiscs appear as stacks of coins when viewed from the side by transmission electron microscopy (TEM). This protocol is therefore designed to intentionally promote stacking; consequently, the prevention of stacking can be interpreted as the binding of the membrane-binding protein to the nanodisc. In a further step, the TEM images of the protein-nanodisc complexes can be processed with standard single-particle methods to yield low-resolution structures as a basis for higher resolution cryoEM work. Furthermore, the nanodiscs provide samples suitable for either TEM or non-denaturing gel electrophoresis. To illustrate the method, Ca2+-induced binding of 5-lipoxygenase on nanodiscs is presented.
Collapse
Affiliation(s)
| | - Lin Zhu
- School of Technology and Health, KTH Royal Institute of Technology
| | - Hans Hebert
- Department of Biosciences and Nutrition, Karolinska Institutet; School of Technology and Health, KTH Royal Institute of Technology
| | - Caroline Jegerschöld
- Department of Biosciences and Nutrition, Karolinska Institutet; School of Technology and Health, KTH Royal Institute of Technology; ;
| |
Collapse
|
24
|
Veugelen S, Dewilde M, De Strooper B, Chávez-Gutiérrez L. Screening and Characterization Strategies for Nanobodies Targeting Membrane Proteins. Methods Enzymol 2016; 584:59-97. [PMID: 28065273 DOI: 10.1016/bs.mie.2016.10.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The study of membrane protein function and structure requires their successful detection, expression, solubilization, and/or reconstitution, which poses a challenging task and relies on the availability of suitable tools. Several research groups have successfully applied Nanobodies in the purification, as well as the functional and structural characterization of membrane proteins. Nanobodies are small, single-chain antibody fragments originating from camelids presenting on average a longer CDR3 which enables them to bind in cavities and clefts (such as active and allosteric sites). Notably, Nanobodies generally bind conformational epitopes making them very interesting tools to stabilize, dissect, and characterize specific protein conformations. In the clinic, several Nanobodies are under evaluation either as potential drug candidates or as diagnostic tools. In recent years, we have successfully generated high-affinity, conformation-sensitive anti-γ-secretase Nanobodies. γ-Secretase is a multimeric membrane protease involved in processing of the amyloid precursor protein with high clinical relevance as mutations in its catalytic subunit (Presenilin) cause early-onset Alzheimer's disease. Advancing our knowledge on the mechanisms governing γ-secretase intramembrane proteolysis through various strategies may lead to novel therapeutic avenues for Alzheimer's disease. In this chapter, we present the strategies we have developed and applied for the screening and characterization of anti-γ-secretase Nanobodies. These protocols could be of help in the generation of Nanobodies targeting other membrane proteins.
Collapse
Affiliation(s)
- S Veugelen
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - M Dewilde
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium
| | - B De Strooper
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium; UCL Institute of Neurology, London, United Kingdom
| | - L Chávez-Gutiérrez
- University of Leuven, Leuven, Belgium; VIB Center for Brain and Disease, Leuven, Belgium.
| |
Collapse
|
25
|
Mazhab-Jafari MT, Rubinstein JL. Cryo-EM studies of the structure and dynamics of vacuolar-type ATPases. SCIENCE ADVANCES 2016; 2:e1600725. [PMID: 27532044 PMCID: PMC4985227 DOI: 10.1126/sciadv.1600725] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/15/2016] [Indexed: 06/06/2023]
Abstract
Electron cryomicroscopy (cryo-EM) has significantly advanced our understanding of molecular structure in biology. Recent innovations in both hardware and software have made cryo-EM a viable alternative for targets that are not amenable to x-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. Cryo-EM has even become the method of choice in some situations where x-ray crystallography and NMR spectroscopy are possible but where cryo-EM can determine structures at higher resolution or with less time or effort. Rotary adenosine triphosphatases (ATPases) are crucial to the maintenance of cellular homeostasis. These enzymes couple the synthesis or hydrolysis of adenosine triphosphate to the use or production of a transmembrane electrochemical ion gradient, respectively. However, the membrane-embedded nature and conformational heterogeneity of intact rotary ATPases have prevented their high-resolution structural analysis to date. Recent application of cryo-EM methods to the different types of rotary ATPase has led to sudden advances in understanding the structure and function of these enzymes, revealing significant conformational heterogeneity and characteristic transmembrane α helices that are highly tilted with respect to the membrane. In this Review, we will discuss what has been learned recently about rotary ATPase structure and function, with a particular focus on the vacuolar-type ATPases.
Collapse
Affiliation(s)
- Mohammad T. Mazhab-Jafari
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
| | - John L. Rubinstein
- Molecular Structure and Function Program, The Hospital for Sick Children Research Institute, 686 Bay Street, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, The University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada
- Department of Medical Biophysics, The University of Toronto, 101 College Street, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
26
|
Rawson S, Davies S, Lippiat JD, Muench SP. The changing landscape of membrane protein structural biology through developments in electron microscopy. Mol Membr Biol 2016; 33:12-22. [PMID: 27608730 PMCID: PMC5206964 DOI: 10.1080/09687688.2016.1221533] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 07/14/2016] [Accepted: 07/19/2016] [Indexed: 11/30/2022]
Abstract
Membrane proteins are ubiquitous in biology and are key targets for therapeutic development. Despite this, our structural understanding has lagged behind that of their soluble counterparts. This review provides an overview of this important field, focusing in particular on the recent resurgence of electron microscopy (EM) and the increasing role it has to play in the structural studies of membrane proteins, and illustrating this through several case studies. In addition, we examine some of the challenges remaining in structural determination, and what steps are underway to enhance our knowledge of these enigmatic proteins.
Collapse
Affiliation(s)
- Shaun Rawson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Simon Davies
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Jonathan D. Lippiat
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| | - Stephen P. Muench
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds,
Leeds,
UK
| |
Collapse
|
27
|
Yang Z, Brouillette CG. A Guide to Differential Scanning Calorimetry of Membrane and Soluble Proteins in Detergents. Methods Enzymol 2016; 567:319-58. [DOI: 10.1016/bs.mie.2015.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Abstract
Which properties of the membrane environment are essential for the folding and oligomerization of transmembrane proteins? Because the lipids that surround membrane proteins in situ spontaneously organize into bilayers, it may seem intuitive that interactions with the bilayer provide both hydrophobic and topological constraints that help the protein to achieve a stable and functional three-dimensional structure. However, one may wonder whether folding is actually driven by the membrane environment or whether the folded state just reflects an adaptation of integral proteins to the medium in which they function. Also, apart from the overall transmembrane orientation, might the asymmetry inherent in biosynthesis processes cause proteins to fold to out-of-equilibrium, metastable topologies? Which of the features of a bilayer are essential for membrane protein folding, and which are not? To which extent do translocons dictate transmembrane topologies? Recent data show that many membrane proteins fold and oligomerize very efficiently in media that bear little similarity to a membrane, casting doubt on the essentiality of many bilayer constraints. In the following discussion, we argue that some of the features of bilayers may contribute to protein folding, stability and regulation, but they are not required for the basic three-dimensional structure to be achieved. This idea, if correct, would imply that evolution has steered membrane proteins toward an accommodation to biosynthetic pathways and a good fit into their environment, but that their folding is not driven by the latter or dictated by insertion apparatuses. In other words, the three-dimensional structure of membrane proteins is essentially determined by intramolecular interactions and not by bilayer constraints and insertion pathways. Implications are discussed.
Collapse
Affiliation(s)
- Jean-Luc Popot
- Centre National de la Recherche Scientifique/Université Paris-7 UMR 7099 , Institut de Biologie Physico-Chimique (FRC 550), 13, rue Pierre-et-Marie-Curie, F-75005 Paris, France
| | - Donald M Engelman
- Department of Molecular Biophysics and Biochemistry, Yale University , Box 208114, New Haven, Connecticut 06520-8114, United States
| |
Collapse
|
29
|
Niwa T, Sasaki Y, Uemura E, Nakamura S, Akiyama M, Ando M, Sawada S, Mukai SA, Ueda T, Taguchi H, Akiyoshi K. Comprehensive study of liposome-assisted synthesis of membrane proteins using a reconstituted cell-free translation system. Sci Rep 2015; 5:18025. [PMID: 26667602 PMCID: PMC4678891 DOI: 10.1038/srep18025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 02/02/2023] Open
Abstract
Membrane proteins play pivotal roles in cellular processes and are key targets for drug discovery. However, the reliable synthesis and folding of membrane proteins are significant problems that need to be addressed owing to their extremely high hydrophobic properties, which promote irreversible aggregation in hydrophilic conditions. Previous reports have suggested that protein aggregation could be prevented by including exogenous liposomes in cell-free translation processes. Systematic studies that identify which membrane proteins can be rescued from irreversible aggregation during translation by liposomes would be valuable in terms of understanding the effects of liposomes and developing applications for membrane protein engineering in the context of pharmaceutical science and nanodevice development. Therefore, we performed a comprehensive study to evaluate the effects of liposomes on 85 aggregation-prone membrane proteins from Escherichia coli by using a reconstituted, chemically defined cell-free translation system. Statistical analyses revealed that the presence of liposomes increased the solubility of >90% of the studied membrane proteins, and ultimately improved the yields of the synthesized proteins. Bioinformatics analyses revealed significant correlations between the liposome effect and the physicochemical properties of the membrane proteins.
Collapse
Affiliation(s)
- Tatsuya Niwa
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Eri Uemura
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Shugo Nakamura
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Minato Akiyama
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Mitsuru Ando
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Shinichi Sawada
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Sada-atu Mukai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| | - Takuya Ueda
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, FSB401, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| | - Hideki Taguchi
- Department of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan.,Japan Science and Technology Agency (JST), The Exploratory Research for Advanced Technology (ERATO), Bio-nanotransporter Project, Katsura Int'tech Center, Katsura, Nishikyo-ku, Kyoto 615-8530, Japan
| |
Collapse
|
30
|
Tu Y, Peng F, Adawy A, Men Y, Abdelmohsen LKEA, Wilson DA. Mimicking the Cell: Bio-Inspired Functions of Supramolecular Assemblies. Chem Rev 2015; 116:2023-78. [DOI: 10.1021/acs.chemrev.5b00344] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yingfeng Tu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Fei Peng
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Alaa Adawy
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Yongjun Men
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Loai K. E. A. Abdelmohsen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Daniela A. Wilson
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
31
|
Giusti F, Kessler P, Hansen RW, Della Pia EA, Le Bon C, Mourier G, Popot JL, Martinez KL, Zoonens M. Synthesis of a Polyhistidine-bearing Amphipol and its Use for Immobilizing Membrane Proteins. Biomacromolecules 2015; 16:3751-61. [DOI: 10.1021/acs.biomac.5b01010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Fabrice Giusti
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Pascal Kessler
- CEA, Institut
de Biologie et de Technologies de Saclay, Service d’Ingénierie
Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Randi Westh Hansen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Eduardo A. Della Pia
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Christel Le Bon
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Gilles Mourier
- CEA, Institut
de Biologie et de Technologies de Saclay, Service d’Ingénierie
Moléculaire des Protéines, 91191 Gif-sur-Yvette, France
| | - Jean-Luc Popot
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| | - Karen L. Martinez
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Manuela Zoonens
- Laboratoire de
Biologie Physico-Chimique des Protéines Membranaires, UMR 7099,
CNRS/Université Paris 7, Institut de Biologie Physico-Chimique
(FRC 550), 13 rue Pierre et Marie Curie, F−75005 Paris, France
| |
Collapse
|
32
|
Iyer BR, Mahalakshmi R. Residue-Dependent Thermodynamic Cost and Barrel Plasticity Balances Activity in the PhoPQ-Activated Enzyme PagP of Salmonella typhimurium. Biochemistry 2015; 54:5712-22. [PMID: 26334694 DOI: 10.1021/acs.biochem.5b00543] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PagP is an eight-stranded transmembrane β-barrel enzyme indispensable for lipid A palmitoylation in Gram-negative bacteria. The severity of infection by pathogens, including Salmonella, Legionella, and Bordetella, and resistance to antimicrobial peptides, relies on lipid A remodeling by PagP, rendering PagP a sought-after drug target. Despite a conserved sequence, more robust palmitoylation of lipid A is observed in Salmonella typhimurium compared to Escherichia coli, a possible consequence of the differential regulation of PagP expression and/or specific activity. Work here identifies molecular signatures that demarcate thermodynamic stability and variances in catalytic efficiency between S. typhimurium (PagP-St) and E. coli (PagP-Ec) transmembrane PagP barrel variants. We demonstrate that Salmonella PagP displays a 2-fold destabilization of the barrel, while achieving 15-20 magnitude higher lipase efficiency, through subtle alterations of lipid-facing residues distal from the active site. We find that catalytic properties of these homologues are retained across different lipid environments such as micelles, vesicles, and natural extracts. By comparing thermodynamic stability with activity of selectively designed mutants, we conclude that activity-stability trade-offs can be influenced by factors secluded from the catalytic region. Our results provide a compelling correlation of the primary protein structure with enzymatic activity, barrel thermodynamic stability, and scaffold plasticity. Our analysis can open avenues for the development of potent pharmaceuticals against salmonellosis.
Collapse
Affiliation(s)
- Bharat Ramasubramanian Iyer
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research , Bhopal 462023, India
| |
Collapse
|
33
|
|
34
|
Kleinschmidt JH. Folding of β-barrel membrane proteins in lipid bilayers - Unassisted and assisted folding and insertion. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1927-43. [PMID: 25983306 DOI: 10.1016/j.bbamem.2015.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 05/06/2015] [Accepted: 05/07/2015] [Indexed: 01/08/2023]
Abstract
In cells, β-barrel membrane proteins are transported in unfolded form to an outer membrane into which they fold and insert. Model systems have been established to investigate the mechanisms of insertion and folding of these versatile proteins into detergent micelles, lipid bilayers and even synthetic amphipathic polymers. In these experiments, insertion into lipid membranes is initiated from unfolded forms that do not display residual β-sheet secondary structure. These studies therefore have allowed the investigation of membrane protein folding and insertion in great detail. Folding of β-barrel membrane proteins into lipid bilayers has been monitored from unfolded forms by dilution of chaotropic denaturants that keep the protein unfolded as well as from unfolded forms present in complexes with molecular chaperones from cells. This review is aimed to provide an overview of the principles and mechanisms observed for the folding of β-barrel transmembrane proteins into lipid bilayers, the importance of lipid-protein interactions and the function of molecular chaperones and folding assistants. This article is part of a Special Issue entitled: Lipid-protein interactions.
Collapse
Affiliation(s)
- Jörg H Kleinschmidt
- Abteilung Biophysik, Institut für Biologie, FB 10, Universität Kassel and Center for Interdisciplinary Nanostructure Science and Technology (CINSaT), Heinrich-Plett-Str. 40, D-34132 Kassel, Germany.
| |
Collapse
|
35
|
|
36
|
Abstract
Amphipols (APols) are short amphipathic polymers that can substitute for detergents at the transmembrane surface of membrane proteins (MPs) and, thereby, keep them soluble in detergent free aqueous solutions. APol-trapped MPs are, as a rule, more stable biochemically than their detergent-solubilized counterparts. APols have proven useful to produce MPs, most noticeably by assisting their folding from the denatured state obtained after solubilizing MP inclusion bodies in either SDS or urea. They facilitate the handling in aqueous solution of fragile MPs for the purpose of proteomics, structural and functional studies, and therapeutics. Because APols can be chemically labeled or functionalized, and they form very stable complexes with MPs, they can also be used to functionalize those indirectly, which opens onto many novel applications. Following a brief recall of the properties of APols and MP/APol complexes, an update is provided of recent progress in these various fields.
Collapse
Affiliation(s)
- Manuela Zoonens
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| | - Jean-Luc Popot
- Laboratoire de Physico-Chimie Moléculaire des Protéines Membranaires, UMR 7099, Institut de Biologie Physico-Chimique (FRC 550), Centre National de la Recherche Scientifique/Université Paris-7, 13, rue Pierre-et-Marie-Curie, 75005 Paris, France
| |
Collapse
|
37
|
Amphipols and Photosynthetic Light-Harvesting Pigment-Protein Complexes. J Membr Biol 2014; 247:1031-41. [DOI: 10.1007/s00232-014-9712-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/23/2014] [Indexed: 10/24/2022]
|
38
|
Polovinkin V, Balandin T, Volkov O, Round E, Borshchevskiy V, Utrobin P, von Stetten D, Royant A, Willbold D, Arzumanyan G, Chupin V, Popot JL, Gordeliy V. Nanoparticle Surface-Enhanced Raman Scattering of Bacteriorhodopsin Stabilized by Amphipol A8-35. J Membr Biol 2014; 247:971-80. [DOI: 10.1007/s00232-014-9701-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/16/2014] [Indexed: 11/28/2022]
|
39
|
High-Resolution Structure of a Membrane Protein Transferred from Amphipol to a Lipidic Mesophase. J Membr Biol 2014; 247:997-1004. [DOI: 10.1007/s00232-014-9700-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 06/16/2014] [Indexed: 11/25/2022]
|
40
|
Thermal Fluctuations in Amphipol A8-35 Particles: A Neutron Scattering and Molecular Dynamics Study. J Membr Biol 2014; 247:897-908. [DOI: 10.1007/s00232-014-9725-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 08/26/2014] [Indexed: 01/03/2023]
|