1
|
Chu M, Wang Y, Xin J, O'Halloran KP, Liu Y, Song D, Yang G, Ma H, Pang H, Wang X. Fe-Co-Fe prussian blue analogues loaded nitrogen doped carbon quantum dots for effective epinephrine detection. Talanta 2025; 286:127459. [PMID: 39755081 DOI: 10.1016/j.talanta.2024.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/21/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Epinephrine (Ep) is an important neurotransmitter, which plays an important role in the nervous system and glycogen metabolism of living organisms. Hence, a novel NCQDs/FeCoFe-PBA composite with FeCoFe-Prussian blue analogues (PBA) as the core and nitrogen-doped carbon quantum dots (NCQDs) as the shell was constructed by a one-pot hydrothermal method, and it was used for the efficient detection of Ep. As a good electroactive material, NCQDs in the composite not only improved the weak conductivity of FeCoFe-PBA, but also limited the self-aggregation of FeCoFe-PBA, and formed a uniform shell on FeCoFe-PBA. The heterogeneous structure formed between the core and shell layer resulting in NCQDs/FeCoFe-PBA nanocomposites with more active sites, electron transport channels and a larger effective surface area. Further, under optimal conditions, the electrochemical method was used to evaluate the NCQDs/FeCoFe-PBA sensor, and the results revealed that the sensor had exceptional sensing performance for Ep, with an excellent linear range from 0.01 to 306.7 μM and a low detection limit of 0.002 μM. Simultaneously, the practicality, repeatability, and stability tests yielded positive results, confirming the feasibility of practical development and application of NCQDs/FeCoFe-PBA.
Collapse
Affiliation(s)
- Mingyue Chu
- The School of food Engineering, Harbin University, Harbin, 150086, PR China; The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Ying Wang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Jianjiao Xin
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China; Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar, 161006, PR China
| | - Kevin P O'Halloran
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA, 30043, USA
| | - Yikun Liu
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Daozheng Song
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Guixin Yang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Huiyuan Ma
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Haijun Pang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Xinming Wang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| |
Collapse
|
2
|
Warren CG, Dasgupta PK. Liquid phase detection in the miniature scale. Microfluidic and capillary scale measurement and separation systems. A tutorial review. Anal Chim Acta 2024; 1305:342507. [PMID: 38677834 DOI: 10.1016/j.aca.2024.342507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/29/2024]
Abstract
Microfluidic and capillary devices are increasingly being used in analytical applications while their overall size keeps decreasing. Detection sensitivity for these microdevices gains more importance as device sizes and consequently, sample volumes, decrease. This paper reviews optical, electrochemical, electrical, and mass spectrometric detection methods that are applicable to capillary scale and microfluidic devices, with brief introduction to the principles in each case. Much of this is considered in the context of separations. We do consider theoretical aspects of separations by open tubular liquid chromatography, arguably the most potentially fertile area of separations that has been left fallow largely because of lack of scale-appropriate detection methods. We also examine the theoretical basis of zone electrophoretic separations. Optical detection methods discussed include UV/Vis absorbance, fluorescence, chemiluminescence and refractometry. Amperometry is essentially the only electrochemical detection method used in microsystems. Suppressed conductance and especially contactless conductivity (admittance) detection are in wide use for the detection of ionic analytes. Microfluidic devices, integrated to various mass spectrometers, including ESI-MS, APCI-MS, and MALDI-MS are discussed. We consider the advantages and disadvantages of each detection method and compare the best reported limits of detection in as uniform a format as the available information allows. While this review pays more attention to recent developments, our primary focus has been on the novelty and ingenuity of the approach, regardless of when it was first proposed, as long as it can be potentially relevant to miniature platforms.
Collapse
Affiliation(s)
- Cable G Warren
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States
| | - Purnendu K Dasgupta
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019-0065, United States.
| |
Collapse
|
3
|
Wang T, Yu C, Xie X. Microfluidics for Environmental Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:267-290. [PMID: 32440697 DOI: 10.1007/10_2020_128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Microfluidic and lab-on-a-chip systems have become increasingly important tools across many research fields in recent years. As a result of their small size and precise flow control, as well as their ability to enable in situ process visualization, microfluidic systems are increasingly finding applications in environmental science and engineering. Broadly speaking, their main present applications within these fields include use as sensors for water contaminant analysis (e.g., heavy metals and organic pollutants), as tools for microorganism detection (e.g., virus and bacteria), and as platforms for the investigation of environment-related problems (e.g., bacteria electron transfer and biofilm formation). This chapter aims to review the applications of microfluidics in environmental science and engineering - with a particular focus on the foregoing topics. The advantages and limitations of microfluidics when compared to traditional methods are also surveyed, and several perspectives on the future of research and development into microfluidics for environmental applications are offered.
Collapse
Affiliation(s)
- Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Cecilia Yu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Sun Y, Lu F, Yang H, Ding C, Yuan Z, Lu C. Fluorescent sensor array for separation-free dopamine analogue discrimination via polyethyleneimine-mediated self-polymerization reaction. NANOSCALE 2019; 11:12889-12897. [PMID: 31245804 DOI: 10.1039/c9nr03643a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The effective discrimination of dopamine (DA) analogues is an enduring challenge because of their very tiny structural differences, and thus a separation technique is generally required during the conventional analysis. In this study, a hyperbranched polyethyleneimine (hPEI)-based fluorescent sensor array has been constructed for the separation-free and effective differentiation of four DA analogues. The discrimination includes two steps: firstly, the formation of fluorescent polymer nanoparticles (FPNs) with diverse emission profiles via hPEI-mediated self-polymerization reaction of DA analogues and secondly, the linear discriminant analysis of fluorescence patterns of the formed FPNs for the differentiation of DA analogues. The hPEI-assisted self-polymerization reaction of DA analogues and substitution group mediated optical properties of the resulted FPNs enable an excellent discrimination of four DA analogues at a concentration of 1.0 μM when linear discriminant analysis and hierarchical cluster analysis are smartly combined. Additionally, binary, tertiary and even quaternary mixtures of analogues can also be well distinguished with the proposed sensor array. The practicability of this established sensor array is validated by a high accuracy (100%) evaluation of 88 blind samples containing a single analogue or a mixture of two, three or four analogues.
Collapse
Affiliation(s)
- Ye Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fengniu Lu
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Hongwei Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Caifeng Ding
- Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education; Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhiqin Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
5
|
Zhou HY, Li YZ, Jiang R, Hu HF, Wang YS, Liu ZQ, Xue YP, Zheng YG. A high-throughput screening method for improved R-2-(4-hydroxyphenoxy)propionic acid biosynthesis. Bioprocess Biosyst Eng 2019; 42:1573-1582. [PMID: 31190281 DOI: 10.1007/s00449-019-02154-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/27/2019] [Indexed: 01/12/2023]
Abstract
R-2-(4-hydroxyphenoxy)propionic acid (R-HPPA) is a key intermediate of the enantiomerically pure phenoxypropionic acid herbicides. R-HPPA could be biosynthesized through selective introduction of a hydroxyl group (-OH) into the substrate R-2-phenoxypropionic acid (R-PPA) at C-4 position, facilitated by microorganisms with hydroxylases. In this study, an efficient high-throughput screening method for improved R-HPPA biosynthesis through microbial hydroxylation was developed. As a hydroxylated aromatic product, R-HPPA could be oxidized by oxidant potassium dichromate to form brown-colored quinone-type compound. The concentration of R-HPPA can be quantified according to the absorbance of the colored compound at a suitable wavelength of 570 nm; and the R-HPPA biosynthetic capability of microorganism strains could also be rapidly evaluated. After optimization of the assay conditions, the high-throughput screening method was successfully used in identification of Beauveria bassiana mutants with enhanced R-HPPA biosynthesis capacity. A positive mutant C-7 with high tolerance to 20 g/L R-PPA was rapidly selected from 1920 mutants. The biomass and R-HPPA titer were 12.5- and 38.19-fold higher compared with the original strain at 20 g/L R-PPA. This high-throughput screening method developed in this work could also be a potential tool for screening strains producing other important phenolic compounds.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yi-Zuo Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Rui Jiang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Hai-Feng Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yuan-Shan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China. .,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, Zhejiang Province, People's Republic of China.,Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
6
|
Buyuktuncel E. Microchip Electrophoresis and Bioanalytical Applications. CURR PHARM ANAL 2019. [DOI: 10.2174/1573412914666180831100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microanalytical systems have aroused great interest because they can analyze extremely
small sample volumes, improve the rate and throughput of chemical and biochemical analysis in a way
that reduces costs. Microchip Electrophoresis (ME) represents an effective separation technique to perform
quick analytical separations of complex samples. It offers high resolution and significant peak
capacity. ME is used in many areas, including biology, chemistry, engineering, and medicine. It is established
the same working principles as Capillary Electrophoresis (CE). It is possible to perform electrophoresis
in a more direct and convenient way in a microchip. Since the electric field is the driving
force of the electrodes, there is no need for high pressure as in chromatography. The amount of the voltage
that is applied in some electrophoresis modes, e.g. Micelle Electrokinetic Chromatography (MEKC)
and Capillary Zone Electrophoresis (CZE), mainly determines separation efficiency. Therefore, it is
possible to apply a higher electric field along a considerably shorter separation channel, hence it is possible
to carry out ME much quicker.
Collapse
Affiliation(s)
- Ebru Buyuktuncel
- Faculty of Pharmacy, Department of Analytical Chemistry, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
7
|
Shimizu FM, Todão FR, Gobbi AL, Oliveira ON, Garcia CD, Lima RS. Functionalization-Free Microfluidic Electronic Tongue Based on a Single Response. ACS Sens 2017; 2:1027-1034. [PMID: 28750534 DOI: 10.1021/acssensors.7b00302] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Electronic tongues (e-tongues) are promising analytical devices for a variety of applications to address the challenges of quality control in water monitoring and industries of foods, beverages, and pharmaceuticals. A crucial drawback in the current e-tongues is the need to recalibrate the device when one or more sensing units (usually with modified surface) are replaced. Another downside is the necessity to perform subsequent surface modifications and analyses to each of the diverse sensing units, undermining the simplicity and velocity of the method. These features have prevented widespread commercial use of the e-tongues. In this paper, we introduce a microfluidic e-tongue that overcomes all such limitations. The key principle of global selectivity of the e-tongue was achieved by recording only a single response, namely, the equivalent admittance spectrum of an association of resistors in parallel. Such resistors consisted of five nonfunctionalized stainless steel microwires (sensing units), which were short-circuited and coated with gold, platinum, nickel, iron, and aluminum oxide films. The microwires were inserted in a chip composed of a single piece of polydimethylsiloxane (PDMS). Using impedance spectroscopy, the e-tongue was successfully applied in classification of basic tastes at a concentration below the threshold for the human tongue. In addition, our chip allowed the distinction of various chemicals used in oil industry. Finally, our cleanroom-free prototyping allows the mass production of chips with easily replaceable and reproducible sensing units. Hence, one can now envisage the widespread dissemination of e-tongues with fast and reproducible data.
Collapse
Affiliation(s)
- Flavio M. Shimizu
- Instituto
de Física de São Carlos, Universidade de São Paulo, São
Carlos, São Paulo 13560-970, Brasil
| | - Fagner R. Todão
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Angelo L. Gobbi
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Osvaldo N. Oliveira
- Instituto
de Física de São Carlos, Universidade de São Paulo, São
Carlos, São Paulo 13560-970, Brasil
| | - Carlos D. Garcia
- Department
of Chemistry, Clemson University, 219 Hunter Laboratories, Clemson, South Carolina 29634, United States
| | - Renato S. Lima
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| |
Collapse
|
8
|
Teixeira CA, Giordano GF, Beltrame MB, Vieira LCS, Gobbi AL, Lima RS. Renewable Solid Electrodes in Microfluidics: Recovering the Electrochemical Activity without Treating the Surface. Anal Chem 2016; 88:11199-11206. [DOI: 10.1021/acs.analchem.6b03453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carlos A. Teixeira
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| | - Gabriela F. Giordano
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| | - Maisa B. Beltrame
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Luis C. S. Vieira
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Angelo L. Gobbi
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
| | - Renato S. Lima
- Laboratório
de Microfabricação, Laboratório Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, São Paulo 13083-970, Brasil
- Instituto
de Química, Universidade Estadual de Campinas, Campinas, São Paulo 13083-970, Brasil
| |
Collapse
|
9
|
Caxico de Abreu F, Costa EEM. Electrochemical Detection Using an Engraved Microchip - Capillary Electrophoresis Platform. ELECTROANAL 2016. [DOI: 10.1002/elan.201600033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Fabiane Caxico de Abreu
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; Maceio, Alagoas Brazil
- Department of Chemistry; The University of Texas at San Antonio; UTSA Circle San Antonio TX 78249 USA
| | - Elton Elias M. Costa
- Institute of Chemistry and Biotechnology; Federal University of Alagoas; Maceio, Alagoas Brazil
| |
Collapse
|
10
|
da Costa ET, Santos MFS, Jiao H, do Lago CL, Gutz IGR, Garcia CD. Fast production of microfluidic devices by CO2laser engraving of wax-coated glass slides. Electrophoresis 2016; 37:1691-5. [DOI: 10.1002/elps.201600065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/04/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Eric T. da Costa
- Department of Chemistry, 219 Hunter Laboratories; Clemson University; Clemson SC USA
| | - Mauro F. S. Santos
- Department of Chemistry, 219 Hunter Laboratories; Clemson University; Clemson SC USA
- Instituto de Química, Universidade de São Paulo; São Paulo Brazil
| | - Hong Jiao
- HJ Science and Technology; Berkeley CA USA
| | | | - Ivano G. R. Gutz
- Instituto de Química, Universidade de São Paulo; São Paulo Brazil
| | - Carlos D. Garcia
- Department of Chemistry, 219 Hunter Laboratories; Clemson University; Clemson SC USA
| |
Collapse
|
11
|
Giuliani JG, Benavidez TE, Duran GM, Vinogradova E, Rios A, Garcia CD. Development and Characterization of Carbon Based Electrodes from Pyrolyzed Paper for Biosensing Applications. J Electroanal Chem (Lausanne) 2016; 765:8-15. [PMID: 27175108 PMCID: PMC4860743 DOI: 10.1016/j.jelechem.2015.07.055] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This article details the study of electrochemical behavior of new carbon electrodes based on pyrolysis of different paper sources to be used in biosensor applications. The resistivity of the pyrolyzed papers was initially used as screening parameters to select the best three paper samples (imaging card paper, multipurpose printing paper, and 3MM chromatography paper) and assemble working electrodes that were further characterized by a combination of microscopy, electrochemistry, and spectroscopy. Although slight differences in performance were observed, all carbon substrates fabricated from pyrolysis of paper allowed the development of competitive biosensors for uric acid. The presented results demonstrate the potential of these electrodes for sensing applications and highlight the potential advantages of 3MM chromatography paper as a substrate to fabricate electrodes by pyrolysis.
Collapse
Affiliation(s)
- Jason G. Giuliani
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | - Gema M. Duran
- Department of Analytical Chemistry and Food Technology, University of Castilla – La Mancha, Ciudad Real, Spain
| | - Ekaterina Vinogradova
- Department of Physics and Astronomy, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Angel Rios
- Department of Analytical Chemistry and Food Technology, University of Castilla – La Mancha, Ciudad Real, Spain
| | - Carlos D. Garcia
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
12
|
Moreira Gabriel EF, Tomazelli Coltro WK, Garcia CD. Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 2015; 35:2325-32. [PMID: 25113407 DOI: 10.1002/elps.201470140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This paper describes the effects of different modes and engraving parameters on the dimensions of microfluidic structures produced in PMMA using laser engraving. The engraving modes included raster and vector, while the explored engraving parameters included power, speed, frequency, resolution, line-width, and number of passes. Under the optimum conditions, the technique was applied to produce channels suitable for CE separations. Taking advantage of the possibility to cut-through the substrates, the laser was also used to define solution reservoirs (buffer, sample, and waste) and a PDMS-based decoupler. The final device was used to perform the analysis of a model mixture of phenolic compounds within 200 s with baseline resolution.
Collapse
|
13
|
Fabrication of a totally renewable off-channel amperometric platform for microchip electrophoresis. Anal Chim Acta 2015; 874:33-9. [PMID: 25910443 DOI: 10.1016/j.aca.2015.02.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 11/21/2022]
Abstract
In this approach, a novel method to fabricate an integrated amperometric platform used in off-channel electrophoresis has been introduced. A simple screen printed protocol combining a wet etching procedure was used to define the pattern on a glass substrate, and whole electrodes were constructed by filling the conductive carbon ink into the etched cavities. A simple Teflon tape was used to align this platform with the micro-channel, and the variation of reassembling of this device can be down to 2.2% without the assistance of microscope. This device was characterized by dopamine (DA) and catechol (CA), and the width of half peak is around 4s, even a 100 μm double T shape injection design and a 550 μm working electrode were used in this work. Under the optimum condition, this device possesses a low background with a noise level of 1.4 pA (peak to peak). The linear range for DA and CA are 0.1-100 μM (R = 0.998) and 0.2-200 μM (R = 0.996) with a theoretical plate number of 1.57 × 10(4) and 3.46 × 10(4) (plate/m), respectively.
Collapse
|
14
|
Lucca BG, Lunte SM, Tomazelli Coltro WK, Ferreira VS. Separation of natural antioxidants using PDMS electrophoresis microchips coupled with amperometric detection and reverse polarity. Electrophoresis 2014; 35:3363-70. [PMID: 25224541 DOI: 10.1002/elps.201400359] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 12/12/2022]
Abstract
This report describes the use of PDMS ME coupled with amperometric detection for rapid separation of ascorbic, gallic , ferulic, p-coumaric acids using reverse polarity. ME devices were fabricated in PDMS by soft lithography and detection was accomplished using an integrated carbon fiber working electrode aligned in the end-channel configuration. Separation and detection parameters were investigated and the best conditions were obtained using a run buffer consisting of 5 mM phosphate buffer (pH 6.9) and a detection voltage of 1.0 V versus Ag/AgCl reference electrode. All compounds were separated within 70 s using gated injection mode with baseline resolution and separation efficiencies between 1200 and 9000 plates. Calibration curves exhibited good linearity and the LODs achieved ranged from 1.7 to 9.7 μM. The precision for migration time and peak height provided maximum values of 4% for the intrachip studies. Lastly, the analytical method was successfully applied for the analysis of ascorbic and gallic acids in commercial beverage samples. The results achieved using ME coupled with amperometric detection were in good agreement with the values provided by the supplier. Based on the data reported here, the proposed method shows suitability to be applied for the routine analysis of beverage samples.
Collapse
Affiliation(s)
- Bruno Gabriel Lucca
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brazil
| | | | | | | |
Collapse
|
15
|
Gabriel EFM, Coltro WKT, Garcia CD. Fast and versatile fabrication of PMMA microchip electrophoretic devices by laser engraving. Electrophoresis 2014. [DOI: 10.1002/elps.201300511] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ellen Flávia Moreira Gabriel
- Instituto de Química; Universidade Federal de Goiás; Goiânia Goias Brazil
- Department of Chemistry; The University of Texas at San Antonio; San Antonio TX USA
| | | | - Carlos D. Garcia
- Department of Chemistry; The University of Texas at San Antonio; San Antonio TX USA
| |
Collapse
|
16
|
Regel A, Lunte S. Integration of a graphite/poly(methyl-methacrylate) composite electrode into a poly(methylmethacrylate) substrate for electrochemical detection in microchips. Electrophoresis 2014; 34:2101-6. [PMID: 23670816 DOI: 10.1002/elps.201300055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 04/09/2013] [Indexed: 11/05/2022]
Abstract
Traditional fabrication methods for polymer microchips, the bonding of two substrates together to form the microchip, can make the integration of carbon electrodes difficult. We have developed a simple and inexpensive method to integrate graphite/PMMA composite electrodes (GPCEs) into a PMMA substrate. These substrates can be bonded to other PMMA layers using a solvent-assisted thermal bonding method. The optimal composition of the GPCEs for electrochemical detection was determined using cyclic voltammetry with dopamine as a test analyte. Using the optimized GPCEs in an all-PMMA flow cell with flow injection analysis, it was possible to detect 50 nM dopamine under the best conditions. These electrodes were also evaluated for the detection of dopamine and catechol following separation by MCE.
Collapse
Affiliation(s)
- Anne Regel
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|
17
|
Meng X, Suo X, Fan B, Yu Y, Ding Y. Study of the post separation pH adjustment by a microchip for the analysis of aminoglycoside antibiotics. RSC Adv 2014. [DOI: 10.1039/c4ra10597d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A simple microfluidic technique was developed with the ability to adjust the pH after separation for the electrochemical detection of aminoglycoside antibiotics.
Collapse
Affiliation(s)
- Xiangying Meng
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing 100049, China
| | - Xingmei Suo
- School of Information Engineering
- Minzu University of China
- Beijing 100081, China
| | - Beiyuan Fan
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing 100049, China
| | - Yongliang Yu
- School of Physics
- University of Chinese Academy of Sciences
- Beijing 100049, China
| | - Yongsheng Ding
- College of Life Sciences
- University of Chinese Academy of Sciences
- Beijing 100049, China
| |
Collapse
|
18
|
Benavidez TE, Garcia CD. Spectroscopic and electrochemical characterization of nanostructured optically transparent carbon electrodes. Electrophoresis 2013; 34:1998-2006. [PMID: 23595607 PMCID: PMC3860877 DOI: 10.1002/elps.201300022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/15/2013] [Accepted: 03/03/2013] [Indexed: 12/15/2022]
Abstract
The present paper describes the results related to the optical and electrochemical characterization of thin carbon films fabricated by spin coating and pyrolysis of AZ P4330-RS photoresist. The goal of this paper is to provide comprehensive information allowing for the rational selection of the conditions to fabricate optically transparent carbon electrodes (OTCE) with specific electrooptical properties. According to our results, these electrodes could be appropriate choices as electrochemical transducers to monitor electrophoretic separations. At the core of this manuscript is the development and critical evaluation of a new optical model to calculate the thickness of the OTCE by variable angle spectroscopic ellipsometry. Such data were complemented with topography and roughness (obtained by atomic force microscopy), electrochemical properties (obtained by cyclic voltammetry), electrical properties (obtained by electrochemical impedance spectroscopy), and structural composition (obtained by Raman spectroscopy). Although the described OTCE were used as substrates to investigate the effect of electrode potential on the real-time adsorption of proteins by ellipsometry, these results could enable the development of other biosensors that can be then integrated into various CE platforms.
Collapse
Affiliation(s)
- Tomas E. Benavidez
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249, USA
| | - Carlos D. Garcia
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle, San Antonio, TX 78249, USA
| |
Collapse
|
19
|
Ding Y, Bai L, Suo X, Meng X. Post separation adjustment of pH to enable the analysis of aminoglycoside antibiotics by microchip electrophoresis with amperometric detection. Electrophoresis 2012; 33:3245-53. [DOI: 10.1002/elps.201200309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 07/28/2012] [Accepted: 07/30/2012] [Indexed: 01/19/2023]
Affiliation(s)
- Yongsheng Ding
- College of Life Sciences; Graduate University of Chinese Academy of Sciences; Beijing; China
| | - Liang Bai
- College of Life Sciences; Graduate University of Chinese Academy of Sciences; Beijing; China
| | - Xingmei Suo
- School of Information Engineering; Minzu University of China; Beijing; China
| | - Xiangying Meng
- College of Life Sciences; Graduate University of Chinese Academy of Sciences; Beijing; China
| |
Collapse
|
20
|
Abstract
Recent developments in materials, surface modifications, separation schemes, detection systems and associated instrumentation have allowed significant advances in the performance of lab-on-a-chip devices. These devices, also referred to as micro total analysis systems (µTAS), offer great versatility, high throughput, short analysis time, low cost and, more importantly, performance that is comparable to standard bench-top instrumentation. To date, µTAS have demonstrated advantages in a significant number of fields including biochemical, pharmaceutical, military and environmental. Perhaps most importantly, µTAS represent excellent platforms to introduce students to microfabrication and nanotechnology, bridging chemistry with other fields, such as engineering and biology, enabling the integration of various skills and curricular concepts. Considering the advantages of the technology and the potential impact to society, our research program aims to address the need for simpler, more affordable, faster and portable devices to measure biologically active compounds. Specifically, the program is focused on the development and characterization of a series of novel strategies towards the realization of integrated microanalytical devices. One key aspect of our research projects is that the developed analytical strategies must be compatible with each other; therefore, enabling their use in integrated devices. The program combines spectroscopy, surface chemistry, capillary electrophoresis, electrochemical detection and nanomaterials. This article discusses some of the most recent results obtained in two main areas of emphasis: capillary electrophoresis, microchip-capillary electrophoresis, electrochemical detection and interaction of proteins with nanomaterials.
Collapse
Affiliation(s)
- Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
21
|
Poly (acrylic acid) microchannel modification for the enhanced resolution of catecholamines microchip electrophoresis with electrochemical detection. Anal Chim Acta 2012; 724:136-43. [DOI: 10.1016/j.aca.2012.02.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 02/27/2012] [Accepted: 02/29/2012] [Indexed: 12/14/2022]
|
22
|
Rabanes HR, Guidote AM, Quirino JP. Capillary electrophoresis of natural products: Highlights of the last five years (2006-2010). Electrophoresis 2011; 33:180-95. [DOI: 10.1002/elps.201100223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
|
23
|
Felhofer JL, Blanes L, Garcia CD. Recent developments in instrumentation for capillary electrophoresis and microchip-capillary electrophoresis. Electrophoresis 2010; 31:2469-86. [PMID: 20665910 PMCID: PMC2928674 DOI: 10.1002/elps.201000203] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Over the last years, there has been an explosion in the number of developments and applications of CE and microchip-CE. In part, this growth has been the direct consequence of recent developments in instrumentation associated with CE. This review, which is focused on the contributions published in the last 5 years, is intended to complement the articles presented in this special issue dedicated to instrumentation and to provide an overview of the general trends and some of the most remarkable developments published in the areas of high-voltage power supplies, detectors, auxiliary components, and compact systems. It also includes a few examples of alternative uses of and modifications to traditional CE instruments.
Collapse
Affiliation(s)
- Jessica L. Felhofer
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| | - Lucas Blanes
- Centre for Forensic Science, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Carlos D. Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, United States of America
| |
Collapse
|
24
|
Fischer DJ, Hulvey MK, Regel AR, Lunte SM. Amperometric detection in microchip electrophoresis devices: effect of electrode material and alignment on analytical performance. Electrophoresis 2010; 30:3324-33. [PMID: 19802847 DOI: 10.1002/elps.200900317] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The fabrication and evaluation of different electrode materials and electrode alignments for microchip electrophoresis with electrochemical detection is described. The influences of electrode material, both metal and carbon-based, on sensitivity and LOD were examined. In addition, the effects of working electrode alignment on analytical performance (in terms of peak shape, resolution, sensitivity, and LOD) were directly compared. Using dopamine (DA), norepinephrine, and catechol (CAT) as test analytes, it was found that pyrolyzed photoresist electrodes with end-channel alignment yielded the lowest LOD (35 nM for DA). In addition to being easier to implement, end-channel alignment also offered better analytical performance than off-channel alignment for the detection of all three analytes. In-channel electrode alignment resulted in a 3.6-fold reduction in peak skew and reduced peak tailing by a factor of 2.1 for CAT in comparison to end-channel alignment.
Collapse
Affiliation(s)
- David J Fischer
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | | | | | | |
Collapse
|
25
|
Persat A, Chambers RD, Santiago JG. Basic principles of electrolyte chemistry for microfluidic electrokinetics. Part I: Acid-base equilibria and pH buffers. LAB ON A CHIP 2009; 9:2437-53. [PMID: 19680570 DOI: 10.1039/b906465f] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
We review fundamental and applied acid-base equilibrium chemistry useful to microfluidic electrokinetics. We present elements of acid-base equilibrium reactions and derive rules for pH calculation for simple buffers. We also present a general formulation to calculate pH of more complex, arbitrary mixtures of electrolytes, and discuss the effects of ionic strength and temperature on pH calculation. More practically, we offer advice on buffer preparation and on buffer reporting. We also discuss "real world" buffers and likely contamination sources. In particular, we discuss the effects of atmospheric carbon dioxide on buffer systems, namely, the increase in ionic strength and acidification of typical electrokinetic device buffers. In Part II of this two-paper series, we discuss the coupling of acid-base equilibria with electrolyte dynamics and electrochemistry in typical microfluidic electrokinetic systems.
Collapse
Affiliation(s)
- Alexandre Persat
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | | | | |
Collapse
|
26
|
Berg C, Valdez DC, Bergeron P, Mora MF, Garcia CD, Ayon A. Lab-on-a-robot: Integrated microchip CE, power supply, electrochemical detector, wireless unit, and mobile platform. Electrophoresis 2008; 29:4914-21. [DOI: 10.1002/elps.200800215] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Simpson SL, Quirino JP, Terabe S. On-line sample preconcentration in capillary electrophoresis. J Chromatogr A 2008; 1184:504-41. [DOI: 10.1016/j.chroma.2007.11.001] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 10/30/2007] [Accepted: 11/01/2007] [Indexed: 02/06/2023]
|
28
|
Influence of solution pH on the electron transport of the self-assembled nanoarrays of single-walled carbon nanotube-cobalt tetra-aminophthalocyanine on gold electrodes: Electrocatalytic detection of epinephrine. Electrochim Acta 2008. [DOI: 10.1016/j.electacta.2007.10.076] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Blanes L, Mora M, do Lago C, Ayon A, García C. Lab-on-a-Chip Biosensor for Glucose Based on a Packed Immobilized Enzyme Reactor. ELECTROANAL 2007. [DOI: 10.1002/elan.200704001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Ding Y, Mora MF, Merrill GN, Garcia CD. The effects of alkyl sulfates on the analysis of phenolic compounds by microchip capillary electrophoresis with pulsed amperometric detection. Analyst 2007; 132:997-1004. [PMID: 17893803 DOI: 10.1039/b704364c] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effects of different surfactants (sodium 2-ethylhexyl sulfate, sodium decyl sulfate, sodium dodecyl sulfate and sodium tetradecyl sulfate) on the analysis of phenolic compounds by microchip-CE with pulsed amperometric detection were investigated. Using sodium decyl sulfate as a model surfactant, the effects of concentration and pH were examined. Under the optimized conditions, the analysis of six phenolic compounds was performed and compared with control runs performed without surfactant. When these surfactants were present in the run buffer, decreases in the migration time and increases in the run-to-run reproducibility were observed. Systematic improvements in the electrochemical response for the phenolic compounds were also obtained. According to the results presented, surfactants enhance the analyte-electrode interaction and facilitate the electron transfer process. These results should allow a more rational selection of the surfactants based on their electrophoretic and electrochemical effects.
Collapse
Affiliation(s)
- Yongsheng Ding
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|