1
|
Orrico F, Lopez AC, Silva N, Franco M, Mouro-Chanteloup I, Denicola A, Ostuni MA, Thomson L, Möller MN. Hydrogen peroxide diffusion across the red blood cell membrane occurs mainly by simple diffusion through the lipid fraction. Free Radic Biol Med 2025; 226:389-396. [PMID: 39551450 DOI: 10.1016/j.freeradbiomed.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Hydrogen peroxide (H2O2) is an oxidant produced endogenously by several enzymatic pathways. While it can cause molecular damage, H2O2 also plays a role in regulating cell proliferation and survival through redox signaling pathways. In the vascular system, red blood cells (RBCs) are notably efficient at metabolizing H2O2. In addition to a robust antioxidant defense, we recently determined that human RBCs also have a high membrane permeability to H2O2 that is independent of aquaporin 1 or aquaporin 3. In this work, we sought to further investigate the permeation mechanism of H2O2 through the membrane of human RBCs. First, we explored the role of other erythrocytic membrane proteins in H2O2 transport, including urea transporter B and ammonia transporter Rh proteins. However, no differences were found in H2O2 permeability in RBCs lacking these proteins compared to control RBCs. We then focused on the hypothesis that H2O2 diffuses through the lipid bilayer. To test this, we studied H2O2 permeability in RBCs from patients with Gaucher disease (GD), which accumulate sphingolipids in the membrane, affecting RBC morphology and deformability. We found that RBCs from GD patients exhibited lower H₂O₂ membrane permeability. In another approach, we treated normal RBCs with hexanol, which fluidizes the lipid fraction of the RBC membrane, and observed an increase in the permeability to H2O2. In contrast, hexanol had no effect on the rate of water efflux by aquaporin 1. Together, these results support the hypothesis that H2O2 diffusion through the RBC membrane occurs primarily through the lipid fraction.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Ana C Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Nicolás Silva
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Mélanie Franco
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015, Paris, France.
| | | | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Mariano A Ostuni
- Université Paris Cité and Université des Antilles, INSERM, BIGR, F-75015, Paris, France.
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| | - Matias N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay.
| |
Collapse
|
2
|
Anastasiadi AT, Stamoulis K, Kriebardis AG, Tzounakas VL. Molecular modifications to mitigate oxidative stress and improve red blood cell storability. Front Physiol 2024; 15:1499308. [PMID: 39539958 PMCID: PMC11557539 DOI: 10.3389/fphys.2024.1499308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The development of red blood cell (RBC) storage lesion during hypothermic storage has long posed challenges for blood transfusion efficacy. These alterations are primarily driven by oxidative stress, concern both structural and biochemical aspects of RBCs, and affect their interactions with the recipient's tissues post-transfusion. Efforts to counteract these effects focus on improving the antioxidant capacity within stored RBCs, reducing oxygen exposure, and scavenging harmful molecules that accumulate during storage. Various supplements, such as ascorbic acid, N-acetylcysteine, polyphenolic compounds, and specific metabolites have shown the potential to improve RBC quality by reducing oxidative lesions and lysis phenomena, and enhancing antioxidant, energy, or proteostasis networks. Accordingly, anaerobic storage has emerged as a promising strategy, demonstrating improved RBC storability and recovery in both animal models and preliminary human studies. Finally, targeted scavenging of harmful storage-related phenotypes and molecules, like removal signals, oxidized proteins, and extracellular hemoglobin, while not so studied, also has the potential to benefit both the unit and the patient in need. Omics technologies have aided a lot in these endeavors by revealing biomarkers of superior storability and, thus, potential novel supplementation strategies. Nonetheless, while the so far examined storage modifications show significant promise, there are not many post-transfusion studies (either in vitro, in animal models, or humans) to evaluate RBC efficacy in the transfusion setting. Looking ahead, the future of blood storage and transfusion will likely depend on the optimization of these interventions to extend the shelf-life and quality of stored RBCs, as well as their therapeutic outcome.
Collapse
Affiliation(s)
| | | | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Vassilis L. Tzounakas
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
| |
Collapse
|
3
|
Langlands HD, Shoemark DK, Toye AM. Modulation of Antioxidant Enzyme Expression of In Vitro Culture-Derived Reticulocytes. Antioxidants (Basel) 2024; 13:1070. [PMID: 39334729 PMCID: PMC11429491 DOI: 10.3390/antiox13091070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
The regulation of reactive oxygen species (ROS) in red blood cells (RBCs) is crucial for maintaining functionality and lifespan. Indeed, dysregulated ROS occurs in haematological diseases such as sickle cell disease and β-thalassaemia. In order to combat this, RBCs possess high levels of protective antioxidant enzymes. We aimed to further boost RBC antioxidant capacity by overexpressing peroxiredoxin (Prxs) and glutathione peroxidase (GPxs) enzymes. Multiple antioxidant enzyme cDNAs were individually overexpressed in expanding immortalised erythroblasts using lentivirus, including Prx isoforms 1, 2, and 6 and GPx isoforms 1 and 4. Enhancing Prx protein expression proved straightforward, but GPx overexpression required modifications. For GPx4, these modifications included adding a SECIS element in the 3'UTR, the removal of a mitochondrial-targeting sequence, and removing putative ubiquitination sites. Culture-derived reticulocytes exhibiting enhanced levels of Prx and GPx antioxidant proteins were successfully engineered, demonstrating a novel approach to improve RBC resilience to oxidative stress. Further work is needed to explore the activity of these proteins and their impact on RBC metabolism, but this strategy shows promise for improving RBC function in physiological and pathological contexts and during storage for transfusion. Enhancing the antioxidant capacity of reticulocytes has exciting promise for developing culture-derived RBCs with enhanced resistance to oxidative damage and offers new therapeutic interventions in diseases with elevated oxidative stress.
Collapse
Affiliation(s)
- Hannah D Langlands
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Deborah K Shoemark
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Ashley M Toye
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
4
|
Tran LNT, González-Fernández C, Gomez-Pastora J. Impact of Different Red Blood Cell Storage Solutions and Conditions on Cell Function and Viability: A Systematic Review. Biomolecules 2024; 14:813. [PMID: 39062526 PMCID: PMC11274915 DOI: 10.3390/biom14070813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Red blood cell (RBC) storage solutions have evolved significantly over the past decades to optimize the preservation of cell viability and functionality during hypothermic storage. This comprehensive review provides an in-depth analysis of the effects of various storage solutions and conditions on critical RBC parameters during refrigerated preservation. A wide range of solutions, from basic formulations such as phosphate-buffered saline (PBS), to advanced additive solutions (ASs), like AS-7 and phosphate, adenine, glucose, guanosine, saline, and mannitol (PAGGSM), are systematically compared in terms of their ability to maintain key indicators of RBC integrity, including adenosine triphosphate (ATP) levels, morphology, and hemolysis. Optimal RBC storage requires a delicate balance of pH buffering, metabolic support, oxidative damage prevention, and osmotic regulation. While the latest alkaline solutions enable up to 8 weeks of storage, some degree of metabolic and morphological deterioration remains inevitable. The impacts of critical storage conditions, such as the holding temperature, oxygenation, anticoagulants, irradiation, and processing methods, on the accumulation of storage lesions are also thoroughly investigated. Personalized RBC storage solutions, tailored to individual donor characteristics, represent a promising avenue for minimizing storage lesions and enhancing transfusion outcomes. Further research integrating omics profiling with customized preservation media is necessary to maximize post-transfusion RBC survival and functions. The continued optimization of RBC storage practices will not only enhance transfusion efficacy but also enable blood banking to better meet evolving clinical needs.
Collapse
Affiliation(s)
- Linh Nguyen T. Tran
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| | - Cristina González-Fernández
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
- Chemical and Biomolecular Engineering Department, Universidad de Cantabria, Avda. Los Castros, s/n, 39005 Santander, Spain
| | - Jenifer Gomez-Pastora
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA; (L.N.T.T.); (C.G.-F.)
| |
Collapse
|
5
|
Orrico F, Laurance S, Lopez AC, Lefevre SD, Thomson L, Möller MN, Ostuni MA. Oxidative Stress in Healthy and Pathological Red Blood Cells. Biomolecules 2023; 13:1262. [PMID: 37627327 PMCID: PMC10452114 DOI: 10.3390/biom13081262] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Red cell diseases encompass a group of inherited or acquired erythrocyte disorders that affect the structure, function, or production of red blood cells (RBCs). These disorders can lead to various clinical manifestations, including anemia, hemolysis, inflammation, and impaired oxygen-carrying capacity. Oxidative stress, characterized by an imbalance between the production of reactive oxygen species (ROS) and the antioxidant defense mechanisms, plays a significant role in the pathophysiology of red cell diseases. In this review, we discuss the most relevant oxidant species involved in RBC damage, the enzymatic and low molecular weight antioxidant systems that protect RBCs against oxidative injury, and finally, the role of oxidative stress in different red cell diseases, including sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, and pyruvate kinase deficiency, highlighting the underlying mechanisms leading to pathological RBC phenotypes.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sandrine Laurance
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Ana C. Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Sophie D. Lefevre
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay;
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Matias N. Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; (F.O.); (A.C.L.); (M.N.M.)
- Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Mariano A. Ostuni
- Université Paris Cité and Université des Antilles, UMR_S1134, BIGR, Inserm, F-75014 Paris, France; (S.L.); (S.D.L.)
| |
Collapse
|
6
|
Sadowska-Bartosz I, Bartosz G. Peroxiredoxin 2: An Important Element of the Antioxidant Defense of the Erythrocyte. Antioxidants (Basel) 2023; 12:antiox12051012. [PMID: 37237878 DOI: 10.3390/antiox12051012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Peroxiredoxin 2 (Prdx2) is the third most abundant erythrocyte protein. It was known previously as calpromotin since its binding to the membrane stimulates the calcium-dependent potassium channel. Prdx2 is present mostly in cytosol in the form of non-covalent dimers but may associate into doughnut-like decamers and other oligomers. Prdx2 reacts rapidly with hydrogen peroxide (k > 107 M-1 s-1). It is the main erythrocyte antioxidant that removes hydrogen peroxide formed endogenously by hemoglobin autoxidation. Prdx2 also reduces other peroxides including lipid, urate, amino acid, and protein hydroperoxides and peroxynitrite. Oxidized Prdx2 can be reduced at the expense of thioredoxin but also of other thiols, especially glutathione. Further reactions of Prdx2 with oxidants lead to hyperoxidation (formation of sulfinyl or sulfonyl derivatives of the peroxidative cysteine). The sulfinyl derivative can be reduced by sulfiredoxin. Circadian oscillations in the level of hyperoxidation of erythrocyte Prdx2 were reported. The protein can be subject to post-translational modifications; some of them, such as phosphorylation, nitration, and acetylation, increase its activity. Prdx2 can also act as a chaperone for hemoglobin and erythrocyte membrane proteins, especially during the maturation of erythrocyte precursors. The extent of Prdx2 oxidation is increased in various diseases and can be an index of oxidative stress.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszów, 4 Zelwerowicza St., 35-601 Rzeszow, Poland
| |
Collapse
|
7
|
Möller M, Orrico F, Villar S, López AC, Silva N, Donzé M, Thomson L, Denicola A. Oxidants and Antioxidants in the Redox Biochemistry of Human Red Blood Cells. ACS OMEGA 2023; 8:147-168. [PMID: 36643550 PMCID: PMC9835686 DOI: 10.1021/acsomega.2c06768] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/09/2022] [Indexed: 06/01/2023]
Abstract
Red blood cells (RBCs) are exposed to both external and internal sources of oxidants that challenge their integrity and compromise their physiological function and supply of oxygen to tissues. Autoxidation of oxyhemoglobin is the main source of endogenous RBC oxidant production, yielding superoxide radical and then hydrogen peroxide. In addition, potent oxidants from other blood cells and the surrounding endothelium can reach the RBCs. Abundant and efficient enzymatic systems and low molecular weight antioxidants prevent most of the damage to the RBCs and also position the RBCs as a sink of vascular oxidants that allow the body to maintain a healthy circulatory system. Among the antioxidant enzymes, the thiol-dependent peroxidase peroxiredoxin 2, highly abundant in RBCs, is essential to keep the redox balance. A great part of the RBC antioxidant activity is supported by an active glucose metabolism that provides reducing power in the form of NADPH via the pentose phosphate pathway. There are several RBC defects and situations that generate oxidative stress conditions where the defense mechanisms are overwhelmed, and these include glucose-6-phosphate dehydrogenase deficiencies (favism), hemoglobinopathies like sickle cell disease and thalassemia, as well as packed RBCs for transfusion that suffer from storage lesions. These oxidative stress-associated pathologies of the RBCs underline the relevance of redox balance in these anucleated cells that lack a mechanism of DNA-inducible antioxidant response and rely on a complex and robust network of antioxidant systems.
Collapse
Affiliation(s)
- Matias
N. Möller
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Florencia Orrico
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Sebastián
F. Villar
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Ana C. López
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Nicolás Silva
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
- Departamento
de Medicina Transfusional, Hospital de Clínicas, Facultad de
Medicina, Universidad de la República, Montevideo 11600, Uruguay
| | - Marcel Donzé
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Leonor Thomson
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
- Laboratorio
de Enzimología, Instituto de Química Biológica,
Facultad de Ciencias, Universidad de la
República, Montevideo 11400, Uruguay
| | - Ana Denicola
- Laboratorio
de Fisicoquímica Biológica, Instituto de Química
Biológica, Facultad de Ciencias,
Universidad de la República, Montevideo 11400, Uruguay
- Centro
de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| |
Collapse
|
8
|
Tkachenko A, Havránek O. Redox Status of Erythrocytes as an Important Factor in Eryptosis and Erythronecroptosis. Folia Biol (Praha) 2023; 69:116-126. [PMID: 38410969 DOI: 10.14712/fb2023069040116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Overall, reactive oxygen species (ROS) signalling significantly contributes to initiation and mo-dulation of multiple regulated cell death (RCD) pathways. Lately, more information has become available about RCD modalities of erythrocytes, including the role of ROS. ROS accumulation has therefore been increasingly recognized as a critical factor involved in eryptosis (apoptosis of erythrocytes) and erythro-necroptosis (necroptosis of erythrocytes). Eryptosis is a Ca2+-dependent apoptosis-like RCD of erythrocytes that occurs in response to oxidative stress, hyperosmolarity, ATP depletion, and a wide range of xenobiotics. Moreover, eryptosis seems to be involved in the pathogenesis of multiple human diseases and pathological processes. Several studies have reported that erythrocytes can also undergo necroptosis, a lytic RIPK1/RIPK3/MLKL-mediated RCD. As an example, erythronecroptosis can occur in response to CD59-specific pore-forming toxins. We have systematically summarized available studies regarding the involvement of ROS and oxidative stress in these two distinct RCDs of erythrocytes. We have focused specifically on cellular signalling pathways involved in ROS-mediated cell death decisions in erythrocytes. Furthermore, we have summarized dysregulation of related erythrocytic antioxidant defence systems. The general concept of the ROS role in eryptotic and necroptotic cell death pathways in erythrocytes seems to be established. However, further studies are required to uncover the complex role of ROS in the crosstalk and interplay between the survival and RCDs of erythrocytes.
Collapse
Affiliation(s)
- Anton Tkachenko
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic
| | - Ondřej Havránek
- 1st Department of Medicine - Department of Haematology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Czech Republic.
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czech Republic.
| |
Collapse
|
9
|
Anastasiadi AT, Stamoulis K, Papageorgiou EG, Lelli V, Rinalducci S, Papassideri IS, Kriebardis AG, Antonelou MH, Tzounakas VL. The time-course linkage between hemolysis, redox, and metabolic parameters during red blood cell storage with or without uric acid and ascorbic acid supplementation. FRONTIERS IN AGING 2023; 4:1161565. [PMID: 37025499 PMCID: PMC10072267 DOI: 10.3389/fragi.2023.1161565] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
Oxidative phenomena are considered to lie at the root of the accelerated senescence observed in red blood cells (RBCs) stored under standard blood bank conditions. It was recently shown that the addition of uric (UA) and/or ascorbic acid (AA) to the preservative medium beneficially impacts the storability features of RBCs related to the handling of pro-oxidant triggers. This study constitutes the next step, aiming to examine the links between hemolysis, redox, and metabolic parameters in control and supplemented RBC units of different storage times. For this purpose, a paired correlation analysis of physiological and metabolism parameters was performed between early, middle, and late storage in each subgroup. Strong and repeated correlations were observed throughout storage in most hemolysis parameters, as well as in reactive oxygen species (ROS) and lipid peroxidation, suggesting that these features constitute donor-signatures, unaffected by the diverse storage solutions. Moreover, during storage, a general "dialogue" was observed between parameters of the same category (e.g., cell fragilities and hemolysis or lipid peroxidation and ROS), highlighting their interdependence. In all groups, extracellular antioxidant capacity, proteasomal activity, and glutathione precursors of preceding time points anticorrelated with oxidative stress lesions of upcoming ones. In the case of supplemented units, factors responsible for glutathione synthesis varied proportionally to the levels of glutathione itself. The current findings support that UA and AA addition reroutes the metabolism to induce glutathione production, and additionally provide mechanistic insight and footing to examine novel storage optimization strategies.
Collapse
Affiliation(s)
- Alkmini T. Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Effie G. Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Issidora S. Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Anastasios G. Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health and Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Marianna H. Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vassilis L. Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
- Department of Biochemistry, School of Medicine, University of Patras, Patras, Greece
- *Correspondence: Vassilis L. Tzounakas,
| |
Collapse
|
10
|
Tzounakas VL, Anastasiadi AT, Arvaniti VZ, Lelli V, Fanelli G, Paronis EC, Apostolidou AC, Balafas EG, Kostomitsopoulos NG, Papageorgiou EG, Papassideri IS, Stamoulis K, Kriebardis AG, Rinalducci S, Antonelou MH. Supplementation with uric and ascorbic acid protects stored red blood cells through enhancement of non-enzymatic antioxidant activity and metabolic rewiring. Redox Biol 2022; 57:102477. [PMID: 36155342 PMCID: PMC9513173 DOI: 10.1016/j.redox.2022.102477] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 09/12/2022] [Indexed: 11/27/2022] Open
Abstract
Redox imbalance and oxidative stress have emerged as generative causes of the structural and functional degradation of red blood cells (RBC) that happens during their hypothermic storage at blood banks. The aim of the present study was to examine whether the antioxidant enhancement of stored RBC units following uric (UA) and/or ascorbic acid (AA) supplementation can improve their storability as well as post-transfusion phenotypes and recovery by using in vitro and animal models, respectively. For this purpose, 34 leukoreduced CPD/SAGM RBC units were aseptically split in 4 satellite units each. UA, AA or their mixture were added in the three of them, while the fourth was used as control. Hemolysis as well as redox and metabolic parameters were studied in RBC units throughout storage. The addition of antioxidants maintained the quality parameters of stored RBCs, (e.g., hemolysis, calcium homeostasis) and furthermore, shielded them against oxidative defects by boosting extracellular and intracellular (e.g., reduced glutathione; GSH) antioxidant powers. Higher levels of GSH seemed to be obtained through distinct metabolic rewiring in the modified units: methionine-cysteine metabolism in UA samples and glutamine production in the other two groups. Oxidatively-induced hemolysis, reactive oxygen species accumulation and membrane lipid peroxidation were lower in all modifications compared to controls. Moreover, denatured/oxidized Hb binding to the membrane was minor, especially in the AA and mix treatments during middle storage. The treated RBC were able to cope against pro-oxidant triggers when found in a recipient mimicking environment in vitro, and retain control levels of 24h recovery in mice circulation. The currently presented study provides (a) a detailed picture of the effect of UA/AA administration upon stored RBCs and (b) insight into the differential metabolic rewiring when distinct antioxidant "enhancers" are used.
Collapse
Affiliation(s)
- Vassilis L Tzounakas
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Alkmini T Anastasiadi
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Vasiliki-Zoi Arvaniti
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | - Veronica Lelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Giuseppina Fanelli
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Efthymios C Paronis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Anastasia C Apostolidou
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Evangelos G Balafas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Nikolaos G Kostomitsopoulos
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation, Academy of Athens (BRFAA), Athens, Greece
| | - Effie G Papageorgiou
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Issidora S Papassideri
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece
| | | | - Anastasios G Kriebardis
- Laboratory of Reliability and Quality Control in Laboratory Hematology (HemQcR), Department of Biomedical Sciences, School of Health & Welfare Sciences, University of West Attica (UniWA), Egaleo, Greece
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
| | - Marianna H Antonelou
- Department of Biology, School of Science, National and Kapodistrian University of Athens (NKUA), Athens, Greece.
| |
Collapse
|
11
|
Nemkov T, Yoshida T, Nikulina M, D’Alessandro A. High-Throughput Metabolomics Platform for the Rapid Data-Driven Development of Novel Additive Solutions for Blood Storage. Front Physiol 2022; 13:833242. [PMID: 35360223 PMCID: PMC8964052 DOI: 10.3389/fphys.2022.833242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Red blood cell transfusion is a life-saving intervention, and storage is a logistic necessity to make ~110 million units available for transfusion every year worldwide. However, storage in the blood bank is associated with a progressive metabolic decline, which correlates with the accumulation of morphological lesions, increased intra- and extra-vascular hemolysis upon transfusion, and altered oxygen binding/off-loading kinetics. Prior to storage, red blood cells are suspended in nutrient formulations known as additive solutions to prolong cellular viability. Despite a thorough expansion of knowledge regarding red blood cell biology over the past few decades, only a single new additive solution has been approved by the Food and Drug Administration this century, owing in part to the limited capacity for development of novel formulations. As a proof of principle, we leveraged a novel high-throughput metabolomics technology as a platform for rapid data-driven development and screening of novel additive solutions for blood storage under both normoxic and hypoxic conditions. To this end, we obtained leukocyte-filtered red blood cells (RBCs) and stored them under normoxic or hypoxic conditions in 96 well plates (containing polyvinylchloride plasticized with diethylhexylphthalate to concentrations comparable to full size storage units) in the presence of an additive solution supplemented with six different compounds. To inform this data-driven strategy, we relied on previously identified metabolic markers of the RBC storage lesion that associates with measures of hemolysis and post-transfusion recovery, which are the FDA gold standards to predict stored blood quality, as well as and metabolic predictors of oxygen binding/off-loading parameters. Direct quantitation of these predictors of RBC storage quality were used here-along with detailed pathway analysis of central energy and redox metabolism-as a decision-making tool to screen novel additive formulations in a multiplexed fashion. Candidate supplements are shown here that boost-specific pathways. These metabolic effects are only in part dependent on the SO2 storage conditions. Through this platform, we anticipate testing thousands of novel additives and combinations thereof in the upcoming months.
Collapse
Affiliation(s)
- Travis Nemkov
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| | | | | | - Angelo D’Alessandro
- Omix Technologies Inc., Denver, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
12
|
Kim CY, Johnson H, Peltier S, Spitalnik SL, Hod EA, Francis RO, Hudson KE, Stone EF, Gordy DE, Fu X, Zimring JC, Amireault P, Buehler PW, Wilson RB, D'Alessandro A, Shchepinov MS, Thomas T. Deuterated Linoleic Acid Attenuates the RBC Storage Lesion in a Mouse Model of Poor RBC Storage. Front Physiol 2022; 13:868578. [PMID: 35557972 PMCID: PMC9086239 DOI: 10.3389/fphys.2022.868578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Long-chain polyunsaturated fatty acids (PUFAs) are important modulators of red blood cell (RBC) rheology. Dietary PUFAs are readily incorporated into the RBC membrane, improving RBC deformability, fluidity, and hydration. However, enriching the lipid membrane with PUFAs increases the potential for peroxidation in oxidative environments (e.g., refrigerated storage), resulting in membrane damage. Substitution of bis-allylic hydrogens with deuterium ions in PUFAs decreases hydrogen abstraction, thereby inhibiting peroxidation. If lipid peroxidation is a causal factor in the RBC storage lesion, incorporation of deuterated linoleic acid (DLA) into the RBC membrane should decrease lipid peroxidation, thereby improving RBC lifespan, deformability, filterability, and post-transfusion recovery (PTR) after cold storage. Study Design and Methods: Mice associated with good (C57BL/6J) and poor (FVB) RBC storage quality received diets containing 11,11-D2-LA Ethyl Ester (1.0 g/100 g diet; deuterated linoleic acid) or non-deuterated LA Ethyl Ester (control) for 8 weeks. Deformability, filterability, lipidomics, and lipid peroxidation markers were evaluated in fresh and stored RBCs. Results: DLA was incorporated into RBC membranes in both mouse strains. DLA diet decreased lipid peroxidation (malondialdehyde) by 25.4 and 31% percent in C57 mice and 12.9 and 79.9% in FVB mice before and after cold storage, respectively. In FVB, but not C57 mice, deformability filterability, and post-transfusion recovery were significantly improved. Discussion: In a mouse model of poor RBC storage, with elevated reactive oxygen species production, DLA attenuated lipid peroxidation and significantly improved RBC storage quality.
Collapse
Affiliation(s)
- Christopher Y Kim
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Hannah Johnson
- Bloodworks Research Institute, Seattle, WA, United States
| | - Sandy Peltier
- Institut National de la Transfusion Sanguine, Paris, France
| | - Steven L Spitalnik
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Eldad A Hod
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Richard O Francis
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Krystalyn E Hudson
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Elizabeth F Stone
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Dominique E Gordy
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| | - Xiaoyun Fu
- Bloodworks Research Institute, Seattle, WA, United States
| | - James C Zimring
- University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Pascal Amireault
- Institut National de la Transfusion Sanguine, Paris, France.,X U1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, INSERM, Université de Paris, Paris, France
| | - Paul W Buehler
- University of Maryland School of Medicine, Baltimore, MD, United States
| | - Robert B Wilson
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | | | - Tiffany Thomas
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York-Presbyterian Hospital, New York, NY, United States
| |
Collapse
|
13
|
Orrico F, Lopez AC, Saliwonczyk D, Acosta C, Rodriguez-Grecco I, Mouro-Chanteloup I, Ostuni MA, Denicola A, Thomson L, Möller MN. The permeability of human red blood cell membranes to hydrogen peroxide is independent of aquaporins. J Biol Chem 2021; 298:101503. [PMID: 34929164 PMCID: PMC8753180 DOI: 10.1016/j.jbc.2021.101503] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Hydrogen peroxide (H2O2) not only is an oxidant but also is an important signaling molecule in vascular biology, mediating several physiological functions. Red blood cells (RBCs) have been proposed to be the primary sink of H2O2 in the vasculature because they are the main cellular component of blood with a robust antioxidant defense and a high membrane permeability. However, the exact permeability of human RBC to H2O2 is neither known nor is it known if the mechanism of permeation involves the lipid fraction or protein channels. To gain insight into the permeability process, we measured the partition constant of H2O2 between water and octanol or hexadecane using a novel double-partition method. Our results indicated that there is a large thermodynamic barrier to H2O2 permeation. The permeability coefficient of H2O2 through phospholipid membranes containing cholesterol with saturated or unsaturated acyl chains was determined to be 4 × 10−4 and 5 × 10−3 cm s−1, respectively, at 37 °C. The permeability coefficient of human RBC membranes to H2O2 at 37 °C, on the other hand, was 1.6 × 10−3 cm s−1. Different aquaporin-1 and aquaporin-3 inhibitors proved to have no effect on the permeation of H2O2. Moreover, human RBCs devoid of either aquaporin-1 or aquaporin-3 were equally permeable to H2O2 as normal human RBCs. Therefore, these results indicate that H2O2 does not diffuse into RBCs through aquaporins but rather through the lipid fraction or a still unidentified membrane protein.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Ana C Lopez
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Daniela Saliwonczyk
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Departamento de Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República
| | - Cecilia Acosta
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Departamento de Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República
| | - Ismael Rodriguez-Grecco
- Departamento de Medicina Transfusional, Hospital de Clínicas, Facultad de Medicina, Universidad de la República
| | - Isabelle Mouro-Chanteloup
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Laboratoire d'Excellence GR-Ex, Paris, France
| | - Mariano A Ostuni
- Université de Paris, UMR_S1134, BIGR, Inserm, F-75015 Paris, France; Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay.
| | - Matias N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo 11800, Uruguay.
| |
Collapse
|
14
|
Daniels RC, Jun H, Davenport RD, Collinson MM, Ward KR. Using redox potential as a feasible marker for banked blood quality and the state of oxidative stress in stored red blood cells. J Clin Lab Anal 2021; 35:e23955. [PMID: 34424578 PMCID: PMC8529126 DOI: 10.1002/jcla.23955] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/16/2021] [Accepted: 07/12/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Stored red blood cells (RBCs) may undergo oxidative stress over time, with functional changes affecting oxygen delivery. Central to these changes are oxidation-reduction (redox) reactions and redox potential (RP) that must be maintained for cell function. RP imbalance can lead to oxidative stress that may contribute to storage lesions. This study's purpose was to identify changes in RP over time in banked RBCs, and among RBCs of similar age. METHODS Multiple random RBC segments from RBC units were tested (n = 32), ranging in age from 5 to 40 days, at 5-day intervals. RP was recorded by measuring open circuit potential of RBCs using nanoporous gold electrodes with Ag/AgCl reference. RP measures were also performed on peripheral venous blood from 10 healthy volunteers. RP measures were compared between RBC groups, and with volunteer blood. RESULTS Stored RBCs show time-dependent RP increases. There were significant differences in Day 5 RP compared to all other groups (p ≤ 0.005), Day 10-15 vs. ages ≥ Day 20 (p ≤ 0.025), Day 20-25 vs. Day 40 (p = 0.039), and all groups compared to healthy volunteers. RP became more positive over time suggesting ongoing oxidation as RBCs age; however, storage time alone was not predictive of RP measured in a particular unit/segment. CONCLUSIONS There are significant differences in RP between freshly stored RBCs and all others, with RP becoming more positive over time. However, storage time alone does not predict RP, indicating RP screening may be an important measure of RBC oxidative stress and serve as an RBC quality marker.
Collapse
Affiliation(s)
- Rodney C Daniels
- Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hyesun Jun
- Pediatric Critical Care Medicine, University of Michigan, Ann Arbor, MI, USA.,Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA
| | - Robertson D Davenport
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | | | - Kevin R Ward
- Michigan Center for Integrative Research in Critical Care (MCIRCC), University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
15
|
Bardyn M, Allard J, Crettaz D, Rappaz B, Turcatti G, Tissot JD, Prudent M. Image- and Fluorescence-Based Test Shows Oxidant-Dependent Damages in Red Blood Cells and Enables Screening of Potential Protective Molecules. Int J Mol Sci 2021; 22:ijms22084293. [PMID: 33924276 PMCID: PMC8074894 DOI: 10.3390/ijms22084293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
An increase of oxygen saturation within blood bags and metabolic dysregulation occur during storage of red blood cells (RBCs). It leads to the gradual exhaustion of RBC antioxidant protective system and, consequently, to a deleterious state of oxidative stress that plays a major role in the apparition of the so-called storage lesions. The present study describes the use of a test (called TSOX) based on fluorescence and label-free morphology readouts to simply and quickly evaluate the oxidant and antioxidant properties of various compounds in controlled conditions. Here, TSOX was applied to RBCs treated with four antioxidants (ascorbic acid, uric acid, trolox and resveratrol) and three oxidants (AAPH, diamide and H2O2) at different concentrations. Two complementary readouts were chosen: first, where ROS generation was quantified using DCFH-DA fluorescent probe, and second, based on digital holographic microscopy that measures morphology alterations. All oxidants produced an increase of fluorescence, whereas H2O2 did not visibly impact the RBC morphology. Significant protection was observed in three out of four of the added molecules. Of note, resveratrol induced diamond-shape “Tirocytes”. The assay design was selected to be flexible, as well as compatible with high-throughput screening. In future experiments, the TSOX will serve to screen chemical libraries and probe molecules that could be added to the additive solution for RBCs storage.
Collapse
Affiliation(s)
- Manon Bardyn
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
| | - Jérôme Allard
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
- Département de Génie Chimique, École Polytechnique de Montréal, Montréal, QC H3C 3A7, Canada
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
| | - Benjamin Rappaz
- Biomolecular Screening Facility (BSF), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility (BSF), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Faculté de Biologie et de Médecine, Université de Lausanne, CH-1011 Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
- Faculté de Biologie et de Médecine, Université de Lausanne, CH-1011 Lausanne, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
16
|
van Vuren AJ, van Beers EJ, van Wijk R. A Proposed Concept for Defective Mitophagy Leading to Late Stage Ineffective Erythropoiesis in Pyruvate Kinase Deficiency. Front Physiol 2021; 11:609103. [PMID: 33551834 PMCID: PMC7854701 DOI: 10.3389/fphys.2020.609103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/24/2020] [Indexed: 01/19/2023] Open
Abstract
Pyruvate kinase deficiency (PKD) is a rare congenital hemolytic anemia caused by mutations in the PKLR gene. Here, we review pathophysiological aspects of PKD, focusing on the interplay between pyruvate kinase (PK)-activity and reticulocyte maturation in the light of ferroptosis, an iron-dependent process of regulated cell death, and in particular its key player glutathione peroxidase 4 (GPX4). GPX4 plays an important role in mitophagy, the key step of peripheral reticulocyte maturation and GPX4 deficiency in reticulocytes results in a failure to fully mature. Mitophagy depends on lipid oxidation, which is under physiological conditions controlled by GPX4. Lack of GPX4 leads to uncontrolled auto-oxidation, which will disrupt autophagosome maturation and thereby perturb mitophagy. Based on our review, we propose a model for disturbed red cell maturation in PKD. A relative GPX4 deficiency occurs due to glutathione (GSH) depletion, as cytosolic L-glutamine is preferentially used in the form of α-ketoglutarate as fuel for the tricarboxylic acid (TCA) cycle at the expense of GSH production. The relative GPX4 deficiency will perturb mitophagy and, subsequently, results in failure of reticulocyte maturation, which can be defined as late stage ineffective erythropoiesis. Our hypothesis provides a starting point for future research into new therapeutic possibilities, which have the ability to correct the oxidative imbalance due to lack of GPX4.
Collapse
Affiliation(s)
- Annelies Johanna van Vuren
- Van Creveldkliniek, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Eduard Johannes van Beers
- Van Creveldkliniek, Division of Internal Medicine and Dermatology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Richard van Wijk
- Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
17
|
Nitric oxide donors offer protection to RBC from storage lesion. Transfus Clin Biol 2020; 27:229-236. [DOI: 10.1016/j.tracli.2020.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/26/2022]
|
18
|
Erol G, Kartal H, Comu FM, Cetin E, Demirdas E, Sicim H, Unal CS, Gunay C, Oz BS, Bolcal C. Effects of N-Acetylcysteine and N-Acetylcysteine Amide on Erythrocyte Deformability and Oxidative Stress in a Rat Model of Lower Extremity Ischemia-Reperfusion Injury. Cardiol Res Pract 2020; 2020:6841835. [PMID: 33062321 PMCID: PMC7542486 DOI: 10.1155/2020/6841835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 07/05/2020] [Accepted: 07/25/2020] [Indexed: 11/17/2022] Open
Abstract
N-acetylcysteine (NAC) is an antioxidant which works as a free radical scavenger and antiapoptotic agent. N-acetylcysteine-amide (NACA) is a modified form of NAC containing an amide group instead of a carboxyl group of NAC. Our study aims to investigate the effectiveness of these two substances on erythrocyte deformability and oxidative stress in muscle tissue. Materials and Methods. A total of 24 Wistar albino rats were used in our study. The animals were randomly divided into five groups as control (n: 6), ischemia (n: 6), NAC (n: 6), and NACA (n: 6). In the ischemia, NAC, and NACA groups, 120 min of ischemia and 120 min of reperfusion were achieved by placing nontraumatic vascular clamps across the abdominal aorta. The NAC and NACA groups were administered an injection 30 min before ischemia (100 mg/kg NAC; 100 mg/kg NACA; intravenous). Blood samples were taken from the animals at the end of the ischemic period. The lower extremity gastrocnemius muscle was isolated and stored at -80 degrees to assess the total antioxidant status (TAS), total oxidant status (TOS), and oxidative stress index (OSI) values and was analyzed. Results. The erythrocyte deformability index was found to be statistically significantly lower in rats treated with NAC and NACA before ischemia-reperfusion compared to the groups that received only ischemia-reperfusion. In addition, no statistically significant difference was found between the control group and the NAC and NACA groups. The groups receiving NAC and NACA before ischemia exhibited higher total antioxidative status and lower total oxidative status while the oxidative stress index was also lower. Conclusion. The results of our study demonstrated the protective effects of NAC and NACA on erythrocyte deformability and oxidative damage in skeletal muscle in lower extremity ischemia-reperfusion. NAC and NACA exhibited similar protective effects on oxidative damage and erythrocyte deformability.
Collapse
Affiliation(s)
- Gokhan Erol
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Hakan Kartal
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Faruk M. Comu
- Department of Physiology, Kırıkkale University Medical Faculty, Kırıkkale, Turkey
| | - Erdem Cetin
- Department of Cardiovascular Surgery, Karabük Training and Research Hospital, Karabük, Turkey
| | - Ertan Demirdas
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Huseyin Sicim
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Celal S. Unal
- Department of Cardiovascular Surgery, Karabük Training and Research Hospital, Karabük, Turkey
| | - Celalettin Gunay
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Bilgehan S. Oz
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| | - Cengiz Bolcal
- Department of Cardiovascular Surgery, Gulhane Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
19
|
Hochmann J, Parietti F, Martínez J, Lopez AC, Carreño M, Quijano C, Boccardo E, Sichero L, Möller MN, Mirazo S, Arbiza J. Human papillomavirus type 18 E5 oncoprotein cooperates with E6 and E7 in promoting cell viability and invasion and in modulating the cellular redox state. Mem Inst Oswaldo Cruz 2020; 115:e190405. [PMID: 32187327 PMCID: PMC7066992 DOI: 10.1590/0074-02760190405] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND High-risk human papillomaviruses (HR-HPVs) are the etiological agents of
cervical cancer. Among them, types 16 and 18 are the most prevalent
worldwide. The HPV genome encodes three oncoproteins (E5, E6, and E7) that
possess a high transformation potential in culture cells when transduced
simultaneously. In the present study, we analysed how these oncoproteins
cooperate to boost key cancer cell features such as uncontrolled cell
proliferation, invasion potential, and cellular redox state imbalance.
Oxidative stress is known to contribute to the carcinogenic process, as
reactive oxygen species (ROS) constitute a potentially harmful by-product of
many cellular reactions, and an efficient clearance mechanism is therefore
required. Cells infected with HR-HPVs can adapt to oxidative stress
conditions by upregulating the formation of endogenous antioxidants such as
catalase, glutathione (GSH), and peroxiredoxin (PRX). OBJECTIVES The primary aim of this work was to study how these oncoproteins cooperate
to promote the development of certain cancer cell features such as
uncontrolled cell proliferation, invasion potential, and oxidative stress
that are known to aid in the carcinogenic process. METHODS To perform this study, we generated three different HaCaT cell lines using
retroviral transduction that stably expressed combinations of HPV-18
oncogenes that included HaCaT E5-18, HaCaT E6/E7-18, and HaCaT
E5/E6/E7-18. FINDINGS Our results revealed a statistically significant increment in cell viability
as measured by MTT assay, cell proliferation, and invasion assays in the
cell line containing the three viral oncogenes. Additionally, we observed
that cells expressing HPV-18 E5/E6/E7 exhibited a decrease in catalase
activity and a significant augmentation of GSH and PRX1 levels relative to
those of E5, E6/E7, and HaCaT cells. MAIN CONCLUSIONS This study demonstrates for the first time that HPV-18 E5, E6, and E7
oncoproteins can cooperate to enhance malignant transformation.
Collapse
Affiliation(s)
- Jimena Hochmann
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Felipe Parietti
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Jennyfer Martínez
- Universidad de la República, Facultad de Medicina, Centro de Investigaciones Biomédicas, Departamento de Bioquímica, Montevideo, Uruguay
| | - Ana C Lopez
- Universidad de la República, Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Fisicoquímica Biológica, Montevideo, Uruguay
| | - Mara Carreño
- Universidad de la República, Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Fisicoquímica Biológica, Montevideo, Uruguay
| | - Celia Quijano
- Universidad de la República, Facultad de Medicina, Centro de Investigaciones Biomédicas, Departamento de Bioquímica, Montevideo, Uruguay
| | - Enrique Boccardo
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil
| | - Laura Sichero
- Hospital das Clinicas da Faculdade de Medicina da Universidade de São Paulo, Centro de Investigação Translacional em Oncologia, Instituto do Câncer do Estado de São Paulo, São Paulo, SP, Brasil
| | - Matías N Möller
- Universidad de la República, Facultad de Ciencias, Instituto de Química Biológica, Laboratorio de Fisicoquímica Biológica, Montevideo, Uruguay
| | - Santiago Mirazo
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| | - Juan Arbiza
- Universidad de la República, Facultad de Ciencias, Sección Virología, Montevideo, Uruguay
| |
Collapse
|
20
|
Metabolomics Reveals that Cysteine Metabolism Plays a Role in Celastrol-Induced Mitochondrial Apoptosis in HL-60 and NB-4 Cells. Sci Rep 2020; 10:471. [PMID: 31949255 PMCID: PMC6965619 DOI: 10.1038/s41598-019-57312-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/28/2019] [Indexed: 12/24/2022] Open
Abstract
Recently, celastrol has shown great potential for inducing apoptosis in acute myeloid leukemia cells, especially acute promyelocytic leukaemia cells. However, the mechanism is poorly understood. Metabolomics provides an overall understanding of metabolic mechanisms to illustrate celastrol's mechanism of action. We treated both nude mice bearing HL-60 cell xenografts in vivo and HL-60 cells as well as NB-4 cells in vitro with celastrol. Ultra-performance liquid chromatography coupled with mass spectrometry was used for metabolomics analysis of HL-60 cells in vivo and for targeted L-cysteine analysis in HL-60 and NB-4 cells in vitro. Flow cytometric analysis was performed to assess mitochondrial membrane potential, reactive oxygen species and apoptosis. Western blotting was conducted to detect the p53, Bax, cleaved caspase 9 and cleaved caspase 3 proteins. Celastrol inhibited tumour growth, induced apoptosis, and upregulated pro-apoptotic proteins in the xenograft tumour mouse model. Metabolomics showed that cysteine metabolism was the key metabolic alteration after celastrol treatment in HL-60 cells in vivo. Celastrol decreased L-cysteine in HL-60 cells. Acetylcysteine supplementation reversed reactive oxygen species accumulation and apoptosis induced by celastrol and reversed the dramatic decrease in the mitochondrial membrane potential and upregulation of pro-apoptotic proteins in HL-60 cells. In NB-4 cells, celastrol decreased L-cysteine, and acetylcysteine reversed celastrol-induced reactive oxygen species accumulation and apoptosis. We are the first to identify the involvement of a cysteine metabolism/reactive oxygen species/p53/Bax/caspase 9/caspase 3 pathway in celastrol-triggered mitochondrial apoptosis in HL-60 and NB-4 cells, providing a novel underlying mechanism through which celastrol could be used to treat acute myeloid leukaemia, especially acute promyelocytic leukaemia.
Collapse
|
21
|
Diffusion and Transport of Reactive Species Across Cell Membranes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1127:3-19. [PMID: 31140168 DOI: 10.1007/978-3-030-11488-6_1] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This chapter includes an overview of the structure of cell membranes and a review of the permeability of membranes to biologically relevant oxygen and nitrogen reactive species, namely oxygen, singlet oxygen, superoxide, hydrogen peroxide, hydroxyl radical, nitric oxide, nitrogen dioxide, peroxynitrite and also hydrogen sulfide. Physical interactions of these species with cellular membranes are discussed extensively, but also their relevance to chemical reactions such as lipid peroxidation. Most of these species are involved in different cellular redox processes ranging from physiological pathways to damaging reactions against biomolecules. Cell membranes separate and compartmentalize different processes, inside or outside cells, and in different organelles within cells. The permeability of these membranes to reactive species varies according to the physicochemical properties of each molecule. Some of them, such as nitric oxide and oxygen, are small and hydrophobic and can traverse cellular membranes virtually unhindered. Nitrogen dioxide and hydrogen sulfide find a slightly higher barrier to permeation, but still their diffusion is largely unimpeded by cellular membranes. In contrast, the permeability of cellular membranes to the more polar hydrogen peroxide, is up to five orders of magnitude lower, allowing the formation of concentration gradients, directionality and effective compartmentalization of its actions which can be further regulated by specific aquaporins that facilitate its diffusion through membranes. The compartmentalizing effect on anionic species such as superoxide and peroxynitrite is even more accentuated because of the large energetic barrier that the hydrophobic interior of membranes presents to ions that may be overcome by protonation or the use of anion channels. The large difference in cell membrane permeability for different reactive species indicates that compartmentalization is possible for some but not all of them.
Collapse
|
22
|
Kontoghiorghes GJ, Kontoghiorghe CN. Prospects for the introduction of targeted antioxidant drugs for the prevention and treatment of diseases related to free radical pathology. Expert Opin Investig Drugs 2019; 28:593-603. [DOI: 10.1080/13543784.2019.1631284] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- George J Kontoghiorghes
- Postgraduate Research Institute of Science Technology, Environment and Medicine, Limassol, Cyprus
| | | |
Collapse
|
23
|
Cataldo N, Musetti B, Celano L, Carabio C, Cassina A, Cerecetto H, González M, Thomson L. Inhibition of LDL oxidation and inflammasome assembly by nitroaliphatic derivatives. Potential use as anti-inflammatory and anti-atherogenic agents. Eur J Med Chem 2018; 159:178-186. [PMID: 30292895 DOI: 10.1016/j.ejmech.2018.09.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/04/2018] [Accepted: 09/25/2018] [Indexed: 10/28/2022]
Abstract
We have previously shown the antioxidant and anti-inflammatory properties of several para-substituted arylnitroalkenes. Since oxidative stress and inflammation are key processes that drive the initiation and progression of atherosclerosis, in the present work the antioxidant, anti-inflammatory and anti-atherogenic properties of an extended library of aryl-nitroaliphatic derivatives, including several newly designed nitroalkanes, was explored. The antioxidant capacity of the nitroaliphatic compounds, measured using the oxygen radical absorbance capacity assay (ORAC) showed that the p-methylthiophenyl-derivatives were about three times more effective than Trolox to prevent fluorescein oxidation, independently of the presence or the absence of the double bond next to the nitro group. The peroxyl radical scavenger capacity of the p-dimethylaminophenyl-derivatives was even higher, being the reduced form of these compounds even more active. In fact, while the antioxidant capacity of 1-dimethylamino-4-(2-nitro-1Z-ethenyl)benzene and 1-dimethylamino-4-(2-nitro-1Z-propenyl)benzene was 4.2 ± 0.1 and 5.4 ± 0.1 Trolox Eq/mol, respectively; ORAC values obtained with the ethyl and the propyl derivatives were 10 ± 1 and 13 ± 2 Trolox Eq/mol, respectively. The p-dimethylamino-derivatives, especially the nitroalkanes, were also able to prevent LDL oxidation mediated by peroxyl radicals. Oxygen consumption due to the oxidation of fatty acids was delayed in the presence of the dimethylamino substituted compounds, only the alkanes interrupted the chain of lipid oxidations decreasing the rate of oxygen consumption. Although the formation of foam cells in the presence of oxidized-LDL (oxLDL) remained unaffected, the molecules containing the dimethylamino moiety were able to decrease the expression of IL-1β in LPS/INF-γ challenged macrophages.
Collapse
Affiliation(s)
- Nicolás Cataldo
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Bruno Musetti
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Laura Celano
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Claudio Carabio
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Adriana Cassina
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, 11800, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, 11800, Uruguay
| | - Hugo Cerecetto
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Mercedes González
- Grupo de Química Medicinal, Laboratorio de Química Orgánica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo, 11400, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, General Flores 2125, Montevideo, 11800, Uruguay.
| |
Collapse
|
24
|
Orrico F, Möller MN, Cassina A, Denicola A, Thomson L. Kinetic and stoichiometric constraints determine the pathway of H 2O 2 consumption by red blood cells. Free Radic Biol Med 2018; 121:231-239. [PMID: 29753074 DOI: 10.1016/j.freeradbiomed.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 12/14/2022]
Abstract
Red blood cells (RBC) are considered as a circulating sink of H2O2, but a significant debate remains over the role of the different intraerythocyte peroxidases. Herein we examined the kinetic of decomposition of exogenous H2O2 by human RBC at different cell densities, using fluorescent and oxymetric methods, contrasting the results against a mathematical model. Fluorescent measurements as well as oxygen production experiments showed that catalase was responsible for most of the decomposition of H2O2 at cell densities suitable for both experimental settings (0.1-10 × 1010 cell L-1), since sodium azide but not N-ethylmaleimide (NEM) inhibited H2O2 consumption. Oxygen production decreased at high cell densities until none was detected above 1.1 × 1012 cell L-1, being recovered after inhibition of the thiol dependent systems by NEM. This result underlined that the consumption of H2O2 by catalase prevail at RBC densities regularly used for research, while the thiol dependent systems predominate when the cell density increases, approaching the normal number in blood (5 × 1012 cell L-1). The mathematical model successfully reproduced experimental results and at low cell number it showed a time sequence involving Prx as the first line of defense, followed by catalase, with a minor role by Gpx. The turning points were given by the total consumption of reduced Prx in first place and reduced GSH after that. However, Prx alone was able to account for the added H2O2 (50 µM) at physiological RBC density, calling attention to the importance of cell density in defining the pathway of H2O2 consumption and offering an explanation to current apparently conflicting results in the literature.
Collapse
Affiliation(s)
- Florencia Orrico
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay
| | - Matías N Möller
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay.
| | - Adriana Cassina
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay; Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay
| | - Ana Denicola
- Laboratorio de Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay
| | - Leonor Thomson
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, 11400 Montevideo, Uruguay; Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, 11100 Montevideo, Uruguay.
| |
Collapse
|