1
|
Bing RG, Sulis DB, Carey MJ, Manesh MJH, Ford KC, Straub CT, Laemthong T, Alexander BH, Willard DJ, Jiang X, Yang C, Wang JP, Adams MWW, Kelly RM. Beyond low lignin: Identifying the primary barrier to plant biomass conversion by fermentative bacteria. SCIENCE ADVANCES 2024; 10:eadq4941. [PMID: 39423261 PMCID: PMC11488576 DOI: 10.1126/sciadv.adq4941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/16/2024] [Indexed: 10/21/2024]
Abstract
Renewable alternatives for nonelectrifiable fossil-derived chemicals are needed and plant matter, the most abundant biomass on Earth, provide an ideal feedstock. However, the heterogeneous polymeric composition of lignocellulose makes conversion difficult. Lignin presents a formidable barrier to fermentation of nonpretreated biomass. Extensive chemical and enzymatic treatments can liberate fermentable carbohydrates from plant biomass, but microbial routes offer many advantages, including concomitant conversion to industrial chemicals. Here, testing of lignin content of nonpretreated biomass using the cellulolytic thermophilic bacterium, Anaerocellum bescii, revealed that the primary microbial degradation barrier relates to methoxy substitutions in lignin. This contrasts with optimal lignin composition for chemical pretreatment that favors high S/G ratio and low H lignin. Genetically modified poplar trees with diverse lignin compositions confirm these findings. In addition, poplar trees with low methoxy content achieve industrially relevant levels of microbial solubilization without any pretreatments and with no impact on tree fitness in greenhouse.
Collapse
Affiliation(s)
- Ryan G. Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel B. Sulis
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Morgan J. Carey
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Mohamad J. H. Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Kathryne C. Ford
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Christopher T. Straub
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC 27695, USA
| | - Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Benjamin H. Alexander
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Daniel J. Willard
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Xiao Jiang
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | - Chenmin Yang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Jack P. Wang
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Robert M. Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
2
|
Cavailles J, Vaca-Medina G, Wu-Tiu-Yen J, Labonne L, Evon P, Peydecastaing J, Pontalier PY. Aqueous Pretreatment of Lignocellulosic Biomass for Binderless Material Production: Influence of Twin-Screw Extrusion Configuration and Liquid-to-Solid Ratio. Molecules 2024; 29:3020. [PMID: 38998971 PMCID: PMC11243502 DOI: 10.3390/molecules29133020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
This study was carried out to investigate the continuous aqueous pretreatment of sugarcane bagasse (SCB) through twin-screw extrusion for a new integrated full valorization, where the solid residue (extrudate) was used for the production of bio-based materials by thermocompression and the filtrate for the production of high-value-added molecules. Two configurations, with and without a filtration module, were tested and the influence of the SCB composition and structure on the properties of the materials were determined. The impact of the liquid-to-solid (L/S) ratio was studied (0.65-6.00) in relation to the material properties and the biomolecule extraction yield in the filtrate (with the filtration configuration). An L/S ratio of at least 1.25 was required to obtain a liquid filtrate, and increasing the L/S ratio to 2 increased the extraction yield to 11.5 g/kg of the inlet SCB. The extrudate obtained without filtration yielded materials with properties equivalent to those obtained with filtration for L/S ratios of at least 1.25. Since the molecule extraction process was limited, a configuration without filtration would make it possible to reduce water consumption in the process while obtaining high material properties. Under the filtration configuration, an L/S ratio of 2 was the best tradeoff between water consumption, extraction yield, and the material properties, which included 1485 kg/m3 density, 6.2 GPa flexural modulus, 51.2 MPa flexural strength, and a water absorption (WA) and thickness swelling (TS) of 37% and 44%, respectively, after 24 h of water immersion. The aqueous pretreatment by twin-screw extrusion allowed for the overall valorization of SCB, resulting in materials with significantly improved properties compared to those obtained with raw SCB due to fiber deconstruction.
Collapse
Affiliation(s)
- Julie Cavailles
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France
- eRcane, Sainte-Clotilde, 97490 La Réunion, France
| | - Guadalupe Vaca-Medina
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France
| | | | - Laurent Labonne
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France
| | - Philippe Evon
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France
| | - Jérôme Peydecastaing
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France
| | - Pierre-Yves Pontalier
- Laboratoire de Chimie Agro-Industrielle (LCA), Université de Toulouse, INRAE, Toulouse INP, 31030 Toulouse, France
| |
Collapse
|
3
|
Li M, Zhang Y, Ma H, Peng Q, Min D, Zhang P, Jiang L. Improved antioxidant activity of pretreated lignin nanoparticles: Evaluation and self-assembly. Int J Biol Macromol 2024; 267:131472. [PMID: 38599437 DOI: 10.1016/j.ijbiomac.2024.131472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Lignin nanoparticles (LNPs) have gained significant attention for their potential as natural antioxidants. This study investigated the effect of various pretreatment methods on the lignin structure and subsequent antioxidant activity of LNPs. Among four pretreated LNPs, hydrothermal LNPs exhibited the highest antioxidant activity, surpassing unpretreated, acid-pretreated and kraft LNPs, with an impressive efficacy of 91.6%. The relationship between LNPs' structure and antioxidant activity was revealed by 2D heteronuclear singular quantum correlation (1H13C HSQC) and 31P nuclear magnetic resonance (NMR). 1H13C HSQC suggested the cleavage of β-O-4 ether bonds, as well as a decrease in ferulic acid and p-coumaric acid, which directly influenced the antioxidant activity of LNPs. 31P NMR demonstrated a positive correlation between the total hydroxyl group content and the antioxidant activity. Besides, an isothermal kinetic model for scavenging free radicals was established based on Langmuir kinetic model instead of Freundlich model. Moreover, multilayer LNPs, based on layer-by-layer self-assembly, were prepared and exhibited remarkable antioxidant activity of 95.8%. More importantly, when blended with pure cosmetic cream, the multilayer LNPs maintained antioxidant activity of 86.7%. These finding may promote the practical applications of biomolecules, e.g. lignin additives in cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Mingfu Li
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, Guangdong 510316, China
| | - Yingchuan Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong
| | - Hongli Ma
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; College of Engineering, Nanjing Agricultural University, Nanjing 210031, China
| | - Qida Peng
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; College of Chemistry and Chemical Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Pingjun Zhang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, Guangdong 510316, China.
| | - Liqun Jiang
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510316, China; Guangdong Province Engineering Research Center for Green Technology of Sugar Industry, Guangzhou, Guangdong 510316, China.
| |
Collapse
|
4
|
Chen R, Yu M, Jiang B, Chen J. Effect of different sterilization methods on the appearance, composition, and flavor of sugarcane juice. J Food Sci 2024; 89:1755-1772. [PMID: 38328957 DOI: 10.1111/1750-3841.16945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/09/2024]
Abstract
Cold-pressed sugarcane juice (SCJ) is a beverage rich in vitamins, carbohydrates, and antioxidants. Various sterilization methods impact fruit juice's appearance, nutrients, and flavor. Hence, this study aims to assess how different sterilization techniques affect the flavor, appearance, and nutritional value of SCJ. Freshly prepared SCJs were subjected to two sterilization methods: pasteurization (referred to as PTG) and autoclaving (referred to as HTHP). The pasteurization process was carried out at 63°C for 30 min, whereas the HTHP process was applied at 115°C for 30 min. The appearances, Brix value, colors, sugar, organic acid content, and aromatic compounds were determined. The Brix and pH values of the juice show little variation across different heat treatments. The color index of PTG was similar to that of the control group, whereas the L* value of HTHP increased about 21%, resulting in a significant color change. The glucose and fructose contents of HTHP were 7.03 and 5.41 mg/mL, which were much higher than those of PTG (3.26 and 2.33 mg/mL) and control group (3.33 and 2.48 mg/mL). A total of 77 aromatic compounds were identified in the SCJ after various heat treatments. Among them, pentanoic acid, octanal, and β-damascenone were the most abundant substances contributing to the overall flavor in the control group, PTG, and HTHP. Pasteurization preserved the original flavor of the juice, whereas autoclaving triggered the Maillard reaction, forming pyrazine and furan-like compounds that altered the SCJ's flavor. In conclusion, pasteurization retained SCJ's original characteristics, whereas HTHP induces changes in nutrition and imparts a distinct flavor.
Collapse
Affiliation(s)
- Ronghua Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Bo Jiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| | - Jingjing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
5
|
Palliprath S, Poolakkalody NJ, Ramesh K, Mangalan SM, Kabekkodu SP, Santiago R, Manisseri C. Pretreatment of sugarcane postharvest leaves by γ-valerolactone/water/FeCl3 system for enhanced glucan and bioethanol production. INDUSTRIAL CROPS AND PRODUCTS 2023; 197:116571. [DOI: 10.1016/j.indcrop.2023.116571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
|
6
|
Bryant N, Engle N, Tschaplinski T, Pu Y, Ragauskas AJ. Variable lignin structure revealed in Populus leaves. RSC Adv 2023; 13:20187-20197. [PMID: 37416906 PMCID: PMC10320358 DOI: 10.1039/d3ra03142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/25/2023] [Indexed: 07/08/2023] Open
Abstract
Lignin has long been a trait of interest, especially in bioenergy feedstocks such as Populus. While the stem lignin of Populus is well studied, foliar lignin has received significantly less consideration. To this end, leaves from 11 field grown, natural variant Populus trichocarpa genotypes were investigated by NMR, FTIR, and GC-MS. Five of these genotypes were sufficiently irrigated, and the other six genotypes were irrigated at a reduced rate (59% of the potential evapotranspiration for the site) to induce drought treatment. Analysis by HSQC NMR revealed highly variable lignin structure among the samples, especially for the syringyl/guaiacyl (S/G) ratio, which ranged from 0.52-11.9. Appreciable levels of a condensed syringyl lignin structure were observed in most samples. The same genotype subjected to different treatments exhibited similar levels of condensed syringyl lignin, suggesting this was not a response to stress. A cross peak of δC/δH 74.6/5.03, consistent with the erythro form of the β-O-4 linkage, was observed in genotypes where significant syringyl units were present. Principle component analysis revealed that FTIR absorbances associated with syringyl units (830 cm-1, 1317 cm-1) greatly contributed to variability between samples. Additionally, the ratio of 830/1230 cm-1 peak intensities were reasonably correlated (p-value < 0.05) with the S/G ratio determined by NMR. Analysis by GC-MS revealed significant variability of secondary metabolites such as tremuloidin, trichocarpin, and salicortin. Additionally, salicin derivatives were found to be well correlated with NMR results, which has been previously hypothesized. These results highlight previously unexplored nuance and variability associated with foliage tissue of poplar.
Collapse
Affiliation(s)
- Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
| | - Nancy Engle
- BioEnergy Science Center & Center for Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Timothy Tschaplinski
- BioEnergy Science Center & Center for Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Yunqiao Pu
- BioEnergy Science Center & Center for Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville Tennessee 37996 USA
- BioEnergy Science Center & Center for Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science, Oak Ridge National Laboratory Oak Ridge TN 37831 USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Center for Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture Knoxville TN 37996 USA
| |
Collapse
|
7
|
Bryant N, Muchero W, Weber RA, Barros J, Chen JG, Tschaplinski TJ, Pu Y, Ragauskas AJ. Cell wall response of field grown Populus to Septoria infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1089011. [PMID: 37351208 PMCID: PMC10282658 DOI: 10.3389/fpls.2023.1089011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023]
Abstract
Due to its ability to spread quickly and result in tree mortality, Sphaerulina musiva (Septoria) is one of the most severe diseases impacting Populus. Previous studies have identified that Septoria infection induces differential expression of phenylpropanoid biosynthesis genes. However, more extensive characterization of changes to lignin in response to Septoria infection is lacking. To study the changes of lignin due to Septoria infection, four field grown, naturally variant Populus trichocarpa exhibiting visible signs of Septoria infection were sampled at health, infected, and reaction zone regions for cell wall characterization. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (NMR), and acid hydrolysis were applied to identify changes to the cell wall, and especially lignin. FTIR and subsequent principal component analysis revealed that infected and reaction zone regions were similar and could be distinguished from the non-infected (healthy) region. NMR results indicated the general trend that infected region had a higher syringyl:guaiacyl ratio and lower p-hydroxybenzoate content than the healthy regions from the same genotype. Finally, Klason lignin content in the infected and/or reaction zone regions was shown to be higher than healthy region, which is consistent with previous observations of periderm development and metabolite profiling. These results provide insights on the response of Populus wood characteristics to Septoria infection, especially between healthy and infected region within the same genotype.
Collapse
Affiliation(s)
- Nathan Bryant
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
| | - Wellington Muchero
- BioEnergy Science Center & Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Rachel A. Weber
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Jaime Barros
- Division of Plant Sciences and Interdisciplinary Plant Group, University of Missouri, Columbia, MO, United States
| | - Jin-Gui Chen
- BioEnergy Science Center & Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- BioEnergy Science Center & Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Yunqiao Pu
- BioEnergy Science Center & Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Arthur J. Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, United States
- BioEnergy Science Center & Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Center for Renewable Carbon, Knoxville, TN, United States
- Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| |
Collapse
|
8
|
Tramontina R, Ciancaglini I, Roman EKB, Chacón MG, Corrêa TLR, Dixon N, Bugg TDH, Squina FM. Sustainable biosynthetic pathways to value-added bioproducts from hydroxycinnamic acids. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12571-8. [PMID: 37212882 DOI: 10.1007/s00253-023-12571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/23/2023]
Abstract
The biorefinery concept, in which biomass is utilized for the production of fuels and chemicals, emerges as an eco-friendly, cost-effective, and renewable alternative to petrochemical-based production. The hydroxycinnamic acid fraction of lignocellulosic biomass represents an untapped source of aromatic molecules that can be converted to numerous high-value products with industrial applications, including in the flavor and fragrance sector and pharmaceuticals. This review describes several biochemical pathways useful in the development of a biorefinery concept based on the biocatalytic conversion of the hydroxycinnamic acids ferulic, caffeic, and p-coumaric acid into high-value molecules. KEY POINTS: • The phenylpropanoids bioconversion pathways in the context of biorefineries • Description of pathways from hydroxycinnamic acids to high-value compounds • Metabolic engineering and synthetic biology advance hydroxycinnamic acid-based biorefineries.
Collapse
Affiliation(s)
- Robson Tramontina
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Iara Ciancaglini
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ellen K B Roman
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Micaela G Chacón
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Thamy L R Corrêa
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Neil Dixon
- Manchester Institute of Biotechnology (MIB), Department of Chemistry, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK
| | - Timothy D H Bugg
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Fabio Marcio Squina
- Programa de Processos Tecnológicos E Ambientais, Universidade de Sorocaba (UNISO), Sorocaba, São Paulo, Brazil.
| |
Collapse
|
9
|
Gao LJ, Liu XP, Gao KK, Cui MQ, Zhu HH, Li GX, Yan JY, Wu YR, Ding ZJ, Chen XW, Ma JF, Harberd NP, Zheng SJ. ART1 and putrescine contribute to rice aluminum resistance via OsMYB30 in cell wall modification. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:934-949. [PMID: 36515424 DOI: 10.1111/jipb.13429] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Cell wall is the first physical barrier to aluminum (Al) toxicity. Modification of cell wall properties to change its binding capacity to Al is one of the major strategies for plant Al resistance; nevertheless, how it is regulated in rice remains largely unknown. In this study, we show that exogenous application of putrescines (Put) could significantly restore the Al resistance of art1, a rice mutant lacking the central regulator Al RESISTANCE TRANSCRIPTION FACTOR 1 (ART1), and reduce its Al accumulation particularly in the cell wall of root tips. Based on RNA-sequencing, yeast-one-hybrid and electrophoresis mobility shift assays, we identified an R2R3 MYB transcription factor OsMYB30 as the novel target in both ART1-dependent and Put-promoted Al resistance. Furthermore, transient dual-luciferase assay showed that ART1 directly inhibited the expression of OsMYB30, and in turn repressed Os4CL5-dependent 4-coumaric acid accumulation, hence reducing the Al-binding capacity of cell wall and enhancing Al resistance. Additionally, Put repressed OsMYB30 expression by eliminating Al-induced H2 O2 accumulation, while exogenous H2 O2 promoted OsMYB30 expression. We concluded that ART1 confers Put-promoted Al resistance via repression of OsMYB30-regulated modification of cell wall properties in rice.
Collapse
Affiliation(s)
- Li Jun Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| | - Xiang Pei Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Ke Ke Gao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meng Qi Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hui Hui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Gui Xin Li
- College of Agronomy and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Jing Ying Yan
- Agricultural Experimental Station, Zhejiang University, Hangzhou, 310058, China
| | - Yun Rong Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhong Jie Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xue Wei Chen
- Rice Research Institute, Sichuan Agricultural University at Wenjiang, Chengdu, 611130, China
| | - Jian Feng Ma
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Nicholas P Harberd
- Department of Plant Science, University of Oxford, Oxford, OX1 3RB, United Kingdom
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 5100642, China
| |
Collapse
|
10
|
Laemthong T, Bing RG, Crosby JR, Manesh MJH, Adams MWW, Kelly RM. Role of cell-substrate association during plant biomass solubilization by the extreme thermophile Caldicellulosiruptor bescii. Extremophiles 2023; 27:6. [PMID: 36802247 PMCID: PMC10514702 DOI: 10.1007/s00792-023-01290-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 02/23/2023]
Abstract
Caldicellulosiruptor species are proficient at solubilizing carbohydrates in lignocellulosic biomass through surface (S)-layer bound and secretomic glycoside hydrolases. Tāpirins, surface-associated, non-catalytic binding proteins in Caldicellulosiruptor species, bind tightly to microcrystalline cellulose, and likely play a key role in natural environments for scavenging scarce carbohydrates in hot springs. However, the question arises: If tāpirin concentration on Caldicellulosiruptor cell walls increased above native levels, would this offer any benefit to lignocellulose carbohydrate hydrolysis and, hence, biomass solubilization? This question was addressed by engineering the genes for tight-binding, non-native tāpirins into C. bescii. The engineered C. bescii strains bound more tightly to microcrystalline cellulose (Avicel) and biomass compared to the parent. However, tāpirin overexpression did not significantly improve solubilization or conversion for wheat straw or sugarcane bagasse. When incubated with poplar, the tāpirin-engineered strains increased solubilization by 10% compared to the parent, and corresponding acetate production, a measure of carbohydrate fermentation intensity, was 28% higher for the Calkr_0826 expression strain and 18.5% higher for the Calhy_0908 expression strain. These results show that enhanced binding to the substrate, beyond the native capability, did not improve C. bescii solubilization of plant biomass, but in some cases may improve conversion of released lignocellulose carbohydrates to fermentation products.
Collapse
Affiliation(s)
- Tunyaboon Laemthong
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
- Department of Chemical Engineering, Thammasat University, Pathum Thani, 12120, Thailand
| | - Ryan G Bing
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Mohamad J H Manesh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695-7905, USA.
| |
Collapse
|
11
|
Piazza DM, Romanini D, Meini MR. High-efficiency novel extraction process of target polyphenols using enzymes in hydroalcoholic media. Appl Microbiol Biotechnol 2023; 107:1205-1216. [PMID: 36680585 DOI: 10.1007/s00253-023-12386-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/22/2023]
Abstract
Agro-industrial by-products are a sustainable source of natural additives that can replace the synthetic ones in the food industry. Grape pomace is an abundant by-product that contains about 70% of the grape's polyphenols. Polyphenols are natural antioxidants with multiple health-promoting properties. They are secondary plant metabolites with a wide range of solubilities. Here, a novel extraction process of these compounds was developed using enzymes that specifically liberates target polyphenols in the appropriate hydroalcoholic mixture. Tannase, cellulase, and pectinase retained 22, 60, and 52% of their activity, respectively, in ethanol 30% v/v. Therefore, extractions were tested in ethanol concentrations between 0 and 30% v/v. Some of these enzymes presented synergistic effects in the extraction of specific polyphenols. Maximum yield of gallic acid was obtained using tannase and pectinase enzymes in ethanol 10% v/v (49.56 ± 0.01 mg L-1 h-1); in the case of p-coumaric acid, by cellulase and pectinase treatment in ethanol 30% v/v (7.72 ± 0.26 mg L-1 h-1), and in the case of trans-resveratrol, by pectinase treatment in ethanol 30% v/v (0.98 ± 0.04 mg L-1 h-1). Also, the effect of enzymes and solvent polarity was analysed for the extraction of malvidin-3-O-glucoside, syringic acid, and quercetin. Previous studies were mainly focused on the maximization of total polyphenols extraction yields, being the polyphenolic profile the consequence but not the driving force of the optimization. In the present study, the basis of a platform for a precise extraction of the desire polyphenols is provided. KEY POINTS: • Enzymes can be used up to ethanol 30% v/v. • The specific enzymes' action determines the polyphenolic profile of the extracts. • The yields obtained of target polyphenols are competitive.
Collapse
Affiliation(s)
- Dana M Piazza
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina
| | - Diana Romanini
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina.,Facultad de Ciencias Bioquímicas Y Farmacéuticas, Departamento de Tecnología, UNR, Rosario, Argentina
| | - María-Rocío Meini
- Instituto de Procesos Biotecnológicos Y Químicos (IPROBYQ), Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario (UNR), Rosario, Argentina. .,Área Biofísica, Facultad de Ciencias Bioquímicas Y Farmacéuticas, UNR, Rosario, Argentina. .,IPROBYQ-CONICET, Facultad de Ciencias Bioquímicas Y Farmacéuticas, Universidad Nacional de Rosario, Mitre 1998 - S2000FWF, Rosario, Santa Fe, Argentina.
| |
Collapse
|
12
|
Valério R, Torres CA, Brazinha C, da Silva MG, Coelhoso IM, Crespo JG. Purification of ferulic acid from corn fibre alkaline extracts for bio-vanillin production using an adsorption process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Tailored production of lignin-containing cellulose nanofibrils from sugarcane bagasse pretreated by acid-catalyzed alcohol solutions. Carbohydr Polym 2022; 291:119602. [DOI: 10.1016/j.carbpol.2022.119602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/19/2022] [Accepted: 05/06/2022] [Indexed: 11/21/2022]
|
14
|
Younes A, Li M, Karboune S. Cocoa bean shells: a review into the chemical profile, the bioactivity and the biotransformation to enhance their potential applications in foods. Crit Rev Food Sci Nutr 2022; 63:9111-9135. [PMID: 35467453 DOI: 10.1080/10408398.2022.2065659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During processing, cocoa bean shells (CBS) are de-hulled from the bean and discarded as waste. Undermined by its chemical and bioactive composition, CBS is abundant in dietary fiber and phenolic compounds that may serve the valorization purpose of this by-product material into prebiotic and functional ingredients. In addition, the cell-wall components of CBS can be combined through enzymatic feruloylation to obtain feruloylated oligo- and polysaccharides (FOs), further enhancing the techno-functional properties. FOs have attracted scientific attention due to their prebiotic, antimicrobial, anti-inflammatory and antioxidant functions inherent to their structural features. This review covers the chemical and bioactive compositions of CBS as well as their modifications upon cocoa processing. Physical, chemical, and enzymatic approaches to extract and bio-transform bioactive components from the cell wall matrix of CBS were also discussed. Although nonspecific to CBS, studies were compiled to investigate efforts done to extract and produce feruloylated oligo- and polysaccharides from the cell wall materials.
Collapse
Affiliation(s)
- Amalie Younes
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Mingqin Li
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, Montreal, Québec, Canada
| |
Collapse
|
15
|
Coniglio RO, Díaz GV, Barua RC, Albertó E, Zapata PD. Enzyme‐assisted extraction of phenolic compounds and proteins from sugarcane bagasse using a low‐cost cocktail from
Auricularia fuscosuccinea. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Romina O. Coniglio
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales Instituto de Biotecnología Misiones “Dra. María Ebe Reca” (INBIOMIS), Laboratorio de Biotecnología molecular Misiones Argentina
- CONICET Buenos Aires Argentina
| | - Gabriela V. Díaz
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales Instituto de Biotecnología Misiones “Dra. María Ebe Reca” (INBIOMIS), Laboratorio de Biotecnología molecular Misiones Argentina
- CONICET Buenos Aires Argentina
| | - Ramona C. Barua
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales Instituto de Biotecnología Misiones “Dra. María Ebe Reca” (INBIOMIS), Laboratorio de Biotecnología molecular Misiones Argentina
- CONICET Buenos Aires Argentina
| | - Edgardo Albertó
- Laboratorio de Micología y Cultivo de Hongos Comestibles y Medicinales Instituto Tecnológico de Chascomús Universidad Nacional de San Martín‐CONICET. Chascomús Buenos Aires Argentina
| | - Pedro D. Zapata
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas Químicas y Naturales Instituto de Biotecnología Misiones “Dra. María Ebe Reca” (INBIOMIS), Laboratorio de Biotecnología molecular Misiones Argentina
- CONICET Buenos Aires Argentina
| |
Collapse
|
16
|
Zhang S, Li H, Li M, Chen G, Ma Y, Wang Y, Chen J. Construction of ferulic acid modified porous starch esters for improving the antioxidant capacity. RSC Adv 2022; 12:4253-4262. [PMID: 35425409 PMCID: PMC8981049 DOI: 10.1039/d1ra08172a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
For exploration of a type of synthetic antioxidant dietary fiber (ADF), porous starch (PS), modified by esterification with ferulic acid (FA) moieties, was synthesized successfully, with different degree of substitution (DS). The ester linkage of FA modified PS was confirmed by 13C solid-state NMR and FT-IR. XRD analysis showed that starch ferulates had a different crystal structure from the V-type pattern of native starch, suggesting that the starch gelled during the esterification reaction, then re-crystallized into a different structure. Morphological studies revealed that FA modified PS esters had a different morphology of irregular beehive-like and dense fibrous-like structures compared with that of native starch. In vitro antioxidant assays showed that starch ferulates had excellent antioxidant capacity. In particular, FA modified PS esters had a much higher antioxidant capacity than free FA in the β-carotene-linoleic acid assay. This study has advanced the technology of using porous starches for modifying the biological activity of an antioxidant polyphenol. We expect this work would inspire further studies on the interactions of phenolics with other food ingredients in the food industry.
Collapse
Affiliation(s)
- Shenggui Zhang
- College of Food Science and Engineering, Gansu Agricultural University Lanzhou 730070 China
- Gansu Provincial Key Laboratory of Arid Land Crop Science Lanzhou 730070 China
| | - Haiyan Li
- College of Food Science and Engineering, Gansu Agricultural University Lanzhou 730070 China
| | - Min Li
- College of Science, Gansu Agricultural University Lanzhou 730070 China
| | - Guopeng Chen
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 Gansu China
| | - Yunxiang Ma
- College of Food Science and Engineering, Gansu Agricultural University Lanzhou 730070 China
- Gansu Provincial Key Laboratory of Arid Land Crop Science Lanzhou 730070 China
| | - Yue Wang
- College of Food Science and Engineering, Gansu Agricultural University Lanzhou 730070 China
| | - Jinfeng Chen
- College of Food Science and Engineering, Gansu Agricultural University Lanzhou 730070 China
| |
Collapse
|
17
|
Weiland F, Kohlstedt M, Wittmann C. Guiding stars to the field of dreams: Metabolically engineered pathways and microbial platforms for a sustainable lignin-based industry. Metab Eng 2021; 71:13-41. [PMID: 34864214 DOI: 10.1016/j.ymben.2021.11.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/19/2022]
Abstract
Lignin is an important structural component of terrestrial plants and is readily generated during biomass fractionation in lignocellulose processing facilities. Due to lacking alternatives the majority of technical lignins is industrially simply burned into heat and energy. However, regarding its vast abundance and a chemically interesting richness in aromatics, lignin is presently regarded as the most under-utilized and promising feedstock for value-added applications. Notably, microbes have evolved powerful enzymes and pathways that break down lignin and metabolize its various aromatic components. This natural pathway atlas meanwhile serves as a guiding star for metabolic engineers to breed designed cell factories and efficiently upgrade this global waste stream. The metabolism of aromatic compounds, in combination with success stories from systems metabolic engineering, as reviewed here, promises a sustainable product portfolio from lignin, comprising bulk and specialty chemicals, biomaterials, and fuels.
Collapse
Affiliation(s)
- Fabia Weiland
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
18
|
Scavenging Properties of Plant-Derived Natural Biomolecule Para-Coumaric Acid in the Prevention of Oxidative Stress-Induced Diseases. Antioxidants (Basel) 2021; 10:antiox10081205. [PMID: 34439453 PMCID: PMC8388950 DOI: 10.3390/antiox10081205] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
Para-coumaric acid (p-CA) is a plant derived secondary metabolite belonging to the phenolic compounds. It is widely distributed in the plant kingdom and found mainly in fruits, vegetables, and cereals. Various in vivo and in vitro studies have revealed its scavenging and antioxidative properties in the reduction of oxidative stress and inflammatory reactions. This evidence-based review focuses on the protective role of p-CA including its therapeutic potential. p-CA and its conjugates possesses various bioactivities such as antioxidant, anti-inflammatory, anti-cancer, anti-diabetic, and anti-melanogenic properties. Due to its potent free radical scavenging activity, it can mitigate the ill effects of various diseases including arthritis, neurological disorders, and cardio-vascular diseases. Recent studies have revealed that p-CA can ameliorate the harmful effects associated with oxidative stress in the reproductive system, also by inhibiting enzymes linked with erectile function.
Collapse
|
19
|
The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021; 10:foods10040867. [PMID: 33921097 PMCID: PMC8071402 DOI: 10.3390/foods10040867] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 11/24/2022] Open
Abstract
Grape pomace is one of the most abundant solid by-products generated during winemaking. A lot of products, such as ethanol, tartrates, citric acid, grape seed oil, hydrocolloids, bioactive compounds and dietary fiber are recovered from grape pomace. Grape pomace represents a major interest in the field of fiber extraction, especially pectin, as an alternative source to conventional ones, such as apple pomace and citrus peels, from which pectin is obtained by acid extraction and precipitation using alcohols. Understanding the structural and functional components of grape pomace will significantly aid in developing efficient extraction of pectin from unconventional sources. In recent years, natural biodegradable polymers, like pectin has invoked a big interest due to versatile properties and diverse applications in food industry and other fields. Thus, pectin extraction from grape pomace could afford a new reason for the decrease of environmental pollution and waste generation. This paper briefly describes the structure and composition of grape pomace of different varieties for the utilization of grape pomace as a source of pectin in food industry.
Collapse
|
20
|
Variable and dose-dependent response of Saccharomyces and non-Saccharomyces yeasts toward lignocellulosic hydrolysate inhibitors. Braz J Microbiol 2021; 52:575-586. [PMID: 33825150 DOI: 10.1007/s42770-021-00489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 03/29/2021] [Indexed: 10/21/2022] Open
Abstract
Lignocellulosic hydrolysates will also contain compounds that inhibit microbial metabolism, such as organic acids, furaldehydes, and phenolic compounds. Understanding the response of yeasts toward such inhibitors is important to the development of different bioprocesses. In this work, the growth capacity of 7 industrial Saccharomyces cerevisiae and 7 non-Saccharomyces yeasts was compared in the presence of 3 different concentrations of furaldehydes (furfural and 5-hydroxymetil-furfural), organic acids (acetic and formic acids), and phenolic compounds (vanillin, syringaldehyde, ferulic, and coumaric acids). Then, Candida tropicalis JA2, Meyerozyma caribbica JA9, Wickerhamomyces anomalus 740, S. cerevisiae JP1, B1.1, and G06 were selected for fermentation in presence of acetic acid, HMF, and vanillin because they proved to be most tolerant to the tested compounds, while Spathaspora sp. JA1 because its xylose consumption rate. The results obtained showed a dose-dependent response of the yeasts toward the eight different inhibitors. Among the compared yeasts, S. cerevisiae strains presented higher tolerance than non-Saccharomyces, 3 of them with the highest tolerance among all. Regarding the non-Saccharomyces yeasts, C. tropicalis JA2 and W. anomalus 740 appeared as the most tolerant, whereas Spathaspora strains appeared very sensitive to the different compounds.
Collapse
|
21
|
Valério R, Bernardino ARS, Torres CAV, Brazinha C, Tavares ML, Crespo JG, Reis MAM. Feeding strategies to optimize vanillin production by Amycolatopsis sp. ATCC 39116. Bioprocess Biosyst Eng 2021; 44:737-747. [PMID: 33389106 DOI: 10.1007/s00449-020-02482-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/10/2020] [Indexed: 01/28/2023]
Abstract
The growing consumer demand for natural products led to an increasing interest in vanillin production by biotechnological routes. In this work, the biotechnological vanillin production by Amycolatopsis sp. ATCC 39116 is studied using ferulic acid as precursor, aiming to achieve maximized vanillin productivities. During biotech-vanillin production, the effects of glucose, vanillin and ferulic acid concentrations in the broth proved to be relevant for vanillin productivity. Concerning glucose, its presence in the broth during the production phase avoids vanillin conversion to vanillic acid and, consequently, increases vanillin production. To avoid the accumulation of vanillin up to a toxic concentration level, a multiple-pulse-feeding strategy is implemented, with intercalated vanillin removal from the broth and biomass recovery. This strategy turned out fruitful, leading to 0.46 g L-1 h-1 volumetric productivity of vanillin of and a production yield of 0.69 gvanillin gferulic acid-1, which are among the highest values reported in the literature for non-modified bacteria.
Collapse
Affiliation(s)
- Rita Valério
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.,LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana R S Bernardino
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Cristiana A V Torres
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal.
| | - Carla Brazinha
- LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria L Tavares
- Copam-Companhia Portuguesa de Amidos SA, 2695-722, S. João da Talha, Portugal
| | - João G Crespo
- LAQV-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Chemistry Department, FCT/Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
22
|
Reina M, Guzmán-López EG, Romeo I, Marino T, Russo N, Galano A. Computationally designed p-coumaric acid analogs: searching for neuroprotective antioxidants. NEW J CHEM 2021. [DOI: 10.1039/d1nj01235e] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Newly designed p-coumaric acid derivatives are promising candidates as multifunctional antioxidants with neuroprotective effects.
Collapse
Affiliation(s)
- Miguel Reina
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Mexico City
- Mexico
| | | | - Isabella Romeo
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Tiziana Marino
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Nino Russo
- Dipartimento de Chimica e Tecnologie Chimiche
- Università della Calabria
- Consenza
- Italy
| | - Annia Galano
- Departamento de Química
- Universidad Autónoma Metropolitana-Iztapalapa
- Mexico City
- Mexico
| |
Collapse
|
23
|
Ilanidis D, Wu G, Stagge S, Martín C, Jönsson LJ. Effects of redox environment on hydrothermal pretreatment of lignocellulosic biomass under acidic conditions. BIORESOURCE TECHNOLOGY 2021; 319:124211. [PMID: 33045548 DOI: 10.1016/j.biortech.2020.124211] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/23/2023]
Abstract
The effects of the redox environment on acidic hydrothermal pretreatment were investigated in experiments with sugarcane bagasse (190 °C, 14 min) and Norway spruce (205 °C, 5 min). To modulate the redox environment, pretreatment was performed without gas addition, with N2, or with O2. Analyses covered pretreated solids, pretreatment liquids, condensates, enzymatic digestibility, and inhibitory effects of pretreatment liquids on yeast. Addition of gas, especially O2, resulted in increased severity, as reflected by up to 18 percent units lower recoveries of pretreated solids, up to 31 percent units lower glucan recoveries, improved hemicellulose removal, formation of pseudo-lignin, improved overall glucan conversion, and increased concentrations of several microbial inhibitors. Some inhibitors, such as formaldehyde and coniferyl aldehyde, did not, however, follow that pattern. TAC (Total Aromatic Content) values reflected inhibitory effects of pretreatment liquids. This study demonstrates how gas addition can be used to modulate the severity of acidic hydrothermal pretreatment.
Collapse
Affiliation(s)
| | - Guochao Wu
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Stefan Stagge
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Carlos Martín
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| |
Collapse
|
24
|
|
25
|
Mason PJ, Furtado A, Marquardt A, Hodgson-Kratky K, Hoang NV, Botha FC, Papa G, Mortimer JC, Simmons B, Henry RJ. Variation in sugarcane biomass composition and enzymatic saccharification of leaves, internodes and roots. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:201. [PMID: 33298135 PMCID: PMC7724889 DOI: 10.1186/s13068-020-01837-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND The composition of biomass determines its suitability for different applications within a biorefinery system. The proportion of the major biomass fractions (sugar, cellulose, hemicellulose and lignin) may vary in different sugarcane genotypes and growth environments and different parts of the plant. This study investigated the composition of mature and immature internodes, roots and mature leaves of sugarcane. RESULTS Internodes were found to have a significantly larger alcohol-soluble component than leaves and roots. The primary difference between the immature and mature internodes was the ratio of soluble sugars. In mature tissues, sucrose content was significantly higher, whereas in immature internodal tissues there was lower sucrose and heightened concentrations of reducing sugars. Carbon (C) partitioning in leaf tissues was characterised by low levels of soluble components and high "other" and cell wall fractions. Root tissue had low ratios of soluble fractions relative to their cell wall contents, indicating a lack of storage of soluble carbon. There was no significant difference in the ratio of the major cell wall fractions between the major organ types. Characterisation of individual non-cellulosic monomers indicated leaf and root tissues had significantly higher arabinose and galactose fractions. Significantly larger proportions of syringyl lignin compounds and the hydroxycinnamic compound, p-coumaric acid were observed in mature internodal tissues compared to the other tissue types. Tissue-specific differences in composition were shown to greatly affect the recalcitrance of the cell wall to enzymatic saccharification. CONCLUSIONS Overall, this study displayed clear evidence of the differential partitioning of C throughout the sugarcane plant in specific organs. These organ-specific differences have major implications in their utility as a bioproduct feedstock. For example, the inclusion of trash (leaves) with the culms (internodes) may alter processing efficiency.
Collapse
Affiliation(s)
- Patrick J Mason
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Annelie Marquardt
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Level 3, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
- Sugar Research Australia Limited (SRA), PO Box 86, Indooroopilly, QLD, 4068, Australia
| | - Katrina Hodgson-Kratky
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Nam V Hoang
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia
- College of Natural Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Frederik C Botha
- Sugar Research Australia Limited (SRA), PO Box 86, Indooroopilly, QLD, 4068, Australia
| | - Gabriella Papa
- Amyris, 5885 Hollis St, Ste. 100, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory (LBNL), Joint Bioenergy Institute (JBEI), 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Jenny C Mortimer
- Lawrence Berkeley National Laboratory (LBNL), Joint Bioenergy Institute (JBEI), 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Blake Simmons
- Lawrence Berkeley National Laboratory (LBNL), Joint Bioenergy Institute (JBEI), 5885 Hollis St, Emeryville, CA, 94608, USA
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), Level 2, Queensland Biosciences Precinct [#80], The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|
26
|
Liu S, Zhao L, Liao Y, Luo Z, Wang H, Wang P, Zhao H, Xia J, Huang CF. Dysfunction of the 4-coumarate:coenzyme A ligase 4CL4 impacts aluminum resistance and lignin accumulation in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1233-1250. [PMID: 32989851 DOI: 10.1111/tpj.14995] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/03/2020] [Indexed: 05/22/2023]
Abstract
The root cell wall is the first and primary target of aluminum (Al) toxicity. Monocots such as rice (Oryza sativa) can accumulate appreciable levels of hydroxycinnamic acids (HCAs) to modify and cross-link hemicellulose and/or lignin of the cell wall. Nevertheless, it is unclear whether this HCA-mediated modification of the cell wall is important for Al accumulation and resistance. We previously isolated and characterized a rice ral1 (resistance to aluminum 1) mutant that shows enhanced Al resistance. In this study, we cloned RAL1 and found that it encodes the 4-coumarate:coenzyme A ligase 4CL4, an enzyme putatively involved in lignin biosynthesis. Mutation of RAL1/4CL4 reduces lignin content and increases the accumulation of its substrates 4-coumaric acid (PA) and ferulic acid (FA). We demonstrate that altered lignin accumulation is not required for the enhanced Al resistance in ral1/4cl4 mutants. We found that the increased accumulation of PA and FA can reduce Al binding to hemicellulose and consequently enhance Al resistance in ral1/4cl4 mutants. Al stress is able to trigger PA and FA accumulation, which is likely caused by the repression of the expression of RAL1/4CL4 and its homologous genes. Our results thus reveal that Al-induced PA and FA accumulation is actively and positively involved in Al resistance in rice through the modification of the cell wall and thereby the reduced Al binding to the cell wall.
Collapse
Affiliation(s)
- Shuo Liu
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Zhao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yonghui Liao
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhenling Luo
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Hua Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Peng Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Zhao
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Chao-Feng Huang
- Shanghai Center for Plant Stress Biology & National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
27
|
Impact of bagasse lignin-carbohydrate complexes structural changes on cellulase adsorption behavior. Int J Biol Macromol 2020; 162:236-245. [DOI: 10.1016/j.ijbiomac.2020.06.084] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/16/2022]
|
28
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
29
|
Loo YT, Howell K, Chan M, Zhang P, Ng K. Modulation of the human gut microbiota by phenolics and phenolic fiber-rich foods. Compr Rev Food Sci Food Saf 2020; 19:1268-1298. [PMID: 33337077 DOI: 10.1111/1541-4337.12563] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 12/18/2022]
Abstract
The gut microbiota plays a prominent role in human health. Alterations in the gut microbiota are linked to the development of chronic diseases such as obesity, inflammatory bowel disease, metabolic syndrome, and certain cancers. We know that diet plays an important role to initiate, shape, and modulate the gut microbiota. Long-term dietary patterns are shown to be closely related with the gut microbiota enterotypes, specifically long-term consumption of carbohydrates (related to Prevotella abundance) or a diet rich in protein and animal fats (correlated to Bacteroides). Short-term consumption of solely animal- or plant-based diets have rapid and reproducible modulatory effects on the human gut microbiota. These alterations in microbiota profile by dietary alterations can be due to impact of different dietary macronutrients, carbohydrates, protein, and fat, which have diverse modulatory effects on gut microbial composition. Food-derived phenolics, which encompass structural variants of flavonoids, hydroxybenzoic acids, hydroxycinnamic acids, coumarins, stilbenes, ellagitannins, and lignans can modify the gut microbiota. Gut microbes have been shown to act on dietary fibers and phenolics to produce functional metabolites that contribute to gut health. Here, we discuss recent studies on the impacts of phenolics and phenolic fiber-rich foods on the human gut microbiota and provide an insight into potential synergistic roles between their bacterial metabolic products in the regulation of the intestinal microbiota.
Collapse
Affiliation(s)
- Yit Tao Loo
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Howell
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Miin Chan
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pangzhen Zhang
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ken Ng
- School of Agriculture & Food, Faculty of Veterinary & Agricultural Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
30
|
Vodo S, Taarji N, Bouhoute M, Felipe LDO, Neves MA, Kobayashi I, Uemura K, Nakajima M. Potential of bagasse obtained using hydrothermal liquefaction pre‐treatment as a natural emulsifier. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14543] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Sekove Vodo
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Noamane Taarji
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Meryem Bouhoute
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Lorena de Oliveira Felipe
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
| | - Marcos A. Neves
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Isao Kobayashi
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Kunihiko Uemura
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| | - Mitsutoshi Nakajima
- Tsukuba Life Science Innovation Program (T‐LSI) University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Graduate School of Life and Environmental Sciences University of Tsukuba 1‐1‐1 Tennodai Tsukuba Ibaraki 305‐8572 Japan
- Food Research Institute, NARO 2‐1‐12 Kannondai Tsukuba Ibaraki 305‐8642 Japan
| |
Collapse
|
31
|
Lau T, Harbourne N, Oruña-Concha MJ. Optimization of enzyme-assisted extraction of ferulic acid from sweet corn cob by response surface methodology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:1479-1485. [PMID: 31756272 DOI: 10.1002/jsfa.10155] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sweet corn cob (SCC), an agricultural by-product of the corn-processing industry, contains more than 80% insoluble bound ferulic acid (FA). Extraction of these bound phenolics can be achieved through chemical or enzymatic hydrolysis; however, the shift towards greener chemistry has raised awareness about the use of enzymatic hydrolysis. In the present study, the ability of ferulic acid esterase (FAE) and xylanase (XY) to catalyze the hydrolysis of FA from SCC was investigated. Response surface methodology (RSM), based on a five-level, four-factor central composite rotatable design (CCRD), was used to establish the optimum conditions for enzymatic hydrolysis of FA from SCC. Sweet corn cob was treated with a combination of FAE and XY at various concentrations (FAE: 0.00 to 0.04 U/g; XY: 0.00 to 18 093.5 U/g), temperatures (45 to 65 °C), and pH levels (pH 4.5 to 6.5). RESULTS The optimum extraction conditions predicted by the model were: FAE concentration of 0.02 U/g, XY concentration of 3475.3 U/g, extraction pH of 4.5, and an extraction temperature of 45 °C. CONCLUSION Under these conditions, the experimental yield of FA was 1.69 ± 0.02 g kg-1 of SCC, which is in agreement with the value predicted by the model. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tiffany Lau
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Niamh Harbourne
- UCD Institute of Food and Health, School of Agricultural and Food Science, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
32
|
Cosmetic potential of lignin extracts from alkaline-treated sugarcane bagasse: Optimization of extraction conditions using response surface methodology. Int J Biol Macromol 2020; 153:138-145. [PMID: 32142851 DOI: 10.1016/j.ijbiomac.2020.02.328] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/11/2020] [Accepted: 02/29/2020] [Indexed: 01/17/2023]
Abstract
Each year, sugarcane bagasse, a low-priced by-product of the sugar industry, is generated in large quantities. The aim of this study was to optimize the alkaline hydrolysis condition for the extraction of lignin from sugarcane bagasse using response surface methodology combined with Box-Behnken design, and to evaluate functional properties of lignin extracts for cosmetic applications. Three process parameters were varied (NaOH solution concentrations (3-7% w/v), temperatures (115-135 °C), and times (30-60 min)). The second-order polynomial model developed and the subsequent ANOVA test showed that the optimal conditions providing the highest total phenolic content (69.41 ± 0.32 mg gallic acid equivalent/g extract), antioxidant activity (262.30 ± 2.98 mg Trolox equivalent/g extract), and sun protection factor (8.65 ± 0.21) were as follows: NaOH solution concentration of 7% w/v, temperature of 135 °C, and time of 47.92 min. Fourier-transform infrared spectroscopy analysis revealed the functional groups present in the lignin extract that affected its activities. The extract showed both UVA and UVB-absorbing properties and tyrosinase-inhibitory properties. The results suggested that the lignin extract obtained from alkaline hydrolysis of sugarcane bagasse has great potential as a bioactive multi-functional ingredient that can offer anti-ageing, sun-protection, and skin-whitening properties for sun care formulations.
Collapse
|
33
|
Lignocellulosic Biomass Mild Alkaline Fractionation and Resulting Extract Purification Processes: Conditions, Yields, and Purities. CLEAN TECHNOLOGIES 2020. [DOI: 10.3390/cleantechnol2010007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fractionation of lignocellulose is a fundamental step in the valorization of cellulose, hemicelluloses, and lignin to produce various sustainable fuels, materials and chemicals. Strong alkaline fractionation is one of the most applied processes since the paper industry has been using it for more than a century, and the mineral acid fractionation process is currently the most applied for the production of cellulosic ethanol. However, in the last decade, mild alkaline fractionation has been becoming increasingly widespread in the frame of cellulosic ethanol biorefineries. It leads to the solubilization of hemicelluloses and lignin at various extent depending on the conditions of the extraction, whereas the cellulose remains insoluble. Some studies showed that the cellulose saccharification and fermentation into ethanol gave higher yields than the mineral acid fractionation process. Besides, contrary to the acid fractionation process, the mild alkaline fractionation process does not hydrolyze the sugar polymers, which can be of interest for different applications. Lignocellulosic mild alkaline extracts contain hemicelluloses, lignin oligomers, phenolic monomers, acetic acid, and inorganic salts. In order to optimize the economic efficiency of the biorefineries using a mild alkaline fractionation process, the purification of the alkaline extract to valorize its different components is of major importance. This review details the conditions used for the mild alkaline fractionation process and the purification techniques that have been carried out on the obtained hydrolysates, with a focus on the yields and purities of the different compounds.
Collapse
|
34
|
Hou R, Hu J, Wang Y, Wei H, Gao MT. Simultaneous production of cellulase and ferulic acid esterase by Penicillium decumbens with rice straw as the sole carbon source. J Biosci Bioeng 2019; 129:276-283. [PMID: 31630943 DOI: 10.1016/j.jbiosc.2019.09.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/30/2019] [Accepted: 09/17/2019] [Indexed: 01/17/2023]
Abstract
As well as cellulose and hemicelluloses, rice straw contains phenolic acids. The simultaneous production of monosaccharides and phenolic acids could improve the value of rice straw. In this study, it was confirmed that Penicillium decumbens produces more ferulic acid esterase (FAE) than other cellulase-producing fungi. Cellulose, destarched wheat bran (DSWB), and rice straw were used as carbon sources. Little phenolic acid was released by cellulose- and DSWB-based enzymes during the saccharification of rice straw, whereas rice straw was a favorable carbon source for the simultaneous production of cellulase and FAE. High-performance liquid chromatography showed that during enzyme production, phenolic acids were released from rice straw, and ball-milling affected this release of phenolic acids. Small amounts of phenolic acids induced FAE production. Although the enzymes produced with rice straw showed lower FAE activity than those produced with DSWB, phenolic acids were produced efficiently during the saccharification of rice straw in response to the synergistic effects of cellulase and FAE. Therefore, we suggest that the production of enzymes by P. decumbens on rice straw as the sole carbon source will allow the production of more valuable products from rice straw, making the utilization of rice straw more economic.
Collapse
Affiliation(s)
- Rongrong Hou
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Yazhu Wang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Huanran Wei
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444 Shanghai, China.
| |
Collapse
|
35
|
Li M, Jia Z, Wan G, Wang S, Min D. Enhancing isolation of p-coumaric and ferulic acids from sugarcane bagasse by sequential hydrolysis. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00890-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Oriez V, Peydecastaing J, Pontalier PY. Separation of sugarcane bagasse mild alkaline extract components by ultrafiltration – Membrane screening and effect of filtration parameters. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food Energy Secur 2019. [DOI: 10.1002/fes3.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Pedro Araújo
- Department of Genetics, Evolution and Bioagents Institute of Biology State University of Campinas Campinas Brazil
| | - Juan Pablo P. Llerena
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Paulo Mazzafera
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
- Department of Crop Science College of Agriculture Luiz de Queiroz University of São Paulo Piracicaba Brazil
| |
Collapse
|
38
|
Kaur R, Uppal SK, Sharma P. Phenolic Acids from Sugarcane Bagasse Lignin: Qualitative and Quantitative Determination, Isolation, Derivatization, and Biological Activity Evaluation. Chem Nat Compd 2018. [DOI: 10.1007/s10600-018-2600-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
39
|
Ferreira PS, Victorelli FD, Fonseca-Santos B, Chorilli M. A Review of Analytical Methods for p-Coumaric Acid in Plant-Based Products, Beverages, and Biological Matrices. Crit Rev Anal Chem 2018; 49:21-31. [PMID: 29757687 DOI: 10.1080/10408347.2018.1459173] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
p-Coumaric acid (p-CA), also known as 4-hydroxycinnamic acid, is a phenolic acid, which has been widely studied due to its beneficial effects against several diseases and its wide distribution in the plant kingdom. This phenolic compound can be found in the free form or conjugated with other molecules; therefore, its bioavailability and the pathways via which it is metabolized change according to its chemical structure. p-CA has potential pharmacological effects because it has high free radical scavenging, anti-inflammatory, antineoplastic, and antimicrobial activities, among other biological properties. It is therefore essential to choose the most appropriate and effective analytical method for qualitative and quantitative determination of p-CA in different matrices, such as plasma, urine, plant extracts, and drug delivery systems. The most-reported analytical method for this purpose is high-performance liquid chromatography, which is mostly coupled with some type of detectors, such as UV/Vis detector. However, other analytical techniques are also used to evaluate this compound. This review presents a summary of p-CA in terms of its chemical and pharmacokinetic properties, pharmacological effects, drug delivery systems, and the analytical methods described in the literature that are suitable for its quantification.
Collapse
Affiliation(s)
- Paula Scanavez Ferreira
- a São Paulo State University (UNESP), School of Pharmaceutical Sciences , Araraquara , São Paulo , Brazil
| | | | - Bruno Fonseca-Santos
- a São Paulo State University (UNESP), School of Pharmaceutical Sciences , Araraquara , São Paulo , Brazil
| | - Marlus Chorilli
- a São Paulo State University (UNESP), School of Pharmaceutical Sciences , Araraquara , São Paulo , Brazil
| |
Collapse
|
40
|
Jia Z, Li M, Wan G, Luo B, Guo C, Wang S, Min D. Improving the homogeneity of sugarcane bagasse kraft lignin through sequential solvents. RSC Adv 2018; 8:42269-42279. [PMID: 35558406 PMCID: PMC9092080 DOI: 10.1039/c8ra08595a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022] Open
Abstract
The heterogeneous features of lignin, especially the wide distribution of its molecular weight, limit its high value-added application. To improve the homogeneity of lignin, sugarcane bagasse kraft lignin (KL) dissolved in methanol/acetone (7 : 3, v/v) was successively fractionated into four fractions (i.e.., F1, F2, F3, and F4) with various organic solvents of decreasing dissolving capacity (i.e.., ethyl acetate, ethyl acetate/petroleum ether 1 : 1 v/v, and petroleum ether). The yields of the four fractions (F1, F2, F3, and F4) were 59.6, 28.4, 10.8, and 1.2% that of KL, respectively. Gel permeation chromatography (GPC) analysis indicated the molecular weight of each fraction decreased from F1 to F4. All fractions had a lower polydispersity than KL. KL and the fractions were comprehensively characterized by chemical composition analysis, elemental composition analysis (EA), methoxyl group analysis, Fourier transform infrared spectroscopy (FT-IR), nitrobenzene oxidation analysis (NBO), and nuclear magnetic resonance (NMR) including 31P and 1H–13C HSQC NMR. The results showed that the methoxyl group, hydroxyl group, interunit linkages, and thermal properties of the fractions varied with the molecular weight. The homogeneity of lignin was improved through solvent fractionation. The heterogeneous features of lignin, especially the wide distribution of its molecular weight, limit its high value-added application.![]()
Collapse
Affiliation(s)
- Zhuan Jia
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control
| | - Mingfu Li
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control
| | - Guangcong Wan
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control
| | - Bin Luo
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control
| | - Chenyan Guo
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control
| | - Shuangfei Wang
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control
| | - Douyong Min
- College of Light Industry and Food Engineering
- Guangxi University
- Nanning 530004
- PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control
| |
Collapse
|
41
|
Sugarcane cells as origin of acid beverage floc in cane sugar. Food Chem 2017; 237:1004-1011. [PMID: 28763943 DOI: 10.1016/j.foodchem.2017.06.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 03/23/2017] [Accepted: 06/08/2017] [Indexed: 11/20/2022]
Abstract
Brazil stands out as the largest producer of crystal sugar in the world, exporting much of its production to the soft drinks industry. However, the chemical composition of sugar may contain numerous compounds that promote the formation of acid beverage flocs (ABF), reducing product acceptance. This study aimed to identify the chemical composition of ABF using different analytical techniques. We could observe the ABF are formed by several chemical classes. Regarding the histochemical analysis, we observed the presence of cellular sugarcane tissues, which are not fully removed in sugarcane processing. Mineral compounds, such as silicon, were found in great amounts by the Scanning electron microscopy and energy dispersive system (SEM/EDS) analysis. The mass spectrometry, high resolution mass by Q-ToF analysis and MALDI-MS allowed identification of compounds, such as p-hydroxybenzaldehyde, vanillin, triacontanoic acid, hexadecanoic acid, octadecanoic acid and n-octacosanoic acid, in the ABF composition. These compounds are widely found in vegetable tissues, confirming that the ABF are formed by tiny particles of plant cells of sugar cane.
Collapse
|
42
|
Wang X, Tsang YF, Li Y, Ma X, Cui S, Zhang TA, Hu J, Gao MT. Inhibitory effects of phenolic compounds of rice straw formed by saccharification during ethanol fermentation by Pichia stipitis. BIORESOURCE TECHNOLOGY 2017; 244:1059-1067. [PMID: 28851161 DOI: 10.1016/j.biortech.2017.08.096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
In this study, it was found that the type of phenolic acids derived from rice straw was the major factor affecting ethanol fermentation by Pichia stipitis. The aim of this study was to investigate the inhibitory effect of phenolic acids on ethanol fermentation with rice straw. Different cellulases produced different ratios of free phenolic acids to soluble conjugated phenolic acids, resulting in different fermentation efficiencies. Free phenolic acids exhibited much higher inhibitory effect than conjugated phenolic acids. The flow cytometry results indicated that the damage to cell membranes was the primary mechanism of inhibition of ethanol fermentation by phenolic acids. The removal of free phenolic acids from the hydrolysates increased ethanol productivity by 2.0-fold, indicating that the free phenolic acids would be the major inhibitors formed during saccharification. The integrated process for ethanol and phenolic acids may constitute a new strategy for the production of low-cost ethanol.
Collapse
Affiliation(s)
- Xiahui Wang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yuhao Li
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiubing Ma
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Shouqing Cui
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Tian-Ao Zhang
- Department of Architecture, Shanghai Academy of Fine Arts, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China.
| |
Collapse
|
43
|
Xue Y, Wang X, Chen X, Hu J, Gao MT, Li J. Effects of different cellulases on the release of phenolic acids from rice straw during saccharification. BIORESOURCE TECHNOLOGY 2017; 234:208-216. [PMID: 28319769 DOI: 10.1016/j.biortech.2017.02.127] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 06/06/2023]
Abstract
Effects of different cellulases on the release of phenolic acids from rice straw during saccharification were investigated in this study. All cellulases tested increased the contents of phenolic acids during saccharification. However, few free phenolic acids were detected, as they were present in conjugated form after saccharification when the cellulases from Trichoderma reesei, Trichoderma viride and Aspergillus niger were used. On the other hand, phenolic acids were present in free form when the Acremonium cellulolyticus cellulase was used. Assays of enzyme activity showed that, besides high cellulase activity, the A. cellulolyticus cellulase exhibited high feruloyl esterase (FAE) activity. A synergistic interaction between FAE and cellulase led to the increase in free phenolic acids, and thus an increase in antioxidative and antiradical activities of the phenolic acids. Moreover, a cost estimation demonstrated the feasibility of phenolic acids as value-added products to reduce the total production cost of ethanol.
Collapse
Affiliation(s)
- Yiyun Xue
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xiahui Wang
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Xingxuan Chen
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Jiajun Hu
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Min-Tian Gao
- Shanghai Key Laboratory of Bio-energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, Shanghai 200444, China; Energy Research Institute of Shandong Academy of Science, Jinan 250014, China.
| | - Jixiang Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 20110, China
| |
Collapse
|
44
|
Liu KX, Li HQ, Zhang J, Zhang ZG, Xu J. The effect of non-structural components and lignin on hemicellulose extraction. BIORESOURCE TECHNOLOGY 2016; 214:755-760. [PMID: 27213576 DOI: 10.1016/j.biortech.2016.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 05/24/2023]
Abstract
As the important structural component of corn stover, hemicellulose could be converted into a variety of high value-added products. However, high quality hemicellulose extraction is not an easy issue. The present study aims to investigate the effects of non-structural components (NSCs) and lignin removal on alkaline extraction of hemicellulose. Although NSCs were found to have a minimal effect on hemicellulose dissolution, they affected the color values of the hemicellulose extracts. The lignin limited the hemicellulose dissolution and increased the color value by binding to hemicellulose molecules and forming lignin-carbohydrate complexes. Sodium chlorite method can remove about 90% lignin from corn stover, especially the lignin connected to hemicellulose through p-coumaric and ferulic acids. Which increased the hemicellulose dissolution ratio to 93% and reduced the color value 14-28%, but the cost is about 20% carbohydrates lost.
Collapse
Affiliation(s)
- Kai-Xuan Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong-Qiang Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Guo Zhang
- Collage of Chemistry and Chemical Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Xu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
45
|
Pei K, Ou J, Huang J, Ou S. p-Coumaric acid and its conjugates: dietary sources, pharmacokinetic properties and biological activities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:2952-62. [PMID: 26692250 DOI: 10.1002/jsfa.7578] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/08/2015] [Accepted: 12/11/2015] [Indexed: 05/09/2023]
Abstract
p-Coumaric acid (4-hydroxycinnamic acid) is a phenolic acid that has low toxicity in mice (LD50 = 2850 mg kg(-1) body weight), serves as a precursor of other phenolic compounds, and exists either in free or conjugated form in plants. Conjugates of p-coumaric acid have been extensively studied in recent years due to their bioactivities. In this review, the occurrence, bioavailability and bioaccessibility of p-coumaric acid and its conjugates with mono-, oligo- and polysaccharides, alkyl alcohols, organic acids, amine and lignin are discussed. Their biological activities, including antioxidant, anti-cancer, antimicrobial, antivirus, anti-inflammatory, antiplatelet aggregation, anxiolytic, antipyretic, analgesic, and anti-arthritis activities, and their mitigatory effects against diabetes, obesity, hyperlipaemia and gout are compared. Cumulative evidence from multiple studies indicates that conjugation of p-coumaric acid greatly strengthens its biological activities; however, the high biological activity but low absorption of its conjugates remains a puzzle. © 2015 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kehan Pei
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Juanying Ou
- Food and Nutritional Science Program, School of Biological Sciences, the University of Hong Kong, Hong Kong, China
| | - Junqing Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
46
|
Extraction of p-coumaric acid from agricultural residues and separation using ‘sugaring out’. KOREAN J CHEM ENG 2016. [DOI: 10.1007/s11814-016-0020-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
47
|
M. de Oliveira D, Hugo Salvador V, R. Mota T, Finger-Teixeira A, F. de Almeida R, A. A. Paixão D, P. De Souza A, S. Buckeridge M, Marchiosi R, Ferrarese-Filho O, M. Squina F, D. dos Santos W. Feruloyl esterase from Aspergillus clavatus improves xylan hydrolysis of sugarcane bagasse. AIMS BIOENGINEERING 2016. [DOI: 10.3934/bioeng.2017.1.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
48
|
de Oliveira DM, Finger-Teixeira A, Mota TR, Salvador VH, Moreira-Vilar FC, Molinari HBC, Mitchell RAC, Marchiosi R, Ferrarese-Filho O, dos Santos WD. Ferulic acid: a key component in grass lignocellulose recalcitrance to hydrolysis. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1224-32. [PMID: 25417596 DOI: 10.1111/pbi.12292] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/11/2014] [Accepted: 10/14/2014] [Indexed: 05/18/2023]
Abstract
In the near future, grasses must provide most of the biomass for the production of renewable fuels. However, grass cell walls are characterized by a large quantity of hydroxycinnamic acids such as ferulic and p-coumaric acids, which are thought to reduce the biomass saccharification. Ferulic acid (FA) binds to lignin, polysaccharides and structural proteins of grass cell walls cross-linking these components. A controlled reduction of FA level or of FA cross-linkages in plants of industrial interest can improve the production of cellulosic ethanol. Here, we review the biosynthesis and roles of FA in cell wall architecture and in grass biomass recalcitrance to enzyme hydrolysis.
Collapse
Affiliation(s)
- Dyoni Matias de Oliveira
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Aline Finger-Teixeira
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Thatiane Rodrigues Mota
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Victor Hugo Salvador
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | | | | | | | - Rogério Marchiosi
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Osvaldo Ferrarese-Filho
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| | - Wanderley Dantas dos Santos
- Department of Biochemistry, Laboratory of Plant Biochemistry, State University of Maringá, Maringá, PR, Brazil
| |
Collapse
|
49
|
Ares-Peón IA, Garrote G, Domínguez H, Parajó JC. Phenolics production from alkaline hydrolysis of autohydrolysis liquors. CYTA - JOURNAL OF FOOD 2015. [DOI: 10.1080/19476337.2015.1094516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Gopalan N, Rodríguez-Duran LV, Saucedo-Castaneda G, Nampoothiri KM. Review on technological and scientific aspects of feruloyl esterases: A versatile enzyme for biorefining of biomass. BIORESOURCE TECHNOLOGY 2015; 193:534-44. [PMID: 26159377 DOI: 10.1016/j.biortech.2015.06.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 06/22/2015] [Accepted: 06/23/2015] [Indexed: 05/11/2023]
Abstract
With increasing focus on sustainable energy, bio-refining from lignocellulosic biomass has become a thrust area of research. With most of the works being focused on biofuels, significant efforts are also being directed towards other value added products. Feruloyl esterases (EC. 3.1.1.73) can be used as a tool for bio-refining of lignocellulosic material for the recovery and purification of ferulic acid and related hydroxycinnamic acids ubiquitously found in the plant cell wall. More and more genes coding for feruloyl esterases have been mined out from various sources to allow efficient enzymatic release of ferulic acid and allied hydroxycinnamic acids (HCAs) from plant-based biomass. A sum up on enzymatic extraction of HCAs and its recovery from less explored agro residual by-products is still a missing link and this review brushes up the achieved landmarks so far in this direction and also covers a detailed patent search on this biomass refining enzyme.
Collapse
Affiliation(s)
- Nishant Gopalan
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India
| | - L V Rodríguez-Duran
- Metropolitan Autonomous University Campus Iztapalapa, Biotechnology Department, Mexico City, Iztapalapa Z.C. 09340, Mexico
| | - G Saucedo-Castaneda
- Metropolitan Autonomous University Campus Iztapalapa, Biotechnology Department, Mexico City, Iztapalapa Z.C. 09340, Mexico
| | - K Madhavan Nampoothiri
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, New Delhi, India.
| |
Collapse
|