1
|
Markova L, Maji M, Kostrhunova H, Novohradsky V, Kasparkova J, Gibson D, Brabec V. Multiaction Pt(IV) Prodrugs Releasing Cisplatin and Dasatinib Are Potent Anticancer and Anti-Invasive Agents Displaying Synergism between the Two Drugs. J Med Chem 2024; 67:9745-9758. [PMID: 38819023 DOI: 10.1021/acs.jmedchem.4c00888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we describe the general design, synthesis, characterization, and biological activity of new multitargeting Pt(IV) prodrugs that combine antitumor cisplatin and dasatinib, a potent inhibitor of Src kinase. These prodrugs exhibit impressive antiproliferative and anti-invasive activities in tumor cell lines in both two-dimensional (2D) monolayers of cell cultures and three-dimensional (3D) spheroids. We show that the cisplatin moiety and dasatinib in the investigated Pt(IV) complexes are both involved in the mechanism of action in MCF7 breast cancer cells and act synergistically. Thus, combining dasatinib and cisplatin into one molecule, compared to using individual components in a mix, may bring several advantages, such as significantly higher activity in cancer cell lines and higher selectivity for tumor cells. Most importantly, Pt(IV)-dasatinib complexes hold significant promise for potential anticancer therapies by targeting epithelial-mesenchymal transition, thus preventing the spread and metastasis of tumors, a value unachievable by a simple combination of both individual components.
Collapse
Affiliation(s)
- Lenka Markova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Moumita Maji
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Hana Kostrhunova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Vojtech Novohradsky
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
| | - Jana Kasparkova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Viktor Brabec
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61200 Brno, Czech Republic
- Department of Biophysics, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
2
|
Liu R, Hou W, Li J, Gou X, Gao M, Wang H, Zhang Y, Deng H, Yang X, Zhang W. Co-assembly of cisplatin and dasatinib in hyaluronan nanogel to combat triple negative breast cancer with reduced side effects. Int J Biol Macromol 2024; 269:132074. [PMID: 38705320 DOI: 10.1016/j.ijbiomac.2024.132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Treatment for triple negative breast cancer (TNBC) remains a huge challenge due to the lack of targeted therapeutics and tumor heterogenicity. Cisplatin (Cis) have demonstrated favorable therapeutic response in TNBC and thus is used together with various kinase inhibitors to fight the heterogenicity of TNBC. The combination of Cis with SRC inhibitor dasatinib (DAS) has shown encouraging anti-TNBC efficacy although the additive toxicity was commonly observed. To overcome the severe side effects of this Cis involved therapy, here we co-encapsulated Cis and DAS into a self-assembled hyaluronan (HA) nanogel (designated as HA/Cis/DAS (HCD) nanogel) to afford the TNBC targeted delivery by using the 4T1 mouse model. The acquired HCD nanogel was around 181 nm in aqueous solution, demonstrating the pharmacological activities of both Cis and DAS. Taking advantages of HA's targeting capability towards CD44 that is overexpressed on many TNBC cells, the HCD could well maintain the anticancer efficacy of the Cis and DAS combination, significantly increase the maximum tolerated dose and relieve the renal toxicity in vivo. The current HCD nanogel provides a potent strategy to improve the therapeutic outcome of Cis and DAS combination and thus representing a new targeted treatment option for TNBC.
Collapse
Affiliation(s)
- Runmeng Liu
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Wei Hou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jiayi Li
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xiaorong Gou
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Menghan Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Xue Yang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China.
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
3
|
Li L, Cheng H, Gong L, Huang Y, Yang J, Yan Q, Dai S, Wang J. Cuproptosis/OXPHOS tendency prediction of prognosis and immune microenvironment of esophageal squamous cell carcinoma: Bioinformatics analysis and experimental validation. Gene 2024; 902:148156. [PMID: 38211899 DOI: 10.1016/j.gene.2024.148156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Cuproptosis is a newly discovered cell death mechanism that relies on mitochondrial respiration, for which oxidative phosphorylation (OXPHOS) is an essential part. However, the detailed mechanisms of cuproptosis associated with OXPHOS in esophageal squamous cell carcinoma (ESCC) and how this correlation affects prognosis still remains unclear. METHODS scRNA-seq data of ESCC were downloaded from SRA (Sequence Read Archive) database. "AUCell" algorithm was used to grouping epithelial cells according to cuproptosis and OXPHOS score. Cell-cell communication, Pseudo-time Trajectory and transcription factor enrichment analysis were repectively conducted by "CellChat", "monocle3" package and "pySCENIC" algorithm. Univariate and LASSO cox regression analysis were used to construct the prognostic cuproptosis-OXPHOS signature. Finally, CCK-8 assay and DCFH-DA staining assay were respectively validated the sensitive and ROS production of elesclomol. RESULTS scRNA-seq data were analyzed to identify 10 core cell types. According to the median scores for cuproptosis and OXPHOS, malignant epithelial cells were divided into double high, double low, and mixed groups. The double high group distributed at the end of the pseudo-time trajectory and harbored HMGA1(+) as specific transcriptional regulons. Knockdown of HMGA1 partly reversed the inhibition of cell viability visualized by CCK-8 assay, while reactive oxygen species (ROS) production by elesclomol was enhanced after HMGA1 silencing. Furthermore, the immunosuppressive signal was significantly increased in the double high group detected by 'CellChat' in single-cell data and 'ssGSEA' in bulk data followed by 'CIBERSORTx' algorithm. Finally, a new cuproptosis-OXPHOS prognostic signature (CNN2, ATP6V0E1, PSMD6, CCDC25, IGFBP2, MT1E, and RPS4Y1) was constructed for the prediction of the prognosis, and a high-risk group corresponding to a more sensitive tendency to erlotinib, dasatinib, and bosutinib treatment was identified. CONCLUSIONS Our study revealed the relationship between OXPHOS and tendency of cuproptosis in ESCC, and malignant cells with this characteristic exerted immunosuppressive signals and indicated poor prognosis. Furthermore, we constructed the regulatory network in high cuproptosis-OXPHOS ESCC and identified HMGA1 as a potential regulator molecule of cuproptosis mediated by elesclomol.
Collapse
Affiliation(s)
- Liang Li
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Haiyan Cheng
- Department of Gynecology, The Affiliated Qingdao Central Hospital of Qingdao University, Qingdao, Shandong 266042, PR China
| | - Li Gong
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Yongcheng Huang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Jie Yang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Qihang Yan
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China
| | - Shuqin Dai
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China.
| | - Junye Wang
- Department of Thoracic Surgery, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510030, PR China.
| |
Collapse
|
4
|
Mohammad AR, Hassan ES, Majeed SA. PI3K/AKT and STAT3 pathways mediate the neuroprotective effect of dasatinib from acute cerebral injury in endotoxemic mice. Res Pharm Sci 2024; 19:64-72. [PMID: 39006974 PMCID: PMC11244703 DOI: 10.4103/1735-5362.394821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/13/2023] [Accepted: 12/31/2023] [Indexed: 07/16/2024] Open
Abstract
Background and purpose Sepsis induces brain dysfunction and there is still a requirement for an unemployed viable restorative approach. This study aimed to investigate the role of dasatinib in the modulation of proinflammatory mediators, attenuating neuroinflammatory response, and it's signaling pathway during endotoxemia. Experimental approach Twenty-four adult male Swiss-albino mice were randomized into four groups: sham (undergo laparotomy without cecal ligation and puncture, sepsis (laparotomy with cecal ligation and puncture), vehicle-dimethyl sulfoxide, dasatinib (20 mg/kg/day) intraperitoneally. Brain tissue used for assessment of interleukin (IL)-6, IL-1β, tumor necrosis factor-alpha (TNF-α), IL-10, Toll-like receptor 4 (TLR4), protein kinase B (AKT), phosphoinositide 3-kinases (PI3K), signal transducer and activator of transcription 3 (STAT3), and histopathological examination. Findings/Results Brain tissue levels of TNF-α, IL-6, and IL1 β were higher in the sepsis group than in the sham and vehicle groups. The dasatinib group had considerably lower tissue levels of these markers and significantly higher tissue values of IL-10 than the sepsis and vehicle groups. The sham group had much lower tissue values of TLR4, AKT, STAT3, and PI3k than in sepsis and vehicle groups. Furthermore, tissue levels of these markers in the dasatinib group were considerably lower than those in the sepsis and vehicle groups. Histopathology demonstrated that dasatinib might considerably reduce brain damage and the intensity of neuroinflammation when compared to sepsis and vehicle groups that showed extensive brain inflammation and damage. Conclusion and implication Dasatinib attenuated endotoxemia-induced acute brain damage in mice via modulating effects on TLR4, PI3K, AKT, and STAT3 downstream signaling pathways.
Collapse
Affiliation(s)
- Ammar Rasoul Mohammad
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Ekhlas Sabah Hassan
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| | - Sahar Abdulrudha Majeed
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Najaf, Iraq
| |
Collapse
|
5
|
Src inhibitor dasatinib sensitized gastric cancer cells to cisplatin. Med Oncol 2022; 40:49. [DOI: 10.1007/s12032-022-01879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022]
|
6
|
Bennett AN, Huang RX, He Q, Lee NP, Sung WK, Chan KHK. Drug repositioning for esophageal squamous cell carcinoma. Front Genet 2022; 13:991842. [PMID: 36246638 PMCID: PMC9554346 DOI: 10.3389/fgene.2022.991842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Esophageal cancer (EC) remains a significant challenge globally, having the 8th highest incidence and 6th highest mortality worldwide. Esophageal squamous cell carcinoma (ESCC) is the most common form of EC in Asia. Crucially, more than 90% of EC cases in China are ESCC. The high mortality rate of EC is likely due to the limited number of effective therapeutic options. To increase patient survival, novel therapeutic strategies for EC patients must be devised. Unfortunately, the development of novel drugs also presents its own significant challenges as most novel drugs do not make it to market due to lack of efficacy or safety concerns. A more time and cost-effective strategy is to identify existing drugs, that have already been approved for treatment of other diseases, which can be repurposed to treat EC patients, with drug repositioning. This can be achieved by comparing the gene expression profiles of disease-states with the effect on gene-expression by a given drug. In our analysis, we used previously published microarray data and identified 167 differentially expressed genes (DEGs). Using weighted key driver analysis, 39 key driver genes were then identified. These driver genes were then used in Overlap Analysis and Network Analysis in Pharmomics. By extracting drugs common to both analyses, 24 drugs are predicted to demonstrate therapeutic effect in EC patients. Several of which have already been shown to demonstrate a therapeutic effect in EC, most notably Doxorubicin, which is commonly used to treat EC patients, and Ixazomib, which was recently shown to induce apoptosis and supress growth of EC cell lines. Additionally, our analysis predicts multiple psychiatric drugs, including Venlafaxine, as repositioned drugs. This is in line with recent research which suggests that psychiatric drugs should be investigated for use in gastrointestinal cancers such as EC. Our study shows that a drug repositioning approach is a feasible strategy for identifying novel ESCC therapies and can also improve the understanding of the mechanisms underlying the drug targets.
Collapse
Affiliation(s)
- Adam N. Bennett
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Rui Xuan Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian He
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Nikki P. Lee
- Department of Surgery, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Wing-Kin Sung
- Department of Computer Sciences, National University of Singapore, Singapore, Singapore
| | - Kei Hang Katie Chan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Epidemiology, Centre for Global Cardiometabolic Health, Brown University, Providence, RI, United States
| |
Collapse
|
7
|
Ghafouri-Fard S, Noie Alamdari A, Noee Alamdari Y, Abak A, Hussen BM, Taheri M, Jamali E. Role of PI3K/AKT pathway in squamous cell carcinoma with an especial focus on head and neck cancers. Cancer Cell Int 2022; 22:254. [PMID: 35964082 PMCID: PMC9375325 DOI: 10.1186/s12935-022-02676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/05/2022] [Indexed: 11/21/2022] Open
Abstract
PI3K/AKT pathway is an important pathway in the carcinogenesis since it has central impacts in the regulation of metabolic pathways, cell proliferation and survival, gene expression and protein synthesis. This pathway has been reported to be dysregulated in several types of cancers. In the current review, we summarize the role of this signaling pathway in squamous cell carcinomas (SCCs) originated from different parts of body cervix, oral cavity, head and neck and skin. The data presented in the current review shows the impact of dysregulation of PI3K/AKT pathway in survival of patients with SCC. Moreover, targeted therapies against this pathway have been found to be effective in reduction of tumor burden both in animal models and clinical settings. Finally, a number of molecules that regulate PI3K/AKT pathway can be used as diagnostic markers for different types of SCCs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Noie Alamdari
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Kurdistan Region, Erbil, Iraq
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany. .,Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elena Jamali
- Department of Pathology, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Ma RJ, Ma C, Hu K, Zhao MM, Zhang N, Sun ZG. Molecular mechanism, regulation, and therapeutic targeting of the STAT3 signaling pathway in esophageal cancer (Review). Int J Oncol 2022; 61:105. [PMID: 35856449 PMCID: PMC9339493 DOI: 10.3892/ijo.2022.5395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/05/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal cancer (EC) is the seventh most common cancer globally, and the overall 5-year survival rate is only 20%. Signal transducer and activator of transcription 3 (STAT3) is aberrantly activated in EC, and its activation is associated with a poor prognosis. STAT3 can be activated by canonical pathways such as the JAK/STAT3 pathway as well as non-canonical pathways including the Wnt/STAT3 and COX2/PGE2/STAT3 pathways. Activated STAT3, present as phosphorylated STAT3 (p-STAT3), can be transported into the nucleus to regulate downstream genes, including VEGF, cyclin D1, Bcl-xL, and matrix metalloproteinases (MMPs), to promote cancer cell proliferation and induce resistance to therapy. Non-coding RNAs, including microRNAs (miRNAs/miRs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs), play a vital role in regulating the STAT3 signaling pathway in EC. Several miRNAs promote or suppress the function of STAT3 in EC, while lncRNAs and circRNAs primarily promote the effects of STAT3 and the progression of cancer. Additionally, various drugs and natural compounds can target STAT3 to suppress the malignant behavior of EC cells, providing novel insights into potential EC therapies.
Collapse
Affiliation(s)
- Rui-Jie Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Chao Ma
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Kang Hu
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Meng-Meng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Nan Zhang
- Department of Breast Disease Center, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| | - Zhi-Gang Sun
- Department of Thoracic Surgery, Jinan Central Hospital, Shandong University, Jinan, Shandong 250013, P.R. China
| |
Collapse
|
9
|
Ye J, Wu Y, Cai H, Sun L, Deng W, Liang R, Han A. Development and Validation of a Ferroptosis-Related Gene Signature and Nomogram for Predicting the Prognosis of Esophageal Squamous Cell Carcinoma. Front Genet 2021; 12:697524. [PMID: 34764976 PMCID: PMC8576261 DOI: 10.3389/fgene.2021.697524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a common malignant tumor with high mortality and poor prognosis. Ferroptosis is a newly discovered form of cell death induced by iron-catalyzed excessive peroxidation of polyunsaturated fatty acids (PUFAs). However, the prognostic value of ferroptosis-related genes (FRGs) for ESCC remains unclear. Based on the ESCC dataset from the Gene Expression Omnibus (GEO) database, we identified 39 prognostic FRGs through univariate Cox regression analysis. After LASSO regression and multivariate Cox regression analyses, a multigene signature based on 10 prognostic FRGs was constructed and successfully divided ESCC patients into two risk groups. Patients in the low-risk group showed a significantly better prognosis than patients in the high-risk group. In addition, we combined the risk score with clinical predictors to construct a nomogram for ESCC. The predictive ability of the nomogram was further verified by ROC curves and calibration plots in both the training and validation sets. The predictive power of the nomogram was demonstrated to be better than that of either the risk score or clinical variable alone. Furthermore, functional analysis revealed that the 10-FRG signature was mainly associated with ferroptosis, differentiation and immune response. Connectivity map analysis identified potential compounds capable of targeting FRGs in ESCC. Finally, we demonstrated the prognostic value of SRC gene in ESCC using the clinical samples and found that SRC inhibition sensitized ESCC cells to ferroptosis inducers by in vitro experiments. In conclusion, we identified and verified a 10-FRG prognostic signature and a nomogram, which provide individualized prognosis prediction and provide insight into potential therapeutic targets for ESCC.
Collapse
Affiliation(s)
- Jiecheng Ye
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yining Wu
- Department of Ophthalmology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Heyuan Cai
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Li Sun
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wanying Deng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Biliary-Pancreatic Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruikun Liang
- Department of Pathology, Medical College, Jinan University, Guangzhou, China
| | - Anjia Han
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
10
|
Yang L, Xu J, Xie Z, Song F, Wang X, Tang R. Carrier-free prodrug nanoparticles based on dasatinib and cisplatin for efficient antitumor in vivo. Asian J Pharm Sci 2021; 16:762-771. [PMID: 35027952 PMCID: PMC8737405 DOI: 10.1016/j.ajps.2021.08.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 01/03/2023] Open
Abstract
Carrier-free drug self-delivery systems consisting of amphiphilic drug-drug conjugate (ADDC) with well-defined structure and nanoscale features have drawn much attention in tumor drug delivery. Herein, we report a simple and effective strategy to prepare ADDC using derivatives of cisplatin (CP) and dasatinib (DAS), which further self-assembled to form reduction-responsive nanoparticles (CP-DDA NPs). DAS was modified with succinic anhydride and then connected with CP derivative by ester bonds. The size, micromorphology and in vitro drug release of CP-DDA NPs were characterized. The biocompatibility and bioactivity of these carrier-free nanoparticles were then investigated by HepG2 cells and H22-tumor bearing mice. In vitro and in vivo experiments proved that CP-DDA NPs had excellent anti-tumor activity and significantly reduced toxicities. This study provides a new strategy to design the carrier-free nanomedicine composed of CP and DAS for synergistic tumor treatment.
Collapse
Affiliation(s)
- Lu Yang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Jiaxi Xu
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Zheng Xie
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Faquan Song
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Xin Wang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| | - Rupei Tang
- Engineering Research Center for Biomedical Materials, Anhui Key Laboratory of Modern Bio-manufacturing, School of Life Science, Anhui University, Hefei 230601, China
| |
Collapse
|
11
|
Taghvaei S, Sabouni F, Minuchehr Z. Evidence of Omics, Immune Infiltration, and Pharmacogenomic for SENP1 in the Pan-Cancer Cohort. Front Pharmacol 2021; 12:700454. [PMID: 34276383 PMCID: PMC8280523 DOI: 10.3389/fphar.2021.700454] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Sentrin specific-protease 1 (SENP1) is a protein involved in deSUMOylation that is almost overexpressed in cancer. SENP1 has a determinative role in the activation of transcription programs in the innate immune responses and the development B of and C lymphocytes. We found, SENP1 possibly plays a critical role in immune infiltration and acts as an expression marker in PAAD, ESCA, and THYM. CD4+ T cells, CD8+ T cells, and macrophages were more key-related immune cells, indicating that SENP1 might be introduced as a potential target for cancer immunotherapy. We further showed that dysregulation of SENP1 is powerfully associated with decreased patient survival and clinical stage. Total SENP1 protein also increases in cancer. SENP1 is also controlled by transcription factors (TFs) CREB1, KDM5A, REST, and YY1 that regulates apoptosis, cell cycle, cell proliferation, invasion, tumorigenesis, and metastasis. These TFs were in a positive correlation with SENP1. MiR-138-5p, miR-129-1-3p, and miR-129-2-3p also inhibit tumorigenesis through targeting of SENP1. The SENP1 expression level positively correlated with the expression levels of UBN1, SP3, SAP130, NUP98, NUP153 in 32 tumor types. SENP1 and correlated and binding genes: SAP130, NUP98, and NUP153 activated cell cycle. Consistent with this finding, drug analysis was indicated SENP1 is sensitive to cell cycle, apoptosis, and RTK signaling regulators. In the end, SENP1 and its expression-correlated and functional binding genes were enriched in cell cycle, apoptosis, cellular response to DNA damage stimulus. We found that the cell cycle is the main way for tumorigenesis by SENP1. SENP1 attenuates the effect of inhibitory drugs on the cell cycle. We also introduced effective FDA-Approved drugs that can inhibit SENP1. Therefore in the treatments in which these drugs are used, SENP1 inhibition is a suitable approach. This study supplies a wide analysis of the SENP1 across The Cancer Genome Atlas (CGA) cancer types. These results suggest the potential roles of SENP1 as a biomarker for cancer. Since these drugs and the drugs that cause to resistance are applied to cancer treatment, then these two class drugs can use to inhibition of SENP1.
Collapse
Affiliation(s)
- Somayye Taghvaei
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Farzaneh Sabouni
- Department of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zarrin Minuchehr
- Department of Systems Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
12
|
Du H, Bao Y, Liu C, Zhong A, Niu Y, Tang X. miR‑139‑5p enhances cisplatin sensitivity in non‑small cell lung cancer cells by inhibiting cell proliferation and promoting apoptosis via the targeting of Homeobox protein Hox‑B2. Mol Med Rep 2021; 23:104. [PMID: 33300085 PMCID: PMC7723155 DOI: 10.3892/mmr.2020.11743] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
The development of chemotherapeutic dug resistance hinders the clinical treatment of cancer. MicroRNAs (miRNAs/miRs) have been revealed to serve essential roles in the drug resistance of numerous types of cancer. miR‑139‑5p was previously reported to be associated with cisplatin (DDP) sensitivity in human nasopharyngeal carcinoma cells and colorectal cancer cells. However, the effect and underlying mechanism of miR‑139‑5p in DDP sensitivity in non‑small cell lung cancer (NSCLC) cells has not yet been fully elucidated. In the present study, the expression of miR‑139‑5p and Homeobox protein Hox‑B2 (HOXB2) in NSCLC tissues was examined by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) and western blotting. Subsequently, the effect of miR‑139‑5p on the DDP sensitivity of NSCLC cells in vitro was investigated. Cell proliferation was examined using a Cell Counting Kit‑8 assay. Western blotting was used to evaluate the protein expression of HOXB2, phosphorylated (p)‑PI3K, p‑AKT, caspase‑3 and cleaved‑caspase‑3, and RT‑qPCR was used to evaluate the expression of miR‑139‑5p, and the mRNA expression levels of HOXB2, PI3K, AKT and caspase‑3. The apoptotic rate of the cells was detected using flow cytometry. miR‑139‑5p expression in NSCLC tissues was shown to be significantly lower compared with that in adjacent tissues. Additionally, miR‑139‑5p increased cell apoptosis and inhibited NSCLC cell proliferation induced by DDP in vitro via modulating the PI3K/AKT/caspase‑3 signaling pathway. Furthermore, HOXB2 was identified to be a target of miR‑139‑5p, and miR‑139‑5p was revealed to sensitize NSCLC cells to DDP via the targeting of HOXB2. Taken together, the results of the present study demonstrated that regulating the expression of miR‑139‑5p could provide a novel approach to reverse DDP resistance and increase chemosensitivity in the treatment of NSCLC.
Collapse
Affiliation(s)
- Hailian Du
- Department of Respiratory Medicine, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Ya'nan Bao
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650000, P.R. China
| | - Chunying Liu
- Ultrasonic Department, Anqiu People's Hospital, Anqiu, Shandong 262100, P.R. China
| | - Anqiao Zhong
- Department of Respiratory Medicine, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Yikai Niu
- Department of Respiratory Medicine, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| | - Xingping Tang
- Department of Respiratory Medicine, Weifang Yidu Central Hospital, Weifang, Shandong 262500, P.R. China
| |
Collapse
|
13
|
Wang LM, Gan YH. Cancer-derived IgG involved in cisplatin resistance through PTP-BAS/Src/PDK1/AKT signaling pathway. Oral Dis 2020; 27:464-474. [PMID: 32730654 DOI: 10.1111/odi.13583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/02/2020] [Accepted: 07/21/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVES This study aimed to explore whether knockdown of cancer-derived IgG (CIgG) could enhance cisplatin-induced anti-cancer effects. MATERIALS AND METHODS Cancer-derived IgG was knocked down by siRNA or Tet-on shRNA in the absence or presence of cisplatin in WSU-HN6 or CAL27 cells. Cell proliferation, apoptosis, and mobility were evaluated using CCK-8, flow cytometry, and transwell assays, respectively. Molecular events were investigated using real-time PCR and Western blot assays. RESULTS Knockdown of CIgG significantly promoted cisplatin-induced apoptosis and inhibition of cell proliferation, migration, and invasion. Cisplatin upregulated CIgG expression and phosphorylation of AKT and PDK1, while knockdown of CIgG downregulated phosphorylation of AKT and PDK1, and blocked cisplatin-induced upregulation of AKT and PDK1 phosphorylation. Moreover, knockdown of CIgG blocked cisplatin-induced upregulation of Src phosphorylation, and knockdown of Src blocked cisplatin-induced upregulation of AKT and PDK1 phosphorylation. Overexpression of Src upregulated AKT and PDK1 phosphorylation. Furthermore, knockdown of CIgG upregulated PTP-BAS mRNA and protein expression, whereas cisplatin downregulated PTP-BAS protein, but not mRNA expression; knockdown of PTP-BAS upregulated phosphorylation of Src, PDK1, AKT, and blocked CIgG knockdown-mediated enhancement of cisplatin-induced inhibition of cell proliferation. CONCLUSION Knockdown of CIgG enhanced the anti-cancer effects of cisplatin through PTP-BAS/Src/PDK1/AKT signaling pathway in oral squamous cell carcinoma.
Collapse
Affiliation(s)
- Lu-Ming Wang
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ye-Hua Gan
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China.,Department of Oral & Maxillofacial, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
14
|
Jin F, Zhu Y, Chen J, Wang R, Wang Y, Wu Y, Zhou P, Song X, Ren Z, Dong J. BRE Promotes Esophageal Squamous Cell Carcinoma Growth by Activating AKT Signaling. Front Oncol 2020; 10:1407. [PMID: 32850455 PMCID: PMC7431625 DOI: 10.3389/fonc.2020.01407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/03/2020] [Indexed: 01/09/2023] Open
Abstract
Brain and reproductive organ-expressed protein (BRE) is aberrantly expressed in multiple cancers; however, its expression pattern in human esophageal squamous cell carcinoma (ESCC) and its role in ESCC progression remain unclear. In this study, we aimed to investigate the expression pattern of BRE in human ESCC and its role in ESCC progression. BRE was overexpressed in ESCC tissues compared with that in the adjacent non-tumor tissues. Forced expression of BRE was sufficient to enhance ESCC cell growth by promoting cell cycle progression and anti-apoptosis. Silencing of BRE suppressed these malignant phenotypes of ESCC cells. Mechanistic evaluation revealed that BRE overexpression activated the phosphorylation of AKT, and inhibition of the AKT pathway by MK2206 decreased the BRE-induced cell growth and apoptotic resistance in ESCC cells, highlighting the critical role of AKT signaling in mediating the effects of BRE. Moreover, the effects of BRE on ESCC cell growth and AKT activation were verified in a xenograft model in vivo. The present results show that BRE is overexpressed in ESCC tissues and contributes to the growth of ESCC cells by activating AKT signaling both in vitro and in vivo and provide insight into the role of BRE in AKT signaling and ESCC pathogenesis.
Collapse
Affiliation(s)
- Fujun Jin
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Yexuan Zhu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Jingyi Chen
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Rongze Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Yanting Wu
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Pengjun Zhou
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Xiaowei Song
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Zhe Ren
- Guangzhou Jinan Biomedicine Research and Development Center, College of Life Science and Technology, Institute of Biomedicine, Jinan University, Guangzhou, China
| | - Jun Dong
- Integrated Chinese and Western Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China.,Department of Pathophysiology, School of Medicine, GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
Yang W, Zhao X, Han Y, Duan L, Lu X, Wang X, Zhang Y, Zhou W, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int 2019; 19:142. [PMID: 31139019 PMCID: PMC6530124 DOI: 10.1186/s12935-019-0854-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of leading malignant cancers of gastrointestinal tract worldwide. Until now, the involved mechanisms during the development of ESCC are largely unknown. This study aims to explore the driven-genes and biological pathways in ESCC. Methods mRNA expression datasets of GSE29001, GSE20347, GSE100942, and GSE38129, containing 63 pairs of ESCC and non-tumor tissues data, were integrated and deeply analyzed. The bioinformatics approaches include identification of differentially expressed genes (DEGs) and hub genes, gene ontology (GO) terms analysis and biological pathway enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, and miRNA-gene network construction. Subsequently, GEPIA2 database and qPCR assay were utilized to validate the expression of hub genes. DGIdb database was performed to search the candidate drugs for ESCC. Results Finally, 120 upregulated and 26 downregulated DEGs were identified. The functional enrichment of DEGs in ESCC were mainly correlated with cell cycle, DNA replication, deleted in colorectal cancer (DCC) mediated attractive signaling pathway, and Netrin-1 signaling pathway. The PPI network was constructed using STRING software with 146 nodes and 2392 edges. The most significant three modules in PPI were filtered and analyzed. Totally ten genes were selected and considered as the hub genes and nuclear division cycle 80 (NDC80) was closely related to the survival of ESCC patients. DGIdb database predicted 33 small molecules as the possible drugs for treating ESCC. Conclusions In summary, the data may provide new insights into ESCC pathogenesis and treatments. The candidate drugs may improve the efficiency of personalized therapy in future.
Collapse
Affiliation(s)
- Wanli Yang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xinhui Zhao
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yu Han
- 2Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Duan
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xin Lu
- 3The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqian Wang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
16
|
Wei J, Ma L, Li C, Pierson CR, Finlay JL, Lin J. Targeting Upstream Kinases of STAT3 in Human Medulloblastoma Cells. Curr Cancer Drug Targets 2019; 19:571-582. [PMID: 30332965 PMCID: PMC6533162 DOI: 10.2174/1568009618666181016165604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 08/21/2018] [Accepted: 09/28/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Medulloblastoma is the most common malignant brain tumor in children. Despite improvement in overall survival rate, it still lacks an effective targeted treatment strategy. The Janus family of cytoplasmic tyrosine kinases (JAKs) and Src kinases, upstream protein kinases of signal transducer and activator of transcription 3 (STAT3), play important roles in medulloblastoma pathogenesis and therefore represent potential therapeutic targets. METHODS In this report, we examined the inhibitory efficacy of the JAK1/2 inhibitor, ruxolitinib, the JAK3 inhibitor, tofacitinib and two Src inhibitors, KX2-391 and dasatinib. RESULTS These small molecule drugs significantly reduce cell viability and inhibit cell migration and colony formation in human medulloblastoma cells in vitro. Src inhibitors have more potent efficacy than JAK inhibitors in inhibiting medulloblastoma cell migration ability. The Src inhibitors can inhibit both phosphorylation of STAT3 and Src while JAK inhibitors reduce JAK/STAT3 phosphorylation. We also investigated the combined effect of the Src inhibitor, dasatinib with cisplatin. The results show that dasatinib exerts synergistic effects with cisplatin in human medulloblastoma cells through the inhibition of STAT3 and Src. CONCLUSION Our results suggest that the small molecule inhibitors of STAT3 upstream kinases, ruxolitinib, tofacitinib, KX2-391, and dasatinib could be novel and attractive candidate drugs for the treatment of human medulloblastoma.
Collapse
Affiliation(s)
- Jia Wei
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Ling Ma
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Chenglong Li
- College of Pharmacy, University of Florida, Gainesville, FL 32610
| | - Christopher R. Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children ‘s Hospital, The Department of Pathology and Department of Biomedical Education & Anatomy, The College of Medicine, The Ohio State University, Columbus,OH 43205, USA
| | - Jonathan L. Finlay
- Division of Hematology, Oncology and BMT, The Research Institute at Nationwide Children’s Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH 43205, USA
| | - Jiayuh Lin
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
17
|
Hong YC, Wang Z, Peng B, Xia LG, Lin LW, Xu ZL. BAG2 Overexpression Correlates with Growth and Poor Prognosis of Esophageal Squamous Cell Carcinoma. Open Life Sci 2018; 13:582-588. [PMID: 33817129 PMCID: PMC7874702 DOI: 10.1515/biol-2018-0069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 09/29/2018] [Indexed: 01/01/2023] Open
Abstract
Previous studies have suggested that Bcl2-associated athanogene 2 (BAG2) serves as a crucial regulator for tumorigenesis in multiple tumors. However, little is known about the effect of BAG2 on esophageal squamous cell carcinoma (ESCC). This study focused on investigating whether BAG2 functions as a cancer-promoting gene in ESCC. In this work, gene expression data and clinical information from the NCBI Gene Expression Omnibus (GEO), Oncomine and The Cancer Genome Atlas (TCGA) were collected and analyzed. Expression of BAG2 in ESCC was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR). BAG2 was knocked down using small interference RNA (si-RNA) approach. Cell proliferation, migration and invasion were assessed by Cell Counting Kit-8 (CCK-8) and transwell assays. Molecular mechanism was detected by western blotting assay. The expression of BAG2 both in ESCC tissues and cells was upregulated and overexpression was associated with worsened prognosis. BAG2 silencing inhibited ESCC cell proliferation, migration and invasion, which was regulated by the phosphatidylinositol-3-kinase (PI3K)/ protein kinase B (AKT) signaling pathway. These results reveal contributions of BAG2 as a predictor and potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Ying-Cai Hong
- Department of Thoracic Surgery, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R.China
| | - Zheng Wang
- Department of Thoracic Surgery, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R.China
| | - Bin Peng
- Department of Thoracic Surgery, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R.China
| | - Li-Gang Xia
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R.China
| | - Lie-Wen Lin
- Department of Gastrointestinal Surgery, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R.China
| | - Zheng-Lei Xu
- Department of Gastroenterology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong 518020, P.R.China
| |
Collapse
|
18
|
Liu X, Song X, Zhang J, Xu Z, Che L, Qiao Y, Ortiz Pedraza Y, Cigliano A, Pascale RM, Calvisi DF, Liu Y, Chen X. Focal adhesion kinase activation limits efficacy of Dasatinib in c-Myc driven hepatocellular carcinoma. Cancer Med 2018; 7:6170-6181. [PMID: 30370649 PMCID: PMC6308083 DOI: 10.1002/cam4.1777] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a deadly malignancy with limited treatment options. Recently, it was found that Dasatinib treatment led to synthetic lethality in c-Myc high-expressing human cancer cells due to inhibition of p-Lyn. Overexpression of c-Myc is frequently seen in human HCC. We investigated the sensitivity to Dasatinib in vitro using HCC cell lines and in vivo using c-Myc mouse HCC model. We found that HCC cell line responsiveness to Dasatinib varied significantly. However, there was no correlation between c-Myc expression and IC50 to Dasatinib. In c-Myc-induced HCC in mice, tumors continued to grow despite Dasatinib treatment, although the eventual tumor burden was lower in Dasatinib treatment cohort. Molecular analyses revealed that Dasatinib was effective in inhibiting p-Src, but not p-Lyn, in HCC. Importantly, we found that in HCC cell lines as well as c-Myc mouse HCC, Dasatinib treatment induced up regulation of activated/phosphorylated (p)-focal adhesion kinase(FAK). Concomitant treatment of HCC cell lines with Dasatinib and FAK inhibitor prevented Dasatinib-induced FAK activation, leading to stronger growth restraint. Altogether, our results suggest that Dasatinib may have limited efficacy as single agent for HCC treatment. Combined treatment with Dasatinib with FAK inhibitor might represent a novel therapeutic approach against HCC.
Collapse
Affiliation(s)
- Xianqiong Liu
- School of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Jie Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Department of Thoracic Oncology IIKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingChina
| | - Zhong Xu
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Department of GastroenterologyGuizhou Provincial People's HospitalThe Affiliated People's Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
| | - Yu Qiao
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Department of OncologyBeijing HospitalNational Center of GerontologyBeijingChina
| | - Yunuen Ortiz Pedraza
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
- Department of Health ScienceUniversidad Autonoma Metropolitana‐ItapalapaMexico CityMexico
| | | | - Rosa M. Pascale
- Department of Clinical and Experimental MedicineUniversity of SassariSassariItaly
| | - Diego F. Calvisi
- Institute of PathologyUniversity of GreifswaldGreifswaldGermany
- Department of Clinical and Experimental MedicineUniversity of SassariSassariItaly
| | - Yanju Liu
- School of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
| | - Xin Chen
- School of PharmacyHubei University of Chinese MedicineWuhanHubeiChina
- Department of Bioengineering and Therapeutic Sciences and Liver CenterUniversity of CaliforniaSan FranciscoCalifornia
| |
Collapse
|
19
|
Ma S, Lu CC, Yang LY, Wang JJ, Wang BS, Cai HQ, Hao JJ, Xu X, Cai Y, Zhang Y, Wang MR. ANXA2 promotes esophageal cancer progression by activating MYC-HIF1A-VEGF axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:183. [PMID: 30081903 PMCID: PMC6091180 DOI: 10.1186/s13046-018-0851-y] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 07/20/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND ANXA2 (Annexin A2) is a pleiotropic calcium-dependent phospholipid binding protein that is abnormally expressed in various cancers. We previously found that ANXA2 is upregulated in esophageal squamous cell carcinoma (ESCC). This study was designed to investigate the functional significance of ANXA2 dysregulation and underlying mechanism in ESCC. METHODS Proliferation, migration, invasion and metastasis assay were performed to examine the functional roles of ANXA2 in ESCC cells in vitro and in vivo. Real-time RT-PCR, immunoblotting, ChIP, reporter assay, confocal-immunofluorescence staining, co-immunoprecipitation and ubiquitination assay were used to explore the molecular mechanism underlying the actions of deregulated ANXA2 in ESCC cells. RESULTS Overexpression of ANXA2 promoted ESCC cells migration and invasion in vitro and metastasis in vivo through activation of the MYC-HIF1A-VEGF cascade. Notably, ANXA2 phosphorylation at Tyr23 by SRC led to its translocation into the nucleus and enhanced the metastatic potential of ESCC cells. Phosphorylated ANXA2 (Tyr23) interacted with MYC and inhibited ubiquitin-dependent proteasomal degradation of MYC protein. Accumulated MYC directly potentiated HIF1A transcription and then activated VEGF expression. Correlation between these molecules were also found in ESCC tissues. Moreover, dasatinib in combination with bevacizumab or ANXA2-siRNA produced potent inhibitory effects on the growth of ESCC xenograft tumors in vivo. CONCLUSIONS This study provides evidence that highly expressed p-ANXA2 (Tyr23) contributes to ESCC progression by promoting migration, invasion and metastasis, and suggests that targeting the SRC-ANXA2-MYC-HIF1A-MYC axis may be an efficient strategy for ESCC treatment.
Collapse
Affiliation(s)
- Sai Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Chen-Chen Lu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.,Basic Medical College, Bengbu Medical College, Bengbu, 233003, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Juan-Juan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Bo-Shi Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Hong-Qing Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
20
|
Li Z, Wang L, Luo N, Zhao Y, Li J, Chen Q, Tian Y. Metformin inhibits the proliferation and metastasis of osteosarcoma cells by suppressing the phosphorylation of Akt. Oncol Lett 2018; 15:7948-7954. [PMID: 29725482 DOI: 10.3892/ol.2018.8297] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/17/2017] [Indexed: 02/07/2023] Open
Abstract
Metformin (Met) is a therapeutic agent for the treatment of type 2 diabetes mellitus. There is evidence that Met may reduce the risk of cancer in patients with type 2 diabetes mellitus by inhibiting tumor cell growth, prolonging the overall survival time in patients with various types of malignancy. However, the function and mechanism of Met have not been fully elucidated in osteosarcoma (OS). The present study evaluated the anti-proliferative effect of Met on MG63 and U2OS OS cells, identifying that it acted in a dose- and time-dependent manner. Met also inhibited OS cell migration and invasion, potentially by regulating the epithelial-mesenchymal transition in OS cells. Mechanistically, Met was demonstrated to partly exert these functions through the suppression of Akt phosphorylation, which was associated with increased phosphatase and tensin (PTEN) expression. Silencing PTEN prevented the Met-induced inhibition of the growth and metastasis of OS cells. As Met has anti-proliferative and anti-metastatic effects on OS cells it is a potential candidate, in combination with other chemotherapeutic agents, for use in the treatment of OS.
Collapse
Affiliation(s)
- Zuohong Li
- Department of Orthopedics, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Lesheng Wang
- Department of Blood Transfusion, Chinese People's Liberation Army 210 Hospital, Dalian, Liaoning 116015, P.R. China
| | - Nan Luo
- Department of Infectious Diseases, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China
| | - Yantao Zhao
- Department of Orthopedics, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Jiazhi Li
- Department of Pathology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Qiwei Chen
- Department of Pathology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| | - Yu Tian
- Department of Pathology, Dalian Medical University, Dalian, Liaoning 116044, P.R. China
| |
Collapse
|
21
|
Monica V, Lo Iacono M, Bracco E, Busso S, Di Blasio L, Primo L, Peracino B, Papotti M, Scagliotti G. Dasatinib modulates sensitivity to pemetrexed in malignant pleural mesothelioma cell lines. Oncotarget 2018; 7:76577-76589. [PMID: 27391433 PMCID: PMC5363531 DOI: 10.18632/oncotarget.10428] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/16/2016] [Indexed: 12/24/2022] Open
Abstract
Background Thymidylate synthase (TS), one of the key enzymes for thymidine synthesis, is a target of pemetrexed (PEM), a key agent for the systemic therapy of malignant pleural mesothelioma (MPM) and its overexpression has been correlated to PEM-resistance. In MPM, experimental data report activation of the c-SRC tyrosine kinase suggesting it as a potential target to be further investigated. Results MPM cell lines showed different sensitivity, being MSTO the most and REN the least sensitive to PEM. REN cells showed high levels of both TS and SRC: dasatinib inhibited SRC activation and suppressed TS protein expression, starting from 100 nM dose, blocking the PEM-induced up regulation of TS protein levels. Dasatinib treatment impaired cells migration, and both sequential and co-administration with PEM significantly increased apoptosis. Dasatinib pretreatment improved sensitivity to PEM, downregulated TS promoter activity and, in association with PEM, modulated the downstream PI3K-Akt-mTOR signaling. Cell lines and Methods In three MPM cell lines (MPP89, REN and MSTO), the effects of c-SRC inhibition, in correlation with TS expression and PEM sensitivity, were evaluated. PEM and dasatinib, a SRC inhibitor, were administered as single agents, in combination or sequentially. Cell viability, apoptosis and migration, as well as TS expression and SRC activation have been assessed. Conclusions These data indicate that dasatinib sensitizes mesothelioma cells to PEM through TS down-regulation.
Collapse
Affiliation(s)
- Valentina Monica
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Marco Lo Iacono
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Simone Busso
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Laura Di Blasio
- Department of Oncology, University of Torino, IRCCS Candiolo, Torino, Italy
| | - Luca Primo
- Department of Oncology, University of Torino, IRCCS Candiolo, Torino, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Mauro Papotti
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| | - Giorgio Scagliotti
- Department of Oncology, University of Torino, San Luigi Hospital, Orbassano, Torino, Italy
| |
Collapse
|
22
|
Liu T, Li R, Zhao H, Deng J, Long Y, Shuai MT, Li Q, Gu H, Chen YQ, Leng AM. eIF4E promotes tumorigenesis and modulates chemosensitivity to cisplatin in esophageal squamous cell carcinoma. Oncotarget 2018; 7:66851-66864. [PMID: 27588477 PMCID: PMC5341842 DOI: 10.18632/oncotarget.11694] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 08/22/2016] [Indexed: 02/06/2023] Open
Abstract
Patients with esophageal squamous cell cancer are often diagnosed with advanced diseases that respond poorly to chemotherapy. Overexpression of eIF4E leads to enhance the translation of key malignancy-related proteins and enabling tumor growth and chemoresistance in a variety of human malignancies, but whether it has a role in ESCC remains obscure. We hypothesized that eIF4E promoted ESCC tumorigenesis and facilitated the development of acquired resistance to the cisplatin-based chemotherapy. In this study, we showed that eIF4E expression was increased significantly in clinical ESCC tissues and and ESCC cell lines and its expression level was correlated with lymph node metastasis, TNM stage, as well as overall and disease-free survival of ESCC. We also showed here that knockdown of eIF4E in EC9706 would dramatically reduced cell proliferation, colony formation, migration and invasion, apoptosis in vitro as well as in vivo, and vice versa. Moreover, "weak mRNAs" were demonstrated to be regulated by eIF4E in ESCC, which might interpret the above function. Overexpression of eIF4E decreased the efficacy of cisplatin-induced cell growth inhibition in ESCC cell line and xenograft model (P < 0.05). eIF4E knockdown by shRNA increased cisplatin-induced cytotoxicity in ESCC cell lines, and enhanced chemosensitivity to cisplatin in xenograft tumor models. Furthermore, we found that the PI3K/AKT pathway and Bcl-2/Bax ratio might be responsible for the eIF4E-induced cisplatin resistance in ESCC. Our data collectively show association of eIF4E expression with chemotherapeutic response in ESCC, and suggest that therapeutically targeting eIF4E may be a viable means of improving chemotherapy response in ESCC.
Collapse
Affiliation(s)
- Ting Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Rong Li
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, Hunan, China.,Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hui Zhao
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Juan Deng
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Long
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Meng-Ting Shuai
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qian Li
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Huan Gu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ya-Qi Chen
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ai-Min Leng
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
23
|
Wang J, Zhang Z, Che Y, Yuan Z, Lu Z, Li Y, Wan J, Sun H, Chen Z, Pu J, He J. Rabdocoestin B exhibits antitumor activity by inducing G2/M phase arrest and apoptosis in esophageal squamous cell carcinoma. Cancer Chemother Pharmacol 2018; 81:469-481. [PMID: 29308536 DOI: 10.1007/s00280-017-3507-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive squamous cell carcinomas and is generally resistant to chemotherapy. In the present study, the cytotoxic activity of Rabdocoestin B (Rabd-B) against ESCC and the underlying mechanisms were investigated. METHODS The inhibitory effect of Rabd-B on KYSE30 and KYSE450 was evaluated by Cell Counting Kit-8 (CCK8) and colony formation assays in vitro. The cell cycle distribution and apoptosis of cells treated with Rabd-B were determined by flow cytometry. The mechanisms underlying the effects of Rabd-B were systematically examined by Western blot. The in vivo anti-tumor ability of Rabd-B was measured in mouse xenograft models and cisplatin (DDP) was used as positive control. RESULTS Rabd-B efficiently induced G2/M phase arrest in ESCC cells by upregulating the Chk1/Chk2-Cdc25C axis to inhibit the G2→M transition facilitated by Cdc2/Cyclin B1. Furthermore, Rabd-B suppressed ATM/ATR phosphorylation, thereby inhibiting BRCA1-mediated DNA repair, which resulted in mitotic catastrophe and induced cell apoptosis. Rabd-B also decreased the activity of the Akt and NF-κB survival signaling pathways and ultimately initiated the caspase-9-dependent intrinsic apoptotic pathway in ESCC cells. The apoptosis induced by Rabd-B could be partially reversed by a caspase-9-specific inhibitor (Z-LEHD-FMK) and a pan-caspase inhibitor (Z-VAD-FMK). Moreover, Rabd-B effectively suppressed tumor growth in mouse xenografts which was comparable to that of DDP without significant injuries to the mice. CONCLUSION Taken together, these findings indicate that Rabd-B is a promising precursor compound that may be useful as a treatment for ESCC and thus warrants further investigation.
Collapse
Affiliation(s)
- Jingnan Wang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zhirong Zhang
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yun Che
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zuyang Yuan
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Zhiliang Lu
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yuan Li
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Jun Wan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Handong Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China
| | - Zhaoli Chen
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| | - Jianxin Pu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, People's Republic of China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
| |
Collapse
|
24
|
Zhang Y, Xu Y, Li Z, Zhu Y, Wen S, Wang M, Lv H, Zhang F, Tian Z. Identification of the key transcription factors in esophageal squamous cell carcinoma. J Thorac Dis 2018; 10:148-161. [PMID: 29600044 DOI: 10.21037/jtd.2017.12.27] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Esophageal cancer (EC) is a common human malignancy worldwide. Esophageal squamous cell carcinoma (ESCC) is the predominant subtype in China. The tumorigenesis mechanism in ESCC is unclear. The aim of this study was to identify key transcription factors (TFs) in ESCC and elucidate the mechanism of it. Methods A total of ten published microarray datasets of ESCC was downloaded from the Gene Expression Omnibus (GEO). Then, bioinformatics analyses including differentially expressed genes (DEGs) analysis, gene ontology (GO) annotation, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, TFs-genes regulatory network construction was performed. Quantitative real-time polymerase chain reactions (qRT-PCR) were used to detect the expression levels of TFs and DEGs in ESCC. The association between stage and TFs and the association between survival and TFs were evaluated based on The Cancer Genome Atlas (TCGA), respectively. Results A total of 1,248 dysregulated genes were selected as DEGs in ESCC. A total of 26 TFs and corresponding target-genes were identified. The ESCC-specific transcriptional regulatory network was constructed. The network was consisted of 882 edges and 631 nodes. BRCA1, SOX10, ARID3A, ZNF354C and NFIC had the highest connectivity with DEGs, and regulated 92, 89, 82, 79 and 78 DEGs in the network, respectively. All these 1,248 DEGs were significantly enriched in cell cycle, DNA replication and oocyte meiosis pathways. The qRT-PCR results were consistent with our microarray analysis. High expression of SREBF1 and TFAP2A were significantly correlated with the longer overall survival time of patients with ESCC. Conclusions BRCA1, SOX10, ARID3A, ZNF354C and NFIC might be the key TFs in carcinogenesis and development of ESCC by regulating their corresponding target-genes involved in cell cycle, DNA replication and oocyte meiosis pathways. SREBF1 and TFAP2A may be two potential prognostic biomarkers of ESCC.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| | - Yanzhao Xu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| | - Zhenhua Li
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| | - Yonggang Zhu
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| | - Shiwang Wen
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| | - Mingbo Wang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| | - Huilai Lv
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| | - Fan Zhang
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| | - Ziqiang Tian
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050035, China
| |
Collapse
|
25
|
Laschi M, Bernardini G, Geminiani M, Manetti F, Mori M, Spreafico A, Campanacci D, Capanna R, Schenone S, Botta M, Santucci A. Differentially activated Src kinase in chemo-naïve human primary osteosarcoma cells and effects of a Src kinase inhibitor. Biofactors 2017; 43:801-811. [PMID: 28786551 DOI: 10.1002/biof.1382] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/07/2017] [Accepted: 07/12/2017] [Indexed: 02/06/2023]
Abstract
The therapeutic treatment of osteosarcoma (OS), a rare malignant teenage cancer of the skeletal system, still represents a great challenge as patient survival after conventional protocol chemotherapy treatment has not improved in the last four decades leaving poor patient prognoses. Therefore, many efforts have been done to find increasingly reliable OS cell models and to identify "druggable" targets in OS, in order to identify novel effective therapeutic approaches and treatment strategies. In this contest, the more successful use of patient-derived cell cultures in respect to human commercial lines and findings of Src kinase deregulation in cancer, prompted us to study for the first time the activation state of Src and the potential activity of our Src inhibitor SI-83 in a number of chemo-naïve patient-derived primary OS cells. We here demonstrate that Src is hyperactivated in OS cells in respect to the nonmalignant counterpart and that SI-83 is able to strongly decrease cell viability, proliferation, Src416 phosphorylation, and cell migration. © 2017 BioFactors, 43(6):801-811, 2017.
Collapse
Affiliation(s)
- Marcella Laschi
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Giulia Bernardini
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Michela Geminiani
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Fabrizio Manetti
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Mattia Mori
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Adriano Spreafico
- Immunoematologia Trasfusionale, Azienda Ospedaliera Universitaria Senese, Policlinico Le Scotte, strada delle Scotte14, Siena, 53100, Italy
| | - Domenico Campanacci
- Dipartimento di Chirurgia e Medicina Traslazionale (DCMT), Università degli Studi di Firenze, Ortopedia Largo Palagi, Firenze, 1 50139, Italy
| | - Rodolfo Capanna
- Dipartimento di Ortopedia, Oncologica e Chirurgia Ricostruttiva, Azienda Ospedaliera Universitaria Careggi, largo Brambilla 3, Firenze, 50134, Italy
| | - Silvia Schenone
- Dipartimento di Farmacia, Università degli Studi di Genova, Viale Benedetto XV 3, Genova, 16132, Italy
| | - Maurizio Botta
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| | - Annalisa Santucci
- Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
26
|
Jiang YY, Lin DC, Mayakonda A, Hazawa M, Ding LW, Chien WW, Xu L, Chen Y, Xiao JF, Senapedis W, Baloglu E, Kanojia D, Shang L, Xu X, Yang H, Tyner JW, Wang MR, Koeffler HP. Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut 2017; 66:1358-1368. [PMID: 27196599 PMCID: PMC5912916 DOI: 10.1136/gutjnl-2016-311818] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 04/11/2016] [Accepted: 04/20/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Oesophageal squamous cell carcinoma (OSCC) is an aggressive malignancy and the major histological subtype of oesophageal cancer. Although recent large-scale genomic analysis has improved the description of the genetic abnormalities of OSCC, few targetable genomic lesions have been identified, and no molecular therapy is available. This study aims to identify druggable candidates in this tumour. DESIGN High-throughput small-molecule inhibitor screening was performed to identify potent anti-OSCC compounds. Whole-transcriptome sequencing (RNA-Seq) and chromatin immunoprecipitation sequencing (ChIP-Seq) were conducted to decipher the mechanisms of action of CDK7 inhibition in OSCC. A variety of in vitro and in vivo cellular assays were performed to determine the effects of candidate genes on OSCC malignant phenotypes. RESULTS The unbiased high-throughput small-molecule inhibitor screening led us to discover a highly potent anti-OSCC compound, THZ1, a specific CDK7 inhibitor. RNA-Seq revealed that low-dose THZ1 treatment caused selective inhibition of a number of oncogenic transcripts. Notably, further characterisation of the genomic features of these THZ1-sensitive transcripts demonstrated that they were frequently associated with super-enhancer (SE). Moreover, SE analysis alone uncovered many OSCC lineage-specific master regulators. Finally, integrative analysis of both THZ1-sensitive and SE-associated transcripts identified a number of novel OSCC oncogenes, including PAK4, RUNX1, DNAJB1, SREBF2 and YAP1, with PAK4 being a potential druggable kinase. CONCLUSIONS Our integrative approaches led to a catalogue of SE-associated master regulators and oncogenic transcripts, which may significantly promote both the understanding of OSCC biology and the development of more innovative therapies.
Collapse
Affiliation(s)
- Yan-Yi Jiang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - De-Chen Lin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Anand Mayakonda
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Masaharu Hazawa
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ling-Wen Ding
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Wen-Wen Chien
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Liang Xu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Ye Chen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jin-Fen Xiao
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - William Senapedis
- Department of Drug Discovery, Karyopharm Therapeutics Inc., Newton, Massachusetts, USA
| | - Erkan Baloglu
- Department of Drug Discovery, Karyopharm Therapeutics Inc., Newton, Massachusetts, USA
| | - Deepika Kanojia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Li Shang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xin Xu
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jeffrey W Tyner
- Department of Cell, Developmental & Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute (Hospital), Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Division of Hematology/Oncology, Cedars-Sinai Medical Center, University of California, Los Angeles School of Medicine, Los Angeles, California, USA
- National University Cancer Institute, National University Health System and National University of Singapore, Singapore, Singapore
| |
Collapse
|
27
|
Lin JW, Li X, Qiu ML, Luo RG, Lin JB, Liu B. PI3K Overexpression andPIK3CAMutations Are Associated with Age, Tumor Staging, and Other Clinical Characteristics in Chinese Patients with Esophageal Squamous Cell Carcinoma. Genet Test Mol Biomarkers 2017; 21:236-241. [PMID: 28384037 DOI: 10.1089/gtmb.2016.0316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Affiliation(s)
- Jing-wei Lin
- Department of Thoracic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xu Li
- Department of Thoracic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ming-lian Qiu
- Department of Thoracic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Rong-gang Luo
- Department of Thoracic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jian-bo Lin
- Department of Thoracic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Bo Liu
- Department of Thoracic Surgery, First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Te Boekhorst V, Friedl P. Plasticity of Cancer Cell Invasion-Mechanisms and Implications for Therapy. Adv Cancer Res 2016; 132:209-64. [PMID: 27613134 DOI: 10.1016/bs.acr.2016.07.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cell migration is a plastic and adaptive process integrating cytoskeletal dynamics, cell-extracellular matrix and cell-cell adhesion, as well as tissue remodeling. In response to molecular and physical microenvironmental cues during metastatic dissemination, cancer cells exploit a versatile repertoire of invasion and dissemination strategies, including collective and single-cell migration programs. This diversity generates molecular and physical heterogeneity of migration mechanisms and metastatic routes, and provides a basis for adaptation in response to microenvironmental and therapeutic challenge. We here summarize how cytoskeletal dynamics, protease systems, cell-matrix and cell-cell adhesion pathways control cancer cell invasion programs, and how reciprocal interaction of tumor cells with the microenvironment contributes to plasticity of invasion and dissemination strategies. We discuss the potential and future implications of predicted "antimigration" therapies that target cytoskeletal dynamics, adhesion, and protease systems to interfere with metastatic dissemination, and the options for integrating antimigration therapy into the spectrum of targeted molecular therapies.
Collapse
Affiliation(s)
- V Te Boekhorst
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - P Friedl
- David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Radboud University Medical Centre, Nijmegen, The Netherlands; Cancer Genomics Center (CGC.nl), Utrecht, The Netherlands.
| |
Collapse
|
29
|
Li DJ, Shi M, Wang Z. RUNX3 reverses cisplatin resistance in esophageal squamous cell carcinoma via suppression of the protein kinase B pathway. Thorac Cancer 2016; 7:570-580. [PMID: 27766776 PMCID: PMC5129150 DOI: 10.1111/1759-7714.12370] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 05/02/2016] [Indexed: 01/02/2023] Open
Abstract
Background Preoperative chemoradiation combined with surgery has been of focus recently in order to improve prognosis in esophageal squamous cell carcinoma (ESCC) patients. Finding biological markers that may assist in predicting the therapeutic effect of chemoradiation may benefit the treatment effect. In this study, the role of RUNX3 in the formation of cisplatin resistance in ESCC was examined. Methods The study enrolled 103 stage IIa–IIIb ESCC patients who had undergone esophagectomy. RUNX3 expression in ESCC tissue was detected. Results A higher expression of RUNX3 in ESCC patients correlated with a more sensitive response to cisplatin‐based chemotherapy. A consistently lower expression of RUNX3 was found in the ESCC tissues of patients who agreed to perioperative chemotherapy compared with patients who had undergone no preoperative treatment. A lower RUNX3 expression in cisplatin‐resistant ESCC cell lines, Eca109 and TE‐1, was observed compared with parental cell lines. Heterologous RUNX3 expression significantly suppressed cisplatin resistance in Eca109 and TE‐1, both in vitro and vivo. Meanwhile, heterologous RUNX3 expression could inhibit growth and induce apoptosis in cisplatin resistant Eca109 and TE‐1 cell lines in vitro. Remarkable inhibition of the Akt pathway was observed in heterologous RUNX3 expression in Eca109 and TE‐1. Silencing Akt1 could reverse cisplatin resistance in Eca109 and TE‐1. Conclusion Our results confirmed that a loss of RUNX3 in ESCC may contribute to cisplatin‐resistance. RUNX3 could reverse cisplatin resistance via suppression of the Akt pathway in ESCC patients.
Collapse
Affiliation(s)
- De-Jun Li
- Department of ICU, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Mo Shi
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Zhou Wang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
30
|
Iriyama N, Yuan B, Hatta Y, Takagi N, Takei M. Lyn, a tyrosine kinase closely linked to the differentiation status of primary acute myeloid leukemia blasts, associates with negative regulation of all-trans retinoic acid (ATRA) and dihydroxyvitamin D3 (VD3)-induced HL-60 cells differentiation. Cancer Cell Int 2016; 16:37. [PMID: 27182202 PMCID: PMC4866426 DOI: 10.1186/s12935-016-0314-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Background Lyn, an import member of Src family kinases (SFKs), is supposed to be implicated in acute myeloid leukemia (AML) pathogenesis and development by participation in AML differentiation, yet the details still remain incompletely understood. The expression status of Lyn and its correlation with multiple clinical parameters including cell differentiation degree, different cytogenetic risk classification, and the activity of myeloperoxidase (MPO) were thus investigated. To address the mechanisms underlying the involvement of Lyn in differentiation induction, the effects of dasatinib, an inhibitor for SFKs including Lyn, on the alterations of all-trans retinoic acid (ATRA)- or dihydroxyvitamin D3 (VD3)-induced differentiation, and c-Myc protein expression were investigated. Methods Primary AML blasts were obtained from 31 newly diagnosed AML patients with different French-American-British (FAB) subtypes. The expression of phosphorylated and total Lyn, c-Myc, and CD11b, CD11c and CD15 was analyzed by flow cytometry. The activation of Akt and Erk known to be involved in the regulation of c-Myc expression was investigated using western blotting. Results Significant higher expression levels of total Lyn were observed in AML patients with favorable cytogenetics, higher MPO activity and FAB M2 subtype. A clear positive correlation between the expression levels of Lyn and differentiation status of primary AML blasts was observed. Dasatinib inhibited the expression of phosphorylated Lyn, and further enhanced the differentiation-inducing activity of ATRA and VD3 in HL-60 cells. Augmented downregulation of c-Myc protein expression was observed in the combination treatment with ATRA, VD3 and dasatinib compared to treatment with each reagent alone in HL-60 cells. The suppression of the activation of Akt and Erk was also observed concomitantly. Conclusions The expression level of total Lyn is closely linked to the differentiation status of AML blasts. The enhancement of differentiation-inducing activity of ATRA/VD3 by dasatinib suggested that Lyn was associated in the negative regulation of ATRA/VD3-induced HL-60 cells differentiation. The enhancement probably was attributed to the downregulation of c-Myc implicated with the suppression of the activation of Akt and Erk. These results provide novel insights into a possible combinational therapeutic approach by targeting Lyn for AML patients, and offer new possibilities for the combination therapy with VD3 and dasatinib.
Collapse
Affiliation(s)
- Noriyoshi Iriyama
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi Hospital, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Yoshihiro Hatta
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi Hospital, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392 Japan
| | - Masami Takei
- Division of Hematology and Rheumatology, Department of Medicine, Nihon University School of Medicine, Itabashi Hospital, 30-1 Oyaguchi Kamicho, Itabashi-ku, Tokyo, Japan
| |
Collapse
|
31
|
Li J, Liang L, Liu Y, Luo Y, Liang X, Luo D, Feng Z, Dang Y, Yang L, Chen G. Clinicopathological significance of STAT4 in hepatocellular carcinoma and its effect on cell growth and apoptosis. Onco Targets Ther 2016; 9:1721-34. [PMID: 27051307 PMCID: PMC4807935 DOI: 10.2147/ott.s100040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Recent studies showed that signal transducer and activator of transcription 4 (STAT4) was downregulated in hepatocellular carcinoma (HCC) tissues. However, the role of STAT4 in HCC is still unknown. The aim of this study is to explore the association between STAT4 expression and other clinicopathological features in HCC and to test the effect of STAT4 on cell growth and apoptosis in vitro. Methods STAT4 was evaluated by immunohistochemistry in 171 HCC and corresponding paraneoplastic liver, 37 cirrhosis, and 33 normal liver tissues. Association between STAT4 and clinicopathological parameters was analyzed. Meta-analysis on STAT4 in cancer was performed. The effect of STAT4 small interfering RNA (siRNA) on cell growth and cell apoptosis was also detected. Results Positive rate of STAT4 was 29.2% (50/171) in HCC tissues, 53.2% (91/171) in paraneoplastic liver tissues, 64.9% (24/37) in cirrhosis tissues, and 72.7% (24/33) in normal liver tissues. STAT4 was upregulated in younger patients who were female, with single tumor node, early TNM stage, without portal vein tumor embolus, and α-fetoprotein (AFP)-positive tumors compared with the groups comprising older patients, males, and those with multiple tumor nodes, advanced TNM stage, with portal vein tumor embolus, and AFP negative tumors. Meta-analysis showed STAT4 was correlated with TNM stage (OR =0.50, 95% CI =0.30, 0.83, P=0.008) and age (OR =0.58, 95% CI =0.38, 0.95, P=0.032) in malignant tissues, and with AFP level (OR =1.76, 95% CI =1.06, 2.94, P=0.03) in HCC. STAT4 siRNA promoted growth and suppressed apoptosis of HepG2 cells. Conclusion STAT4 might play a vital role in development of HCC, via influencing cell growth and apoptosis, as a tumor suppressor.
Collapse
Affiliation(s)
- Jianjun Li
- Department of General Surgery, Western Branch, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lu Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yongru Liu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yihuan Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiaona Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dianzhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhenbo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yiwu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lihua Yang
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
32
|
Wang R, MoYung KC, Zhao YJ, Poon K. A Mechanism for the Temporal Potentiation of Genipin to the Cytotoxicity of Cisplatin in Colon Cancer Cells. Int J Med Sci 2016; 13:507-16. [PMID: 27429587 PMCID: PMC4946121 DOI: 10.7150/ijms.15449] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 05/31/2016] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the potentiation effect of Genipin to Cisplatin induced cell senescence in HCT-116 colon cancer cells in vitro. METHODS Cell viability was estimated by Propidium iodide and Hoechst 3342, reactive oxygen species (ROS) with DHE, mitochondrial membrane potential (MMP) with JC-1 MMP assay Kit and electron current production with microbial fuel cells (MFC). RESULTS Genipin inhibited the UCP2 mediated anti-oxidative proton leak significantly promoted the Cisplatin induced ROS and subsequent cell death, which was similar to that of UCP2-siRNA. Cells treated with Cisplatin alone or combined with Genipin, ROS negatively, while MMP positively correlated with cell viability. Cisplatin induced ROS was significantly decreased by detouring electrons to MFC, or increased by Genipin combined treatment. Compensatory effects of UCP2 up-regulation with time against Genipin treatment were suggested. Shorter the Genipin treatment before Cisplatin better promoted the Cisplatin induced ROS and subsequent cell death. CONCLUSION The interaction of leaked electron with Cisplatin was important during ROS generation. Inhibition of UCP2-mediated proton leak with Genipin potentiated the cytotoxicity of Cisplatin. Owing to the compensatory effects against Genipin, shorter Genipin treatment before Cisplatin was recommended in order to achieve better potentiation effect.
Collapse
Affiliation(s)
- Ruihua Wang
- 1. Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong,China 518100
| | - K C MoYung
- 2. Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China 519085
| | - Y J Zhao
- 2. Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China 519085
| | - Karen Poon
- 2. Program of Food Science and Technology, Division of Science and Technology, BNU-HKBU United International College, 28 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, China 519085
| |
Collapse
|