1
|
Handa K, Fujita D, Hirano M, Yoshimura S, Kageyama M, Iijima T. A Practical In Silico Method for Predicting Compound Brain Concentration-Time Profiles: Combination of PK Modeling and Machine Learning. Mol Pharm 2024; 21:5182-5191. [PMID: 39324316 DOI: 10.1021/acs.molpharmaceut.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Given the aging populations in advanced countries globally, many pharmaceutical companies have focused on developing central nervous system (CNS) drugs. However, due to the blood-brain barrier, drugs do not easily reach the target area in the brain. Although conventional screening methods for drug discovery involve the measurement of (unbound fraction of drug) brain-to-plasma partition coefficients, it is difficult to consider nonequilibrium between plasma and brain compound concentration-time profiles. To truly understand the pharmacokinetics/pharmacodynamics of CNS drugs, compound concentration-time profiles in the brain are necessary; however, such analyses are costly and time-consuming and require a significant number of animals. Therefore, in this study, we attempted to develop an in silico prediction method that does not require a large amount of experimental data by combining modeling and simulation (M&S) with machine learning (ML). First, we constructed a hybrid model linking plasma concentration-time profile to the brain compartment that takes into account the transit time and brain distribution of each compound. Using mouse plasma and brain time experimental values for 103 compounds, we determined the brain kinetic parameters of the hybrid model for each compound; this case was defined as scenario I (a positive control experiment) and included the full brain concentration-time profile data. Next, we built an ML model using chemical structure descriptors as explanatory variables and rate parameters as the target variable, and we then input the predicted values from 5-fold cross-validation (CV) into the hybrid model; this case was defined as scenario II, in which no brain compound concentration-time profile data exist. Finally, for scenario III, assuming that the brain concentration is obtained at only one time point, we used the brain kinetic parameters from the result of the 5-fold CV in scenario II as the initial values for the hybrid model and performed parameter refitting against the observed brain concentration at that time point. As a result, the RMSE/R2-values of the brain compound concentration-time profiles over time were 0.445/0.517 in scenario II and 0.246/0.805 in scenario III, indicating the method provides high accuracy and suggesting that it is a practical method for predicting brain compound concentration-time profiles.
Collapse
Affiliation(s)
- Koichi Handa
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Daichi Fujita
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Mariko Hirano
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Saki Yoshimura
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Michiharu Kageyama
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| | - Takeshi Iijima
- Toxicology & DMPK Research Department, Teijin Institute for Bio-medical Research, Teijin Pharma Limited, 4-3-2 Asahigaoka, Hino-shi, Tokyo 191-8512, Japan
| |
Collapse
|
2
|
Zhang H, Ginn J, Zhan W, Leung A, Liu YJ, Toita A, Okamoto R, Wong TT, Imaeda T, Hara R, Michino M, Yukawa T, Chelebieva S, Tumwebaze PK, Vendome J, Beuming T, Sato K, Aso K, Rosenthal PJ, Cooper RA, Liverton N, Foley M, Meinke PT, Nathan CF, Kirkman LA, Lin G. Structure-Activity Relationship Studies of Antimalarial Plasmodium Proteasome Inhibitors─Part II. J Med Chem 2023; 66:1484-1508. [PMID: 36630286 PMCID: PMC10157299 DOI: 10.1021/acs.jmedchem.2c01651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
With increasing reports of resistance to artemisinins and artemisinin-combination therapies, targeting the Plasmodium proteasome is a promising strategy for antimalarial development. We recently reported a highly selective Plasmodium falciparum proteasome inhibitor with anti-malarial activity in the humanized mouse model. To balance the permeability of the series of macrocycles with other drug-like properties, we conducted further structure-activity relationship studies on a biphenyl ether-tethered macrocyclic scaffold. Extensive SAR studies around the P1, P3, and P5 groups and peptide backbone identified compound TDI-8414. TDI-8414 showed nanomolar antiparasitic activity, no toxicity to HepG2 cells, high selectivity against the Plasmodium proteasome over the human constitutive proteasome and immunoproteasome, improved solubility and PAMPA permeability, and enhanced metabolic stability in microsomes and plasma of both humans and mice.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - John Ginn
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Wenhu Zhan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Annie Leung
- Divison of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Yi J. Liu
- Divison of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Akinori Toita
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Rei Okamoto
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Tzu-Tshin Wong
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Toshihiro Imaeda
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Ryoma Hara
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Mayako Michino
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Takafumi Yukawa
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Sevil Chelebieva
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | | | | | | | - Kenjiro Sato
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Kazuyoshi Aso
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Roland A. Cooper
- Department of Natural Sciences and Mathematics, Dominican University of California, San Rafael, CA 94901, USA
| | - Nigel Liverton
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Michael Foley
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Peter T. Meinke
- Tri-Institutional Therapeutics Discovery Institute, 413 E. 69th St., New York, NY 10065, USA
| | - Carl F. Nathan
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Laura A. Kirkman
- Divison of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| | - Gang Lin
- Department of Microbiology & Immunology, Weill Cornell Medicine, 1300 York Ave., New York, NY 10065, USA
| |
Collapse
|
3
|
Purushottamachar P, Thomas E, Thankan RS, Njar VCO. Novel deuterated Mnk1/2 protein degrader VNLG-152R analogs: Synthesis, In vitro Anti-TNBC activities and pharmacokinetics in mice. Eur J Med Chem 2022; 238:114441. [PMID: 35617854 DOI: 10.1016/j.ejmech.2022.114441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 01/09/2023]
Abstract
A new and improved synthesis of lead Mnk1/2 protein degrader, VNLG-152R, 4-(±)-(1H-imidazole-1-yl)-N-(4-fluorophenyl)-(E)-retinamide (1) has been developed from commercially available 4-oxo-ATRA (8). This procedure was also utilized to synthesize the seven possible deuterated analogs of compound 1 (11-17). The deuterated analogs were either better or equipotent to 1 in in vitro antiproliferative activities against MDA-MB-231 and MDA-MB-468 human TNBC cells. The Mnk1/2 degraders were equally effective as a standard TNBC therapy (paclitaxel). Importantly, the expression of Mnk1, peIF4E and their associated downstream targets, including cyclin D1 and Bcl2, were strongly decreased in compound 1/analogs (11-17)-treated TNBC cells signifying inhibition of Mnk1-eIF4E signaling. More importantly, we showed that deuterated analogs, 12, 16 and 17 possess improved pharmacokinetics parameters following oral administration to CD-1 female mice compared to the parent non-deuterated compound 1, thus addressing the rapid clearance (short half-life and short residence time) pharmacokinetic inadequacy of compound 1.
Collapse
Affiliation(s)
- Puranik Purushottamachar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA.
| | - Elizabeth Thomas
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Retheesh S Thankan
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA; Flavocure Biotech, 701 E. Pratt Street, Suite 2033, Baltimore, MD, 21202, USA; Isoprene Pharmaceuticals, Inc, 875 Hollins Street, Suite 102D, Baltimore, MD, 21201, USA
| | - Vincent C O Njar
- Department of Pharmacology, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA; The Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA; Isoprene Pharmaceuticals, Inc, 875 Hollins Street, Suite 102D, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
4
|
Kumar S, Yadav Ravulapalli S, Kumar Tiwari S, Gupta S, Nair AB, Jacob S. Effect of sex and food on the pharmacokinetics of different classes of BCS drugs in rats after cassette administration. Int J Pharm 2021; 610:121221. [PMID: 34695535 DOI: 10.1016/j.ijpharm.2021.121221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/18/2022]
Abstract
The cassette dosing technique is employed in the drug discovery stage of non-clinical studies to obtain pharmacokinetic data from multiple drug candidates in a single experiment. The objective of the current investigation was to evaluate the effect of sex and food on the selected pharmacokinetic parameters of four biopharmaceutical classification system (BCS) drugs (BCS-I: propranolol, BCS-II: diclofenac, BCS-III: atenolol, and BCS-IV: acetazolamide) utilizing cassette dosing in male and female rats under fed and fasting conditions. Different animal groups were dosed intravenous (i.v) and oral at 1 and 10 mg/kg, respectively, in the form of cassette at a dose of 5 mL/kg. Blood samples were analyzed by liquid chromatography-tandem mass spectrometry. Pharmacokinetics parameters were calculated using Phoenix software version 8.1. A significant increase (p < 0.05) of the area under the plasma concentration-time (AUC0-last) was observed for diclofenac and acetazolamide in females over males after i.v dosing. Additionally, acetazolamide showed greater instantaneous concentration at the time of dosing, and clearance in females (p < 0.05) compared to males after i.v administration. After oral dosing, propranolol exhibited significant variations (p < 0.05) in the maximum drug concentration (Cmax), AUC0-last, the volume of distribution (Vd), and bioavailability in females as compared to males under fed state. Diclofenac showed significant changes (p < 0.05) in AUC0-last, and clearance (Cl) in females as compared to males under fasting and fed state. However, acetazolamide exhibited a significant enhancement (p < 0.05) in AUC0-last, Vd, and Cl in fasting females than the males. The data here illustrates that there is an appreciable difference in AUC and Cmax values exist in male and female rats under fed and fasting conditions administered with the cassette dosing of tested BCS class drugs.
Collapse
Affiliation(s)
- Satish Kumar
- M M College of Pharmacy, M. M. (Deemed to be University), Mullana, Ambala, Haryana 133207, India
| | | | - Sudhir Kumar Tiwari
- Aragen Life Sciences Private Limited, Plot No. 28 A, IDA Nacharam, Hyderabad 500076, India
| | - Sumeet Gupta
- M M College of Pharmacy, M. M. (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shery Jacob
- Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman 4184, United Arab Emirates
| |
Collapse
|
5
|
Hammock B, McReynolds CB, Wagner K, Buckpitt A, Cortes-Puch I, Croston G, Lee KSS, Yang J, Schmidt WK, Hwang SH. Movement to the Clinic of Soluble Epoxide Hydrolase Inhibitor EC5026 as an Analgesic for Neuropathic Pain and for Use as a Nonaddictive Opioid Alternative. J Med Chem 2021; 64:1856-1872. [PMID: 33550801 PMCID: PMC7917437 DOI: 10.1021/acs.jmedchem.0c01886] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Indexed: 12/12/2022]
Abstract
This report describes the development of an orally active analgesic that resolves inflammation and neuropathic pain without the addictive potential of opioids. EC5026 acts on the cytochrome P450 branch of the arachidonate cascade to stabilize epoxides of polyunsaturated fatty acids (EpFA), which are natural mediators that reduce pain, resolve inflammation, and maintain normal blood pressure. EC5026 is a slow-tight binding transition-state mimic that inhibits the soluble epoxide hydrolase (sEH) at picomolar concentrations. The sEH rapidly degrades EpFA; thus, inhibiting sEH increases EpFA in vivo and confers beneficial effects. This mechanism addresses disease states by shifting endoplasmic reticulum stress from promoting cellular senescence and inflammation toward cell survival and homeostasis. We describe the synthesis and optimization of EC5026 and its development through human Phase 1a trials with no drug-related adverse events. Additionally, we outline fundamental work leading to discovery of the analgesic and inflammation-resolving CYP450 branch of the arachidonate cascade.
Collapse
Affiliation(s)
- Bruce
D. Hammock
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Cindy B. McReynolds
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Karen Wagner
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Alan Buckpitt
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Irene Cortes-Puch
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Glenn Croston
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | | | - Jun Yang
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - William K. Schmidt
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| | - Sung Hee Hwang
- EicOsis
Human Health Inc., Subsidiary of EicOsis LLC, 1930 Fifth Street, Suite A, Davis, California 95616, United States
| |
Collapse
|
6
|
Kodani SD, Wan D, Wagner KM, Hwang SH, Morisseau C, Hammock BD. Design and Potency of Dual Soluble Epoxide Hydrolase/Fatty Acid Amide Hydrolase Inhibitors. ACS OMEGA 2018; 3:14076-14086. [PMID: 30411058 PMCID: PMC6210075 DOI: 10.1021/acsomega.8b01625] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
Fatty acid amide hydrolase (FAAH) is responsible for regulating concentrations of the endocannabinoid arachidonoyl ethanolamide. Multiple FAAH inhibitors have been developed for clinical trials and have failed to demonstrate efficacy at treating pain, despite promising preclinical data. One approach toward increasing the efficacy of FAAH inhibitors is to concurrently inhibit other targets responsible for regulating pain. Here, we designed dual inhibitors targeting the enzymes FAAH and soluble epoxide hydrolase (sEH), which are targets previously shown to synergize at reducing inflammatory and neuropathic pain. Exploration of the sEH/FAAH inhibitor structure-activity relationship started with PF-750, a FAAH inhibitor (IC50 = 19 nM) that weakly inhibited sEH (IC50 = 640 nM). Potency was optimized resulting in an inhibitor with improved potency on both targets (11, sEH IC50 = 5 nM, FAAH IC50 = 8 nM). This inhibitor demonstrated good target selectivity, pharmacokinetic properties (AUC = 1200 h nM, t 1/2 = 4.9 h in mice), and in vivo target engagement.
Collapse
|
7
|
Fu T, Gao R, Scott-Stevens P, Chen Y, Zhang C, Wang J, Summerfield S, Liu H, Sahi J. Rapid Bioavailability and Disposition protocol: A novel higher throughput approach to assess pharmacokinetics and steady-state brain distribution with reduced animal usage. Eur J Pharm Sci 2018; 122:13-21. [PMID: 29857045 DOI: 10.1016/j.ejps.2018.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 11/18/2022]
Abstract
Besides routine pharmacokinetic (PK) parameters, unbound brain-to-blood concentration ratio (Kp,uu) is an index particularly crucial in drug discovery for central nervous system (CNS) indications. Despite advantages of Kp,uu from steady state after constant intravenous (i.v.) infusion compared with one- or multiple time points after transient dosing, it is seldom obtained for compound optimization in early phase of CNS drug discovery due to requirement of prerequisite PK data to inform the study design. Here, we designed a novel rat in vivo PK protocol, dubbed as Rapid Bioavailability and Disposition (RBD), which combined oral (p.o.) dosing and i.v. infusion to obtain steady-state brain penetration, along with blood clearance, oral exposure and oral bioavailability for each discovery compound, within a 24 hour in-life experiment and only a few (e.g., 3) animals. Protocol validity was verified through simulations with a range of PK parameters in compartmental models as well as data comparison for nine compounds with distinct PK profiles. PK parameters (Kp,brain, CLb and oral AUC) measured from the RBD protocol for all compounds, were within two-fold and/or statistically similar to those derived from conventional i.v./p.o. crossover PK studies. Our data clearly indicates that the RBD protocol offers reliable and reproducible data over a wide range of PK properties, with reduced turnaround time and animal usage.
Collapse
Affiliation(s)
- Tingting Fu
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China.
| | - Ruina Gao
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | | | - Yan Chen
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | - Chalmers Zhang
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | - Jianfei Wang
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | | | - Houfu Liu
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| | - Jasminder Sahi
- Platform Technology and Science, GlaxoSmithKline R&D Shanghai, China
| |
Collapse
|
8
|
Park MH, Byeon JJ, Shin SH, Kim N, Park Y, Ill Lee B, Choi J, Shin YG. Rapid and simultaneous quantification of a mixture of biopharmaceuticals by a liquid chromatography/quadrupole time-of-flight mass spectrometric method in rat plasma following cassette-dosing. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:889-896. [PMID: 29578307 DOI: 10.1002/rcm.8123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
RATIONALE The cassette-dosing technique is a technique that administers various drugs to a single animal at once and quantitated simultaneously. The purpose of this study was to evaluate the feasibility of cassette-dosing as a means of increasing throughput and decreasing animal usage for pharmacokinetic studies of biopharmaceuticals using liquid chromatography/time-of-flight mass spectrometric (LC/TOF-MS) analysis. METHODS Brentuximab, trastuzumab, cetuximab and adalimumab were used as model biopharmaceuticals. The method consisted of immunoprecipitation followed by tryptic digestion for sample preparation and LC/TOF-MS analysis of specific signature peptides in the positive ion mode using electrospray ionization. The specific signature peptides used for quantification were from the complementarity-determining regions of each mAb. All rats received a single intravenous bolus injection containing either a single mAb or a mixture of four mAbs. RESULTS The proposed method has been qualified in linearity range of 1-100 μg/mL with correlation coefficients higher than 0.990. The qualification run met the acceptance criteria of ±25% accuracy and precision values for quality control (QC) samples. This qualified LC/TOF-MS method was successfully applied to a pharmacokinetic study in the rat. The PK properties of mAbs administered as a cassette-dosage were similar to the pharmacokinetics of each antibody drug when administered as a single entity. CONCLUSIONS These findings suggest that the cassette-dosing approach could be used to evaluate the PK properties of biopharmaceuticals in the early drug discovery stage. Also, this method would be useful for other preclinical sample analysis without developing new reagents for sample preparation.
Collapse
Affiliation(s)
- Min-Ho Park
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, South Korea
| | - Jin-Ju Byeon
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, South Korea
| | - Seok-Ho Shin
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, South Korea
| | - Nahye Kim
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, South Korea
| | - Yuri Park
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, South Korea
| | - Byeong Ill Lee
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, South Korea
| | - Jangmi Choi
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, South Korea
| | - Young G Shin
- College of Pharmacy, Chungnam National University, Daejeon, 305-764, South Korea
| |
Collapse
|
9
|
Developing a cassette microdosing approach to enhance the throughput of PET imaging agent screening. J Pharm Biomed Anal 2018. [PMID: 29533858 DOI: 10.1016/j.jpba.2018.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cassette dosing is also known as N-in-One dosing: several compounds are simultaneously administrated to a single animal and then the samples are rapidly detected by LC-MS/MS. This approach is a successful strategy to enhance the efficiency of drug discovery and reduce animal usage. However, no report on the utility of the cassette approach in radiotracer discovery has appeared in the literature. This study designed a cassette microdose with LC-MS/MS method to enhance the throughput for screening radiopharmaceutical biodistribution in the rat brain directly. Three unradiolabeled compounds (FPBM FPBM2 and AV-133) were chosen as model drugs administrated intravenously to the rats as a cassette as opposed to discrete study. The rat brain biodistribution data, target localization, the differential uptake ratio (%ID/g) and the brain tissue-specific binding ratio were obtained by the LC-MS/MS analysis. These data matched very well with the values obtained by the standard radioactivity measurements. Moreover, no significant differences between discrete dosing and cassette dosing were observed. By circumventing the need for radiolabeled molecules, this method may be high-throughput and safe for the research and development of new PET imaging agents. The combination of cassette microdosing and LC-MS/MS would be a medium throughput screening tool at an early stage in the discovery/development process of PET imaging agents.
Collapse
|
10
|
Kitamura S, Morisseau C, Harris TR, Inceoglu B, Hammock BD. Occurrence of urea-based soluble epoxide hydrolase inhibitors from the plants in the order Brassicales. PLoS One 2017; 12:e0176571. [PMID: 28472063 PMCID: PMC5417501 DOI: 10.1371/journal.pone.0176571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 01/08/2023] Open
Abstract
Recently, dibenzylurea-based potent soluble epoxide hydrolase (sEH) inhibitors were identified in Pentadiplandra brazzeana, a plant in the order Brassicales. In an effort to generalize the concept, we hypothesized that plants that produce benzyl glucosinolates and corresponding isothiocyanates also produce these dibenzylurea derivatives. Our overall aim here was to examine the occurrence of urea derivatives in Brassicales, hoping to find biologically active urea derivatives from plants. First, plants in the order Brassicales were analyzed for the presence of 1, 3-dibenzylurea (compound 1), showing that three additional plants in the order Brassicales produce the urea derivatives. Based on the hypothesis, three dibenzylurea derivatives with sEH inhibitory activity were isolated from maca (Lepidium meyenii) roots. Topical application of one of the identified compounds (compound 3, human sEH IC50 = 222 nM) effectively reduced pain in rat inflammatory pain model, and this compound was bioavailable after oral administration in mice. The biosynthetic pathway of these urea derivatives was investigated using papaya (Carica papaya) seed as a model system. Finally, a small collection of plants from the Brassicales order was grown, collected, extracted and screened for sEH inhibitory activity. Results show that several plants of the Brassicales order could be potential sources of urea-based sEH inhibitors.
Collapse
Affiliation(s)
- Seiya Kitamura
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Todd R. Harris
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bora Inceoglu
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
| | - Bruce D. Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
11
|
Sharma C, Biswas NR, Ojha S, Velpandian T. Comprehensive evaluation of formulation factors for ocular penetration of fluoroquinolones in rabbits using cassette dosing technique. Drug Des Devel Ther 2016; 10:811-23. [PMID: 26955263 PMCID: PMC4769009 DOI: 10.2147/dddt.s95870] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE Corneal permeability of drugs is an important factor used to assess the efficacy of topical preparations. Transcorneal penetration of drugs from aqueous formulation is governed by various physiological, physiochemical, and formulation factors. In the present study, we investigated the effect of formulation factors like concentration, pH, and volume of instillation across the cornea using cassette dosing technique for ophthalmic fluoroquinolones (FQs). MATERIALS AND METHODS Sterile cocktail formulations were prepared using four congeneric ophthalmic FQs (ofloxacin, sparfloxacin, pefloxacin mesylate, and gatifloxacin) at concentrations of 0.025%, 0.5%, and 0.1%. Each formulation was adjusted to different pH ranges (4.5, 7.0, and 8.0) and assessed for transcorneal penetration in vivo in rabbit's cornea (n=4 eyes) at three different volumes (12.5, 25, and 50 μL). Aqueous humor was aspirated through paracentesis after applying local anesthesia at 0, 5, 15, 30, 60, 120, and 240 minutes postdosing. The biosamples collected from a total of 27 groups were analyzed using liquid chromatography-tandem mass spectroscopy to determine transcorneal permeability of all four FQs individually. RESULTS Increase in concentration showed an increase in penetration up to 0.05%; thereafter, the effect of concentration was found to be dependent on volume of instillation as we observed a decrease in transcorneal penetration. The highest transcorneal penetration of all FQs was observed at pH 7.0 at concentration 0.05% followed by 0.025% at pH 4.5. Lastly, increasing the volume of instillation from 12.5 to 50 μL showed a significant fall in transcorneal penetration. CONCLUSION The study concludes that formulation factors showed discernible effect on transcorneal permeation; therefore, due emphasis should be given on drug development and design of ophthalmic formulation.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Ocular Pharmacology and Pharmacy, All India Institute of Medical Sciences, New Delhi, India
- Department of Internal Medicine, United Arab Emirates University, Al Ain, UAE
| | - Nihar R Biswas
- Department of Ocular Pharmacology and Pharmacy, All India Institute of Medical Sciences, New Delhi, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Thirumurthy Velpandian
- Department of Ocular Pharmacology and Pharmacy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
12
|
Liu JY, Tsai HJ, Morisseau C, Lango J, Hwang SH, Watanabe T, Kim IH, Hammock BD. In vitro and in vivo metabolism of N-adamantyl substituted urea-based soluble epoxide hydrolase inhibitors. Biochem Pharmacol 2015; 98:718-31. [PMID: 26494425 DOI: 10.1016/j.bcp.2015.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
N,N'-disubstituted urea-based soluble epoxide hydrolase (sEH) inhibitors are promising therapeutics for hypertension, inflammation, and pain in multiple animal models. The drug absorption and pharmacological efficacy of these inhibitors have been reported extensively. However, the drug metabolism of these inhibitors is not well described. Here we reported the metabolic profile and associated biochemical studies of an N-adamantyl urea-based sEH inhibitor 1-adamantan-1-yl-3-(5-(2-(2-ethoxyethoxy)ethoxy)pentyl)urea (AEPU) in vitro and in vivo. The metabolites of AEPU were identified by interpretation of liquid chromatography-mass spectrometry (LC-MS), liquid chromatography-tandem mass spectrometry (LC-MS/MS) and/or NMR. In vitro, AEPU had three major positions for phase I metabolism including oxidations on the adamantyl moiety, urea nitrogen atoms, and cleavage of the polyethylene glycol chain. In a rodent model, the metabolites from the hydroxylation on the adamantyl group and nitrogen atom were existed in blood while the metabolites from cleavage of polyethylene glycol chain were not found in urine. The major metabolite found in rodent urine was 3-(3-adamantyl-ureido)-propanoic acid, a presumably from cleavage and oxidation of the polyethylene glycol moiety. All the metabolites found were active but less potent than AEPU at inhibiting human sEH. Furthermore, cytochrome P450 (CYP) 3A4 was found to be a major enzyme mediating AEPU metabolism. In conclusion, the metabolism of AEPU resulted from oxidation by CYP could be shared with other N-adamantyl-urea-based compounds. These findings suggest possible therapeutic roles for AEPU and new strategies for drug design in this series of possible drugs.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Center for Nephrology and Clinical Metabolomics, Division of Nephrology and Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 210072, PR China; Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Hsing-Ju Tsai
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Jozsef Lango
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Sung Hee Hwang
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Takaho Watanabe
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - In-Hae Kim
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Nematology, and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
13
|
Kodani SD, Hammock BD. The 2014 Bernard B. Brodie award lecture-epoxide hydrolases: drug metabolism to therapeutics for chronic pain. Drug Metab Dispos 2015; 43:788-802. [PMID: 25762541 PMCID: PMC4407705 DOI: 10.1124/dmd.115.063339] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022] Open
Abstract
Dr. Bernard Brodie's legacy is built on fundamental discoveries in pharmacology and drug metabolism that were then translated to the clinic to improve patient care. Similarly, the development of a novel class of therapeutics termed the soluble epoxide hydrolase (sEH) inhibitors was originally spurred by fundamental research exploring the biochemistry and physiology of the sEH. Here, we present an overview of the history and current state of research on epoxide hydrolases, specifically focusing on sEHs. In doing so, we start with the translational project studying the metabolism of the insect juvenile hormone mimic R-20458 [(E)-6,7-epoxy-1-(4-ethylphenoxy)-3,7-dimethyl-2-octene], which led to the identification of the mammalian sEH. Further investigation of this enzyme and its substrates, including the epoxyeicosatrienoic acids, led to insight into mechanisms of inflammation, chronic and neuropathic pain, angiogenesis, and other physiologic processes. This basic knowledge in turn led to the development of potent inhibitors of the sEH that are promising therapeutics for pain, hypertension, chronic obstructive pulmonary disorder, arthritis, and other disorders.
Collapse
Affiliation(s)
- Sean D Kodani
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology, Comprehensive Cancer Center, University of California, Davis, California
| |
Collapse
|
14
|
Watanabe A, Watari R, Ogawa K, Shimizu R, Tanaka Y, Takai N, Nezasa KI, Yamaguchi Y. Using improved serial blood sampling method of mice to study pharmacokinetics and drug-drug interaction. J Pharm Sci 2014; 104:955-961. [PMID: 25452230 DOI: 10.1002/jps.24236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/22/2014] [Accepted: 10/08/2014] [Indexed: 11/06/2022]
Abstract
In pharmacokinetic evaluation of mice, using serial sampling methods rather than a terminal blood sampling method could reduce the number of animals needed and lead to more reliable data by excluding individual differences. In addition, using serial sampling methods can be valuable for evaluation of the drug-drug interaction (DDI) potential of drug candidates. In this study, we established an improved method for serially sampling the blood from one mouse by only one incision of the lateral tail vein, and investigated whether our method could be adapted to pharmacokinetic and DDI studies. After intravenous and oral administration of ibuprofen and fexofenadine (BCS class II and III), the plasma concentration and pharmacokinetic parameters were evaluated by our method and a terminal blood sampling method, with the result that both methods gave comparable results (ibuprofen: 63.8 ± 4.0% and 64.4%, fexofenadine: 6.5 ± 0.7% and 7.9%, respectively, in bioavailability). In addition, our method could be adapted to DDI study for cytochrome P450 and organic anion transporting polypeptide inhibition. These results demonstrate that our method can be useful for pharmacokinetic evaluation from the perspective of reliable data acquisition as well as easy handling and low stress to mice and improve the quality of pharmacokinetic and DDI studies.
Collapse
Affiliation(s)
- Ayahisa Watanabe
- Drug Metabolism and Pharmacokinetics, Research Laboratory for Development, Shionogi & Co., Ltd. Toyonaka, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Yang W, Wang Y, Lai A, Qiao JX, Wang TC, Hua J, Price LA, Shen H, Chen XQ, Wong P, Crain E, Watson C, Huang CS, Seiffert DA, Rehfuss R, Wexler RR, Lam PYS. Discovery of 4-aryl-7-hydroxyindoline-based P2Y1 antagonists as novel antiplatelet agents. J Med Chem 2014; 57:6150-64. [PMID: 24931384 DOI: 10.1021/jm5006226] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adenosine diphosphate (ADP)-mediated platelet aggregation is signaled through two distinct G protein-coupled receptors (GPCR) on the platelet surface: P2Y12 and P2Y1. Blocking P2Y12 receptor is a clinically well-validated strategy for antithrombotic therapy. P2Y1 antagonists have been shown to have the potential to provide equivalent antithrombotic efficacy as P2Y12 inhibitors with reduced bleeding in preclinical animal models. We have previously reported the discovery of a potent and orally bioavailable P2Y1 antagonist, 1. This paper describes further optimization of 1 by introducing 4-aryl groups at the hydroxylindoline in two series. In the neutral series, 10q was identified with excellent potency and desirable pharmacokinetic (PK) profile. It also demonstrated similar antithrombotic efficacy with less bleeding compared with the known P2Y12 antagonist prasugrel in rabbit efficacy/bleeding models. In the basic series, 20c (BMS-884775) was discovered with an improved PK and liability profile over 1. These results support P2Y1 antagonism as a promising new antiplatelet target.
Collapse
Affiliation(s)
- Wu Yang
- Discovery Chemistry, ‡Discovery Biology, and §Pharmaceutical Candidate Optimization, Bristol-Myers Squibb Research , Post Office Box 5400, Princeton, New Jersey 08643-5400, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yao JF, Zhou N, Bai L, Xu PX, Liu KL, Xue M. Simultaneous determination of five novel luteinizing hormone-releasing hormone antagonists by LC-MS and pharmacokinetics in rats following cassette dosing. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 962:94-101. [PMID: 24911546 DOI: 10.1016/j.jchromb.2014.05.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 05/15/2014] [Accepted: 05/17/2014] [Indexed: 10/25/2022]
Abstract
Long acting luteinizing hormone-releasing hormone (LHRH) antagonists designed to be protease-resistant were a series of novel decapeptides structurally similar to LHRH. In the present work, a high-throughput method based on a LC-MS/MS has been developed for the simultaneous determination of pharmacokinetics of five LHRH antagonists in rat via cassette dosing. The method was performed under selected reaction monitoring (SRM) in positive ion mode. The analytes were extracted from rat plasma by liquid-liquid extraction with acetonitrile. Chromatographic separation of the analytes was successfully achieved on a Hypersil Gold (100mm×2.1mm, 3μm) using a mobile phase composed of acetonitrile-water (30:70) containing 0.05% (v/v) formic acid. The result showed good linearity and selectivity were obtained for all antagonists. The limits of quantification of the five LHRH antagonists were from 5 to 10ng/mL. The average extract recoveries in the rat plasma were all over 72%. The intra-day and inter-day precisions (R.S.D. %) were all within 10% and the accuracy was ranged from 92.54 to 109.05%. This method has been successfully applied to the pharmacokinetic studies of the five LHRH antagonists. The results indicated that the plasma drug concentrations versus time curves after intravenous injection of five antagonists via cassette dosing were all fitted to a two-compartment model. The pharmacokinetic parameters of five LHRH antagonists suggested that LY616 could be the more stable candidate drugs and optimized as the candidate drug for further study. Our studies enabled high-throughput rapid screening for pharmacokinetic assessment of new peptide candidates, and provided abundant information on the metabolic properties of these LHRH antagonists.
Collapse
Affiliation(s)
- Jin-Feng Yao
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 10069, China; Yanjing Medical College, Capital Medical University, Beijing 101300, China
| | - Ning Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Lu Bai
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 10069, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, China
| | - Ping-Xiang Xu
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 10069, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, China
| | - Ke-Liang Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Ming Xue
- Department of Pharmacology, School of Basic Medical Sciences, Capital Medical University, Beijing 10069, China; Beijing Laboratory for Biomedical Detection Technology and Instrument, Beijing, China.
| |
Collapse
|
17
|
Liederer BM, Berezhkovskiy LM, Ubhayakar SS, Deng Y. An Alternative Approach for Quantitative Bioanalysis using Diluted Blood to Profile Oral Exposure of Small Molecule Anticancer Drugs in Mice. J Pharm Sci 2013; 102:750-60. [DOI: 10.1002/jps.23395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 10/30/2012] [Accepted: 11/05/2012] [Indexed: 11/11/2022]
|
18
|
Synthesis and structure-activity relationship of piperidine-derived non-urea soluble epoxide hydrolase inhibitors. Bioorg Med Chem Lett 2012; 23:417-21. [PMID: 23237835 DOI: 10.1016/j.bmcl.2012.11.084] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/12/2012] [Accepted: 11/20/2012] [Indexed: 12/23/2022]
Abstract
A series of potent amide non-urea inhibitors of soluble epoxide hydrolase (sEH) is disclosed. The inhibition of soluble epoxide hydrolase leads to elevated levels of epoxyeicosatrienoic acids (EETs), and thus inhibitors of sEH represent one of a novel approach to the development of vasodilatory and anti-inflammatory drugs. Structure-activities studies guided optimization of a lead compound, identified through high-throughput screening, gave rise to sub-nanomolar inhibitors of human sEH with stability in human liver microsomal assay suitable for preclinical development.
Collapse
|
19
|
Li C, Liu B, Chang J, Groessl T, Zimmerman M, He YQ, Isbell J, Tuntland T. A modern in vivo pharmacokinetic paradigm: combining snapshot, rapid and full PK approaches to optimize and expedite early drug discovery. Drug Discov Today 2012; 18:71-8. [PMID: 22982770 DOI: 10.1016/j.drudis.2012.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 07/17/2012] [Accepted: 09/06/2012] [Indexed: 11/16/2022]
Abstract
Successful drug discovery relies on the selection of drug candidates with good in vivo pharmacokinetic (PK) properties as well as appropriate preclinical efficacy and safety profiles. In vivo PK profiling is often a bottleneck in the discovery process. In this review, we focus on the tiered in vivo PK approaches implemented at the Genomics Institute of the Novartis Research Foundation (GNF), which includes snapshot PK, rapid PK and full PK studies. These in vivo PK approaches are well integrated within discovery research, allow tremendous flexibility and are highly efficient in supporting the diverse needs and increasing demand for in vivo profiling. The tiered in vivo PK studies expedite compound profiling and help guide the selection of more desirable compounds into efficacy models and for progression into development.
Collapse
Affiliation(s)
- Chun Li
- Department of Metabolism and Pharmacokinetics, Genomics Institute of the Novartis Research Foundation, Novartis Institute of Biomedical Research, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Ulu A, Appt S, Morisseau C, Hwang SH, Jones PD, Rose TE, Dong H, Lango J, Yang J, Tsai HJ, Miyabe C, Fortenbach C, Adams MR, Hammock BD. Pharmacokinetics and in vivo potency of soluble epoxide hydrolase inhibitors in cynomolgus monkeys. Br J Pharmacol 2012; 165:1401-12. [PMID: 21880036 DOI: 10.1111/j.1476-5381.2011.01641.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Soluble epoxide hydrolase inhibitors (sEHIs) possess anti-inflammatory, antiatherosclerotic, antihypertensive and analgesic properties. The pharmacokinetics (PK) and pharmacodynamics in terms of inhibitory potency of sEHIs were assessed in non-human primates (NHPs). Development of a sEHI for use in NHPs will facilitate investigations on the role of sEH in numerous chronic inflammatory conditions. EXPERIMENTAL APPROACH PK parameters of 11 sEHIs in cynomolgus monkeys were determined after oral dosing with 0.3 mg·kg(-1). Their physical properties and inhibitory potency in hepatic cytosol of cynomolgus monkeys were examined. Dose-dependent effects of the two inhibitors 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) and the related acetyl piperidine derivative, 1-trifluoromethoxyphenyl-3-(1-acetylpiperidin-4-yl) urea (TPAU), on natural blood eicosanoids, were determined. KEY RESULTS Among the inhibitors tested, TPPU and two 4-(cyclohexyloxy) benzoic acid urea sEHIs displayed high plasma concentrations (>10 × IC(50)), when dosed orally at 0.3 mg·kg(-1). Although the 4-(cyclohexyloxy) benzoic acid ureas were more potent against monkey sEH than piperidyl ureas (TPAU and TPPU), the latter compounds showed higher plasma concentrations and more drug-like properties. The C(max) increased with dose from 0.3 to 3 mg·kg(-1) for TPPU and from 0.1 to 3 mg·kg(-1) for TPAU, although it was not linear over this range of doses. As an indication of target engagement, ratios of linoleate epoxides to diols increased with TPPU administration. CONCLUSION AND IMPLICATIONS Our data indicate that TPPU is suitable for investigating sEH biology and the role of epoxide-containing lipids in modulating inflammatory diseases in NHPs.
Collapse
Affiliation(s)
- A Ulu
- Department of Entomology and Cancer Center, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Screening candidate anticancer drugs for brain tumor chemotherapy: pharmacokinetic-driven approach for a series of (E)-N-(substituted aryl)-3-(substituted phenyl)propenamide analogues. Invest New Drugs 2012; 30:2263-73. [PMID: 22383114 DOI: 10.1007/s10637-012-9806-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
Abstract
A pharmacokinetic [PK]-driven screening process was implemented to select new agents for brain tumor chemotherapy from a series of low molecular weight anticancer agents [ON27x] that consisted of 141 compounds. The screening procedures involved a combination of in silico, in vitro and in vivo mouse studies that were cast into a pipeline of tier 1 and tier 2 failures that resulted in a final investigation of 2 analogues in brain tumor-bearing mice. Tier 1 failures included agents with a molecular weight of > 450 Da, a predicted log P (log P) of either <2 or > 3.5, and a cytotoxicity IC(50) value of > 2 uM. Next, 18 compounds underwent cassette dosing studies in normal mice that identified compounds with high systemic clearance, and low blood-brain barrier [BBB] penetration. These indices along with a derived parameter, referred to as the brain exposure index, comprised tier 2 failures that led to the administration of 2 compounds [ON27570, ON27740] as single agents [discrete dosing] to mice bearing intracerebral tumors. Comparison of ON27570's resultant PK parameters to those obtained in the cassette dosing format suggested a drug-drug interaction most likely at the level of BBB transport, and prompted the use of the in vitro MDCK-MDR1 transport model to help assess the nature of the discrepancy. Overall, the approach was able to identify candidate compounds with suitable PK characteristics yet further revisions to the method, such as the use of in vitro metabolism and transport assays, may improve the PK-directed approach to identify efficacious agents for brain tumor chemotherapy.
Collapse
|
22
|
Design, synthesis and evaluation of non-urea inhibitors of soluble epoxide hydrolase. Bioorg Med Chem Lett 2011; 22:601-5. [PMID: 22079754 DOI: 10.1016/j.bmcl.2011.10.074] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/23/2022]
Abstract
Inhibition of soluble epoxide hydrolase (sEH) has been proposed as a new pharmaceutical approach for treating hypertension and vascular inflammation. The most potent sEH inhibitors reported in literature to date are urea derivatives. However, these compounds have limited pharmacokinetic profiles. We investigated non-urea amide derivatives as sEH inhibitors and identified a potent human sEH inhibitor 14-34 having potency comparable to urea-based inhibitors.
Collapse
|
23
|
Kurawattimath V, Pocha K, Thanga Mariappan T, Trivedi RK, Mandlekar S. A modified serial blood sampling technique and utility of dried-blood spot technique in estimation of blood concentration: application in mouse pharmacokinetics. Eur J Drug Metab Pharmacokinet 2011; 37:23-30. [DOI: 10.1007/s13318-011-0066-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 09/06/2011] [Indexed: 11/29/2022]
|
24
|
Smith D, Tella M, Rahavendran SV, Shen Z. Quantitative analysis of PD 0332991 in mouse plasma using automated micro-sample processing and microbore liquid chromatography coupled with tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2011; 879:2860-5. [PMID: 21889427 DOI: 10.1016/j.jchromb.2011.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/01/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
In the oncology therapeutic area, the mouse is the primary animal model used for efficacy studies. Often with mouse pharmacokinetic (PK) and pharmacokinetic/pharmacodynamic (PK/PD) studies, less than 20 μL of total plasma sample volume is available for bioanalysis due to the small size of the animal and the need to split samples for other measurements such as biomarker analyses. The need to conduct automated "small volume" sample processing for quantitative bioanalysis has therefore increased. An automated fit for purpose protein precipitation (PPT) method using a Hamilton MicroLab Star (Reno, NV, USA) to support mouse PK and PK/PD studies for an oncology drug candidate PD 0332991, (a specific inhibitor of cyclin-dependent kinase 4 (CDK-4) currently in development) for processing "small volumes" was developed. The automated PPT method was achieved by extracting and processing 10 μL out of a minimum sample volume of 15 μL plasma utilizing the Hamilton MicroLab Star. A 96-conical shallow well plate by Agilent Technologies, Inc (Wilmington, DE, USA) was the labware of choice used in the automated Hamilton "small volume" method platform. Analyses of a 10 μL plasma aliquot from 15 μL of plasma study samples were conducted by both automated and manual PPT method. All plasma samples were quantitated using a Sciex API 4000 triple quadrupole mass spectrometer coupled with an Eksigent Express HT Ultra HPLC system. The chromatography was achieved using an Agilent microbore C(18) Extend, 1.0 × 50 mm, 3.5 μm column at a flow rate of 0.150 mL/min with a total run time of 1.8 min. Accuracy and precision of standard and QC concentration levels were within 90-107% and <14%, respectively. Calibration curves were linear over the dynamic range of 1.0-1000 ng/mL. PK studies for PD 0332991 were conducted in female C3H mice following intravenous administration at 1mg/kg and oral administration at 2mg/kg. PK values such as area under curve (AUC), volume of distribution (Vd), clearance (Cl), half life (T(1/2)) and bioavailability (F%) demonstrated less than 11% difference between the automated Hamilton and manual PPT methods. The results demonstrate that the automated Hamilton PPT method can accurately and precisely aliquot 10 μL of plasma from 15 μL or larger volume plasma samples. The fit for purpose Hamilton PPT method is suitable for routine analyses of plasma samples from micro-sampling PK and PK/PD samples to support discovery studies.
Collapse
Affiliation(s)
- Danielle Smith
- Department of Pharmacokinetics, Dynamics & Metabolism, Pfizer Global Research & Development, 10628 Science Center Drive, San Diego, CA 92121, USA
| | | | | | | |
Collapse
|
25
|
Hwang SH, Wagner KM, Morisseau C, Liu JY, Dong H, Wecksler AT, Hammock BD. Synthesis and structure-activity relationship studies of urea-containing pyrazoles as dual inhibitors of cyclooxygenase-2 and soluble epoxide hydrolase. J Med Chem 2011; 54:3037-50. [PMID: 21434686 DOI: 10.1021/jm2001376] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of dual inhibitors containing a 1,5-diarylpyrazole and a urea were designed, synthesized, and evaluated as novel COX-2/sEH dual inhibitors in vitro using recombinant enzyme assays and in vivo using a lipopolysaccharide (LPS) induced model of pain in rats. The best inhibition potencies and selectivity for sEH and COX-2 over COX-1 were obtained with compounds (21b, 21i, and 21j) in which both the 1,5-diaryl-pyrazole group and the urea group are linked with a three-methylene group. Compound 21i showed the best pharmacokinetic profiles in both mice and rats (higher AUC and longer half-life). Following subcutaneous administration at 10 mg/kg, compound 21i exhibited antiallodynic activity that is more effective than the same dose of either a COX-2 inhibitor (celecoxib) or a sEH inhibitor (t-AUCB) alone, as well as coadministration of both inhibitors. Thus, these novel dual inhibitors exhibited enhanced in vivo antiallodynic activity in a nociceptive behavioral assay.
Collapse
Affiliation(s)
- Sung Hee Hwang
- Department of Entomology, University of California, Davis, California 95616-8584, United States
| | | | | | | | | | | | | |
Collapse
|
26
|
Chernetsova ES, Koryakova AG. High-performance liquid chromatography coupled to mass spectrometry for studying new pharmaceutical entities. JOURNAL OF ANALYTICAL CHEMISTRY 2010. [DOI: 10.1134/s1061934810140029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Huang SX, Li HY, Liu JY, Morisseau C, Hammock BD, Long YQ. Incorporation of piperazino functionality into 1,3-disubstituted urea as the tertiary pharmacophore affording potent inhibitors of soluble epoxide hydrolase with improved pharmacokinetic properties. J Med Chem 2010; 53:8376-86. [PMID: 21070033 DOI: 10.1021/jm101087u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The inhibition of the mammalian soluble epoxide hydrolase (sEH) is a promising new therapy in the treatment of hypertension, inflammation, and other disorders. However, the problems of limited water solubility, high melting point, and low metabolic stability complicated the development of 1,3-disubstituted urea-based sEH inhibitors. The current study explored the introduction of the substituted piperazino group as the tertiary pharmacophore, which resulted in substantial improvements in pharmacokinetic parameters over previously reported 1-adamantylurea based inhibitors while retaining high potency. The SAR studies revealed that the meta- or para-substituted phenyl spacer and N(4)-acetyl or sulfonyl substituted piperazine were optimal structures for achieving high potency and good physical properties. The 1-(4-(4-(4-acetylpiperazin-1-yl)butoxy)phenyl)-3-adamantan-1-yl urea (29c) demonstrated excellent in vivo pharmacokinetic properties in mice: T1/2 =14 h, Cmax = 84 nM, AUC = 40 200 nM·min, and IC50 = 7.0 nM against human sEH enzyme.
Collapse
Affiliation(s)
- Shao-Xu Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | | | | | |
Collapse
|
28
|
Rose TE, Morisseau C, Liu JY, Inceoglu B, Jones PD, Sanborn JR, Hammock BD. 1-Aryl-3-(1-acylpiperidin-4-yl)urea inhibitors of human and murine soluble epoxide hydrolase: structure-activity relationships, pharmacokinetics, and reduction of inflammatory pain. J Med Chem 2010; 53:7067-75. [PMID: 20812725 DOI: 10.1021/jm100691c] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1,3-Disubstituted ureas possessing a piperidyl moiety have been synthesized to investigate their structure-activity relationships as inhibitors of the human and murine soluble epoxide hydrolase (sEH). Oral administration of 13 1-aryl-3-(1-acylpiperidin-4-yl)urea inhibitors in mice revealed substantial improvements in pharmacokinetic parameters over previously reported 1-adamantylurea based inhibitors. For example, 1-(1-(cyclopropanecarbonyl)piperidin-4-yl)-3-(4-(trifluoromethoxy)phenyl)urea (52) showed a 7-fold increase in potency, a 65-fold increase in C(max), and a 3300-fold increase in AUC over its adamantane analogue 1-(1-adamantyl)-3-(1-propionylpiperidin-4-yl)urea (2). This novel sEH inhibitor showed a 1000-fold increase in potency when compared to morphine by reducing hyperalgesia as measured by mechanical withdrawal threshold using the in vivo carrageenan induced inflammatory pain model.
Collapse
Affiliation(s)
- Tristan E Rose
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Workman P, Aboagye EO, Balkwill F, Balmain A, Bruder G, Chaplin DJ, Double JA, Everitt J, Farningham DAH, Glennie MJ, Kelland LR, Robinson V, Stratford IJ, Tozer GM, Watson S, Wedge SR, Eccles SA. Guidelines for the welfare and use of animals in cancer research. Br J Cancer 2010; 102:1555-77. [PMID: 20502460 PMCID: PMC2883160 DOI: 10.1038/sj.bjc.6605642] [Citation(s) in RCA: 1095] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Animal experiments remain essential to understand the fundamental mechanisms underpinning malignancy and to discover improved methods to prevent, diagnose and treat cancer. Excellent standards of animal care are fully consistent with the conduct of high quality cancer research. Here we provide updated guidelines on the welfare and use of animals in cancer research. All experiments should incorporate the 3Rs: replacement, reduction and refinement. Focusing on animal welfare, we present recommendations on all aspects of cancer research, including: study design, statistics and pilot studies; choice of tumour models (e.g., genetically engineered, orthotopic and metastatic); therapy (including drugs and radiation); imaging (covering techniques, anaesthesia and restraint); humane endpoints (including tumour burden and site); and publication of best practice.
Collapse
Affiliation(s)
- P Workman
- Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Cotswold Road, Sutton, Surrey SM2 5NG, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Tsai HJ, Hwang SH, Morisseau C, Yang J, Jones PD, Kasagami T, Kim IH, Hammock BD. Pharmacokinetic screening of soluble epoxide hydrolase inhibitors in dogs. Eur J Pharm Sci 2010; 40:222-38. [PMID: 20359531 DOI: 10.1016/j.ejps.2010.03.018] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/03/2010] [Accepted: 03/23/2010] [Indexed: 02/02/2023]
Abstract
Epoxyeicosatrienoic acids that have anti-hypertensive and anti-inflammatory properties are mainly metabolized by soluble epoxide hydrolase (sEH, EC 3.3.2.3). Therefore, sEH has emerged as a therapeutic target for treating various cardiovascular diseases and inflammatory pain. N,N'-Disubstituted ureas are potent sEH inhibitors in vitro. However, in vivo usage of early sEH inhibitors has been limited by their low bioavailability and poor physiochemical properties. Therefore, a group of highly potent compounds with more drug-like physiochemical properties were evaluated by monitoring their plasma profiles in dogs treated orally with sEH inhibitors. Urea compounds with an adamantyl or a 4-trifluoromethoxyphenyl group on one side and a piperidyl or a cyclohexyl ether group on the other side of the urea function showed pharmacokinetic profiles with high plasma concentrations and long half lives. In particular, the inhibitor trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB) not only is very potent with good physiochemical properties, but also shows high oral bioavailability for doses ranging from 0.01 to 1mg/kg. This compound is also very potent against the sEH of several mammals, suggesting that t-AUCB will be an excellent tool to evaluate the biology of sEH in multiple animal models. Such compounds may also be a valuable lead for the development of veterinary therapeutics.
Collapse
Affiliation(s)
- Hsing-Ju Tsai
- Department of Entomology and Cancer Center, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Microextraction by packed sorbent for LC–MS/MS determination of drugs in whole blood samples. Bioanalysis 2010; 2:197-205. [DOI: 10.4155/bio.09.187] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Microextraction by packed sorbent (MEPS) is used as an online sample-preparation method. The determination of local anesthetics lidocaine, ropivacaine and bupivacaine directly in human blood was performed using MEPS online with LC–MS/MS. Results: The range of the calibration curves in whole blood was 10–10000 nmol/l. The lower limit of quantification was set to 10.0 nmol/l. The accuracy of the quality control samples ranged from 85 to 97%. The interday precision of the studied analytes was within the range 1–5%. The regression correlation coefficient (r2) was over 0.995 for all runs. The present method is rapid, reliable and robust and may be used for therapeutic drug monitoring of studied analytes in whole blood. Conclusion: This assay allows the analysis of drugs in human blood directly. Sample preparation is simple and automated. The assay reduced the handling time and the cost, and could handle small volumes of whole blood samples (25 µl).
Collapse
|
32
|
Peng SX, Rockafellow BA, Skedzielewski TM, Huebert ND, Hageman W. Improved pharmacokinetic and bioavailability support of drug discovery using serial blood sampling in mice. J Pharm Sci 2009; 98:1877-84. [PMID: 18803263 DOI: 10.1002/jps.21533] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pharmacokinetic studies in mice traditionally require one animal per time point, resulting in dosing and euthanizing a large number of animals and producing suboptimal quality of pharmacokinetic data due to inter-animal variability and dosing error. These studies are time-consuming and labor-intensive. To improve the throughput and quality of pharmacokinetic evaluation in mice, we have developed a serial blood sampling methodology using the lateral saphenous vein puncture technique. Two marketed drugs, indinavir and rosuvastatin, were selected for this validation study because of their distinctly different physicochemical and pharmacokinetic properties. Each compound was dosed orally and intravenously in mice using both discrete and serial blood sampling methods. The pharmacokinetic results from serial bleeding are in excellent agreement with those from discrete sampling for both compounds. Compared to the discrete sampling, the serial sampling procedure is a more humane method, allowing for rapid and repeated sampling from the same site without the need for anesthesia. The application of this new method has led to a remarkable reduction in animal and compound usage, a significant increase in throughput and speed, and a drastic improvement in pharmacokinetic data quality. This approach is especially useful for the first-tier in vivo pharmacokinetic screening of discovery compounds.
Collapse
Affiliation(s)
- Sean X Peng
- Johnson & Johnson Pharmaceutical Research & Development, Welsh & McKean Roads, Spring House, Pennsylvania 19477, USA.
| | | | | | | | | |
Collapse
|
33
|
Simpkins AN, Rudic RD, Schreihofer DA, Roy S, Manhiani M, Tsai HJ, Hammock BD, Imig JD. Soluble epoxide inhibition is protective against cerebral ischemia via vascular and neural protection. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2086-95. [PMID: 19435785 DOI: 10.2353/ajpath.2009.080544] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Inhibition of soluble epoxide hydrolase (SEH), the enzyme responsible for degradation of vasoactive epoxides, protects against cerebral ischemia in rats. However, the molecular and biological mechanisms that confer protection in normotension and hypertension remain unclear. Here we show that 6 weeks of SEH inhibition via 2 mg/day of 12-(3-adamantan-1-yl-ureido) dodecanoic acid (AUDA) in spontaneously hypertensive stroke-prone (SHRSP) rats protects against cerebral ischemia induced by middle cerebral artery occlusion, reducing percent hemispheric infarct and neurodeficit score without decreasing blood pressure. This level of cerebral protection was similar to that of the angiotensin-converting enzyme inhibitor, enalapril, which significantly lowered blood pressure. SEH inhibition is also protective in normotensive Wistar-Kyoto (WKY) rats, reducing both hemispheric infarct and neurodeficit score. In SHRSP rats, SEH inhibition reduced wall-to-lumen ratio and collagen deposition and increased cerebral microvessel density, although AUDA did not alter middle cerebral artery structure or microvessel density in WKY rats. An apoptosis mRNA expression microarray of brain tissues from AUDA-treated rats revealed that AUDA modulates gene expression of mediators involved in the regulation of apoptosis in neural tissues of both WKY and SHRSP rats. Hence, we conclude that chronic SEH inhibition protects against cerebral ischemia via vascular protection in SHRSP rats and neural protection in both the SHRSP and WKY rats, indicating that SEH inhibition has broad pharmacological potential for treating ischemic stroke.
Collapse
Affiliation(s)
- Alexis N Simpkins
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd., Milwaukee, WI 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Liu JY, Tsai HJ, Hwang SH, Jones PD, Morisseau C, Hammock BD. Pharmacokinetic optimization of four soluble epoxide hydrolase inhibitors for use in a murine model of inflammation. Br J Pharmacol 2009; 156:284-96. [PMID: 19154430 DOI: 10.1111/j.1476-5381.2008.00009.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Early soluble epoxide hydrolase inhibitors (sEHIs) such as 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA) are effective anti-hypertensive and anti-inflammatory agents in various animal models. However, their poor metabolic stability and limited water solubility make them difficult to use pharmacologically. Here we present the evaluation of four sEHIs for improved pharmacokinetic properties and the anti-inflammatory effects of one sEHI. EXPERIMENTAL APPROACH The pharmacokinetic profiles of inhibitors were determined following p.o. (oral) administration and serial bleeding in mice. Subsequently the pharmacokinetics of trans-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (t-AUCB), the most promising inhibitor, was further studied following s.c. (subcutaneous), i.v. (intravenous) injections and administration in drinking water. Finally, the anti-inflammatory effect of t-AUCB was evaluated by using a lipopolysaccharide (LPS)-treated murine model. KEY RESULTS Better pharmacokinetic parameters (higher C(max), longer t(1/2) and greater AUC) were obtained from the tested inhibitors, compared with AUDA. Oral bioavailability of t-AUCB (0.1 mg.kg(-1)) was 68 +/- 22% (n = 4), and giving t-AUCB in drinking water is recommended as a feasible, effective and easy route of administration for chronic studies. Finally, t-AUCB (p.o.) reversed the decrease in plasma ratio of lipid epoxides to corresponding diols (a biomarker of soluble epoxide hydrolase inhibition) in lipopolysaccharide-treated mice. The in vivo potency of 1 mg.kg(-1) of t-AUCB (p.o.) was better in this inflammatory model than that of 10 mg.kg(-1) of AUDA-butyl ester (p.o) at 6 h after treatment. CONCLUSIONS AND IMPLICATIONS t-AUCB is a potent sEHI with improved pharmacokinetic properties. This compound will be a useful tool for pharmacological research and a promising starting point for drug development.
Collapse
Affiliation(s)
- Jun-Yan Liu
- Department of Entomology and UCD Cancer Research Center, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
35
|
Proksch JW, Ward KW. Cassette dosing pharmacokinetic studies for evaluation of ophthalmic drugs for posterior ocular diseases. J Pharm Sci 2008; 97:3411-21. [PMID: 17948915 DOI: 10.1002/jps.21188] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this investigation was to evaluate the utility of cassette dosing as a means for increasing throughput and decreasing animal usage for intravitreal ocular pharmacokinetic studies. Pigmented rabbits received a single intravitreal injection of test article containing either a single compound or a mixture of up to five compounds. Samples of vitreous, choroid and retina were collected at predetermined intervals through 7 or 28 days after dosing. Concentrations of each compound were determined by LC/MS/MS, with subsequent pharmacokinetic data analysis. The ocular pharmacokinetic properties of four test compounds administered as a cassette were in agreement with the ocular pharmacokinetics of each compound when administered as a single entity. Cassette dosing was subsequently used to screen an additional 15 compounds, with injection of 5 compounds per study. Based on the results from these cassette-dosing studies, some compounds demonstrated favorable ocular pharmacokinetics, with sustained concentrations above 300 ng/g in retina for at least 1 week after dosing while other compounds showed either considerably less penetration into retina or a shorter residence time in the retina. These findings suggest that the cassette dosing approach can be used in evaluating the intravitreal ocular pharmacokinetic properties of compounds intended for ocular use.
Collapse
Affiliation(s)
- Joel W Proksch
- Global Preclinical Development, Bausch & Lomb, 1400 N. Goodman Street, Rochester, New York 14609, USA.
| | | |
Collapse
|
36
|
EnayetAllah AE, Luria A, Luo B, Tsai HJ, Sura P, Hammock BD, Grant DF. Opposite regulation of cholesterol levels by the phosphatase and hydrolase domains of soluble epoxide hydrolase. J Biol Chem 2008; 283:36592-8. [PMID: 18974052 DOI: 10.1074/jbc.m806315200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Soluble epoxide hydrolase (sEH) is a bifunctional enzyme with two catalytic domains: a C-terminal epoxide hydrolase domain and an N-terminal phosphatase domain. Epidemiology and animal studies have attributed a variety of cardiovascular and anti-inflammatory effects to the C-terminal epoxide hydrolase domain. The recent association of sEH with cholesterol-related disorders, peroxisome proliferator-activated receptor activity, and the isoprenoid/cholesterol biosynthesis pathway additionally suggest a role of sEH in regulating cholesterol metabolism. Here we used sEH knock-out (sEH-KO) mice and transfected HepG2 cells to evaluate the phosphatase and hydrolase domains in regulating cholesterol levels. In sEH-KO male mice we found a approximately 25% decrease in plasma total cholesterol as compared with wild type (sEH-WT) male mice. Consistent with plasma cholesterol levels, liver expression of HMG-CoA reductase was found to be approximately 2-fold lower in sEH-KO male mice. Additionally, HepG2 cells stably expressing human sEH with phosphatase only or hydrolase only activity demonstrate independent and opposite roles of the two sEH domains. Whereas the phosphatase domain elevated cholesterol levels, the hydrolase domain lowered cholesterol levels. Hydrolase inhibitor treatment in sEH-WT male and female mice as well as HepG2 cells expressing human sEH resulted in higher cholesterol levels, thus mimicking the effect of expressing the phosphatase domain in HepG2 cells. In conclusion, we show that sEH regulates cholesterol levels in vivo and in vitro, and we propose the phosphatase domain as a potential therapeutic target in hypercholesterolemia-related disorders.
Collapse
Affiliation(s)
- Ahmed E EnayetAllah
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, Connecticut 06269-3092, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Parrish AR, Chen G, Burghardt RC, Watanabe T, Morisseau C, Hammock BD. Attenuation of cisplatin nephrotoxicity by inhibition of soluble epoxide hydrolase. Cell Biol Toxicol 2008; 25:217-25. [PMID: 18386137 DOI: 10.1007/s10565-008-9071-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 03/03/2008] [Indexed: 01/09/2023]
Abstract
Cisplatin is a highly effective chemotherapeutic agent against many tumors; however, it is also a potent nephrotoxicant. Given that there have been no significant advances in our ability to clinically manage acute renal failure since the advent of dialysis, the development of novel strategies to ablate nephrotoxicity would represent a significant development. In this study, we investigated the ability of an inhibitor of soluble epoxide hydrolase (sEH), n-butyl ester of 12-(3-adamantan-1-yl-ureiido)-dodecanoic acid (nbAUDA), to attenuate cisplatin-induced nephrotoxicity. nbAUDA is quickly converted to AUDA and results in maintenance of high AUDA levels in vivo. Subcutaneous administration of 40 mg/kg of nbAUDA to C3H mice every 24 h resulted in elevated blood levels of AUDA; this protocol was also associated with attenuation of nephrotoxicity induced by cisplatin (intraperitoneal injection) as assessed by BUN levels and histological evaluation of kidneys. This is the first report of the use of sEH inhibitors to protect against acute nephrotoxicity and suggests a therapeutic potential of these compounds.
Collapse
Affiliation(s)
- Alan R Parrish
- Department of Systems Biology and Translational Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.
| | | | | | | | | | | |
Collapse
|
38
|
Ingelse BA, Vogel G, Botterblom M, Nanninga D, Ooms B. Direct injection of whole blood for liquid chromatography/tandem mass spectrometry analysis to support single-rodent pharmacokinetic studies. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2008; 22:834-840. [PMID: 18286667 DOI: 10.1002/rcm.3436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Mass spectrometric developments in the last decade enable (sub)nanomolar detection of drug compounds in biological matrices in a few microliters of blood. However, the sampling and especially the handling of these small blood volumes is not straightforward. We studied the feasibility of a recently developed 'sorbent sampling technique' to handle these small blood volumes and the application to support pharmacokinetic (PK) screening programs. This technique applies 5-10 microL of blood on a fibrous material packed into a cartridge. Blood samples absorbed on these cartridges are eluted directly, on-line onto a solid-phase extraction liquid chromatography/tandem mass spectrometry (SPE-LC/MS/MS) system. It is shown that the sorbent sampling technique can be applied for a range of drug compounds. In spite of issues with recovery and sample clean-up that need further improvement, the sorbent sampling technique provided similar data as compared to conventional analytics. The technique was successfully applied to derive kinetic data from individual mice, thereby decreasing the number of required mice for a PK study from 21 to 3.
Collapse
Affiliation(s)
- Benno A Ingelse
- N.V. Organon, a part of Schering-Plough Corporation, Molenstraat 110, P.O. Box 20, 5340 BH Oss, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Zhang W, Koerner IP, Noppens R, Grafe M, Tsai HJ, Morisseau C, Luria A, Hammock BD, Falck JR, Alkayed NJ. Soluble epoxide hydrolase: a novel therapeutic target in stroke. J Cereb Blood Flow Metab 2007; 27:1931-40. [PMID: 17440491 PMCID: PMC2664093 DOI: 10.1038/sj.jcbfm.9600494] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The P450 eicosanoids epoxyeicosatrienoic acids (EETs) are produced in brain and perform important biological functions, including protection from ischemic injury. The beneficial effect of EETs, however, is limited by their metabolism via soluble epoxide hydrolase (sEH). We tested the hypothesis that sEH inhibition is protective against ischemic brain damage in vivo by a mechanism linked to enhanced cerebral blood flow (CBF). We determined expression and distribution of sEH immunoreactivity (IR) in brain, and examined the effect of sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid butyl ester (AUDA-BE) on CBF and infarct size after experimental stroke in mice. Mice were administered a single intraperitoneal injection of AUDA-BE (10 mg/kg) or vehicle at 30 mins before 2-h middle cerebral artery occlusion (MCAO) or at reperfusion, in the presence and absence of P450 epoxygenase inhibitor N-methylsulfonyl-6-(2-propargyloxyphenyl) hexanamide (MS-PPOH). Immunoreactivity for sEH was detected in vascular and non-vascular brain compartments, with predominant expression in neuronal cell bodies and processes. 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid butyl ester was detected in plasma and brain for up to 24 h after intraperitoneal injection, which was associated with inhibition of sEH activity in brain tissue. Finally, AUDA-BE significantly reduced infarct size at 24 h after MCAO, which was prevented by MS-PPOH. However, regional CBF rates measured by iodoantipyrine (IAP) autoradiography at end ischemia revealed no differences between AUDA-BE- and vehicle-treated mice. The findings suggest that sEH inhibition is protective against ischemic injury by non-vascular mechanisms, and that sEH may serve as a therapeutic target in stroke.
Collapse
Affiliation(s)
- Wenri Zhang
- Department of Anesthesiology & Peri-Operative Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Kim IH, Tsai HJ, Nishi K, Kasagami T, Morisseau C, Hammock BD. 1,3-disubstituted ureas functionalized with ether groups are potent inhibitors of the soluble epoxide hydrolase with improved pharmacokinetic properties. J Med Chem 2007; 50:5217-26. [PMID: 17894481 PMCID: PMC2543935 DOI: 10.1021/jm070705c] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Soluble epoxide hydrolase (sEH) is a therapeutic target for treating hypertension and inflammation. 1,3-Disubstituted ureas functionalized with an ether group are potent sEH inhibitors. However, their relatively low metabolic stability leads to poor pharmacokinetic properties. To improve their bioavailability, we investigated the effect of incorporating various polar groups on the ether function on the inhibition potencies, physical properties, in vitro metabolic stability, and pharmacokinetic properties. The structure-activity relationship studies showed that a hydrophobic linker between the urea group and the ether function is necessary to keep their potency. In addition, urea-ether inhibitors having a polar group such as diethylene glycol or morpholine significantly improved their physical properties and metabolic stability without any loss of inhibitory potency. Furthermore, improved pharmacokinetic properties in murine and canine models were obtained with the resulting inhibitors. These findings will facilitate the usage of sEH inhibitors in animal models of hypertension and inflammation.
Collapse
Affiliation(s)
- In-Hae Kim
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hsing-Ju Tsai
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Kosuke Nishi
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Takeo Kasagami
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Bruce D. Hammock
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
- Correspondence Address: Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA 530-752-7519 (Phone), 530-752-1537 (Fax), (E-mail)
| |
Collapse
|
41
|
Hwang SH, Tsai HJ, Liu JY, Morisseau C, Hammock BD. Orally bioavailable potent soluble epoxide hydrolase inhibitors. J Med Chem 2007; 50:3825-40. [PMID: 17616115 PMCID: PMC2596069 DOI: 10.1021/jm070270t] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of N,N'-disubstituted ureas having a conformationally restricted cis- or trans-1,4-cyclohexane alpha to the urea were prepared and tested as soluble epoxide hydrolase (sEH) inhibitors. This series of compounds showed low nanomolar to picomolar activities against recombinant human sEH. Both isomers showed similar potencies, but the trans isomers were more metabolically stable in human hepatic microsomes. Furthermore, these new potent inhibitors show a greater metabolic stability in vivo than previously described sEH inhibitors. We demonstrated that trans-4-[4-(3-adamantan-1-ylureido)cyclohexyloxy]benzoic acid 13g (t-AUCB, IC50 = 1.3 +/- 0.05 nM) had excellent oral bioavailability (98%, n = 2) and blood area under the curve in dogs and was effective in vivo to treat hypotension in lipopolysaccharide challenged murine models.
Collapse
Affiliation(s)
- Sung Hee Hwang
- Department of Entomology and UCD Cancer Center, University of California-Davis, One Shields Avenue, Davis, CA 95616-8584, USA
| | | | | | | | | |
Collapse
|
42
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2006; 41:1520-1531. [PMID: 17103385 DOI: 10.1002/jms.958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
|
43
|
Kim IH, Nishi K, Tsai HJ, Bradford T, Koda Y, Watanabe T, Morisseau C, Blanchfield J, Toth I, Hammock BD. Design of bioavailable derivatives of 12-(3-adamantan-1-yl-ureido)dodecanoic acid, a potent inhibitor of the soluble epoxide hydrolase. Bioorg Med Chem 2006; 15:312-23. [PMID: 17046265 PMCID: PMC2040326 DOI: 10.1016/j.bmc.2006.09.057] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 09/21/2006] [Accepted: 09/26/2006] [Indexed: 11/19/2022]
Abstract
The soluble epoxide hydrolase (sEH) plays an important role in the metabolism of endogenous chemical mediators involved in blood pressure regulation and vascular inflammation. 12-(3-Adamantan-1-yl-ureido)-dodecanoic acid (AUDA, 1) is a very active inhibitor of sEH both in vitro and in vivo. However, its relatively high melting point and limited solubility in either water or oil-based solvents leads to difficulties in formulating the compound and often results in poor in vivo availability. We investigated the effect of derivatization of the acid functional group of inhibitor 1 on the inhibition potencies, physical properties, and pharmacokinetic properties. For human sEH, similar inhibition potency was obtained when the acid of compound 1 was modified to esters (2-15). The resulting compounds exhibited improved physical properties (23-66 degrees C lower melting point and 5-fold better solubility in oil). Pharmacokinetic studies showed that the esters possess improved oral bioavailability in mice. On the other hand, amide derivatives of AUDA 1 did not show significant improvement in inhibition potencies or physical properties (higher melting points and lower solubility). The esterification of 1 results in compounds that are easier to formulate in animal food and in triglycerides for gavage and other routes of administration, making it easier to study the biological effects of sEH inhibition in vivo.
Collapse
Affiliation(s)
- In-Hae Kim
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Kosuke Nishi
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Hsing-Ju Tsai
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Tanya Bradford
- School of Molecular and Microbial Sciences, University of Queensland, St. Lucia 4072, Australia
| | - Yasuko Koda
- School of Molecular and Microbial Sciences, University of Queensland, St. Lucia 4072, Australia
| | - Takaho Watanabe
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
- *Corresponding author. Tel.: +1 530 752 6571; fax: +1 530 752 1537; e-mail:
| | - Joanne Blanchfield
- School of Molecular and Microbial Sciences, University of Queensland, St. Lucia 4072, Australia
| | - Istvan Toth
- School of Molecular and Microbial Sciences, University of Queensland, St. Lucia 4072, Australia
| | - Bruce D. Hammock
- Department of Entomology and University of California Davis Cancer Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
44
|
Wolf NM, Morisseau C, Jones PD, Hock B, Hammock BD. Development of a high-throughput screen for soluble epoxide hydrolase inhibition. Anal Biochem 2006; 355:71-80. [PMID: 16729954 PMCID: PMC1964503 DOI: 10.1016/j.ab.2006.04.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Revised: 03/24/2006] [Accepted: 04/12/2006] [Indexed: 10/24/2022]
Abstract
Mammalian soluble epoxide hydrolase (sEH) represents a highly promising new target for drug development. Chemical inhibition of this enzyme in animal models was shown to treat hypertension and vascular inflammation as well as related syndromes. Existing sEH inhibitors are relatively potent and specific. However, the low solubility and relatively fast metabolism of described sEH inhibitors make them less than therapeutically efficient, stating the need for novel inhibitor structures. Therefore, a series of alpha-cyanoester and alpha-cyanocarbonate epoxides were evaluated as potential human sEH (HsEH) substrates for the high-throughput screen (HTS) of compound libraries. (3-Phenyl-oxiranyl)-acetic acid cyano-(6-methoxy-naphthalen-2-yl)-methyl ester (PHOME), which displayed the highest aqueous stability and solubility, was selected for the development of an HTS assay with long incubation times at room temperature. Concentrations of HsEH and PHOME were optimized to ensure assay sensitivity, reliability, and reproducibility. Assay validation, which employed these optimized concentrations, resulted in good accuracy (60-100%) and high precision (<7% relative standard deviation). In addition, an overall Z' value of 0.7 proved the system's robustness and potential for HTS. The developed assay system will be a valuable tool to discover new structures for the therapeutic inhibition of sEH to treat various cardiovascular diseases.
Collapse
Affiliation(s)
- Nicola M. Wolf
- Department of Plant Sciences, Center of Life Sciences Weihenstephan, Technische Universität München, 85350 Freising, Germany
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616, USA
| | - Christophe Morisseau
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616, USA
| | - Paul D. Jones
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616, USA
| | - Bertold Hock
- Department of Plant Sciences, Center of Life Sciences Weihenstephan, Technische Universität München, 85350 Freising, Germany
| | - Bruce D. Hammock
- Department of Entomology and Cancer Research Center, University of California, Davis, CA 95616, USA
- *Corresponding author. Fax: +1 530 752 1537. E-mail address: (B.D. Hammock)
| |
Collapse
|